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   Preface 

  OBJECTIVES  
 The main objective of a first course in mechanics should be to 
develop in the engineering student the ability to analyze any problem 
in a simple and logical manner and to apply to its solution a few, well-
understood, basic principles. This text is designed for the first courses 
in statics and dynamics offered in the sophomore or junior year, and 
it is hoped that it   will help the instructor achieve this goal.  †    

 GENERAL APPROACH  
 Vector analysis is introduced early in the text and is used throughout 
the presentation of statics and dynamics. This approach leads to more 
concise derivations of the fundamental principles of mechanics. It also 
results in simpler solutions of three-dimensional problems in statics 
and makes it possible to analyze many advanced problems in kine-
matics and kinetics, which could not be solved by scalar methods. The 
emphasis in this text, however, remains on the correct understanding 
of the principles of mechanics and on their application to the solution 
of engineering problems, and vector analysis is presented chiefly as a 
convenient tool.  ‡   

   Practical Applications Are Introduced Early.   One of the char-
acteristics of the approach used in this book is that mechanics of 
particles  is clearly separated from the mechanics of  rigid bodies.  This 
approach makes it possible to consider simple practical applications 
at an early stage and to postpone the introduction of the more diffi-
cult concepts. For example:

   •   In  Statics,  the statics of particles is treated first (Chap. 2); after 
the rules of addition and subtraction of vectors are introduced, 
the principle of equilibrium of a particle is immediately applied 
to practical situations involving only concurrent forces. The stat-
ics of rigid bodies is considered in Chaps. 3 and 4. In Chap. 3, 
the vector and scalar products of two vectors are introduced and 
used to define the moment of a force about a point and about 
an axis. The presentation of these new concepts is followed by a 
thorough and rigorous discussion of equivalent systems of forces 
leading, in Chap. 4, to many practical applications involving the 
equilibrium of rigid bodies under general force systems.  

†This text is available in separate volumes, Vector Mechanics for Engineers: Statics, ninth 
edition, and Vector Mechanics for Engineers: Dynamics, ninth edition.

‡In a parallel text, Mechanics for Engineers: fifth edition, the use of vector algebra is 
limited to the addition and subtraction of vectors, and vector differentiation is omitted.
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  •   In  Dynamics,  the same division is observed. The basic concepts of 
force, mass, and acceleration, of work and energy, and of impulse 
and momentum are introduced and first applied to problems in-
volving only particles. Thus, students can familiarize themselves 
with the three basic methods used in dynamics and learn their 
respective advantages before facing the difficulties associated 
with the motion of rigid bodies.   

    New Concepts Are Introduced in Simple Terms.   Since this text 
is designed for the first course in statics and dynamics, new concepts 
are presented in simple terms and every step is explained in detail. 
On the other hand, by discussing the broader aspects of the prob-
lems considered, and by stressing methods of general applicability, a 
definite maturity of approach is achieved. For example:

• In Statics, the concepts of partial constraints and statical indeter-
minacy are introduced early and are used throughout statics.

• In Dynamics, the concept of potential energy is discussed in the 
general case of a conservative force. Also, the study of the plane 
motion of rigid bodies is designed to lead naturally to the study 
of their general motion in space. This is true in kinematics as well 
as in kinetics, where the principle of equivalence of external and 
effective forces is applied directly to the analysis of plane motion, 
thus facilitating the transition to the study of three-dimensional 
motion.   

 Fundamental Principles Are Placed in the Context of Simple 
Applications.   The fact that mechanics is essentially a  deductive  
science based on a few fundamental principles is stressed. Derivations 
have been presented in their logical sequence and with all the rigor 
warranted at this level. However, the learning process being largely 
 inductive,  simple applications are considered first. For example:

   •   The statics of particles precedes the statics of rigid bodies, and 
problems involving internal forces are postponed until Chap. 6.  

  •   In Chap. 4, equilibrium problems involving only coplanar forces 
are considered first and solved by ordinary algebra, while prob-
lems involving three-dimensional forces and requiring the full use 
of vector algebra are discussed in the second part of the chapter.   

   •   The kinematics of particles (Chap. 11) precedes the kinematics 
of rigid bodies (Chap. 15).  

  •   The fundamental principles of the kinetics rigid bodies are first 
applied to the solution of two-dimensional problems (Chaps. 16 
and 17), which can be more easily visualized by the student, while 
three-dimensional problems are postponed until Chap. 18.      

 The Presentation of the Principles of Kinetics Is Unified.   The 
ninth edition of  Vector Mechanics for Engineers  retains the unified 
presentation of the principles of kinetics which characterized the previ-
ous eight editions. The concepts of linear and angular momentum are 
introduced in Chap. 12, so that Newton’s second law of motion can be 
presented not only in its conventional form  F  5  m  a , but also as a law 
relating, respectively, the sum of the forces acting on a particle and the 
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xviisum of their moments to the rates of change of the linear and angular 
momentum of the particle. This makes possible an earlier introduction 
of the principle of conservation of angular momentum and a more 
meaningful discussion of the motion of a particle under a central force 
(Sec. 12.9). More importantly, this approach can be readily extended 
to the study of the motion of a system of particles (Chap. 14) and leads 
to a more concise and unified treatment of the kinetics of rigid bodies 
in two and three dimensions (Chaps. 16 through 18).   

 Free-Body Diagrams Are Used Both to Solve Equilibrium 
Problems and to Express the Equivalence of Force Systems.   
Free-body diagrams are introduced early, and their importance is 
emphasized throughout the text. They are used not only to solve 
equilibrium problems but also to express the equivalence of two sys-
tems of forces or, more generally, of two systems of vectors. The 
advantage of this approach becomes apparent in the study of the 
dynamics of rigid bodies, where it is used to solve three-dimensional 
as well as two-dimensional problems. By placing the emphasis on 
“free-body-diagram equations” rather than on the standard algebraic 
equations of motion, a more intuitive and more complete under-
standing of the fundamental principles of dynamics can be achieved. 
This approach, which was first introduced in 1962 in the first edition 
of  Vector Mechanics for Engineers,  has now gained wide acceptance 
among mechanics teachers in this country. It is, therefore, used in 
preference to the method of dynamic equilibrium and to the equa-
tions of motion in the solution of all sample problems in this book.   

 A Four-Color Presentation Uses Color to Distinguish Vectors.  
 Color has been used, not only to enhance the quality of the illustrations, 
but also to help students distinguish among the various types of vec-
tors they will encounter. While there is no intention to “color code” 
this text, the same color is used in any given chapter to represent vec-
tors of the same type. Throughout  Statics,  for example, red is used 
exclusively to represent forces and couples, while position vectors are 
shown in blue and dimensions in black. This makes it easier for the 
students to identify the forces acting on a given particle or rigid body 
and to follow the discussion of sample problems and other examples 
given in the text. In  Dynamics,  for the chapters on kinetics, red is used 
again for forces and couples, as well as for effective forces. Red is also 
used to represent impulses and momenta in free-body-diagram equa-
tions, while green is used for velocities, and blue for accelerations. In 
the two chapters on kinematics, which do not involve any forces, blue, 
green, and red are used, respectively, for displacements, velocities, and 
accelerations.   

 A Careful Balance Between SI and U.S. Customary Units Is 
Consistently Maintained.   Because of the current trend in the 
American government and industry to adopt the international sys-
tem of units (SI metric units), the SI units most frequently used in 
mechanics are introduced in Chap. 1 and are used throughout the 
text. Approximately half of the sample problems and 60 percent of 
the homework problems are stated in these units, while the  remainder 
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are in U.S. customary units. The authors believe that this approach 
will best serve the need of students, who, as engineers, will have to 
be conversant with both systems of units. 
  It also should be recognized that using both SI and U.S. custom-
ary units entails more than the use of conversion factors. Since the SI 
system of units is an absolute system based on the units of time, length, 
and mass, whereas the U.S. customary system is a gravitational system 
based on the units of time, length, and force, different approaches are 
required for the solution of many problems. For example, when SI 
units are used, a body is generally specified by its mass expressed in 
kilograms; in most problems of statics it will be necessary to determine 
the weight of the body in newtons, and an additional calculation will 
be required for this purpose. On the other hand, when U.S. customary 
units are used, a body is specified by its weight in pounds and, in 
dynamics problems, an additional calculation will be required to deter-
mine its mass in slugs (or lb ? s 2 /ft). The authors, therefore, believe 
that problem assignments should include both systems of units. 
  The  Instructor’s and Solutions Manual  provides six different 
lists of assignments so that an equal number of problems stated in 
SI units and in U.S. customary units can be selected. If so desired, 
two complete lists of assignments can also be selected with up to 
75 percent of the problems stated in SI units.   

 Optional Sections Offer Advanced or Specialty Topics.   A 
large number of optional sections have been included. These sections 
are indicated by asterisks and thus are easily distinguished from those 
which form the core of the basic mechanics course. They may be omit-
ted without prejudice to the understanding of the rest of the text. 
  The topics covered in the optional sections in statics include 
the reduction of a system of forces to a wrench, applications to hydro-
statics, shear and bending-moment diagrams for beams, equilibrium 
of cables, products of inertia and Mohr’s circle, mass products of 
inertia and principal axes of inertia for three-dimensional bodies, and 
the method of virtual work. An optional section on the determination 
of the principal axes and the mass moments of inertia of a body of 
arbitrary shape is included (Sec. 9.18). The sections on beams are 
especially useful when the course in statics is immediately followed 
by a course in mechanics of materials, while the sections on the inertia 
properties of three-dimensional bodies are primarily intended for the 
students who will later study in dynamics the three-dimensional motion 
of rigid bodies. 
  The topics covered in the optional sections in dynamics 
include graphical methods for the solution of rectilinear-motion 
problems, the trajectory of a particle under a central force, the 
deflection of fluid streams, problems involving jet and rocket pro-
pulsion, the kinematics and kinetics of rigid bodies in three dimen-
sions, damped mechanical vibrations, and electrical analogues. 
These topics will be found of particular interest when dynamics is 
taught in the junior year. 
  The material presented in the text and most of the problems 
require no previous mathematical knowledge beyond algebra, trigo-
nometry, and elementary calculus; all the elements of vector algebra 
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xixnecessary to the understanding of the text are carefully presented in 
Chaps. 2 and 3. However, special problems are included, which make 
use of a more advanced knowledge of calculus, and certain sections, 
such as Secs. 19.8 and 19.9 on damped vibrations, should be assigned 
only if students possess the proper mathematical background. In por-
tions of the text using elementary calculus, a greater emphasis is 
placed on the correct understanding and application of the concepts 
of differentiation and integration than on the nimble manipulation 
of mathematical formulas. In this connection, it should be mentioned 
that the determination of the centroids of composite areas precedes 
the calculation of centroids by integration, thus making it possible to 
establish the concept of moment of area firmly before introducing 
the use of integration.  

      CHAPTER ORGANIZATION AND PEDAGOGICAL FEATURES   
 Chapter Introduction.   Each chapter begins with an introductory 
section setting the purpose and goals of the chapter and describing 
in simple terms the material to be covered and its application to the 
solution of engineering problems. Chapter outlines provide students 
with a preview of chapter topics.   

 Chapter Lessons.   The body of the text is divided into units, each 
consisting of one or several theory sections, one or several sample 
problems, and a large number of problems to be assigned. Each unit 
corresponds to a well-defined topic and generally can be covered in 
one lesson. In a number of cases, however, the instructor will find it 
desirable to devote more than one lesson to a given topic.  The 
Instructor’s and Solutions Manual  contains suggestions on the cover-
age of each lesson.   

 Sample Problems.   The sample problems are set up in much the 
same form that students will use when solving the assigned problems. 
They thus serve the double purpose of amplifying the text and dem-
onstrating the type of neat, orderly work that students should culti-
vate in their own solutions.   

 Solving Problems on Your Own.   A section entitled  Solving 
Problems on Your Own  is included for each lesson, between the 
sample problems and the problems to be assigned. The purpose of 
these sections is to help students organize in their own minds the 
preceding theory of the text and the solution methods of the sample 
problems so that they can more successfully solve the homework 
problems. Also included in these sections are specific suggestions 
and strategies which will enable students to more efficiently attack 
any assigned problems.   

 Homework Problem Sets.   Most of the problems are of a practi-
cal nature and should appeal to engineering students. They are pri-
marily designed, however, to illustrate the material presented in the 
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text and to help students understand the principles of mechanics. 
The problems are grouped according to the portions of material they 
illustrate and are arranged in order of increasing difficulty. Problems 
requiring special attention are indicated by asterisks. Answers to 
70 percent of the problems are given at the end of the book.  Problems 
for which the answers are given are set in straight type in the text, 
while problems for which no answer is given are set in italic.   

 Chapter Review and Summary.   Each chapter ends with a 
review and summary of the material covered in that chapter. Mar-
ginal notes are used to help students organize their review work, and 
cross-references have been included to help them find the portions 
of material requiring their special attention.   

 Review Problems.   A set of review problems is included at the end 
of each chapter. These problems provide students further opportunity 
to apply the most important concepts introduced in the chapter.   

 Computer Problems.   Each chapter includes a set of problems 
designed to be solved with computational software. Many of these 
problems provide an introduction to the design process. In Statics, 
for example, they may involve the analysis of a structure for various 
configurations and loading of the structure or the determination of 
the equilibrium positions of a mechanism which may require an itera-
tive method of solution. In Dynamics, they may involve the determi-
nation of the motion of a particle under initial conditions, the kinematic 
or kinetic analysis of mechanisms in successive positions, or the 
numerical integration of various equations of motion. Developing the 
algorithm required to solve a given mechanics problem will benefit 
the students in two different ways: (1) it will help them gain a better 
understanding of the mechanics principles involved; (2) it will provide 
them with an opportunity to apply their computer skills to the solu-
tion of a meaningful engineering problem.    

  SUPPLEMENTS  
 An extensive supplements package for both instructors and students 
is available with the text.  

 Instructor’s and Solutions Manual.    The Instructor’s and  Solutions 
Manual  that accompanies the ninth edition features typeset, one-per-
page solutions to all homework problems. This manual also features 
a number of tables designed to assist instructors in creating a sched-
ule of assignments for their courses. The various topics covered in the 
text are listed in Table I, and a suggested number of periods to be 
spent on each topic is indicated. Table II provides a brief description 
of all groups of problems and a classification of the problems in each 
group according to the units used. Sample lesson schedules are 
shown in Tables III, IV, and V.   

xx Preface

bee29400_fm_i-xxiv.indd Page xx  12/18/08  3:39:33 PM user-s172bee29400_fm_i-xxiv.indd Page xx  12/18/08  3:39:33 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



xxi McGRAW-HILL CONNECT ENGINEERING 
 McGraw-Hill Connect Engineering is a web-based assignment and 
assessment platform that gives students the means to better connect 
with their coursework, their instructors, and the important concepts 
that they will need to know for success now and in the future. With 
Connect Engineering, instructors can deliver assignments, quizzes, 
and tests easily online. Students can practice important skills at their 
own pace and on their own schedule. 
  Connect Engineering for  Vector Mechanics for Engineers  is 
available at  www.mhhe.com/beerjohnston  and includes algorithmic 
problems from the text, Lecture PowerPoints, an image bank, and 
animations.   

 Hands-on Mechanics.   Hands-on Mechanics is a website designed 
for instructors who are interested in incorporating three-dimensional, 
hands-on teaching aids into their lectures. Developed through a 
partnership between the McGraw-Hill Engineering Team and the 
Department of Civil and Mechanical Engineering at the United 
States Military Academy at West Point, this website not only pro-
vides detailed instructions for how to build 3-D teaching tools using 
materials found in any lab or local hardware store but also provides 
a community where educators can share ideas, trade best practices, 
and submit their own demonstrations for posting on the site. Visit 
 www.handsonmechanics.com .    

  ELECTRONIC TEXTBOOK OPTIONS  
 Ebooks are an innovative way for students to save money and create 
a greener environment at the same time. An ebook can save students 
about half the cost of a traditional textbook and offers unique  features 
like a powerful search engine, highlighting, and the ability to share 
notes with classmates using ebooks. 
  McGraw-Hill offers two ebook options: purchasing a download-
able book from VitalSource or a subscription to the book from Course-
Smart. To talk about the ebook options, contact your McGraw-Hill 
sales rep or visit the sites directly at  www.vitalsource.com  and 
 www.coursesmart.com .   

  ACKNOWLEDGMENTS  
 A special thanks go to our colleagues who thoroughly checked the 
solutions and answers of all problems in this edition and then pre-
pared the solutions for the accompanying Instructor’s and Solution 
Manual: Amy Mazurek of Williams Memorial Institute and Dean 
Updike of Lehigh University.   
  We are pleased to recognize Dennis Ormond of Fine Line 
Illustrations for the artful illustrations which contribute so much to 
the effectiveness of the text. 
  The authors thank the many companies that provided photo-
graphs for this edition. We also wish to recognize the determined 
efforts and patience of our photo researcher Sabina Dowell. 
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a Introduction

 In the latter part of the seventeenth 

century, Sir Isaac Newton stated the 

fundamental principles of mechanics, 

which are the foundation of much of 

today’s engineering. 
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   C H A P T E R 

1

 Introduction      
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Chapter 1  Introduction
 1.1 What Is Mechanics?
 1.2 Fundamental Concepts and 

Principles
 1.3 Systems of Units
 1.4 Conversion from One System of 

Units to Another
 1.5 Method of Problem Solution
 1.6 Numerical Accuracy

 1.1 WHAT IS MECHANICS?
Mechanics can be defined as that science which describes and predicts 
the conditions of rest or motion of bodies under the action of forces. It 
is divided into three parts: mechanics of rigid bodies, mechanics of 
deformable bodies, and mechanics of fluids.
 The mechanics of rigid bodies is subdivided into statics and 
dynamics, the former dealing with bodies at rest, the latter with bodies 
in motion. In this part of the study of mechanics, bodies are assumed 
to be perfectly rigid. Actual structures and machines, however, are 
never absolutely rigid and deform under the loads to which they are 
subjected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are studied in 
mechanics of materials, which is a part of the mechanics of deformable 
bodies. The third division of mechanics, the mechanics of fluids, is 
subdivided into the study of incompressible fluids and of compressible 
fluids. An important subdivision of the study of incompressible fluids 
is hydraulics, which deals with problems involving water.
 Mechanics is a physical science, since it deals with the study of 
physical phenomena. However, some associate mechanics with math-
ematics, while many consider it as an engineering subject. Both these 
views are justified in part. Mechanics is the foundation of most engi-
neering sciences and is an indispensable prerequisite to their study. 
However, it does not have the empiricism found in some engineering 
sciences, i.e., it does not rely on experience or observation alone; by its 
rigor and the emphasis it places on deductive reasoning it resembles 
mathematics. But, again, it is not an abstract or even a pure science; 
mechanics is an applied science. The purpose of mechanics is to explain 
and predict physical phenomena and thus to lay the foundations for 
engineering applications.

1.2 FUNDAMENTAL CONCEPTS AND PRINCIPLES
Although the study of mechanics goes back to the time of Aristotle 
(384–322 b.c.) and Archimedes (287–212 b.c.), one has to wait until 
Newton (1642–1727) to find a satisfactory formulation of its funda-
mental principles. These principles were later expressed in a modi-
fied form by d’Alembert, Lagrange, and Hamilton. Their validity 
remained unchallenged, however, until Einstein formulated his theory 
of relativity (1905). While its limitations have now been recognized, 
newtonian mechanics still remains the basis of today’s engineering 
sciences.
 The basic concepts used in mechanics are space, time, mass, and 
force. These concepts cannot be truly defined; they should be accepted 
on the basis of our intuition and experience and used as a mental frame 
of reference for our study of mechanics.
 The concept of space is associated with the notion of the position 
of a point P. The position of P can be defined by three lengths mea-
sured from a certain reference point, or origin, in three given direc-
tions. These lengths are known as the coordinates of P.

2
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3    To define an event, it is not sufficient to indicate its position in 
space. The  time  of the event should also be given. 
    The concept of  mass  is used to characterize and compare bodies 
on the basis of certain fundamental mechanical experiments. Two bod-
ies of the same mass, for example, will be attracted by the earth in the 
same manner; they will also offer the same resistance to a change in 
translational motion. 
    A  force  represents the action of one body on another. It can be 
exerted by actual contact or at a distance, as in the case of gravitational 
forces and magnetic forces. A force is characterized by its  point of 
application , its  magnitude , and its  direction ; a force is represented by 
a  vector  (Sec. 2.3). 
    In newtonian mechanics, space, time, and mass are absolute con-
cepts, independent of each other. (This is not true in  relativistic 
mechanics , where the time of an event depends upon its position, and 
where the mass of a body varies with its velocity.) On the other hand, 
the concept of force is not independent of the other three. Indeed, one 
of the fundamental principles of newtonian mechanics listed below 
indicates that the resultant force acting on a body is related to the mass 
of the body and to the manner in which its velocity varies with time. 
    You will study the conditions of rest or motion of particles and 
rigid bodies in terms of the four basic concepts we have introduced. By 
 particle  we mean a very small amount of matter which may be assumed 
to occupy a single point in space. A  rigid body  is a combination of a 
large number of particles occupying fixed positions with respect to 
each other. The study of the mechanics of particles is obviously a pre-
requisite to that of rigid bodies. Besides, the results obtained for a 
particle can be used directly in a large number of problems dealing 
with the conditions of rest or motion of actual bodies. 
    The study of elementary mechanics rests on six fundamental 
principles based on experimental evidence.  

 The Parallelogram Law for the Addition of Forces.   This states 
that two forces acting on a particle may be replaced by a single force, 
called their  resultant , obtained by drawing the diagonal of the paral-
lelogram which has sides equal to the given forces (Sec. 2.2).   

 The Principle of Transmissibility.   This states that the conditions 
of equilibrium or of motion of a rigid body will remain unchanged if a 
force acting at a given point of the rigid body is replaced by a force of 
the same magnitude and same direction, but acting at a different point, 
provided that the two forces have the same line of action (Sec. 3.3).   

 Newton’s Three Fundamental Laws.   Formulated by Sir Isaac 
Newton in the latter part of the seventeenth century, these laws can be 
stated as follows:  

 FIRST LAW.   If the resultant force acting on a particle is zero, the 
particle will remain at rest (if originally at rest) or will move with con-
stant speed in a straight line (if originally in motion) (Sec. 2.10).   

1.2 Fundamental Concepts and Principles
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4 Introduction  SECOND LAW.   If the resultant force acting on a particle is not zero, 
the particle will have an acceleration proportional to the magnitude of 
the resultant and in the direction of this resultant force. 
  As you will see in Sec. 12.2, this law can be stated as 

    F 5 ma (1.1)  

 where  F ,  m , and  a  represent, respectively, the resultant force acting on 
the particle, the mass of the particle, and the acceleration of the parti-
cle, expressed in a consistent system of units.   

 THIRD LAW.   The forces of action and reaction between bodies in 
contact have the same magnitude, same line of action, and opposite 
sense (Sec. 6.1).    

 Newton’s Law of Gravitation.   This states that two particles of 
mass  M  and  m  are mutually attracted with equal and opposite forces  F  
and  2F  ( Fig. 1.1 ) of magnitude  F  given by the formula 

   
F 5 G  

Mm

r  

2  (1.2)  

    where  r  5 distance between the two particles 
     G  5 universal constant called the  constant of gravitation  

   Newton’s law of gravitation introduces the idea of an action exerted at 
a distance and extends the range of application of Newton’s third law: 
the action  F  and the reaction  2F  in  Fig. 1.1  are equal and opposite, 
and they have the same line of action. 
    A particular case of great importance is that of the attraction of 
the earth on a particle located on its surface. The force  F  exerted by 
the earth on the particle is then defined as the  weight   W  of the parti-
cle. Taking  M  equal to the mass of the earth,  m  equal to the mass of the 
particle, and  r  equal to the radius  R  of the earth, and introducing the 
constant 

   
g 5

GM

R2  
(1.3)

  

   the magnitude  W  of the weight of a particle of mass  m  may be ex-
pressed as †  

  W 5 mg (1.4) 

  The value of  R  in formula (1.3) depends upon the elevation of the 
point considered; it also depends upon its latitude, since the earth is 
not truly spherical. The value of  g  therefore varies with the position of 
the point considered. As long as the point actually remains on the sur-
face of the earth, it is sufficiently accurate in most engineering compu-
tations to assume that  g  equals 9.81 m/s 2  or 32.2 ft/s 2 . 

  †A more accurate definition of the weight  W  should take into account the rotation of the 
earth.  

  Fig. 1.1      

M

–F

F

m

r

Photo 1.1 When in earth orbit, people and 
objects are said to be weightless even though the 
gravitational force acting is approximately 90% of 
that experienced on the surface of the earth. This 
apparent contradiction will be resolved in Chapter 
12 when we apply  Newton’s second law to the 
motion of particles.
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5    The principles we have just listed will be introduced in the course 
of our study of mechanics as they are needed. The study of the statics 
of particles carried out in Chap. 2, will be based on the parallelogram 
law of addition and on Newton’s first law alone. The principle of trans-
missibility will be introduced in Chap. 3 as we begin the study of the 
statics of rigid bodies, and Newton’s third law in Chap. 6 as we analyze 
the forces exerted on each other by the various members forming a 
structure. In the study of dynamics, Newton’s second law and Newton’s 
law of gravitation will be introduced. It will then be shown that Newton’s 
first law is a particular case of Newton’s second law (Sec. 12.2) and that 
the principle of transmissibility could be derived from the other prin-
ciples and thus eliminated (Sec. 16.5). In the meantime, however, 
Newton’s first and third laws, the parallelogram law of addition, and 
the principle of transmissibility will provide us with the necessary and 
sufficient foundation for the entire study of the statics of particles, 
rigid bodies, and systems of rigid bodies. 
    As noted earlier, the six fundamental principles listed above are 
based on experimental evidence. Except for Newton’s first law and the 
principle of transmissibility, they are independent principles which 
cannot be derived mathematically from each other or from any other 
elementary physical principle. On these principles rests most of the 
intricate structure of newtonian mechanics. For more than two centu-
ries a tremendous number of problems dealing with the conditions of 
rest and motion of rigid bodies, deformable bodies, and fluids have 
been solved by applying these fundamental principles. Many of the 
solutions obtained could be checked experimentally, thus providing a 
further verification of the principles from which they were derived. It 
is only in the twentieth century that Newton’s mechanics was found at 
fault, in the study of the motion of atoms and in the study of the motion 
of certain planets, where it must be supplemented by the theory of 
relativity. But on the human or engineering scale, where velocities are 
small compared with the speed of light, Newton’s mechanics has yet to 
be disproved.     

  1.3   SYSTEMS OF UNITS   
 With the four fundamental concepts introduced in the preceding sec-
tion are associated the so-called  kinetic units , i.e., the units of  length, 
time, mass , and  force . These units cannot be chosen independently if 
Eq. (1.1) is to be satisfied. Three of the units may be defined arbi-
trarily; they are then referred to as  basic units . The fourth unit, how-
ever, must be chosen in accordance with Eq. (1.1) and is referred to as 
a  derived unit . Kinetic units selected in this way are said to form a 
 consistent system of units .  

  International System of Units (SI Units †).     In this system, which 
will be in universal use after the United States has completed its con-
version to SI units, the base units are the units of length, mass, and 
time, and they are called, respectively, the  meter  (m), the  kilogram  
(kg), and the  second  (s). All three are arbitrarily defined. The second, 

†SI stands for  Système International d’Unités  (French).  

1.3   Systems of Units
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6 Introduction which was originally chosen to represent 1/86 400 of the mean solar 
day, is now defined as the duration of 9 192 631 770 cycles of the radia-
tion corresponding to the transition between two levels of the funda-
mental state of the cesium-133 atom. The meter, originally defined as 
one ten-millionth of the distance from the equator to either pole, is 
now defined as 1 650 763.73 wavelengths of the orange-red light cor-
responding to a certain transition in an atom of krypton-86. The kilo-
gram, which is approximately equal to the mass of 0.001 m 3  of water, 
is defined as the mass of a platinum-iridium standard kept at the Inter-
national Bureau of Weights and Measures at Sèvres, near Paris, France. 
The unit of force is a derived unit. It is called the  newton  (N) and is 
defined as the force which gives an acceleration of 1 m/s 2  to a mass of 
1 kg ( Fig. 1.2 ). From Eq. (1.1) we write 

  1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2 (1.5) 

  The SI units are said to form an  absolute  system of units. This means 
that the three base units chosen are independent of the location where 
measurements are made. The meter, the kilogram, and the second 
may be used anywhere on the earth; they may even be used on another 
planet. They will always have the same significance. 
    The  weight  of a body, or the  force of gravity  exerted on that body, 
should, like any other force, be expressed in newtons. From Eq. (1.4) 
it follows that the weight of a body of mass 1 kg ( Fig. 1.3 ) is 

  W 5 mg
  5 (1 kg)(9.81 m/s2) 
  5 9.81 N  

   Multiples and submultiples of the fundamental SI units may be 
obtained through the use of the prefixes defined in  Table 1.1 . The 
multiples and submultiples of the units of length, mass, and force most 
frequently used in engineering are, respectively, the  kilometer  (km) 
and the  millimeter  (mm); the  megagram  †    (Mg) and the  gram  (g); and 
the  kilonewton  (kN). According to  Table 1.1 , we have 

  1 km 5 1000 m       1 mm 5 0.001 m
  1 Mg 5 1000 kg   1 g 5 0.001 kg

 1 kN 5 1000 N

  The conversion of these units into meters, kilograms, and  newtons, 
respectively, can be effected by simply moving the decimal point 
three places to the right or to the left. For example, to convert 
3.82 km into meters, one moves the decimal point three places to the 
right: 

 3.82 km 5 3820 m 

   Similarly, 47.2 mm is converted into meters by moving the decimal 
point three places to the left: 

 47.2 mm 5 0.0472 m

  Fig. 1.2      

a = 1 m/s2

m = 1 kg F = 1 N

  Fig. 1.3 
      

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

† Also known as a  metric ton .

bee29400_ch01_000-013.indd Page 6  11/28/08  7:18:46 PM user-s173bee29400_ch01_000-013.indd Page 6  11/28/08  7:18:46 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



7

  Using scientific notation, one may also write 

  3.82 km 5 3.82 3 103 m  
  47.2 mm 5 47.2 3 1023 m 

    The multiples of the unit of time are the  minute  (min) and the 
 hour  (h). Since 1 min 5 60 s and 1 h 5 60 min 5 3600 s, these multi-
ples cannot be converted as readily as the others. 
   By using the appropriate multiple or submultiple of a given unit, 
one can avoid writing very large or very small numbers. For example, 
one usually writes 427.2 km rather than 427 200 m, and 2.16 mm 
rather than 0.002 16 m. † 

 Units of Area and Volume.  The unit of area is the  square meter  
(m 2 ), which represents the area of a square of side 1 m; the unit of vol-
ume is the  cubic meter  (m 3 ), equal to the volume of a cube of side 1 m. 
In order to avoid exceedingly small or large numerical values in the 
computation of areas and volumes, one uses systems of subunits 
obtained by respectively squaring and cubing not only the millimeter 
but also two intermediate submultiples of the meter, namely, the 
  decimeter  (dm) and the  centimeter  (cm). Since, by definition, 

   1 dm 5 0.1 m 5 1021 m   
   1 cm 5 0.01 m 5 1022 m
 1 mm 5 0.001 m 5 1023 m

 TABLE 1.1   Sl Prefixes 

 Multiplication Factor   Prefix †   Symbol 

    1 000 000 000 000 5 10 12    tera   T  
   1 000 000 000 5 10 9    giga   G  
   1 000 000 5 10 6    mega   M  
   1 000 5 10 3    kilo   k  
  100 5 10 2    hecto ‡   h
   10 5 10 1    deka ‡    da  
  0.1 5 10 21   deci ‡   d 
  0.01 5 10 22   centi ‡   c 
  0.001 5 10 23   milli   m 
  0.000 001 5 10 26   micro   m 
  0.000 000 001 5 10 29   nano   n 
  0.000 000 000 001 5 10 212   pico   p 
  0.000 000 000 000 001 5 10 215   femto   f 
  0.000 000 000 000 000 001 5 10 218   atto   a 

 †The first syllable of every prefix is accented so that the prefix will retain its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second. 
 ‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 
and for the nontechnical use of centimeter, as for body and clothing measurements.   

 †It should be noted that when more than four digits are used on either side of the decimal 
point to express a quantity in SI units—as in 427 200 m or 0.002 16 m—spaces, never 
commas, should be used to separate the digits into groups of three. This is to avoid 
confusion with the comma used in place of a decimal point, which is the convention in 
many countries. 

1.3   Systems of Units
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8 Introduction   the submultiples of the unit of area are 

  1 dm2 5 (1 dm)2 5 (1021 m)2 5 1022 m2   
  1 cm2 5 (1 cm)2 5 (1022 m)2 5 1024 m2   
  1 mm2 5 (1 mm)2 5 (1023 m)2 5 1026 m2  

  and the submultiples of the unit of volume are 

   1 dm3 5 (1 dm)3 5 (1021 m)3 5 1023 m3   
   1 cm3 5 (1 cm)3 5 (1022 m)3 5 1026 m3   
   1 mm3 5 (1 mm)3 5 (1023 m)3 5 1029 m3  

  It should be noted that when the volume of a liquid is being measured, 
the cubic decimeter (dm 3 ) is usually referred to as a  liter  (L). 
    Other derived SI units used to measure the moment of a force, 
the work of a force, etc., are shown in  Table 1.2 . While these units will 
be introduced in later chapters as they are needed, we should note an 
important rule at this time: When a derived unit is obtained by divid-
ing a base unit by another base unit, a prefix may be used in the 
numerator of the derived unit but not in its denominator. For example, 
the constant  k  of a spring which stretches 20 mm under a load of 
100 N will be expressed as 

  
k 5

100 N
20 mm

5
100 N

0.020 m
5 5000 N/m    or    k 5 5 kN/m

   

but never as  k  5 5 N/mm.  

 TABLE 1.2   Principal SI Units Used in Mechanics          

  Quantity   Unit   Symbol   Formula    

  Acceleration   Meter per second squared   . . .   m/s 2   
  Angle   Radian   rad    †  
Angular acceleration   Radian per second squared   . . .   rad/s 2   
 Angular velocity   Radian per second   . . .   rad/s  
  Area   Square meter   . . .   m 2   
  Density   Kilogram per cubic meter   . . .   kg/m 3   
  Energy   Joule   J   N ? m 
  Force   Newton   N   kg ? m/s 2   
 Frequency   Hertz   Hz  s 21 
 Impulse   Newton-second   . . .   kg ? m/s  
  Length   Meter   m    ‡  
Mass   Kilogram   kg    ‡   
  Moment of a force   Newton-meter   . . .   N ? m  
  Power   Watt   W   J/s  
  Pressure   Pascal   Pa   N/m 2   
  Stress   Pascal   Pa   N/m 2   
  Time   Second   s    ‡   
  Velocity   Meter per second   . . .   m/s  
  Volume  
   Solids   Cubic meter   . . .   m 3   
   Liquids   Liter   L   10 23 m 3   
  Work   Joule   J   N ? m 

†Supplementary unit (1 revolution 5 2p rad 5 3608).    
‡Base unit.      
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9 U.S. Customary Units.  Most practicing American engineers still 
commonly use a system in which the base units are the units of length, 
force, and time. These units are, respectively, the  foot  (ft), the  pound  
(lb), and the  second  (s). The second is the same as the corresponding 
SI unit. The foot is defined as 0.3048 m. The pound is defined as the 
 weight  of a platinum standard, called the  standard pound , which is 
kept at the National Institute of Standards and Technology outside 
Washington, the mass of which is 0.453 592 43 kg. Since the weight of 
a body depends upon the earth’s gravitational attraction, which varies 
with location, it is specified that the standard pound should be placed 
at sea level and at a latitude of 458 to properly define a force of 1 lb. 
Clearly the U.S. customary units do not form an absolute system of 
units. Because of their dependence upon the gravitational attraction of 
the earth, they form a  gravitational  system of units. 
   While the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be so used in engi-
neering computations, since such a unit would not be consistent with 
the base units defined in the preceding paragraph. Indeed, when acted 
upon by a force of 1 lb, that is, when subjected to the force of gravity, 
the standard pound receives the acceleration of gravity,  g  5 32.2 ft/s 2  
( Fig. 1.4 ), not the unit acceleration required by Eq. (1.1). The unit of 
mass consistent with the foot, the pound, and the second is the mass 
which receives an acceleration of 1 ft/s 2  when a force of 1 lb is applied 
to it ( Fig. 1.5 ). This unit, sometimes called a  slug , can be derived from 
the equation  F 5 ma  after substituting 1 lb and 1 ft/s 2  for  F  and  a , 
respectively. We write 

  F 5 ma    1 lb 5 (1 slug)(1 ft/s2)

  and obtain 

   
1 slug 5

1 lb
1 ft/s2 5 1 lb ? s2/ft

  
(1.6)

   Comparing  Figs. 1.4  and  1.5 , we conclude that the slug is a mass 32.2 
times larger than the mass of the standard pound. 
    The fact that in the U.S. customary system of units bodies are 
characterized by their weight in pounds rather than by their mass in 
slugs will be a convenience in the study of statics, where one constantly 
deals with weights and other forces and only seldom with masses. 
However, in the study of dynamics, where forces, masses, and acceler-
ations are involved, the mass  m  of a body will be expressed in slugs 
when its weight  W  is given in pounds. Recalling Eq. (1.4), we write 

   
m 5

W
g  

(1.7)
  

   where  g  is the acceleration of gravity ( g  5 32.2 ft/s 2 ). 
    Other U.S. customary units frequently encountered in engineer-
ing problems are the  mile  (mi), equal to 5280 ft; the  inch  (in.), equal to 
1

12 ft; and the  kilopound  (kip), equal to a force of 1000 lb. The  ton  is 
often used to represent a mass of 2000 lb but, like the pound, must be 
converted into slugs in engineering computations. 
    The conversion into feet, pounds, and seconds of quantities 
expressed in other U.S. customary units is generally more involved and 

  Fig. 1.4       

a = 32.2 ft /s2

m = 1 lb

F = 1 lb

Fig. 1.5      

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

1.3   Systems of Units
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10 Introduction requires greater attention than the corresponding operation in SI 
units. If, for example, the magnitude of a velocity is given as  v  5 
30 mi/h, we convert it to ft/s as follows. First we write 

  
v 5 30  

mi
h   

   Since we want to get rid of the unit miles and introduce instead the 
unit feet, we should multiply the right-hand member of the equation 
by an expression containing miles in the denominator and feet in the 
numerator. But, since we do not want to change the value of the right-
hand member, the expression used should have a value equal to unity. 
The quotient (5280 ft)/(1 mi) is such an expression. Operating in a 
similar way to transform the unit hour into seconds, we write 

  
v 5 a30 

mi
h
b a5280 ft

1 mi
b a 1 h

3600 s
b

  

   Carrying out the numerical computations and canceling out units which 
appear in both the numerator and the denominator, we obtain 

  
v 5 44 

ft
s

5 44 ft/s
    

 1.4   CONVERSION FROM ONE SYSTEM OF UNITS 
TO ANOTHER  

 There are many instances when an engineer wishes to convert into SI 
units a numerical result obtained in U.S. customary units or vice versa. 
Because the unit of time is the same in both systems, only two kinetic 
base units need be converted. Thus, since all other kinetic units can be 
derived from these base units, only two conversion factors need be 
remembered.  

 Units of Length.   By definition the U.S. customary unit of length is 

   1 ft 5 0.3048 m (1.8)  

   It follows that 

  1 mi 5 5280 ft 5 5280(0.3048 m) 5 1609 m  

   or 
 1 mi 5 1.609 km (1.9)  

   Also
 1 in. 5 1

12 ft 5 1
12 (0.3048 m) 5 0.0254 m  

   or 
 1 in. 5 25.4 mm     (1.10)

 Units of Force.   Recalling that the U.S. customary unit of force 
(pound) is defined as the weight of the standard pound (of mass 
0.4536 kg) at sea level and at a latitude of 458 (where  g  5 9.807 m/s 2 ) 
and using Eq. (1.4), we write 
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11   W 5 mg   
   1 lb 5 (0.4536 kg)(9.807 m/s2) 5 4.448 kg ? m/s2  

   or, recalling Eq. (1.5), 

   1 lb 5 4.448 N (1.11)    

 Units of Mass.  The U.S. customary unit of mass (slug) is a derived 
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we write 

  
1 slug 5 1 lb ? s2/ft 5

1 lb
1 ft/s2 5

4.448 N
0.3048 m/s2 5 14.59 N ? s2/m

  

   and, recalling Eq. (1.5), 

   1 slug 5 1 lb ? s2/ft 5 14.59 kg (1.12)  

   Although it cannot be used as a consistent unit of mass, we recall that 
the mass of the standard pound is, by definition, 

   1 pound mass 5 0.4536 kg (1.13)  

   This constant may be used to determine the  mass  in SI units (kilo-
grams) of a body which has been characterized by its  weight  in U.S. 
customary units (pounds). 
    To convert a derived U.S. customary unit into SI units, one sim-
ply multiplies or divides by the appropriate conversion factors. For 
example, to convert the moment of a force which was found to be  
M  5 47 lb ? in. into SI units, we use formulas (1.10) and (1.11) and 
write 

   M 5 47 lb ? in. 5 47(4.448 N)(25.4 mm)   
   5 5310 N ? mm 5 5.31 N ? m  

    The conversion factors given in this section may also be used to 
convert a numerical result obtained in SI units into U.S. customary 
units. For example, if the moment of a force was found to be  M  5 
40 N ? m, we write, following the procedure used in the last paragraph 
of Sec. 1.3, 

  
M 5 40 N ? m 5 (40 N ? m) a 1 lb

4.448 N
b a 1 ft

0.3048 m
b

  

   Carrying out the numerical computations and canceling out units 
which appear in both the numerator and the denominator, we obtain 

  M 5 29.5 lb ? ft  

    The U.S. customary units most frequently used in mechanics are 
listed in  Table 1.3  with their SI equivalents.  

       1.5  METHOD OF PROBLEM SOLUTION  
 You should approach a problem in mechanics as you would approach 
an actual engineering situation. By drawing on your own experience 
and intuition, you will find it easier to understand and formulate the 
problem. Once the problem has been clearly stated, however, there is 

1.5  Method of Problem Solution
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12 Introduction

no place in its solution for your particular fancy.  The solution must be 
based on the six fundamental principles stated in Sec. 1.2 or on theo-
rems derived from them.  Every step taken must be justified on that 
basis. Strict rules must be followed, which lead to the solution in an 
almost automatic fashion, leaving no room for your intuition or “feel-
ing.” After an answer has been obtained, it should be checked. Here 
again, you may call upon your common sense and personal experience. 
If not completely satisfied with the result obtained, you should carefully 
check your formulation of the problem, the validity of the methods 
used for its solution, and the accuracy of your computations. 
    The  statement  of a problem should be clear and precise. It should 
contain the given data and indicate what information is required. A 
neat drawing showing all quantities involved should be included. Sepa-
rate diagrams should be drawn for all bodies involved, indicating 
clearly the forces acting on each body. These diagrams are known as 
 free-body diagrams  and are described in detail in Secs. 2.11 and 4.2. 

 TABLE 1.3  U.S. Customary Units and Their SI Equivalents 

          Quantity U.S. Customary Unit   SI Equivalent 

    Acceleration  ft/s 2    0.3048 m/s2  
     in./s2  0.0254 m/s2  
  Area  ft2   0.0929 m2 
     in 2  645.2 mm2 
  Energy ft ? lb   1.356 J  
 Force   kip  4.448 kN  
   lb   4.448 N 
    oz   0.2780 N 
 Impulse  lb ? s   4.448 N ? s  
 Length   ft  0.3048 m 
   in.   25.40 mm  
   mi   1.609 km 
 Mass   oz mass   28.35 g  
    lb mass 0.4536 kg  
  slug   14.59 kg  
   ton   907.2 kg  
 Moment of a force   lb ? ft   1.356 N ? m  
    lb ? in.  0.1130 N ? m 
 Moment of inertia      
   Of an area in 4    0.4162 3 106 mm 4   
   Of a mass  lb ? ft ? s 2    1.356 kg ? m2  
  Momentum lb ? s   4.448 kg ? m/s 
  Power   ft ? lb/s   1.356 W  
    hp   745.7 W 
  Pressure or stress   lb/ft 2    47.88 Pa 
   lb/in 2 (psi)   6.895 kPa  
 Velocity  ft/s   0.3048 m/s 
    in./s  0.0254 m/s 
    mi/h (mph)  0.4470 m/s 
    mi/h (mph)  1.609 km/h 
 Volume   ft 3   0.02832 m 3 
     in 3  16.39 cm3 
   Liquids  gal  3.785 L 
    qt   0.9464 L 
 Work   ft ? lb  1.356 J  
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13    The  fundamental principles  of mechanics listed in Sec. 1.2  will 
be used to write equations  expressing the conditions of rest or motion 
of the bodies considered. Each equation should be clearly related to 
one of the free-body diagrams. You will then proceed to solve the 
problem, observing strictly the usual rules of algebra and recording 
neatly the various steps taken. 
    After the answer has been obtained, it should be  carefully checked.  
Mistakes in  reasoning  can often be detected by checking the units. For 
example, to determine the moment of a force of 50 N about a point 
0.60 m from its line of action, we would have written (Sec. 3.12) 

  M 5 Fd 5 (50 N)(0.60 m) 5 30 N ? m 

   The unit N ? m obtained by multiplying newtons by meters is the cor-
rect unit for the moment of a force; if another unit had been obtained, 
we would have known that some mistake had been made. 
    Errors in computation  will usually be found by substituting the 
numerical values obtained into an equation which has not yet been 
used and verifying that the equation is satisfied. The importance of 
correct computations in engineering cannot be overemphasized.    

 1.6   NUMERICAL ACCURACY  
 The accuracy of the solution of a problem depends upon two items: 
(1) the accuracy of the given data and (2) the accuracy of the computa-
tions performed. 
    The solution cannot be more accurate than the less accurate of 
these two items. For example, if the loading of a bridge is known to be 
75,000 lb with a possible error of 100 lb either way, the relative error 
which measures the degree of accuracy of the data is 

  
100 lb

75,000 lb
5 0.0013 5 0.13 percent

  

   In computing the reaction at one of the bridge supports, it would then 
be meaningless to record it as 14,322 lb. The accuracy of the solution 
cannot be greater than 0.13 percent, no matter how accurate the com-
putations are, and the possible error in the answer may be as large as 
(0.13/100)(14,322 lb) < 20 lb. The answer should be properly recorded 
as 14,320 6 20 lb. 
    In engineering problems, the data are seldom known with an 
accuracy greater than 0.2 percent. It is therefore seldom justified to 
write the answers to such problems with an accuracy greater than 0.2 
percent. A practical rule is to use 4 figures to record numbers begin-
ning with a “1” and 3 figures in all other cases. Unless otherwise indi-
cated, the data given in a problem should be assumed known with a 
comparable degree of accuracy. A force of 40 lb, for example, should 
be read 40.0 lb, and a force of 15 lb should be read 15.00 lb. 
    Pocket electronic calculators are widely used by practicing engi-
neers and engineering students. The speed and accuracy of these cal-
culators facilitate the numerical computations in the solution of many 
problems. However, students should not record more significant fig-
ures than can be justified merely because they are easily obtained. As 
noted above, an accuracy greater than 0.2 percent is seldom necessary 
or meaningful in the solution of practical engineering problems.                 

1.6   Numerical Accuracy
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14

 Many engineering problems can be 

solved by considering the equilibrium of 

a “particle.” In the case of this 

excavator, which is being loaded onto 

a ship, a relation between the tensions 

in the various cables involved can be 

obtained by considering the equilibrium 

of the hook to which the cables are 

attached. 
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2   C H A P T E R 
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 Statics of Particles  
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16

        2.1   INTRODUCTION  
 In this chapter you will study the effect of forces acting on particles. 
First you will learn how to replace two or more forces acting on a 
given particle by a single force having the same effect as the original 
forces. This single equivalent force is the  resultant  of the original 
forces acting on the particle. Later the relations which exist among 
the various forces acting on a particle in a state of  equilibrium  will 
be derived and used to determine some of the forces acting on the 
particle. 
    The use of the word “particle” does not imply that our study 
will be limited to that of small corpuscles. What it means is that the 
size and shape of the bodies under consideration will not significantly 
affect the solution of the problems treated in this chapter and that 
all the forces acting on a given body will be assumed to be applied 
at the same point. Since such an assumption is verified in many 
practical applications, you will be able to solve a number of engineer-
ing problems in this chapter. 
    The first part of the chapter is devoted to the study of forces 
contained in a single plane, and the second part to the analysis of 
forces in three-dimensional space.    

 FORCES IN A PLANE       

 2.2    FORCE ON A PARTICLE. RESULTANT 
OF TWO FORCES  

 A force represents the action of one body on another and is generally 
characterized by its  point of application , its  magnitude , and its  direc-
tion.  Forces acting on a given particle, however, have the same point 
of application. Each force considered in this chapter will thus be 
completely defined by its magnitude and direction. 
    The magnitude of a force is characterized by a certain num-
ber of units. As indicated in Chap. 1, the SI units used by engi-
neers to measure the magnitude of a force are the newton (N) and 
its multiple the kilonewton (kN), equal to 1000 N, while the U.S. 
customary units used for the same purpose are the pound (lb) and 
its multiple the kilopound (kip), equal to 1000 lb. The direction 
of a force is defined by the  line of action  and the  sense  of the 
force. The line of action is the infinite straight line along which 
the force acts; it is characterized by the angle it forms with some 
fixed axis ( Fig. 2.1 ).     The force itself is represented by a segment of 

  Fig. 2.1    (a)

A 30°
10 lb

(b)

A 30°
10 lb
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17that line; through the use of an appropriate scale, the length of this 
segment may be chosen to represent the magnitude of the force. 
Finally, the sense of the force should be indicated by an arrowhead. 
It is important in defining a force to indicate its sense. Two forces 
having the same magnitude and the same line of action but different 
sense, such as the forces shown in  Fig. 2.1  a  and  b , will have directly 
opposite effects on a particle. 
    Experimental evidence shows that two forces  P  and  Q  acting 
on a particle  A  ( Fig. 2.2  a ) can be replaced by a single force  R  which 
has the same effect on the particle ( Fig. 2.2  c ). This force is called 
the  resultant  of the forces  P  and  Q  and can be obtained, as shown 
in  Fig. 2.2  b , by constructing a parallelogram, using  P  and  Q  as two 
adjacent sides of the parallelogram.  The diagonal that passes through 
A represents the resultant.  This method for finding the resultant is 
known as the  parallelogram law  for the addition of two forces. This 
law is based on experimental evidence; it cannot be proved or derived 
mathematically.    

 2.3   VECTORS  
 It appears from the above that forces do not obey the rules of addi-
tion defined in ordinary arithmetic or algebra. For example, two 
forces  acting at a right angle to each other, one of 4 lb and the other 
of 3 lb, add up to a force of 5 lb,  not  to a force of 7 lb. Forces are 
not the only quantities which follow the parallelogram law of addi-
tion. As you will see later,  displacements, velocities, accelerations , and 
 momenta  are other examples of physical quantities possessing mag-
nitude and direction that are added according to the parallelogram 
law. All these quantities can be represented mathematically by  vec-
tors , while those physical quantities which have magnitude but not 
direction, such as  volume, mass , or  energy , are represented by plain 
numbers or  scalars.  
    Vectors are defined as  mathematical expressions possessing 
 magnitude and direction, which add according to the parallelo-
gram law.  Vectors are represented by arrows in the illustrations 
and will be distinguished from scalar quantities in this text through 
the use of boldface type ( P ). In longhand writing, a vector may be 
denoted by drawing a short arrow above the letter used to repre-
sent it (    P

S
) or by underlining the letter (P ). The last method may 

be preferred since underlining can also be used on a typewriter 
or computer. The magnitude of a vector defines the length of the 
arrow used to represent the vector. In this text, italic type will be 
used to denote the magnitude of a vector. Thus, the magnitude of 
the vector  P  will be denoted by  P.  
    A vector used to represent a force acting on a given particle 
has a well-defined point of application, namely, the particle itself. 
Such a vector is said to be a  fixed , or  bound , vector and cannot be 
moved without modifying the conditions of the problem. Other 
physical quantities, however, such as couples (see Chap. 3), are 
represented by vectors which may be freely moved in space; these 

A

P

Q

(a)

A

P
R

Q

(b)

A

R

(c)

  Fig. 2.2    

2.3   Vectors
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18 Statics of Particles vectors are called  free  vectors. Still other physical quantities, such 
as forces acting on a rigid body (see Chap. 3), are represented by 
vectors which can be moved, or slid, along their lines of action; 
they are known as  sliding  vectors. †    
    Two vectors which have the same magnitude and the same 
direction are said to be  equal , whether or not they also have the same 
point of application ( Fig. 2.4 ); equal vectors may be denoted by the 
same letter. 
    The  negative vector  of a given vector  P  is defined as a vector 
 having the same magnitude as  P  and a direction opposite to that of 
 P  ( Fig. 2.5 ); the negative of the vector  P  is denoted by  2P . The 
vectors  P  and  2P  are commonly referred to as  equal and opposite  
vectors. Clearly, we have

  P 1 (2P) 5 0   

    2.4   ADDITION OF VECTORS  
 We saw in the preceding section that, by definition, vectors add 
according to the parallelogram law. Thus, the sum of two vectors  P  
and  Q  is obtained by attaching the two vectors to the same point  A  
and constructing a parallelogram, using  P  and  Q  as two sides of the 
parallelogram ( Fig. 2.6 ). The diagonal that passes through  A  repre-
sents the sum of the vectors  P  and  Q , and this sum is denoted by 
 P  1  Q . The fact that the sign 1 is used to denote both vector and 
scalar addition should not cause any confusion if vector and scalar 
quantities are always carefully distinguished. Thus, we should note 
that the magnitude of the vector  P  1  Q  is  not , in general, equal to 
the sum  P 1 Q  of the magnitudes of the vectors  P  and  Q . 
    Since the parallelogram constructed on the vectors  P  and  Q  does 
not depend upon the order in which  P  and  Q  are selected, we con-
clude that the addition of two vectors is  commutative , and we write

   P 1 Q 5 Q 1 P    (2.1)

 †Some expressions have magnitude and direction, but do not add according to the 
 parallelogram law. While these expressions may be represented by arrows, they  cannot  
be considered as vectors. 
  A group of such expressions is the finite rotations of a rigid body. Place a closed 
book on a table in front of you, so that it lies in the usual fashion, with its front cover 
up and its binding to the left. Now rotate it through 180° about an axis parallel to the 
binding ( Fig. 2.3  a ); this rotation may be represented by an arrow of length equal to 
180 units and oriented as shown. Picking up the book as it lies in its new position, rotate 

  Fig. 2.3   Finite rotations of a rigid body    

= =

(a) (b)
180°

180°

  Fig. 2.4    

P

P

  Fig. 2.5    

P

–P

A

P
P + Q

Q

  Fig. 2.6    
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19    From the parallelogram law, we can derive an alternative 
method for determining the sum of two vectors. This method, known 
as the  triangle rule , is derived as follows. Consider  Fig. 2.6 , where 
the sum of the vectors  P  and  Q  has been determined by the paral-
lelogram law. Since the side of the parallelogram opposite  Q  is equal 
to  Q  in magnitude and direction, we could draw only half of the 
parallelogram ( Fig. 2.7  a ). The sum of the two vectors can thus be 
found by  arranging   P   and   Q   in tip-to-tail fashion and then connect-
ing the tail of   P   with the tip of   Q . In  Fig. 2.7  b , the other half of the 
parallelogram is considered, and the same result is obtained. This 
confirms the fact that vector addition is commutative. 
    The  subtraction  of a vector is defined as the addition of the 
corresponding negative vector. Thus, the vector  P 2 Q  representing 
the difference between the vectors  P  and  Q  is obtained by adding 
to  P  the negative vector  2Q  ( Fig. 2.8 ). We write

   P 2 Q 5 P 1 (2Q)    (2.2)

         Here again we should observe that, while the same sign is used to 
denote both vector and scalar subtraction, confusion will be avoided 
if care is taken to distinguish between vector and scalar quantities. 
    We will now consider the  sum of three or more vectors.  The 
sum of three vectors  P, Q , and  S  will,  by definition , be obtained by 
first adding the vectors  P  and  Q  and then adding the vector  S  to the 
vector  P 1 Q . We thus write

   P 1 Q 1 S 5 (P 1 Q) 1 S   (2.3)

Similarly, the sum of four vectors will be obtained by adding the 
fourth vector to the sum of the first three. It follows that the sum 
of any number of vectors can be obtained by applying repeatedly the 
parallelogram law to successive pairs of vectors until all the given 
vectors are replaced by a single vector. 

=
=

y

x

z

y

x

z

(c) (d)

180° 180°

180°

180°

it now through 180° about a horizontal axis perpendicular to the binding ( Fig. 2.3  b ); this 
second rotation may be represented by an arrow 180 units long and oriented as shown. 
But the book could have been placed in this final position through a single 180° rotation 
about a vertical axis ( Fig. 2.3  c ). We conclude that the sum of the two 180° rotations repre-
sented by arrows directed respectively along the  z  and  x  axes is a 180° rotation represented 
by an arrow directed along the  y  axis ( Fig. 2.3  d ). Clearly, the finite rotations of a rigid 
body  do not  obey the parallelogram law of addition; therefore, they  cannot  be represented 
by vectors. 

A

A

P

P

Q

Q

P + Q

P + Q

(a)

(b)

  Fig. 2.7    

P 
– 

Q

P
P

Q

–Q

(a) (b)

Fig. 2.8

2.4 Addition of Vectors
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20 Statics of Particles     If the given vectors are  coplanar , i.e., if they are contained in 
the same plane, their sum can be easily obtained graphically. For this 
case, the repeated application of the triangle rule is preferred to the 
application of the parallelogram law. In  Fig. 2.9  the sum of three 
vectors  P, Q , and  S  was obtained in that manner. The triangle rule 
was first applied to obtain the sum  P 1 Q  of the vectors  P  and  Q ; 
it was applied again to obtain the sum of the vectors  P 1 Q  and  S . 
The determination of the vector  P 1 Q , however, could have been 
omitted and the sum of the three vectors could have been obtained 
directly, as shown in  Fig. 2.10 ,  by arranging the given vectors in tip-
to-tail fashion and connecting the tail of the first vector with the tip 
of the last one.  This is known as the  polygon rule  for the addition of 
vectors. 
    We observe that the result obtained would have been unchanged 
if, as shown in  Fig. 2.11 , the vectors  Q  and  S  had been replaced by 
their sum  Q 1 S . We may thus write

   P 1 Q 1 S 5 (P 1 Q) 1 S 5 P 1 (Q 1 S)    (2.4)

   which expresses the fact that vector addition is  associative.  Recalling 
that vector addition has also been shown, in the case of two vectors, 
to be commutative, we write

    P 1 Q 1 S 5 (P 1 Q) 1 S 5 S 1 (P 1 Q)   
(2.5)    5 S 1 (Q 1 P) 5 S 1 Q 1 P   

This expression, as well as others which may be obtained in the same 
way, shows that the order in which several vectors are added together 
is immaterial ( Fig. 2.12 ).  

 Product of a Scalar and a Vector.   Since it is convenient to 
denote the sum  P 1 P  by  2P , the sum  P 1 P 1 P  by  3P , and, 
in  general, the sum of  n  equal vectors  P  by the product  n  P , we 
will define the product  n  P  of a positive integer  n  and a vector  P  
as a vector having the same direction as  P  and the magnitude  nP . 
Extending this definition to include all scalars, and recalling the 
definition of a negative vector given in Sec. 2.3, we define the 
product  k  P  of a scalar  k  and a vector  P  as a vector having the same 
direction as  P  (if  k  is positive), or a direction opposite to that of 
 P  (if  k  is negative), and a magnitude equal to the product of  P  and 
of the absolute value of  k  ( Fig. 2.13 ).     

 2.5   RESULTANT OF SEVERAL CONCURRENT FORCES  
 Consider a particle  A  acted upon by several coplanar forces, i.e., by 
several forces contained in the same plane ( Fig. 2.14  a ). Since the 
forces considered here all pass through  A , they are also said to be 
 concurrent.  The vectors representing the forces acting on  A  may be 
added by the polygon rule ( Fig. 2.14  b ). Since the use of the polygon 
rule is equivalent to the repeated application of the parallelogram 
law, the vector  R  thus obtained represents the resultant of the given 
concurrent forces, i.e., the single force which has the same effect on 

  Fig. 2.13    
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  Fig. 2.12    
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  Fig. 2.11    
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21

the particle  A  as the given forces. As indicated above, the order in 
which the vectors  P, Q , and  S  representing the given forces are 
added together is immaterial.    

 2.6   RESOLUTION OF A FORCE INTO COMPONENTS  
 We have seen that two or more forces acting on a particle may be 
replaced by a single force which has the same effect on the particle. 
Conversely, a single force  F  acting on a particle may be replaced by 
two or more forces which, together, have the same effect on the 
particle. These forces are called the  components  of the original force 
 F , and the process of substituting them for  F  is called  resolving the 
force   F   into components.  
    Clearly, for each force  F  there exist an infinite number of pos-
sible sets of components. Sets of  two components   P   and   Q  are the 
most important as far as practical applications are concerned. But, 
even then, the number of ways in which a given force  F  may be 
resolved into two components is unlimited ( Fig. 2.15 ). Two cases are 
of particular interest:  

   1.    One of the Two Components,   P  , Is Known.  The second com-
ponent,  Q , is obtained by applying the triangle rule and join-
ing the tip of  P  to the tip of F ( Fig. 2.16 ); the magnitude and 
direction of  Q  are determined graphically or by trigonometry. 
Once  Q  has been determined, both components  P  and  Q  
should be applied at  A .  

   2.    The Line of Action of Each Component Is Known.  The magni-
tude and sense of the components are obtained by applying the 
parallelogram law and drawing lines, through the tip of  F , par-
allel to the given lines of action ( Fig. 2.17 ). This process leads 
to two well-defined components,  P  and  Q , which can be deter-
mined graphically or computed trigonometrically by applying 
the law of sines.   

    Many other cases can be encountered; for example, the direc-
tion of one component may be known, while the magnitude of the 
other component is to be as small as possible (see Sample Prob. 2.2). 
In all cases the appropriate triangle or parallelogram which satisfies 
the given conditions is drawn.  

A

P

Q
F

  Fig. 2.17  

  Fig. 2.16    

A

P

Q

F

A
A

P

P

Q

Q

S

S

(a)

R

(b)

  Fig. 2.14    

A

A
A

P

P P

Q

Q

Q

F

F
F

(a) (b)

(c)

  Fig. 2.15    

2.6 Resolution of a Force into Components
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 SAMPLE PROBLEM 2.1 

 The two forces  P  and  Q  act on a bolt  A . Determine their resultant.     
25°

20°
A

Q = 60 N

P = 40 N

  SOLUTION  

 Graphical Solution.   A parallelogram with sides equal to  P  and  Q  is drawn 
to scale. The magnitude and direction of the resultant are measured and 
found to be

  R 5 98 N  a 5 35°  R 5 98 N a35° ◀   

      The triangle rule may also be used. Forces  P  and  Q  are drawn in tip-to-
tail fashion. Again the magnitude and direction of the resultant are measured.

  R 5 98 N  a 5 35°  R 5 98 N a35° ◀  

    Trigonometric Solution.   The triangle rule is again used; two sides and the 
included angle are known. We apply the law of cosines.

   R2 5 P2 1 Q2 2 2PQ cos B  
   R2 5 (40 N)2 1 (60 N)2 2 2(40 N)(60 N) cos 155°  
   R 5 97.73 N   

     Now, applying the law of sines, we write

   
 sin A

Q
5

 sin B
R

     sin A
60 N

5
 sin 155°
97.73 N    

(1)

Solving Eq. (1) for sin  A , we have

  
 sin A 5

(60 N) sin 155°
97.73 N   

 Using a calculator, we first compute the quotient, then its arc sine, 
and obtain

  A 5 15.04°  a 5 20° 1 A 5 35.04°   

     We use 3 significant figures to record the answer (cf. Sec. 1.6):

  R 5 97.7 N a35.0° ◀  

    Alternative Trigonometric Solution.   We construct the right triangle  BCD  
and compute

  CD 5 (60 N) sin 25° 5 25.36 N  
  BD 5 (60 N) cos 25° 5 54.38 N   

     Then, using triangle  ACD , we obtain

  
  tan  A 5

25.36 N
94.38 N

     A 5 15.04°
  

  
 R 5

25.36
 sin A

 R 5 97.73 N
  

Again,   a 5 20° 1A 5 35.04° R 5 97.7 N a35.0° ◀         

A
P

Q

R

a

A
P

Q

R

�

155º 25°

20°

R

B

C

P = 40 N

Q = 60 N

aA

25°

20°

= 60 NQ

R

B

C

D

40

25.36

54.38

94.38

a
A
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 SAMPLE PROBLEM 2.2 

     A barge is pulled by two tugboats. If the resultant of the forces exerted by 
the tugboats is a 5000-lb force directed along the axis of the barge, determine 
( a ) the tension in each of the ropes knowing that a 5 45°, ( b ) the value of a 
for which the tension in rope 2 is minimum. 

30°
1

2
a

A

C

B

  SOLUTION  

 a.   Tension for a 5 45°.  Graphical Solution.    The parallelogram law is 
used; the diagonal (resultant) is known to be equal to 5000 lb and to be 
directed to the right. The sides are drawn parallel to the ropes. If the draw-
ing is done to scale, we measure

  T1 5 3700 lb  T2 5 2600 lb ◀   

  Trigonometric Solution.   The triangle rule can be used. We note that the 
triangle shown represents half of the parallelogram shown above. Using the 
law of sines, we write

  
T1

 sin 45°
5

T2

 sin 30°
5

5000 lb
 sin 105°  

 With a calculator, we first compute and store the value of the last quo-
tient. Multiplying this value successively by sin 45° and sin 30°, we obtain

  T1 5 3660 lb  T2 5 2590 lb ◀  

     b.   Value of a for Minimum  T  2 .   To determine the value of a for which the 
tension in rope 2 is minimum, the triangle rule is again used. In the sketch 
shown, line  1-1 9 is the known direction of  T  1 . Several possible directions of  T  2  
are shown by the lines 2-29. We note that the minimum value of  T  2  occurs 
when  T  1  and  T  2  are perpendicular. The minimum value of  T  2  is

  T2 5 (5000 lb) sin 30° 5 2500 lb  

Corresponding values of  T  1  and a are

  T1 5 (5000 lb) cos 30° 5 4330 lb  
   a 5 90° 2 30° a 5 60° ◀         

30° 45°

30°45°

5000 lb

T1

T2

B

45° 30°

5000 lb

105°
T1

T2

B

1

2
2

2

5000 lb
1'

2'

2'

2'

30°

5000 lb

T1
T2 90°

a
B
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 SOLVING PROBLEMS 
ON YOUR OWN  

 The preceding sections were devoted to the  parallelogram law  for the addition 
of vectors and to its applications. 

   Two sample problems were presented. In Sample Prob. 2.1, the parallelogram law 
was used to determine the resultant of two forces of known magnitude and direc-
tion. In Sample Prob. 2.2, it was used to resolve a given force into two components 
of known direction. 

   You will now be asked to solve problems on your own. Some may resemble one 
of the sample problems; others may not. What all problems and sample problems 
in this section have in common is that they can be solved by the direct application 
of the parallelogram law. 

   Your solution of a given problem should consist of the following steps:

   1.    Identify which of the forces are the applied forces and which is the resul-
tant.  It is often helpful to write the vector equation which shows how the forces 
are related. For example, in Sample Prob. 2.1 we would have

  R 5 P 1 Q  

You may want to keep that relation in mind as you formulate the next part of your 
solution.  

  2.    Draw a parallelogram with the applied forces as two adjacent sides and 
the resultant as the included diagonal  ( Fig. 2.2 ). Alternatively, you can  use the 
triangle rule , with the applied forces drawn in tip-to-tail fashion and the resultant 
extending from the tail of the first vector to the tip of the second ( Fig. 2.7 ).  

  3.    Indicate all dimensions.  Using one of the triangles of the parallelogram, or 
the triangle constructed according to the triangle rule, indicate all dimensions—
whether sides or angles—and determine the unknown dimensions either graphi-
cally or by trigonometry. If you use trigonometry, remember that the law of cosines 
should be applied first if two sides and the included angle are known [Sample 
Prob. 2.1], and the law of sines should be applied first if one side and all angles 
are known [Sample Prob. 2.2]. 

   If you have had prior exposure to mechanics, you might be tempted to ignore the 
solution techniques of this lesson in favor of resolving the forces into rectangular 
components. While this latter method is important and will be considered in the 
next section, use of the parallelogram law simplifies the solution of many problems 
and should be mastered at this time.      

24
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PROBLEMS†

25

2.1 Two forces P and Q are applied as shown at point A of a hook 
support. Knowing that P 5 75 N and Q 5 125 N, determine 
graphically the magnitude and direction of their resultant using 
(a) the parallelogram law, (b) the triangle rule.

2.2 Two forces P and Q are applied as shown at point A of a hook 
support. Knowing that P 5 60 lb and Q 5 25 lb, determine 
graphically the magnitude and direction of their resultant using 
(a) the parallelogram law, (b) the triangle rule.

2.3 The cable stays AB and AD help support pole AC. Knowing that the 
tension is 120 lb in AB and 40 lb in AD, determine graphically the 
magnitude and direction of the resultant of the forces exerted by 
the stays at A using (a) the parallelogram law, (b) the triangle rule.

20° 35°

A

P
Q

Fig. P2.1 and P2.2

A

B C D

10 ft

8 ft 6 ft

Fig. P2.3

2.4 Two forces are applied at point B of beam AB. Determine graphi-
cally the magnitude and direction of their resultant using (a) the 
parallelogram law, (b) the triangle rule.

2.5 The 300-lb force is to be resolved into components along lines a-a9
and b-b9. (a) Determine the angle a by trigonometry knowing that 
the component along line a-a9 is to be 240 lb. (b) What is the cor-
responding value of the component along b-b9?

 2.6 The 300-lb force is to be resolved into components along lines a-a9
and b-b9. (a) Determine the angle a by trigonometry knowing that 
the component along line b-b9 is to be 120 lb. (b) What is the cor-
responding value of the component along a-a9?

 2.7  Two forces are applied as shown to a hook support. Knowing that 
the magnitude of P is 35 N, determine by trigonometry (a) the 
required angle a if the resultant R of the two forces applied to 
the support is to be horizontal, (b) the corresponding magni-
tude of R.

2 kN

3 kN40° 60°

A

B

Fig. P2.4

300 lb

a a'

b'

b

   

60°a

Fig. P2.5 and P2.6

50 N

25°

P

a

Fig. P2.7

†Answers to all problems set in straight type (such as 2.1) are given at the end of the 
book. Answers to problems with a number set in italic type (such as 2.4) are not given.
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 2.8 For the hook support of Prob. 2.1, knowing that the magnitude of 
P is 75 N, determine by trigonometry (a) the required magnitude 
of the force Q if the resultant R of the two forces applied at A is 
to be vertical, (b) the corresponding magnitude of R.

 2.9 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. (a) Knowing that a 5 25°, determine by trigo-
nometry the magnitude of the force P so that the resultant force 
exerted on the trolley is vertical. (b) What is the corresponding 
magnitude of the resultant?

 2.10 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. Determine by trigonometry the magnitude and 
direction of the force P so that the resultant is a vertical force of 
2500 N.

 2.11 A steel tank is to be positioned in an excavation.  Knowing that 
a 5 20°, determine by trigonometry (a) the required magnitude 
of the force P if the resultant R of the two forces applied at A is 
to be vertical, (b) the corresponding magnitude of R.

26 Statics of Particles

1600 N

P

15°

a

A

Fig. P2.9 and P2.10

425 lb
A

P

30° a

Fig. P2.11 and P2.12

 2.12 A steel tank is to be positioned in an excavation.  Knowing that 
the magnitude of P is 500 lb, determine by trigonometry (a) the 
required angle a if the resultant R of the two forces applied at A 
is to be vertical, (b) the corresponding magnitude of R.

 2.13 For the hook support of Prob. 2.7, determine by trigonometry 
(a) the magnitude and direction of the smallest force P for which 
the resultant R of the two forces applied to the support is hori-
zontal, (b) the corresponding magnitude of R.

 2.14 For the steel tank of Prob. 2.11, determine by trigonometry 
(a) the magnitude and direction of the smallest force P for which 
the resultant R of the two forces applied at A is vertical, (b) the 
corresponding magnitude of R.

 2.15 Solve Prob. 2.2 by trigonometry.

 2.16 Solve Prob. 2.3 by trigonometry.

 2.17 Solve Prob. 2.4 by trigonometry.
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 2.18 Two structural members A and B are bolted to a bracket as shown. 
Knowing that both members are in compression and that the force 
is 15 kN in member A and 10 kN in member B, determine by 
trigonometry the magnitude and direction of the resultant of the 
forces applied to the bracket by members A and B.

 2.19 Two structural members A and B are bolted to a bracket as shown. 
Knowing that both members are in compression and that the force 
is 10 kN in member A and 15 kN in member B, determine by 
trigonometry the magnitude and direction of the resultant of the 
forces applied to the bracket by members A and B.

 2.20 For the hook support of Prob. 2.7, knowing that P 5 75 N and 
a 5 50°, determine by trigonometry the magnitude and direction 
of the resultant of the two forces applied to the support.

  †The properties established in Secs. 2.7 and 2.8 may be readily extended to the 
rectangular components of any vector quantity.  

A B

40° 20°

Fig. P2.18 and P2.19

  2.7    RECTANGULAR COMPONENTS OF A FORCE. 
UNIT VECTORS † 

   In many problems it will be found desirable to resolve a force into 
two components which are perpendicular to each other. In  Fig. 2.18 , 
the force  F  has been resolved into a component  F   x   along the  x  axis 
and a component  F   y   along the  y  axis. The parallelogram drawn to 
obtain the two components is a  rectangle , and  F   x   and  F   y   are called 
 rectangular components.  

O

F
Fy

Fx
x

y

�

  Fig. 2.18    

Fy
Fx

F
x

y

O

�

  Fig. 2.19    

    The  x  and  y  axes are usually chosen horizontal and vertical, 
respectively, as in  Fig. 2.18 ; they may, however, be chosen in any 
two perpendicular directions, as shown in  Fig. 2.19 . In determining 
the rectangular components of a force, the student should think of 
the construction lines shown in Figs. 2.18 and 2.19 as being  parallel  
to the  x  and  y  axes, rather than  perpendicular  to these axes. This 
practice will help avoid mistakes in determining  oblique  compo-
nents as in Sec. 2.6. 

272.7 Rectangular Components of a Force. Unit 
Vectors
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28 Statics of Particles     Two vectors of unit magnitude, directed respectively along the 
positive  x  and  y  axes, will be introduced at this point. These vectors 
are called  unit vectors  and are denoted by  i  and  j , respectively 
( Fig. 2.20 ). Recalling the definition of the product of a scalar and a 
vector given in Sec. 2.4, we note that the rectangular components 
 F   x   and  F   y   of a force  F  may be obtained by multiplying respectively 
the unit vectors  i  and  j  by appropriate scalars ( Fig. 2.21 ). We write

   Fx 5 Fxi  Fy 5 Fyj (2.6)               

   and

   F 5 Fxi 1 Fyj (2.7)  

While the scalars  F x   and  F y   may be positive or negative, depending 
upon the sense of  F   x   and of  F   y  , their absolute values are respectively 
equal to the magnitudes of the component forces  F   x   and  F   y  . The 
scalars  F x   and  F y   are called the  scalar components  of the force  F , 
while the actual component forces  F   x   and  F   y   should be referred to 
as the  vector components  of  F . However, when there exists no pos-
sibility of  confusion, the vector as well as the scalar components of 
 F  may be referred to simply as the  components  of  F . We note that 
the scalar component  F x   is positive when the vector component  F   x   
has the same sense as the unit vector  i  (i.e., the same sense as the 
positive  x  axis) and is negative when  F   x   has the opposite sense. A 
similar conclusion may be drawn regarding the sign of the scalar 
component  F y  . 
    Denoting by  F  the magnitude of the force  F  and by u the angle 
between  F  and the  x  axis, measured counterclockwise from the posi-
tive  x  axis ( Fig. 2.21 ), we may express the scalar components of  F  as 
follows:

   Fx 5 F cos u  Fy 5 F sin u (2.8)   

   We note that the relations obtained hold for any value of the angle 
u from 0° to 360° and that they define the signs as well as the abso-
lute values of the scalar components  F x   and  F y  .  

 EXAMPLE 1.   A force of 800 N is exerted on a bolt  A  as shown in 
 Fig. 2.22  a . Determine the horizontal and vertical components of the force. 
        In order to obtain the correct sign for the scalar components  F x   and 
 F y  , the value 180° 2 35° 5 145° should be substituted for u in Eqs. (2.8). 
However, it will be found more practical to determine by inspection the 
signs of  F x   and  F y   ( Fig. 2.22  b ) and to use the trigonometric functions of the 
angle a 5 35°. We write, therefore,

   Fx 5 2F cos a 5 2(800 N) cos 35° 5 2 655 N  
   Fy 5 1F sin a 5 1(800 N) sin 35° 5 1459 N   

 The vector components of  F  are thus

  Fx 5 2(655 N)i Fy 5 1(459 N)j  

and we may write  F  in the form

  F 5 2(655 N)i 1 (459 N)j ◾     

F = 800 N

F = 800 N

35º

A

A

(a)

(b)

x

y

Fy

Fx

� = 35º

� = 145º

  Fig. 2.22    

x

y

Magnitude = 1j

i

  Fig. 2.20    

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

  Fig. 2.21    
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29 EXAMPLE 2.   A man pulls with a force of 300 N on a rope attached to 
a building, as shown in  Fig. 2.23  a . What are the horizontal and vertical 
components of the force exerted by the rope at point  A ? 
        It is seen from  Fig. 2.23  b  that

  Fx 5 1(300 N) cos a Fy 5 2(300 N) sin a  

Observing that  AB  5 10 m, we find from  Fig. 2.23  a 

  
 cos a 5

8 m
AB

5
8 m

10 m
5

4
5
       sin a 5

6 m
AB

5
6 m

10 m
5

3
5  

We thus obtain

  Fx 51(300 N)4
5 51240 N       Fy 52(300 N)3

5 52180 N  

and write

  F 5 (240 N)i 2 (180 N)j    ◾

  When a force  F  is defined by its rectangular components  F x   
and  F y   (see  Fig. 2.21 ), the angle u defining its direction can be 
obtained by writing

   
 tan u 5

Fy

Fx    
(2.9)

The magnitude  F  of the force can be obtained by applying the 
Pythagorean theorem and writing

   F 5 2F2
x 1 F2

y   (2.10)

or by solving for  F  one of the Eqs. (2.8).   

 EXAMPLE 3.   A force  F  5 (700 lb) i  1 (1500 lb) j  is applied to a bolt  A.  
Determine the magnitude of the force and the angle u it forms with the 
horizontal. 
  First we draw a diagram showing the two rectangular components of 
the force and the angle u ( Fig. 2.24 ). From Eq. (2.9), we write

  
 tan u 5

Fy

Fx
5

1500 lb
700 lb    

        Using a calculator, †    we enter 1500 lb and divide by 700 lb; computing 
the arc tangent of the quotient, we obtain u 5 65.0°. Solving the second of 
Eqs. (2.8) for  F , we have

  
F 5

Fy

 sin u
5

1500 lb
 sin 65.0°

5 1655 lb
  

The last calculation is facilitated if the value of  F y   is stored when originally 
entered; it may then be recalled to be divided by sin u.      ◾

 †It is assumed that the calculator used has keys for the computation of trigonometric 
and inverse trigonometric functions. Some calculators also have keys for the direct 
 conversion of rectangular coordinates into polar coordinates, and vice versa. Such 
 calculators eliminate the need for the computation of trigonometric functions in 
 Examples 1, 2, and 3 and in problems of the same type. 

A x

y

F

Fx = (700 lb) i

F
y 

= 
(1

50
0 

lb
)j

�

  Fig. 2.24    

2.7 Rectangular Components of a Force. Unit 
Vectors

(b)
  Fig. 2.23    

(a)

F = 300 N

6 m

8 m

A

A

B

Fy

Fx

x

y

�

�

�
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30 Statics of Particles  2.8    ADDITION OF FORCES BY SUMMING 
 X  AND  Y  COMPONENTS  

 It was seen in Sec. 2.2 that forces should be added according to the 
parallelogram law. From this law, two other methods, more readily 
applicable to the  graphical  solution of problems, were derived in 
Secs. 2.4 and 2.5: the triangle rule for the addition of two forces and 
the polygon rule for the addition of three or more forces. It was also 
seen that the force triangle used to define the resultant of two forces 
could be used to obtain a  trigonometric  solution. 
    When three or more forces are to be added, no practical trigo-
nometric solution can be obtained from the force polygon which 
defines the resultant of the forces. In this case, an  analytic  solution 
of the problem can be obtained by resolving each force into two 
rectangular components. Consider, for instance, three forces  P, Q , 
and  S  acting on a particle  A  ( Fig. 2.25  a ). Their resultant  R  is 
defined by the relation

   R 5 P 1 Q 1 S    (2.11)

         Resolving each force into its rectangular components, we write

   Rxi 1 Ryj 5 Pxi 1 Pyj 1 Qxi 1 Qyj 1 Sxi 1 Syj  
   5 (Px 1 Qx 1 Sx)i 1 (Py 1 Qy 1 Sy)j  

from which it follows that

   Rx 5 Px 1 Qx 1 Sx  Ry 5 Py 1 Qy 1 Sy   (2.12)

or, for short,

   Rx 5 oFx  Ry 5 oFy    (2.13)

   We thus conclude that  the scalar components R x   and  R y  of the 
resultant   R   of several forces acting on a particle are obtained by 
adding algebraically the corresponding scalar components of the 
given forces.  † 
     In practice, the determination of the resultant  R  is carried out 
in three steps as illustrated in  Fig. 2.25 . First the given forces shown 
in  Fig. 2.25  a  are resolved into their  x  and  y  components ( Fig. 2.25  b ). 
Adding these components, we obtain the  x  and  y  components of  R  
( Fig. 2.25  c ). Finally, the resultant  R  5  R x   i  1  R y    j  is determined by 
applying the parallelogram law ( Fig. 2.25  d ). The procedure just 
described will be carried out most efficiently if the computations are 
arranged in a table. While it is the only practical analytic method for 
adding three or more forces, it is also often preferred to the trigo-
nometric solution in the case of the addition of two forces.  

  †Clearly, this result also applies to the addition of other vector quantities, such as 
velocities, accelerations, or momenta.  

(b)

(c)

S

P

Q

A

A

(a)

(d )

A

R

q

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i

  Fig. 2.25    
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31

 SAMPLE PROBLEM 2.3 

 Four forces act on bolt  A  as shown. Determine the resultant of the forces 
on the bolt.  

F2 = 80 N F1 = 150 N

F3 = 110 N

F4 = 100 N

20°

30°

15° x

y

A

 SOLUTION 

 The  x  and  y  components of each force are determined by trigonometry as 
shown and are entered in the table below. According to the convention 
adopted in Sec. 2.7, the scalar number representing a force component is 
positive if the force component has the same sense as the corresponding 
coordinate axis. Thus,  x  components acting to the right and  y  components 
acting upward are represented by positive numbers. 

(F2 cos 20°) j

(F1 sin 30°) j

(F1 cos 30°) i

–(F2 sin 20°) i
(F4 cos 15°) i

–(F4 sin 15°) j

–F3 j
             Force   Magnitude, N    x  Component, N    y  Component, N  

     F  1    150   1129.9   175.0  
   F  2     80   227.4   175.2  
   F  3    110   0   2110.0  
   F  4    100   196.6   225.9  

         R x   5 1199.1    R y   5 114.3     

  Thus, the resultant  R  of the four forces is

  R 5 Rxi 1 Ryj  R 5 (199.1 N)i 1 (14.3 N)j   ◀

 The magnitude and direction of the resultant may now be determined. 
From the triangle shown, we have

   
  tan a 5

Ry

Rx
5

14.3 N
199.1 N

    a 5 4.1°
  

   
 R 5

14.3 N
 sin a

5 199.6 N
 

R 5 199.6 N a4.1°   ◀

 With a calculator, the last computation may be facilitated if the value 
of  R y   is stored when originally entered; it may then be recalled to be divided 
by sin a. (Also see the footnote on p. 29.)      

R

Ry = (14.3 N) j Rx = (199.1 N) i

a
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 You saw in the preceding lesson that the resultant of two forces may be deter-
mined either graphically or from the trigonometry of an oblique triangle.  

  A.    When three or more forces are involved , the determination of their resultant 
R  is best carried out by first resolving each force into  rectangular components.
Two cases may be encountered, depending upon the way in which each of the 
given forces is defined:

      Case 1. The force F is defined by its magnitude F and the angle a it forms 
with the   x   axis.  The  x  and  y  components of the force can be obtained by multi-
plying  F  by cos a and sin a, respectively [Example 1].  

     Case 2. The force F is defined by its magnitude F and the coordinates of 
two points A and B on its line of action  ( Fig. 2.23 ). The angle a that  F  forms 
with the  x  axis may first be determined by trigonometry. However, the components 
of  F  may also be obtained directly from proportions among the various dimensions 
involved, without actually determining a [Example 2].     

  B.    Rectangular components of the resultant.  The components  R x   and  R y   of the 
resultant can be obtained by adding algebraically the corresponding components 
of the given forces [Sample Prob. 2.3].   

   You can express the resultant in  vectorial form  using the unit vectors  i  and  j , which 
are directed along the  x  and  y  axes, respectively:

  R 5 Rxi 1 Ryj  

Alternatively, you can determine the  magnitude and direction  of the resultant by 
solving the right triangle of sides  R x   and  R y   for  R  and for the angle that  R  forms 
with the  x  axis.   

32

 SOLVING PROBLEMS 
ON YOUR OWN  

bee29400_ch02_014-071.indd Page 32  11/28/08  9:20:33 PM user-s173bee29400_ch02_014-071.indd Page 32  11/28/08  9:20:33 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



2.21 and 2.22 Determine the x and y components of each of the 
forces shown.

33

PROBLEMS

O

Dimensions
in mm

424 N 408 N

800 N

x

y

900

800

600

560 480

Fig. P2.21

29 lb

51 lbO x

y

90 in.

96 in.

28 in.
84 in.

80 in.

48 in.

50 lb

Fig. P2.22

 2.23 and 2.24 Determine the x and y components of each of the 
forces shown.

Fig. P2.23

60 lb

50 lb
40 lb

25°

y

x

60°

50°

80 N

120 N

150 N 30°

35° 40°

y

x

Fig. P2.24
 2.25 Member BD exerts on member ABC a force P directed along 

line BD. Knowing that P must have a 300-lb horizontal compo-
nent, determine (a) the magnitude of the force P, (b) its vertical 
component.

Fig. P2.25

A

B

C D

35°

Q
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 2.26 The hydraulic cylinder BD exerts on member ABC a force P 
directed along line BD. Knowing that P must have a 750-N com-
ponent perpendicular to member ABC, determine (a) the magni-
tude of the force P, (b) its component parallel to ABC.

 2.27 The guy wire BD exerts on the telephone pole AC a force P 
directed along BD. Knowing that P must have a 120-N component 
perpendicular to the pole AC, determine (a) the magnitude of the 
force P, (b) its component along line AC.

 2.28 The guy wire BD exerts on the telephone pole AC a force P directed 
along BD. Knowing that P has a 180-N component along line AC, 
determine (a) the magnitude of the force P, (b) its component in 
a direction perpendicular to AC.

 2.29 Member CB of the vise shown exerts on block B a force P directed 
along line CB. Knowing that P must have a 1200-N horizontal 
component, determine (a) the magnitude of the force P, (b) its verti-
cal component.

 2.30 Cable AC exerts on beam AB a force P directed along line AC. 
Knowing that P must have a 350-lb vertical component, determine 
(a) the magnitude of the force P, (b) its horizontal component.

34 Statics of Particles

Fig. P2.26

60°

50°

B

C

D

A

Q

A

B

38°

C D

Fig. P2.27 and P2.28

55° 55°

Q

B

C

A

l l

Fig. P2.29

A

B

C

55°

Q

Fig. P2.30

200 N

150 N

100 N
30°

aa

Fig. P2.35

 2.31 Determine the resultant of the three forces of Prob. 2.22.

 2.32 Determine the resultant of the three forces of Prob. 2.24.

 2.33 Determine the resultant of the three forces of Prob. 2.23.

 2.34 Determine the resultant of the three forces of Prob. 2.21.

 2.35 Knowing that a 5 35°, determine the resultant of the three forces 
shown.
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 2.36 Knowing that the tension in cable BC is 725 N, determine the 
resultant of the three forces exerted at point B of beam AB.

35

840 mm

800 mm

500 N

780 N3
45 12

13
5A

B

C

L = 1160 mm

Fig. P2.36

120 lb

80 lb

60 lb

a

a'

α
α

20°

Fig. P2.37 and P2.38

75 lb
50 lb

25°

65°

35°

A

B

C

Fig. P2.41

A

100 lb

100 lb

Fig. 2.26

2.9 Equilibrium of a Particle

 2.37 Knowing that a 5 40°, determine the resultant of the three forces 
shown. 

 2.38 Knowing that a 5 75°, determine the resultant of the three forces 
shown.

 2.39 For the collar of Prob. 2.35, determine (a) the required value of 
a if the resultant of the three forces shown is to be vertical, (b) the 
corresponding magnitude of the resultant.

 2.40 For the beam of Prob. 2.36, determine (a) the required tension in 
cable BC if the resultant of the three forces exerted at point B is to 
be vertical, (b) the corresponding magnitude of the resultant.

 2.41 Determine (a) the required tension in cable AC, knowing that 
the resultant of the three forces exerted at point C of boom BC 
must be directed along BC, (b) the corresponding magnitude of the 
resultant.

 2.42 For the block of Probs. 2.37 and 2.38, determine (a) the required 
value of a if the resultant of the three forces shown is to be parallel 
to the incline, (b) the corresponding magnitude of the resultant.

  2.9   EQUILIBRIUM OF A PARTICLE  
 In the preceding sections, we discussed the methods for determining 
the resultant of several forces acting on a particle. Although it has 
not occurred in any of the problems considered so far, it is quite 
possible for the resultant to be zero. In such a case, the net effect 
of the given forces is zero, and the particle is said to be in equilibrium. 
We thus have the following definition:  When the resultant of all the 
forces acting on a particle is zero, the particle is in equilibrium.  
    A particle which is acted upon by two forces will be in equi-
librium if the two forces have the same magnitude and the same line 
of action but opposite sense. The resultant of the two forces is then 
zero. Such a case is shown in  Fig. 2.26 . 
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36 Statics of Particles           Another case of equilibrium of a particle is represented in 
 Fig. 2.27 , where four forces are shown acting on  A.  In  Fig. 2.28 , 
the resultant of the given forces is determined by the polygon rule. 
Starting from point  O  with  F  1  and arranging the forces in tip-to-tail 
fashion, we find that the tip of  F  4  coincides with the starting point 
 O . Thus the resultant  R  of the given system of forces is zero, and 
the particle is in equilibrium. 
          The closed polygon drawn in  Fig. 2.28  provides a  graphical  
expression of the equilibrium of  A.  To express  algebraically  the con-
ditions for the equilibrium of a particle, we write

   R 5 oF 5 0    (2.14)

         Resolving each force  F  into rectangular components, we have

  o(Fxi 1 Fyj) 5 0  or  (oFx)i 1 (oFy)j 5 0  

We conclude that the necessary and sufficient conditions for the 
equilibrium of a particle are

   oFx 5 0  oFy 5 0   (2.15)

Returning to the particle shown in  Fig. 2.27 , we check that the equi-
librium conditions are satisfied. We write

   oFx 5 300 lb 2 (200 lb) sin 30° 2 (400 lb) sin 30°
 5 300 lb 2 100 lb 2 200 lb 5 0  
   oFy 5 2173.2 lb 2 (200 lb) cos 30° 1 (400 lb) cos 30°
 5 2173.2 lb 2 173.2 lb 1 346.4 lb 5 0      

 2.10   NEWTON’S FIRST LAW OF MOTION  
 In the latter part of the seventeenth century, Sir Isaac Newton for-
mulated three fundamental laws upon which the science of mechan-
ics is based. The first of these laws can be stated as follows:  
   If the resultant force acting on a particle is zero, the particle 
will remain at rest (if originally at rest) or will move with constant 
speed in a straight line (if originally in motion).   
    From this law and from the definition of equilibrium given in 
Sec. 2.9, it is seen that a particle in equilibrium either is at rest or 
is moving in a straight line with constant speed. In the following 
section, various problems concerning the equilibrium of a particle 
will be considered.    

 2.11    PROBLEMS INVOLVING THE EQUILIBRIUM 
OF A PARTICLE. FREE-BODY DIAGRAMS  

 In practice, a problem in engineering mechanics is derived from an 
actual physical situation. A sketch showing the physical conditions of 
the problem is known as a  space diagram.  
    The methods of analysis discussed in the preceding sections 
apply to a system of forces acting on a particle. A large number of 
problems involving actual structures, however, can be reduced to 
problems concerning the equilibrium of a particle. This is done by 

A

F1 = 300 lb

F2 = 173.2 lb

F4 = 400 lb

F3 = 200 lb

30º

30º

Fig. 2.27

F4 = 400 lb

F1 = 300 lb

F3 = 200 lb

F2 = 173.2 lb

O

Fig. 2.28
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37choosing a significant particle and drawing a separate diagram show-
ing this particle and all the forces acting on it. Such a diagram is 
called a  free-body diagram.  
    As an example, consider the 75-kg crate shown in the space 
diagram of  Fig. 2.29  a.  This crate was lying between two buildings, 
and it is now being lifted onto a truck, which will remove it. The crate 
is supported by a vertical cable, which is joined at  A  to two ropes 
which pass over pulleys attached to the buildings at  B  and  C.  It is 
desired to determine the tension in each of the ropes  AB  and  AC . 
    In order to solve this problem, a free-body diagram showing a 
particle in equilibrium must be drawn. Since we are interested in 
the rope tensions, the free-body diagram should include at least one 
of these tensions or, if possible, both tensions. Point  A  is seen to be 
a good free body for this problem. The free-body diagram of point 
 A  is shown in  Fig. 2.29  b.  It shows point  A  and the forces exerted on 
 A  by the vertical cable and the two ropes. The force exerted by the 
cable is directed downward, and its magnitude is equal to the weight 
 W  of the crate. Recalling Eq. (1.4), we write

  W 5 mg 5 (75 kg)(9.81 m/s2) 5 736 N  

and indicate this value in the free-body diagram. The forces exerted 
by the two ropes are not known. Since they are respectively equal 
in magnitude to the tensions in rope  AB  and rope  AC , we denote 
them by  T   AB   and  T   AC   and draw them away from  A  in the directions 
shown in the space diagram. No other detail is included in the free-
body diagram. 
    Since point  A  is in equilibrium, the three forces acting on it 
must form a closed triangle when drawn in tip-to-tail fashion. This 
 force triangle  has been drawn in  Fig. 2.29  c . The values  T AB   and  T AC   
of the tension in the ropes may be found graphically if the triangle 
is drawn to scale, or they may be found by trigonometry. If the latter 
method of solution is chosen, we use the law of sines and write

  
TAB

 sin 60°
5

TAC

 sin 40°
5

736 N
 sin 80°

  

  TAB 5 647 N  TAC 5 480 N   

    When a particle is in  equilibrium under three forces , the problem 
can be solved by drawing a force triangle. When a particle is in  equi-
librium under more than three forces , the problem can be solved graph-
ically by drawing a force polygon. If an analytic solution is desired, the 
 equations of equilibrium  given in Sec. 2.9 should be solved:

   oFx 5 0  oFy 5 0 (2.15)  

These equations can be solved for no more than  two unknowns;  
similarly, the force triangle used in the case of equilibrium under 
three forces can be solved for two unknowns. 
    The more common types of problems are those in which the 
two unknowns represent (1) the two components (or the magnitude 
and direction) of a single force, (2) the magnitudes of two forces, 
each of known direction. Problems involving the determination of 
the maximum or minimum value of the magnitude of a force are also 
encountered (see Probs. 2.57 through 2.61).  

TAB
TAC

A

A

B

C

50º 30º

50º 30º

(a) Space diagram

(b) Free-body diagram (c) Force triangle

736 N

TAB

TAC

736 N

40º

60º
80º

  Fig. 2.29    

2.11 Problems Involving the Equilibrium of a 
Particle. Free-Body Diagrams

Photo 2.1 As illustrated in the above example, 
it is possible to determine the tensions in the 
cables supporting the shaft shown by treating 
the hook as a particle and then applying the 
equations of equilibrium to the forces acting on 
the hook.
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 SAMPLE PROBLEM 2.4 

 In a ship-unloading operation, a 3500-lb automobile is supported by a cable. 
A rope is tied to the cable at  A  and pulled in order to center the automobile 
over its intended position. The angle between the cable and the vertical is 2°, 
while the angle between the rope and the horizontal is 30°. What is the 
tension in the rope?  

 SOLUTION 

  Free-Body Diagram.  Point  A  is chosen as a free body, and the complete 
free-body diagram is drawn.  T AB   is the tension in the cable  AB , and  T AC   is 
the tension in the rope. 

  Equilibrium Condition.  Since only three forces act on the free body, we draw 
a force triangle to express that it is in equilibrium. Using the law of sines, we 
write

  
TAB

 sin 120°
5

TAC

 sin 2°
5

3500 lb
 sin 58°    

  With a calculator, we first compute and store the value of the last quotient. 
Multiplying this value successively by sin 120° and sin 2°, we obtain

   TAB 5 3570 lb TAC 5 144 lb ◀      

TAB

TAC

TAB

TAC

2°

2°

30°
A

3500 lb

3500 lb

120°

58°

38

 SAMPLE PROBLEM 2.5 

 Determine the magnitude and direction of the smallest force  F  which will 
maintain the package shown in equilibrium. Note that the force exerted by 
the rollers on the package is perpendicular to the incline.  

 SOLUTION 

  Free-Body Diagram.  We choose the package as a free body, assuming that 
it can be treated as a particle. We draw the corresponding free-body 
diagram. 

  Equilibrium Condition.  Since only three forces act on the free body, we 
draw a force triangle to express that it is in equilibrium. Line  1-1 9 represents 
the known direction of  P . In order to obtain the minimum value of the force 
 F , we choose the direction of  F  perpendicular to that of  P.  From the geom-
etry of the triangle obtained, we find

  F 5 (294 N) sin 15° 5 76.1 N  a 5 15°  
   F 5 76.1 N b15° ◀      

2°

30°
A

C

B

15°

30 kg F
�

15°

FP

W = (30 kg)(9.81 m/s2)
     = 294 N

�

F

P

15°

1

1'

294 N

�
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 SOLUTION 

  Determination of the Angles.  First, the angles a and b defining the direc-
tion of cables  AB  and  AC  are determined. We write

  
  tan a 5

7 ft
4 ft

5 1.75         tan b 5
1.5 ft
4 ft

5 0.375
  

   a 5 60.26°      b 5 20.56°   

 Free-Body Diagram.  Choosing the hull as a free body, we draw the free-
body diagram shown. It includes the forces exerted by the three cables on 
the hull, as well as the drag force  F   D   exerted by the flow. 

  Equilibrium Condition.  We express that the hull is in equilibrium by writ-
ing that the resultant of all forces is zero:

   R 5 TAB 1 TAC 1 TAE 1 FD 5 0     (1)

 Since more than three forces are involved, we resolve the forces into  x  and  y  
components:

   TAB 5 2(40 lb) sin 60.26°i 1 (40 lb) cos 60.26°j  
   5 2(34.73 lb)i 1 (19.84 lb)j  
   TAC 5 TAC sin 20.56°i 1 TAC cos 20.56°j  
   5 0.3512TACi 1 0.9363TACj  
   TAE 5 2(60 lb)j  
   FD 5 FDi   

 Substituting the expressions obtained into Eq. (1) and factoring the unit 
vectors  i  and  j , we have

  (234.73 lb 1 0.3512TAC 1 FD)i 1 (19.84 lb 1 0.9363TAC 2 60 lb)j 5 0   

 This equation will be satisfied if, and only if, the coefficients of  i  and  j  are 
equal to zero. We thus obtain the following two equilibrium equations, 
which express, respectively, that the sum of the  x  components and the sum 
of the  y  components of the given forces must be zero.

  (oFx 5 0:) 234.73 lb 1 0.3512TAC 1 FD 5 0  (2)  
  (oFy 5 0:) 19.84 lb 1 0.9363TAC 2 60 lb 5 0  (3)  

From Eq. (3) we find    TAC 5 142.9 lb ◀  
and, substituting this value into Eq. (2),    FD 5 119.66 lb ◀   

 In drawing the free-body diagram, we assumed a sense for each unknown 
force. A positive sign in the answer indicates that the assumed sense is correct. 
The complete force polygon may be drawn to check the results.      

TAC

FD

TAB = 40 lb

TAE = 60 lb

a = 60.26°

b = 20.56°

A

FDi

TAC sin 20.56° i

TAC cos 20.56° j

20.56°
60.26°

(40 lb) cos 60.26° j

–(40 lb) sin 60.26° i

–(60 lb) j

y

xA

TAC = 42.9 lb

TAE = 60 lb

TAB = 40 lb

FD = 19.66 lb

b = 20.56°

a = 60.26°
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Flow A

B C

E

4 ft

4 ft

7 ft 1.5 ft

a
b

 SAMPLE PROBLEM 2.6 

 As part of the design of a new sailboat, it is desired to determine the drag force 
which may be expected at a given speed. To do so, a model of the proposed hull 
is placed in a test channel and three cables are used to keep its bow on the cen-
terline of the channel. Dynamometer readings indicate that for a given speed, 
the tension is 40 lb in cable  AB  and 60 lb in cable  AE . Determine the drag force 
exerted on the hull and the tension in cable  AC .  
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40

 When a particle is in  equilibrium , the resultant of the forces acting on the 
particle must be zero. Expressing this fact in the case of a particle under 

 coplanar forces  will provide you with two relations among these forces. As you saw 
in the preceding sample problems, these relations may be used to determine two 
unknowns—such as the magnitude and direction of one force or the magnitudes 
of two forces. 

    Drawing a free-body diagram is the first step  in the solution of a problem 
involving the equilibrium of a particle. This diagram shows the particle and all the 
forces acting on it. Indicate in your free-body diagram the magnitudes of known 
forces, as well as any angle or dimensions that define the direction of a force. Any 
unknown magnitude or angle should be denoted by an appropriate symbol. Noth-
ing else should be included in the free-body diagram. 

    Drawing a clear and accurate free-body diagram is a must in the solution of any 
equilibrium problem.  Skipping this step might save you pencil and paper, but is very 
likely to lead you to a wrong solution. 

    Case 1. If only three forces are involved  in the free-body diagram, the rest of 
the solution is best carried out by drawing these forces in tip-to-tail fashion to 
form a  force triangle.  This triangle can be solved graphically or by trigonometry 
for no more than two unknowns [Sample Probs. 2.4 and 2.5]. 

    Case 2. If more than three forces are involved , it is to your advantage to use 
an  analytic solution.  You select  x  and  y  axes and resolve each of the forces shown 
in the free-body diagram into  x  and  y  components. Expressing that the sum of the 
 x  components and the sum of the  y  components of all the forces are both zero, 
you will obtain two equations which you can solve for no more than two unknowns 
[Sample Prob. 2.6]. 

   It is strongly recommended that when using an analytic solution the equations of 
equilibrium be written in the same form as Eqs. (2) and (3) of Sample Prob. 2.6. 
The practice adopted by some students of initially placing the unknowns on the 
left side of the equation and the known quantities on the right side may lead to 
confusion in assigning the appropriate sign to each term. 

   We have noted that regardless of the method used to solve a two-dimensional 
equilibrium problem we can determine at most two unknowns. If a two-dimensional 
problem involves more than two unknowns, one or more additional relations must 
be obtained from the information contained in the statement of the problem.    

 SOLVING PROBLEMS 
ON YOUR OWN  
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41

PROBLEMS

 2.43 Two cables are tied together at C and are loaded as shown. Know-
ing that a 5 20°, determine the tension (a) in cable AC, (b) in 
cable BC.

 2.44 Two cables are tied together at C and are loaded as shown. Deter-
mine the tension (a) in cable AC, (b) in cable BC.

Fig. P2.43

40°
A B

C

200 kg

a

Fig. P2.44

A

B

C
500 N50°

30°

45º

A B

C

P

25º

a

Fig. P2.45

75°

75°

200 kg

C

A

B

Fig. P2.46

2.45 Two cables are tied together at C and are loaded as shown. Know-
ing that P 5 500 N and a 5 60°, determine the tension in (a) in 
cable AC, (b) in cable BC.

2.46 Two cables are tied together at C and are loaded as shown. Deter-
mine the tension (a) in cable AC, (b) in cable BC.
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42 Statics of Particles  2.47 Knowing that a 5 20°, determine the tension (a) in cable AC, (b) in 
rope BC.

Fig. P2.47

5°

A

C

B

α

1200 lb

30° 20°

α

300 lb

A

B

C

Fig. P2.48

50°

40°

A

B

P

Q

FA

FB

Fig. P2.49 and P2.50

FD

FC

FA

FB

B

A

D

C

3
4

Fig. P2.51 and P2.52

 2.48 Knowing that a 5 55° and that boom AC exerts on pin C a force 
directed along line AC, determine (a) the magnitude of that force, 
(b) the tension in cable BC.

 2.49 Two forces P and Q are applied as shown to an aircraft connection. 
Knowing that the connection is in equilibrium and that P 5 500 lb 
and Q 5 650 lb, determine the magnitudes of the forces exerted 
on the rods A and B.

 2.50 Two forces P and Q are applied as shown to an aircraft connection. 
Knowing that the connection is in equilibrium and that the mag-
nitudes of the forces exerted on rods A and B are FA 5 750 lb and 
FB 5 400 lb, determine the magnitudes of P and Q.

 2.51 A welded connection is in equilibrium under the action of the four 
forces shown. Knowing that FA 5 8 kN and FB 5 16 kN, determine 
the magnitudes of the other two forces.

 2.52 A welded connection is in equilibrium under the action of the four 
forces shown. Knowing that FA 5 5 kN and FD 5 6 kN, determine 
the magnitudes of the other two forces.
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43Problems 2.53 Two cables tied together at C are loaded as shown. Knowing that Q 5 
60 lb, determine the tension (a) in cable AC, (b) in cable BC.

 2.54 Two cables tied together at C are loaded as shown. Determine the 
range of values of Q for which the tension will not exceed 60 lb in 
either cable.

 2.55 A sailor is being rescued using a boatswain’s chair that is suspended 
from a pulley that can roll freely on the support cable ACB and is 
pulled at a constant speed by cable CD. Knowing that a 5 30° 
and b 5 10° and that the combined weight of the boatswain’s chair 
and the sailor is 900 N, determine the tension (a) in the support 
cable ACB, (b) in the traction cable CD.

Fig. P2.53 and P2.54

A

B

C

P = 75 lb

30º

30º

60º

Q

A
B

Cα
β

D

Fig. P2.55 and P2.56

A B

C

1200 N

2.1 m 2.1 m

Fig. P2.60

 2.56 A sailor is being rescued using a boatswain’s chair that is suspended 
from a pulley that can roll freely on the support cable ACB and is 
pulled at a constant speed by cable CD. Knowing that a 5 25° 
and b 5 15° and that the tension in cable CD is 80 N, determine 
(a) the combined weight of the boatswain’s chair and the sailor, 
(b) the tension in the support cable ACB.

 2.57 For the cables of Prob. 2.45, it is known that the maximum allow-
able tension is 600 N in cable AC and 750 N in cable BC. Determine 
(a) the maximum force P that can be applied at C, (b) the corre-
sponding value of a.

 2.58 For the situation described in Fig. P2.47, determine (a) the value 
of a for which the tension in rope BC is as small as possible, (b) the 
corresponding value of the tension.

 2.59 For the structure and loading of Prob. 2.48, determine (a) the 
value of a for which the tension in cable BC is as small as possible, 
(b) the corresponding value of the tension. 

 2.60 Knowing that portions AC and BC of cable ACB must be equal, 
determine the shortest length of cable that can be used to support 
the load shown if the tension in the cable is not to exceed 870 N.
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44 Statics of Particles  2.61 Two cables tied together at C are loaded as shown. Knowing 
that the maximum allowable tension in each cable is 800 N, deter-
mine (a) the magnitude of the largest force P that can be applied 
at C, (b) the corresponding value of a.

Fig. P2.61 and P2.62

35º
A B

C

P

50º

a

50 lb

x

C

B

A

P

20 in.

Fig. P2.63 and P2.64

A

P

B

α

β

160 kg

Fig. P2.65 and P2.66

T

T
T T T

(a) (b) (c) (d) (e)

Fig. P2.67

 2.62 Two cables tied together at C are loaded as shown. Knowing that 
the maximum allowable tension is 1200 N in cable AC and 600 N 
in cable BC, determine (a) the magnitude of the largest force P 
that can be applied at C, (b) the corresponding value of a.

 2.63 Collar A is connected as shown to a 50-lb load and can slide on a 
frictionless horizontal rod. Determine the magnitude of the force 
P required to maintain the equilibrium of the collar when (a) x 5 
4.5 in., (b) x 5 15 in.

 2.64 Collar A is connected as shown to a 50-lb load and can slide on a 
frictionless horizontal rod. Determine the distance x for which the 
collar is in equilibrium when P 5 48 lb.

 2.65 A 160-kg load is supported by the rope-and-pulley arrangement 
shown. Knowing that b 5 20°, determine the magnitude and direc-
tion of the force P that must be exerted on the free end of the 
rope to maintain equilibrium. (Hint: The tension in the rope is the 
same on each side of a simple pulley. This can be proved by the 
methods of Chap. 4.)

 2.66 A 160-kg load is supported by the rope-and-pulley arrangement 
shown. Knowing that a 5 40°, determine (a) the angle b, (b) the 
magnitude of the force P that must be exerted on the free end of 
the rope to maintain equilibrium. (See the hint for Prob. 2.65.)

 2.67 A 600-lb crate is supported by several rope-and-pulley arrange-
ments as shown. Determine for each arrangement the tension in 
the rope. (See the hint for Prob. 2.65.)
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A

D

B

C

P

25°

55°

Q

Fig. P2.69 and P2.70

 2.68 Solve parts b and d of Prob. 2.67, assuming that the free end of 
the rope is attached to the crate.

 2.69 A load Q is applied to the pulley C, which can roll on the cable ACB. 
The pulley is held in the position shown by a second cable CAD, 
which passes over the pulley A and supports a load P. Knowing 
that P 5 750 N, determine (a) the tension in cable ACB, (b) the 
magnitude of load Q.

 2.70 An 1800-N load Q is applied to the pulley C, which can roll on the 
cable ACB. The pulley is held in the position shown by a second cable 
CAD, which passes over the pulley A and supports a load P. Determine 
(a) the tension in cable ACB, (b) the magnitude of load P.

 FORCES IN SPACE      

  2.12    RECTANGULAR COMPONENTS 
OF A FORCE IN SPACE  

 The problems considered in the first part of this chapter involved 
only two dimensions; they could be formulated and solved in a single 
plane. In this section and in the remaining sections of the chapter, 
we will discuss problems involving the three dimensions of space. 
    Consider a force  F  acting at the origin  O  of the system of 
rectangular coordinates  x, y, z.  To define the direction of  F , we draw 
the vertical plane  OBAC  containing  F  ( Fig. 2.30  a ). This plane passes 
through the vertical  y  axis; its orientation is defined by the angle f 
it forms with the  xy  plane. The direction of  F  within the plane is 
defined by the angle u  y   that  F  forms with the  y  axis. The force  F  
may be resolved into a vertical component  F   y   and a horizontal com-
ponent  F   h  ; this operation, shown in  Fig. 2.30  b , is carried out in plane 
 OBAC  according to the rules developed in the first part of the chap-
ter. The corresponding scalar components are
   Fy 5 F cos uy  Fh 5 F sin uy    (2.16)
         But  F   h   may be resolved into two rectangular components  F   x   and  F   z   
along the  x  and  z  axes, respectively. This operation, shown in  Fig. 2.30  c , 
is carried out in the  xz  plane. We obtain the following expressions for 
the corresponding scalar components:

  Fx 5 Fh cos f 5 F sin uy cos f
 Fz 5 Fh sin f 5 F sin uy sin f    

(2.17)

   The given force  F  has thus been resolved into three rectangular vec-
tor components  F   x  ,  F   y  ,  F   z  , which are directed along the three coor-
dinate axes. 
    Applying the Pythagorean theorem to the triangles  OAB  and 
 OCD  of  Fig. 2.30 , we write

   F2 5 (OA)2  5 (OB)2  1 (BA)2  5 F2
y 1 F2

h  
   F2

h 5 (OC)2 5 (OD)2 1 (DC)2 5 F2
x 1 F2

z   
   Eliminating   F2

h   from these two equations and solving for  F , we obtain 
the following relation between the magnitude of  F  and its rectangular 
scalar components: 

     F 5 2F2
x 1 F2

y 1 F2
z (2.18)

(a)

A

B

C

z

y

x
O

F

�

�y

(b)

Fh

Fy A

B

C

z

y

x
O

F�y

(c)

Fh

Fy

Fx

Fz

E

D

B

C
z

y

x
O

�

Fig. 2.30

452.12 Rectangular Components of a Force 
in Space
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46 Statics of Particles     The relationship existing between the force  F  and its three 
components  F   x  ,  F   y  ,  F   z   is more easily visualized if a “box” having 
 F   x  ,  F   y  ,  F   z   for edges is drawn as shown in  Fig. 2.31 . The force  F  is 
then represented by the diagonal  OA  of this box. Figure 2.31 b  
shows the right triangle  OAB  used to derive the first of the formu-
las (2.16):  F y   5  F  cos u  y  . In  Fig. 2.31  a  and  c , two other right tri-
angles have also been drawn:  OAD  and  OAE.  These triangles are 
seen to occupy in the box positions comparable with that of triangle 
 OAB.  Denoting by u  x   and u  z  , respectively, the angles that  F  forms 
with the  x  and  z  axes, we can derive two formulas similar to  F y   5 
 F  cos u  y.   We thus write

   Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz    (2.19)

         The three angles u  x  , u  y  , u  z   define the direction of the force  F ; they are 
more commonly used for this purpose than the angles u  y   and f intro-
duced at the beginning of this section. The cosines of u  x  , u  y  , u  z       are 
known as the  direction cosines  of the force  F . 
    Introducing the unit vectors  i ,  j , and  k , directed respectively 
along the  x ,  y , and  z  axes ( Fig. 2.32 ), we can express  F  in the 
form

   F 5 Fxi 1 Fyj 1 Fzk    (2.20)

         where the scalar components  F x  ,  F y  ,  F z   are defined by the relations 
(2.19).  

 EXAMPLE 1.   A force of 500 N forms angles of 60°, 45°, and 120°, 
respectively, with the  x ,  y , and  z  axes. Find the components  F x  ,  F y  , and  F z   
of the force. 
  Substituting  F  5 500 N, u  x   5 60°, u  y   5 45°, u  z   5 120° into formulas 
(2.19), we write

   Fx 5 (500 N) cos 60° 5 1250 N  
   Fy 5 (500 N) cos 45° 5 1354 N  
   Fz 5 (500 N) cos 120° 5 2250 N   

 Carrying into Eq. (2.20) the values obtained for the scalar components of 
 F , we have

  F 5 (250 N)i 1 (354 N)j 2 (250 N)k   

 As in the case of two-dimensional problems, a plus sign indicates that the 
component has the same sense as the corresponding axis, and a minus sign 
indicates that it has the opposite sense.   ◾

    The angle a force  F  forms with an axis should be measured 
from the positive side of the axis and will always be between 0 and 
180°. An angle u  x   smaller than 90° (acute) indicates that  F  (assumed 
attached to  O ) is on the same side of the  yz  plane as the positive 
 x  axis; cos u  x   and  F x   will then be positive. An angle u  x   larger than 90° 
(obtuse) indicates that  F  is on the other side of the  yz  plane; cos u  x   
and  F x   will then be negative. In Example 1 the angles u  x   and u  y   are 
acute, while u  z   is obtuse; consequently,  F x   and  F y   are positive, while 
 F z   is negative. 
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F �x
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Fig. 2.31
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Fig. 2.32
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47    Substituting into (2.20) the expressions obtained for  F x  ,  F y  ,  F z   
in (2.19), we write

   F 5 F(cos uxi 1 cos uyj 1 cos uzk)   (2.21)

which shows that the force  F  can be expressed as the product of the 
scalar  F  and the vector

   l 5 cos uxi 1 cos uyj 1 cos uzk    (2.22)

   Clearly, the vector l is a vector whose magnitude is equal to 1 and 
whose direction is the same as that of  F  ( Fig. 2.33 ). The vector  l  is 
referred to as the  unit vector  along the line of action of  F . It follows 
from (2.22) that the components of the unit vector  l  are respectively 
equal to the direction cosines of the line of action of  F :

   lx 5 cos ux  ly 5 cos uy  lz 5 cos uz    (2.23)

          We should observe that the values of the three angles u  x  , u  y  , u  z   
are not independent. Recalling that the sum of the squares of the 
components of a vector is equal to the square of its magnitude, we 
write

  l  

2
x 1 l2

y 1 l2
z 5 1  

or, substituting for l  x  , l  y  , l  z   from (2.23),

    cos2 ux 1  cos2 uy 1  cos2 uz 5 1    (2.24)

   In Example 1, for instance, once the values u  x   5 60° and u  y   5 45° 
have been selected, the value of u  z    must  be equal to 60° or 120° in 
order to satisfy identity (2.24). 
    When the components  F x  ,  F y  ,  F z   of a force  F  are given, the 
magnitude  F  of the force is obtained from (2.18). †  The relations 
(2.19) can then be solved for the direction cosines,

   
 cos ux 5

Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F    
(2.25)

and the angles u  x  , u  y  , u  z   characterizing the direction of  F  can be 
found.  

 EXAMPLE 2.   A force  F  has the components  F x   5 20 lb,  F y   5 230 lb,  F z  5 
 60 lb. Determine its magnitude  F  and the angles u  x  , u  y  , u  z   it forms with the 
coordinate axes. 
  From formula (2.18) we obtain†

   F 5 2F2
x 1 F2

y 1 F2
z   

   5 2 (20 lb)2 1 (230 lb)2 1 (60 lb)2  
   5 14900 lb 5 70 lb    

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi

Fig. 2.33

  †With a calculator programmed to convert rectangular coordinates into polar coordinates, 
the following procedure will be found more expeditious for computing  F : First determine 
 F h   from its two rectangular components  F x   and  F z   ( Fig. 2.30  c ), then determine  F  from 
its two rectangular components  F h   and  F y   ( Fig. 2.30  b ). The actual order in which the 
three components  F x  ,  F y  ,  F z   are entered is immaterial.  

2.12 Rectangular Components of a Force 
in Space
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48 Statics of Particles  Substituting the values of the components and magnitude of  F  into Eqs. 
(2.25), we write

  
cos ux 5

Fx

F
5

20 lb
70 lb       

cos uy 5
Fy

F
5

230 lb
70 lb      

cos uz 5
Fz

F
5

60 lb
70 lb  

 Calculating successively each quotient and its arc cosine, we obtain

  u  x   5 73.4°  u  y   5 115.4°  u  z   5 31.0°   

 These computations can be carried out easily with a calculator.      ◾

 2.13    FORCE DEFINED BY ITS MAGNITUDE AND TWO 
POINTS ON ITS LINE OF ACTION  

 In many applications, the direction of a force  F  is defined by the 
coordinates of two points,  M ( x  1 ,  y  1 ,  z  1 ) and  N ( x  2 ,  y  2 ,  z  2 ), located on its
line of action ( Fig. 2.34 ). Consider the vector   MN

¡
   joining  M  and  N  

y

x

z

O

M(x1, y1, z1)

N(x2, y2, z2)

dy = y2 –  y1

dz = z2 –  z1 < 0

d x = x2 –  x1

F

λ

Fig. 2.34

         and of the same sense as  F . Denoting its scalar components by  d x  ,  d y  , 
 d z  , respectively, we write

   MN
¡

5 dxi 1 dyj 1 dzk    (2.26)

   The unit vector l along the line of action of  F  (i.e., along the line  MN )
may be obtained by dividing the vector   MN

¡
   by its magnitude  MN.  

Substituting for   MN
¡

   from (2.26) and observing that  MN  is equal to 
the distance  d  from  M  to  N , we write

   L 5
MN
¡

MN
5

1
d

 (dxi 1 dy j 1 dzk)    (2.27)

   Recalling that  F  is equal to the product of  F  and l, we have

   
F 5 FL 5

F
d

 (dxi 1 dyj 1 dzk)
   

(2.28)

from which it follows that the scalar components of  F  are, 
respectively,

   
Fx 5

Fdx

d      
Fy 5

Fdy

d   
Fz 5

Fdz

d  
(2.29)
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49    The relations (2.29) considerably simplify the determination of 
the components of a force  F  of given magnitude  F  when the line of 
action of  F  is defined by two points  M  and  N.  Subtracting the coor-
dinates of  M  from those of  N , we first determine the components of
the vector   MN

¡
   and the distance  d  from  M  to  N :

  dx 5 x2 2 x1  dy 5 y2 2 y1  dz 5 z2 2 z1  

  d 5 2d2
x 1 d2

y 1 d2
z   

   Substituting for  F  and for  d x  ,  d y  ,  d z  , and  d  into the relations (2.29), 
we obtain the components  F x  ,  F y  ,  F z   of the force. 
    The angles u  x  , u  y  , u  z   that  F  forms with the coordinate axes can 
then be obtained from Eqs. (2.25). Comparing Eqs. (2.22) and (2.27), 
we can also write

   
 cos ux 5

dx

d
    cos uy 5

dy

d
    cos uz 5

dz

d    
(2.30)

and determine the angles u  x  , u  y  , u  z       directly from the components and
magnitude of the vector   MN

¡
.      

 2.14   ADDITION OF CONCURRENT FORCES IN SPACE  
 The resultant  R  of two or more forces in space will be determined by 
summing their rectangular components. Graphical or trigonometric 
methods are generally not practical in the case of forces in space. 
    The method followed here is similar to that used in Sec. 2.8 
with coplanar forces. Setting

  R 5 oF  

we resolve each force into its rectangular components and write

   Rxi 1 Ryj 1 Rzk 5 o(Fxi 1 Fyj 1 Fzk)  
   5 (oFx)i 1 (oFy) j 1 (oFz)k  

from which it follows that

   Rx 5 oFx  Ry 5 oFy  Rz 5 oFz (2.31)   

   The magnitude of the resultant and the angles u  x  , u  y  , u  z   that the 
resultant forms with the coordinate axes are obtained using the 
method discussed in Sec. 2.12. We write

   R 5 2R2
x 1 R2

y 1 R2
z (2.32)  

   
 cos ux 5

Rx

R
   cos uy 5

Ry

R
   cos uz 5

Rz

R  
(2.33)

    

2.14 Addition of Concurrent Forces in Space
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50

 SOLUTION  

  a.    Components of the Force.  The line of action of the force acting on 
the bolt passes through  A  and  B , and the force is directed from 
 A  to  B . The components of the vector   AB

¡
  , which has the same direction 

as the force, are

  dx 5 240 m  dy 5 180 m  dz 5 130 m  

The total distance from  A  to  B  is

  AB 5 d 5 2d2
x 1 d2

y 1 d2
z 5 94.3 m  

 Denoting by  i ,  j ,  k  the unit vectors along the coordinate axes, we have

  AB
¡

5 2(40 m)i 1 (80 m)j 1 (30 m)k  

Introducing the unit vector   L 5 AB
¡

/AB,   we write

  
F 5 FL 5 F  

AB
¡

AB
5

2500 N
94.3 m

  AB
¡

  

Substituting the expression found for   AB
¡

  , we obtain

  
 F 5

2500 N
94.3 m

 [2(40 m)i 1 (80 m)j 1 (30 m)k]
  

   F 5 2(1060 N)i 1 (2120 N)j 1 (795 N)k   

The components of  F , therefore, are

    Fx 5 21060 N  Fy 5 12120 N  Fz 5 1795 N ◀    

  b.    Direction of the Force.  Using Eqs. (2.25), we write

  
cos ux 5

Fx

F
5

21060 N
2500 N

    cos uy 5
Fy

F
5

12120 N
2500 N   

  
 cos uz 5

Fz

F
5

1795 N
2500 N   

Calculating successively each quotient and its arc cosine, we obtain

   ux 5 115.1°  uy 5 32.0°  uz 5 71.5° ◀  

( Note.  This result could have been obtained by using the components and 
magnitude of the vector   AB

¡
   rather than those of the force  F .)      

A

B

F

y

z

x
k

j

i

80 m 40 m

30 m

λ

A

B

y

z

x

qy

qx

qz

 SAMPLE PROBLEM 2.7 

 A tower guy wire is anchored by means of a bolt at  A.  The tension in the 
wire is 2500 N. Determine ( a ) the components  F x  ,  F y  ,  F z   of the force acting 
on the bolt, ( b ) the angles u  x  , u  y  , u  z   defining the direction of the force.  

A

B

80 m 40 m

30 m

bee29400_ch02_014-071.indd Page 50  11/28/08  9:21:06 PM user-s173bee29400_ch02_014-071.indd Page 50  11/28/08  9:21:06 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



51

 SAMPLE PROBLEM 2.8 

 A wall section of precast concrete is temporarily held by the cables shown. 
Knowing that the tension is 840 lb in cable  AB  and 1200 lb in cable  AC , 
determine the magnitude and direction of the resultant of the forces exerted 
by cables  AB  and  AC  on stake  A.   

C

B

A

16 ft

16 ft
8 ft

11 ft

y

z

x

ik

j
TAB = (840 lb) λλAB

TAC = (1200 lb) λλAC

λλAB

λλAC

 SOLUTION 

  Components of the Forces.  The force exerted by each cable on stake  A  
will be resolved into  x, y , and  z  components. We first determine the com-
ponents and magnitude of the vectors   AB

¡
   and AC

¡
    , measuring them from 

 A  toward the wall section. Denoting by  i ,  j ,  k  the unit vectors along the 
coordinate axes, we write

   AB
¡

5 2(16 ft)i 1 (8 ft)j 1 (11 ft)k    AB 5 21 ft  
     AC
¡

5 2(16 ft)i 1 (8 ft)j 2 (16 ft)k    AC 5 24 ft     

 Denoting by   lAB   the unit vector along  AB , we have

  
TAB 5 TABLAB 5 TAB

AB
¡

AB
5

840 lb
21 ft

 AB
¡

   

 Substituting the expression found for   AB
¡

  , we obtain

  
 TAB 5

840 lb
21 ft

[2(16 ft)i 1 (8 ft)j 1 (11 ft)k]
  

    TAB 5 2(640 lb)i 1 (320 lb)j 1 (440 lb)k   

 Denoting by   lAC   the unit vector along  AC , we obtain in a similar way

   
 TAC 5 TACLAC 5 TAC

AC
¡

AC
5

1200 lb
24 ft

 AC
¡

  
   TAC 5 2(800 lb)i 1 (400 lb)j 2 (800 lb)k   

  Resultant of the Forces.  The resultant  R  of the forces exerted by the two 
cables is

  R 5 TAB 1 TAC 5 2(1440 lb)i 1 (720 lb)j 2 (360 lb)k   

 The magnitude and direction of the resultant are now determined:

  R 5 2R2
x 1 R2

y 1 R2
z 5 2 (21440)2 1 (720)2 1 (2360)2

   R 5 1650 lb ◀  
From Eqs. (2.33) we obtain

  
 cos ux 5

Rx

R
5

21440 lb
1650 lb

    cos uy 5
Ry

R
5

1720 lb
1650 lb   

  
 cos uz 5

Rz

R
5

2360 lb
1650 lb    

 Calculating successively each quotient and its arc cosine, we have

    ux 5 150.8°  uy 5 64.1°  uz 5 102.6° ◀        

27 ft

C

D

A

B

8 ft

16 ft

11 ft
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 In this lesson we saw that  forces in space  may be defined by their magnitude 
and direction or by the three rectangular components  F x  ,  F y  , and  F z  .  

  A.    When a force is defined by its magnitude and direction , its rectangular 
components  F x  ,  F y  , and  F z   may be found as follows: 

     Case 1.  If the direction of the force  F  is defined by the angles u  y   and f shown 
in  Fig. 2.30 , projections of  F  through these angles or their complements will yield 
the components of  F  [Eqs. (2.17)]. Note that the  x  and  z  components of  F  are 
found by first projecting  F  onto the horizontal plane; the projection  F   h   obtained 
in this way is then resolved into the components  F   x   and  F   z   ( Fig. 2.30  c ).  

      Case 2.  If the direction of the force  F  is defined by the angles u  x  , u  y  , u  z   that  F  
forms with the coordinate axes, each component can be obtained by multiplying the 
magnitude  F  of the force by the cosine of the corresponding angle [Example 1]:

  Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz    

     Case 3.  If the drection of the force  F  is defined by two points  M  and  N  located
on its line of action ( Fig. 2.34 ), you will first express the vector   MN

¡
   drawn from 

 M  to  N  in terms of its components  d x  ,  d y  ,  d z   and the unit vectors  i ,  j ,  k :

  MN
¡

5 dxi 1 dy 
j 1 dzk      

   Next, you will determine the unit vector l along the line of action of  F  by dividing
the vector   MN

¡
   by its magnitude  MN . Multiplying l by the magnitude of  F , you 

will obtain the desired expression for  F  in terms of its rectangular components 
[Sample Prob. 2.7]:

  
F 5 FL 5

F
d

(dxi 1 dyj 1 dzk)
  

It is advantageous to use a consistent and meaningful system of notation when 
determining the rectangular components of a force. The method used in this text is 
illustrated in Sample Prob. 2.8 where, for example, the force  T   AB   acts from stake  A  
toward point  B.  Note that the subscripts have been ordered to agree with the direc-
tion of the force. It is recommended that you adopt the same notation, as it will 
help you identify point 1 (the first subscript) and point 2 (the second subscript). 

   When forming the vector defining the line of action of a force, you may think of 
its scalar components as the number of steps you must take in each coordinate 
direction to go from point 1 to point 2. It is essential that you always remember 
to assign the correct sign to each of the components.  

 SOLVING PROBLEMS 
ON YOUR OWN  
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  B.    When a force is defined by its rectangular components   F x  ,  F y  ,  F z  , you can 
obtain its magnitude  F  by writing

  F 5 2F2
x 1 F2

y 1 F2
z  

You can determine the direction cosines of the line of action of  F  by dividing the 
components of the force by  F :

  
 cos ux 5

Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F   

From the direction cosines you can obtain the angles u  x  , u  y  , u  z   that  F  forms with 
the coordinate axes [Example 2].  

  C.    To determine the resultant   R   of two or more forces  in three-dimensional 
space, first determine the rectangular components of each force by one of the 
procedures described above. Adding these components will yield the components 
 R x  ,  R y  ,  R z   of the resultant. The magnitude and direction of the resultant may then 
be obtained as indicated above for a force  F  [Sample Prob. 2.8].      
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 PROBLEMS   

2.71 Determine (a) the x, y, and z components of the 750-N force, 
(b) the angles ux, uy, and uz that the force forms with the  coordinate 
axes.

 2.72 Determine (a) the x, y, and z components of the 900-N force, 
(b) the angles ux, uy, and uz that the force forms with the coordinate 
axes.

 2.73 A horizontal circular plate is suspended as shown from three wires 
that are attached to a support at D and form 30° angles with the 
vertical. Knowing that the x component of the force exerted by 
wire AD on the plate is 110.3 N, determine (a) the tension in wire 
AD, (b) the angles ux, uy, and uz that the force exerted at A forms 
with the coordinate axes.

 2.74 A horizontal circular plate is suspended as shown from three wires 
that are attached to a support at D and form 30° angles with the 
vertical. Knowing that the z component of the force exerted by 
wire BD on the plate is 232.14 N, determine (a) the tension in 
wire BD, (b) the angles ux, uy, and uz that the force exerted at B 
forms with the coordinate axes.

 2.75  A horizontal circular plate is suspended as shown from three wires 
that are attached to a support at D and form 30° angles with the 
vertical. Knowing that the tension in wire CD is 60 lb, determine 
(a) the components of the force exerted by this wire on the plate, 
(b) the angles ux, uy, and uz that the force forms with the coordinate 
axes.

 2.76 A horizontal circular plate is suspended as shown from three wires 
that are attached to a support at D and form 30° angles with the 
vertical. Knowing that the x component of the force exerted by 
wire CD on the plate is 220 lb, determine (a) the tension in wire 
CD, (b) the angles ux, uy, and uz that the force exerted at C forms 
with the coordinate axes.

 2.77 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the 
tension in wire AC is 120 lb, determine (a) the components of the 
force exerted by this wire on the pole, (b) the angles ux, uy, and uz 
that the force forms with the coordinate axes. 

 2.78 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the 
tension in wire AD is 85 lb, determine (a) the components of the 
force exerted by this wire on the pole, (b) the angles ux, uy, and uz 
that the force forms with the coordinate axes.

 2.79 Determine the magnitude and direction of the force F 5 (320 N)i 1
(400 N)j 2 (250 N)k.

Fig. P2.71 and P2.72  

y

x

z

900 N

750 N

35º

25º

20º

65º

O

  Fig. P2.73, P2.74, P2.75, and P2.76    

y

xz

60°
40°

50°
A C

D

B

O

  Fig. P2.77 and P2.78    

36°
60°

48°

20°
x

y

z

A

B
C

E

D
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55Problems 2.80 Determine the magnitude and direction of the force F 5 (240 N)i 2 
(270 N)j 1 (680 N)k.

 2.81 A force acts at the origin of a coordinate system in a direction 
defined by the angles ux 5 70.9° and uy 5 144.9°. Knowing that 
the z component of the force is 252 lb, determine (a) the angle uz, 
(b) the other components and the magnitude of the force.

 2.82 A force acts at the origin of a coordinate system in a direction 
defined by the angles uy 5 55° and uz 5 45°. Knowing that the x 
component of the force is 2500 lb, determine (a) the angle ux, 
(b) the other components and the magnitude of the force.

 2.83 A force F of magnitude 210 N acts at the origin of a coordinate 
system. Knowing that Fx 5 80 N, uz 5 151.2°, and Fy , 0, deter-
mine (a) the components Fy and Fz, (b) the angles ux and uy.

 2.84 A force F of magnitude 230 N acts at the origin of a coordinate 
system. Knowing that ux 5 32.5°, Fy 5 260 N, and Fz . 0, deter-
mine (a) the components Fx and Fz, (b) the angles uy and uz.

 2.85 A transmission tower is held by three guy wires anchored by bolts 
at B, C, and D. If the tension in wire AB is 525 lb, determine the 
components of the force exerted by the wire on the bolt at B.

 2.86 A transmission tower is held by three guy wires anchored by 
bolts at B, C, and D. If the tension in wire AD is 315 lb, deter-
mine the components of the force exerted by the wire on the 
bolt at D.

 2.87 A frame ABC is supported in part by cable DBE that passes 
through a frictionless ring at B. Knowing that the tension in the 
cable is 385 N, determine the components of the force exerted by 
the cable on the support at D.

  Fig. P2.85 and P2.86    

y

A

100 ft

25 ft
O

B

20 ft

20 ft

60 ft
z

D

C

18 ft

74 ft

x

  Fig. P2.87  

y

x
z

A

B

E
D

C

O

600 mm

400 mm

480 mm

510 mm

280 mm
210 mm
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56 Statics of Particles  2.88 For the frame and cable of Prob. 2.87, determine the components 
of the force exerted by the cable on the support at E.

 2.89 Knowing that the tension in cable AB is 1425 N, determine the 
components of the force exerted on the plate at B.

  Fig. P2.89 and P2.90    

x

y

z

A

B

D

C

O

600 mm

920 mm

360 mm

900 mm

 2.90 Knowing that the tension in cable AC is 2130 N, determine the 
components of the force exerted on the plate at C.

 2.91 Find the magnitude and direction of the resultant of the two forces 
shown knowing that P 5 300 N and Q 5 400 N.

 2.92 Find the magnitude and direction of the resultant of the two forces 
shown knowing that P 5 400 N and Q 5 300 N.

 2.93 Knowing that the tension is 425 lb in cable AB and 510 lb in cable 
AC, determine the magnitude and direction of the resultant of the 
forces exerted at A by the two cables.

 2.94 Knowing that the tension is 510 lb in cable AB and 425 lb in cable 
AC, determine the magnitude and direction of the resultant of the 
forces exerted at A by the two cables.

 2.95 For the frame of Prob. 2.87, determine the magnitude and direc-
tion of the resultant of the forces exerted by the cable at B knowing 
that the tension in the cable is 385 N.

 2.96 For the cables of Prob. 2.89, knowing that the tension is 1425 N 
in cable AB and 2130 N in cable AC, determine the magnitude 
and direction of the resultant of the forces exerted at A by the two 
cables.

  Fig. P2.91 and P2.92    

z

x

y

30°

20°

15°

50°P

Q

  Fig. P2.93 and P2.94    

y

xz

A

B

C

D

O

40 in.

60 in.

60 in.
45 in.
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 2.97 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the 
tension in AC is 150 lb and that the resultant of the forces exerted 
at A by wires AC and AD must be contained in the xy plane, 
determine (a) the tension in AD, (b) the magnitude and direction 
of the resultant of the two forces.

 2.98 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the 
tension in AD is 125 lb and that the resultant of the forces exerted 
at A by wires AC and AD must be contained in the xy plane, 
determine (a) the tension in AC, (b) the magnitude and direction 
of the resultant of the two forces.

     2.15   EQUILIBRIUM OF A PARTICLE IN SPACE  
 According to the definition given in Sec. 2.9, a particle  A  is in equi-
librium if the resultant of all the forces acting on  A  is zero. The com-
ponents  R x  ,  R y  ,  R z   of the resultant are given by the relations (2.31); 
expressing that the components of the resultant are zero, we write

   oFx 5 0  oFy 5 0  oFz 5 0 (2.34)   

   Equations (2.34) represent the necessary and sufficient conditions 
for the equilibrium of a particle in space. They can be used to solve 
problems dealing with the equilibrium of a particle involving no 
more than three unknowns. 
    To solve such problems, you first should draw a free-body dia-
gram showing the particle in equilibrium and  all  the forces acting on 
it. You can then write the equations of equilibrium (2.34) and solve 
them for three unknowns. In the more common types of problems, 
these unknowns will represent (1) the three components of a single 
force or (2) the magnitude of three forces, each of known direction.  

  Fig. P2.97 and P2.98    

36°
60°

48°

20°
x

y

z

A

B
C

E

D

572.15 Equilibrium of a Particle in Space

Photo 2.2 While the tension in the four cables 
supporting the car cannot be found using the 
three equations of (2.34), a relation between the 
tensions can be obtained by considering the 
equilibrium of the hook.
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 SAMPLE PROBLEM 2.9 

 A 200-kg cylinder is hung by means of two cables  AB  and  AC , which are 
attached to the top of a vertical wall. A horizontal force  P  perpendicular to 
the wall holds the cylinder in the position shown. Determine the magnitude 
of  P  and the tension in each cable.  A

B

C

P

8 m

10 m

1.2 m

2 m200kg
12 m

 SOLUTION 

  Free-body Diagram.  Point  A  is chosen as a free body; this point is sub-
jected to four forces, three of which are of unknown magnitude. 
  Introducing the unit vectors  i, j, k , we resolve each force into rect-
angular components.
    P 5 Pi  
   W 5 2mgj 5 2(200 kg)(9.81 m/s2)j 5 2(1962 N)j    

(1)

 In the case of  T   AB   and  T   AC  , it is necessary first to determine the com-
ponents and magnitudes of the vectors   AB

¡
   and   AC

¡
.   Denoting by   LAB   the 

unit vector along  AB , we write

  AB
¡

5 2(1.2 m)i 1 (10 m)j 1 (8 m)k    AB 5 12.862 m  

  
LAB 5

AB
¡

12.862 m
5 20.09330i 1 0.7775j 1 0.6220k

  
   TAB 5 TABLAB 5 20.09330TABi 1 0.7775TABj 1 0.6220TABk    (2)

 Denoting by   lAC   the unit vector along  AC , we write in a similar way
  AC
¡

5 2(1.2 m)i 1 (10 m)j 2 (10 m)k  AC 5 14.193 m  

  
LAC 5

AC
¡

14.193 m
5 20.08455i 1 0.7046j 2 0.7046k

  
   TAC 5 TAClAC 5 20.08455TACi 1 0.7046TACj 2 0.7046TACk    (3)

  Equilibrium Condition.  Since  A  is in equilibrium, we must have
  oF 5 0: TAB 1 TAC 1 P 1 W 5 0  
or, substituting from (1), (2), (3) for the forces and factoring  i, j, k ,
  (20.09330TAB 2 0.08455TAC 1 P)i

1 (0.7775TAB 1 0.7046TAC 2 1962 N)j
1 (0.6220TAB 2 0.7046TAC)k 5 0   

 Setting the coefficients of  i, j, k  equal to zero, we write three scalar equa-
tions, which express that the sums of the  x, y , and  z  components of the 
forces are respectively equal to zero.
  (oFx 5 0:)  20.09330TAB 2 0.08455TAC 1 P 5 0  
  (oFy 5 0:)  10.7775TAB 1 0.7046TAC 2 1962 N 5 0  
  (oFz 5 0:)  10.6220TAB 2 0.7046TAC 5 0   
 Solving these equations, we obtain

  P 5 235 N  TAB 5 1402 N  TAC 5 1238 N ◀        

W

12 m

C

B

z

y

x

A
O

P

8 m

10 m

1.2 m

2 m

TAB

j
TAC

k

i

�AB

��AC
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 We saw earlier that when a particle is in  equilibrium , the resultant of the forces 
acting on the particle must be zero. Expressing this fact in the case of the 

equilibrium of a  particle in three-dimensional space  will provide you with three 
relations among the forces acting on the particle. These relations may be used to 
determine three unknowns—usually the magnitudes of three forces. 

   Your solution will consist of the following steps:

   1.    Draw a free-body diagram of the particle.  This diagram shows the particle 
and all the forces acting on it. Indicate on the diagram the magnitudes of known 
forces, as well as any angles or dimensions that define the direction of a force. 
Any unknown magnitude or angle should be denoted by an appropriate symbol. 
Nothing else should be included in your free-body diagram.  

  2.    Resolve each of the forces into rectangular components.  Following the 
method used in the preceding lesson, you will determine for each force  F  the unit 
vector l   defining the direction of that force and express  F  as the product of its 
magnitude  F  and the unit vector  l . You will obtain an expression of the form

  
F 5 FL 5

F
d

 (dxi 1 dyj 1 dzk)
  

where  d,   d x  ,  d y  , and  d z   are dimensions obtained from the free-body diagram of 
the particle. If a force is known in magnitude as well as in direction, then  F  is 
known and the expression obtained for  F  is well defined; otherwise  F  is one of 
the three unknowns that should be determined.  

  3.    Set the resultant, or sum, of the forces exerted on the particle equal to 
zero.  You will obtain a vectorial equation consisting of terms containing the unit 
vectors  i, j , or  k.  You will group the terms containing the same unit vector and 
factor that vector. For the vectorial equation to be satisfied, the coefficient of each 
of the unit vectors must be set equal to zero. This will yield three scalar equations 
that you can solve for no more than three unknowns [Sample Prob. 2.9].       

 SOLVING PROBLEMS 
ON YOUR OWN  
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60

2.99 Three cables are used to tether a balloon as shown. Determine the 
vertical force P exerted by the balloon at A knowing that the ten-
sion in cable AB is 259 N.

2.100 Three cables are used to tether a balloon as shown. Determine the 
vertical force P exerted by the balloon at A knowing that the ten-
sion in cable AC is 444 N.

2.101 Three cables are used to tether a balloon as shown. Determine the 
vertical force P exerted by the balloon at A knowing that the ten-
sion in cable AD is 481 N.

 2.102 Three cables are used to tether a balloon as shown.  Knowing that 
the balloon exerts an 800-N vertical force at A, determine the ten-
sion in each cable.

2.103 A crate is supported by three cables as shown. Determine the weight 
of the crate knowing that the tension in cable AB is 750 lb.

2.104 A crate is supported by three cables as shown. Determine the weight 
of the crate knowing that the tension in cable AD is 616 lb.

 PROBLEMS   

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

  Fig. P2.99, P2.100, P2.101, and P2.102    

x

y

z

A

B

C

D
O

36 in.

27 in.

60 in.

32 in.

40 in.

  Fig. P2.103, P2.104, P2.105, and P2.106    

2.105 A crate is supported by three cables as shown. Determine the weight 
of the crate knowing that the tension in cable AC is 544 lb.

2.106 A 1600-lb crate is supported by three cables as shown. Determine 
the tension in each cable.
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61Problems 2.107 Three cables are connected at A, where the forces P and Q are 
applied as shown. Knowing that Q 5 0, find the value of P for 
which the tension in cable AD is 305 N.

 2.108 Three cables are connected at A, where the forces P and Q are 
applied as shown. Knowing that P 5 1200 N, determine the values 
of Q for which cable AD is taut.

 2.109 A transmission tower is held by three guy wires attached to a pin 
at A and anchored by bolts at B, C, and D. If the tension in wire 
AB is 630 lb, determine the vertical force P exerted by the tower 
on the pin at A.

y

x

z

220 mm

240 mm

960 mm

Q

P

A
B

C

D

O

380 mm

320 mm

960 mm

  Fig. P2.107 and P2.108    

 2.110 A transmission tower is held by three guy wires attached to a pin 
at A and anchored by bolts at B, C, and D. If the tension in wire 
AC is 920 lb, determine the vertical force P exerted by the tower 
on the pin at A.

 2.111 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AC is 60 N, determine the weight of the 
plate.

  Fig. P2.109, and P2.110    

y

A
90 ft

30 ft

O
B

30 ft

20 ft

45 ft

z

D

C

60 ft

65 ft
x

x

y

z

A

B

C

DO

250

130
360

360

320
450

480

Dimensions in mm

  Fig. P2.111 and P2.112    

 2.112 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AD is 520 N, determine the weight of the 
plate.
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62 Statics of Particles  2.113 For the transmission tower of Probs. 2.109 and 2.110, determine 
the tension in each guy wire knowing that the tower exerts on the 
pin at A an upward vertical force of 2100 lb.

 2.114 A horizontal circular plate weighing 60 lb is suspended as shown from 
three wires that are attached to a support at D and form 30° angles 
with the vertical. Determine the tension in each wire.

 2.115 For the rectangular plate of Probs. 2.111 and 2.112, determine the 
tension in each of the three cables knowing that the weight of the 
plate is 792 N.

 2.116 For the cable system of Probs. 2.107 and 2.108, determine the 
tension in each cable knowing that P 5 2880 N and Q 5 0.

 2.117 For the cable system of Probs. 2.107 and 2.108, determine the 
tension in each cable knowing that P 5 2880 N and Q 5 576 N.

 2.118 For the cable system of Probs. 2.107 and 2.108, determine the tension 
in each cable knowing that P 5 2880 N and Q 5 2576 N (Q is 
directed downward).

 2.119 Using two ropes and a roller chute, two workers are unloading a 
200-lb cast-iron counterweight from a truck. Knowing that at the 
instant shown the counterweight is kept from moving and that the 
positions of points A, B, and C are, respectively, A(0, 220 in., 40 in.), 
B(240 in., 50 in., 0), and C(45 in., 40 in., 0), and assuming that 
no friction exists between the counterweight and the chute, deter-
mine the tension in each rope. (Hint: Since there is no friction, the 
force exerted by the chute on the counterweight must be perpen-
dicular to the chute.)

 2.120 Solve Prob. 2.119 assuming that a third worker is exerting a force 
P 5 2(40 lb)i on the counterweight.

 2.121 A container of weight W is suspended from ring A. Cable BAC 
passes through the ring and is attached to fixed supports at B and C. 
Two forces P 5 Pi and Q 5 Qk are applied to the ring to maintain 
the container in the position shown. Knowing that W 5 376 N, 
determine P and Q. (Hint: The tension is the same in both portions 
of cable BAC.)
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z
80 in.
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  Fig. P2.1 19 
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  Fig. P2.114  
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63Problems 2.122 For the system of Prob. 2.121, determine W and Q knowing that 
P 5 164 N.

 2.123 A container of weight W is suspended from ring A, to which cables 
AC and AE are attached. A force P is applied to the end F of a 
third cable that passes over a pulley at B and through ring A and 
that is attached to a support at D. Knowing that W 5 1000 N, deter-
mine the magnitude of P. (Hint: The tension is the same in all 
portions of cable FBAD.)

 2.124 Knowing that the tension in cable AC of the system described in 
Prob. 2.123 is 150 N, determine (a) the magnitude of the force P, 
(b) the weight W of the container.

 2.125 Collars A and B are connected by a 25-in.-long wire and can slide 
freely on frictionless rods. If a 60-lb force Q is applied to collar B 
as shown, determine (a) the tension in the wire when x 5 9 in., 
(b) the corresponding magnitude of the force P required to main-
tain the equilibrium of the system.

y

xz

0.78 m

0.40 m

0.40 m
P

O

B

F

E

C

W

A

D

1.60 m

0.86 m

1.20 m

1.30 m

  Fig. P2.123  
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z

z

B
Q

P

A

O

  Fig. P2.125 and P2.126    

 2.126 Collars A and B are connected by a 25-in.-long wire and can slide 
freely on frictionless rods. Determine the distances x and z for 
which the equilibrium of the system is maintained when P 5 120 lb 
and Q 5 60 lb.
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64

       REVIEW AND SUMMARY 

 In this chapter we have studied the effect of forces on particles, i.e., 
on bodies of such shape and size that all forces acting on them may 
be assumed applied at the same point. 

 Forces are  vector quantities;  they are characterized by a  point of 
application, a magnitude , and a  direction , and they add according to 
the  parallelogram law  ( Fig. 2.35 ). The magnitude and direction of 
the resultant  R  of two forces  P  and  Q  can be determined either 
graphically or by trigonometry, using successively the law of cosines 
and the law of sines [Sample Prob. 2.1]. 

 Any given force acting on a particle can be resolved into two or more 
components , i.e., it can be replaced by two or more forces which 
have the same effect on the particle. A force  F  can be resolved into 
two components  P  and  Q  by drawing a parallelogram which has  F
for its diagonal; the components  P  and  Q  are then represented by 
the two adjacent sides of the parallelogram ( Fig. 2.36 ) and can be 
determined either graphically or by trigonometry [Sec. 2.6]. 

  A force  F  is said to have been resolved into two  rectangular 
components  if its components  F   x   and  F   y   are perpendicular to each 
other and are directed along the coordinate axes ( Fig. 2.37 ). Intro-
ducing the  unit vectors   i  and  j  along the  x  and  y  axes, respectively, 
we write [Sec. 2.7]

   Fx 5 Fxi  Fy 5 Fyj (2.6)   

 and

   F 5 Fxi 1 Fyj (2.7)  

where  F x   and  F y   are the  scalar components  of  F.  These components, 
which can be positive or negative, are defined by the relations

   Fx 5 F cos u  Fy 5 F sin u (2.8)   

  When the rectangular components  F x   and  F y   of a force  F  are 
given, the angle u defining the direction of the force can be obtained 
by writing

   
 tan u 5

Fy

Fx     
(2.9)

 The magnitude  F  of the force can then be obtained by solving one 
of the equations (2.8) for  F  or by applying the Pythagorean theorem 
and writing

   F 5 2F2
x 1 F2

y    (2.10)

    Resultant of two forces        Resultant of two forces    

    Components of a force        Components of a force    

    Rectangular components 
Unit vectors    

    Rectangular components 
Unit vectors    

Q

R

P

A
  Fig. 2.35  

Q
F

P

A

  Fig. 2.36  

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

  Fig. 2.37  
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65Review and Summary   When  three or more coplanar forces  act on a particle, the rectangular 
components of their resultant  R  can be obtained by adding algebra-
ically the corresponding components of the given forces [Sec. 2.8]. 
We have

   Rx 5 oFx  Ry 5 oFy (2.13)   

 The magnitude and direction of  R  can then be determined from 
relations similar to Eqs. (2.9) and (2.10) [Sample Prob. 2.3].  

   A force  F  in  three-dimensional space  can be resolved into 
 rectangular components  F   x  ,  F   y  , and  F   z   [Sec. 2.12]. Denoting by u  x  , 
u  y  , and u  z  , respectively, the angles that  F  forms with the  x, y,  and  z  
axes ( Fig. 2.38 ), we have

   Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz             (2.19)   

 Resultant of several coplanar forces  Resultant of several coplanar forces 

 Forces in space  Forces in space 
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�z

(a)

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

(b) (c)

OOO

  Fig. 2.38    

  Fig. 2.39    

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi

   The cosines of u  x  , u  y  , u  z   are known as the  direction cosines  of the 
force  F . Introducing the unit vectors  i, j, k  along the coordinate axes, 
we write

   F 5 Fxi 1 Fyj 1 Fzk (2.20)  

or

   F 5 F(cos uxi 1 cos uyj 1 cos uzk) (2.21)  

which shows ( Fig. 2.39 ) that  F  is the product of its magnitude  F  and 
the unit vector

  l 5 cos uxi 1 cos uyj 1 cos uzk   

 Since the magnitude of  l  is equal to unity, we must have

   cos2 ux 1 cos2 uy 1 cos2 uz 5 1 (2.24)   

  When the rectangular components  F x  ,  F y  ,  F z   of a force  F  are 
given, the magnitude  F  of the force is found by writing

   F 5 2F2
x 1 F2

y 1 F2
z (2.18)  

and the direction cosines of  F  are obtained from Eqs. (2.19). We have

   
cos ux 5

Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F  
(2.25)

   

 Direction cosines  Direction cosines 

bee29400_ch02_014-071.indd Page 65  11/28/08  9:21:40 PM user-s173bee29400_ch02_014-071.indd Page 65  11/28/08  9:21:40 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



66 Statics of Particles   When a force  F  is defined in three-dimensional space by its 
magnitude  F  and two points  M  and  N  on its line of action [Sec. 2.13], 
its rectangular components can be obtained as follows. We first express 
the vector   MN

¡
   joining points  M  and  N  in terms of its components 

d x  ,  d y  , and  d z   ( Fig. 2.40 ); we write

   MN
¡

5 dxi 1 dyj 1 dzk (2.26)   

 We next determine the unit vector  l  along the line of action of  F
by dividing   MN

¡
   by its magnitude  MN  5  d :

   
L 5

MN
¡

MN
5

1
d

(dxi 1 dyj 1 dzk)
 

(2.27)
   

 Recalling that  F  is equal to the product of  F  and l, we have

   
F 5 FL 5

F
d

(dxi 1 dy 
j 1 dzk)

 
(2.28)

  

from which it follows [Sample Probs. 2.7 and 2.8] that the scalar 
components of  F  are, respectively,

   
Fx 5

Fdx

d
    Fy 5

Fdy

d
    Fz 5

Fdz

d  
(2.29)

   

   When  two or more forces  act on a particle in  three-dimensional 
space , the rectangular components of their resultant  R  can be 
obtained by adding algebraically the corresponding components of 
the given forces [Sec. 2.14]. We have

   Rx 5 oFx  Ry 5 oFy  Rz 5 oFz (2.31)   

 The magnitude and direction of  R  can then be determined from 
relations similar to Eqs. (2.18) and (2.25) [Sample Prob. 2.8].  

  A particle is said to be in  equilibrium  when the resultant of all the 
forces acting on it is zero [Sec. 2.9]. The particle will then remain 
at rest (if originally at rest) or move with constant speed in a straight 
line (if originally in motion) [Sec. 2.10].  

  To solve a problem involving a particle in equilibrium, one first should 
draw a  free-body diagram  of the particle showing all the forces acting 
on it [Sec. 2.11]. If  only three coplanar forces  act on the particle, a 
 force triangle  may be drawn to express that the particle is in equilib-
rium. Using graphical methods of trigonometry, this triangle can be 
solved for no more than two unknowns [Sample Prob. 2.4]. If  more 
than three coplanar forces  are involved, the equations of equilibrium

   oFx 5 0  oFy 5 0 (2.15)  

should be used. These equations can be solved for no more than two 
unknowns [Sample Prob. 2.6].  

  When a particle is in  equilibrium in three-dimensional space  [Sec. 2.15], 
the three equations of equilibrium

   oFx 5 0  oFy 5 0  oFz 5 0 (2.34)  

should be used. These equations can be solved for no more than 
three unknowns [Sample Prob. 2.9].   

 Resultant of forces in space 

 Equilibrium of a particle 

 Free-body diagram 

 Equilibrium in space 

  Fig. 2.40    

x
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z

F

O

M(x1, y1, z1)  

N(x2, y2, z2)  

dy = y2 – y1  

dx = x2 – x1  

dz = z2 – z1 < 0  λ
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67

 REVIEW PROBLEMS   

 2.127 The direction of the 75-lb forces may vary, but the angle between 
the forces is always 50°. Determine the value of a for which the 
resultant of the forces acting at A is directed horizontally to the 
left.

 2.128 A stake is being pulled out of the ground by means of two ropes 
as shown. Knowing the magnitude and direction of the force 
exerted on one rope, determine the magnitude and direction of 
the force P that should be exerted on the other rope if the resul-
tant of these two forces is to be a 40-lb vertical force.

2.129 Member BD exerts on member ABC a force P directed along 
line BD. Knowing that P must have a 240-lb vertical component, 
determine (a) the magnitude of the force P, (b) its horizontal 
component.

 2.130 Two cables are tied together at C and loaded as shown. Determine 
the tension (a) in cable AC, (b) in cable BC.

  Fig. P2.127    

240 lb

75 lb

75 lb

50°

30°
A

α

  Fig. P2.128    

30 lb P

α25°

40°
Q

D

A B C

  Fig. P2.129  

8.5 ft
5 ft

12 ft 7.5 ft

396 lb

A B

C 9 ft

  Fig. P2.130  

 2.131 Two cables are tied together at C and loaded as shown. Knowing 
that P 5 360 N, determine the tension (a) in cable AC, (b) in 
cable BC.

2.132 Two cables are tied together at C and loaded as shown. Determine 
the range of values of P for which both cables remain taut.   Fig. P2.131 and P2.132    

A B

P

Q = 480 N

C

3
4

600 mm

250 mm
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68 Statics of Particles  2.133 A force acts at the origin of a coordinate system in a direction 
defined by the angles ux 5 69.3° and uz 5 57.9°. Knowing that 
the y component of the force is 2174 lb, determine (a) the angle uy, 
(b) the other components and the magnitude of the force.

 2.134 Cable AB is 65 ft long, and the tension in that cable is 3900 lb. 
Determine (a) the x, y, and z components of the force exerted by 
the cable on the anchor B, (b) the angles ux, uy, and uz defining the 
direction of that force.

 2.135 In order to move a wrecked truck, two cables are attached at A 
and pulled by winches B and C as shown. Knowing that the ten-
sion is 10 kN in cable AB and 7.5 kN in cable AC, determine the 
magnitude and direction of the resultant of the forces exerted at 
A by the two cables.

  Fig. P2.134    
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15 m

18 m

30°
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  Fig. P2.135    
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  Fig. P2.136  
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 2.136 A container of weight W 5 1165 N is supported by three cables 
as shown. Determine the tension in each cable.
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69Review Problems

  Fig. P2.137    
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O

 2.137 Collars A and B are connected by a 525-mm-long wire and can 
slide freely on frictionless rods. If a force P 5 (341 N)j is applied 
to collar A, determine (a) the tension in the wire when y 5 155 mm, 
(b) the magnitude of the force Q required to maintain the equi-
librium of the system.

 2.138 Solve Prob. 2.137 assuming that y 5 275 mm.
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70

COMPUTER PROBLEMS

 2.C1 Write a computer program that can be used to determine the magnitude 
and direction of the resultant of n coplanar forces applied at a point A. Use 
this program to solve Probs. 2.32, 2.33, 2.35, and 2.38.

Fi

Fn

F1

A

qi

q1qn

x

  Fig. P2.C1    

 2.C2 A load P is supported by two cables as shown. Write a computer pro-
gram that can be used to determine the tension in each cable for any given 
value of P and for values of u ranging from u1 5 b 2 90° to u2 5 90° 2 a, 
using given increments Du. Use this program to determine for the following 
three sets of numerical values (a) the tension in each cable for values of u 
ranging from u1 to u2, (b) the value of u for which the tension in the two 
cables is as small as possible, (c) the corresponding value of the tension:

 (1) a 5 35°, b 5 75°, P 5 400 lb, Du 5 5°
 (2) a 5 50°, b 5 30°, P 5 600 lb, Du 5 10°
 (3) a 5 40°, b 5 60°, P 5 250 lb, Du 5 5°

 2.C3 An acrobat is walking on a tightrope of length L 5 20.1 m attached 
to supports A and B at a distance of 20.0 m from each other. The combined 
weight of the acrobat and his balancing pole is 800 N, and the friction 
between his shoes and the rope is large enough to prevent him from slip-
ping. Neglecting the weight of the rope and any elastic deformation, write 
a computer program to calculate the deflection y and the tension in portions 
AC and BC of the rope for values of x from 0.5 m to 10.0 m using 0.5-m 
increments. From the data obtained, determine (a) the maximum deflection 
of the rope, (b) the maximum tension in the rope, (c) the smallest values of 
the tension in portions AC and BC of the rope.

A

C

B

x

y

20.0 m

  Fig. P2.C3    

A B

C

P

a
b

q  Fig. P2.C2    
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71Computer Problems 2.C4 Write a computer program that can be used to determine the magni-
tude and direction of the resultant of n forces Fi, where i 5 1, 2, . . . , n, 
that are applied at point A0 of coordinates x0, y0, and z0, knowing that the 
line of action of Fi passes through point Ai of coordinates xi, yi, and zi. Use 
this program to solve Probs. 2.93, 2.94, 2.95, and 2.135.

x

y

z

O

A2(x2,  y2, z2)
A1(x1, y1, z1)

A0(x0, y0, z0)

Ai(xi, yi, zi)

An(xn, yn, zn)

F2

Fi

Fn

F1

  Fig. P2.C4    

x

y

z

O
P

A3(x3, y3, z3)

A2(x2, y2, z2)

A1(x1, y1, z1)

A0(x0, y0, z0)

AP(xP, yP, zP)

  Fig. P2.C5    

 2.C5 Three cables are attached at points A1, A2, and A3, respectively, and 
are connected at point A0, to which a given load P is applied as shown. Write 
a computer program that can be used to determine the tension in each of 
the cables. Use this program to solve Probs. 2.102, 2.106, 2.107, and 2.115.                                                                                                                                
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 The battleship USS New Jersey is 

maneuvered by four tugboats at 

Bremerton Naval Shipyard. It will be 

shown in this chapter that the forces 

exerted on the ship by the tugboats 

could be replaced by an equivalent 

force exerted by a single, more 

powerful, tugboat.    
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 Rigid Bodies: 
Equivalent Systems of Forces  
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 Chapter 3 Rigid Bodies: 
Equivalent Systems of Forces

 3.1 Introduction
 3.2 External and Internal Forces
 3.3 Principle of Transmissibility. 

Equivalent Forces
 3.4 Vector Product of Two Vectors
 3.5 Vector Products Expressed in 

Terms of Rectangular 
Components

 3.6 Moment of a Force about a Point
 3.7 Varignon’s Theorem
 3.8 Rectangular Components of the 

Moment of a Force
 3.9 Scalar Product of Two Vectors
 3.10 Mixed Triple Product of Three 

Vectors
 3.11 Moment of a Force about a 

Given Axis
 3.12 Moment of a Couple
 3.13 Equivalent Couples
 3.14 Addition of Couples
 3.15 Couples Can Be Represented 

by Vectors
 3.16 Resolution of a Given Force into 

a Force at O and a Couple
 3.17 Reduction of a System of Forces 

to One Force and One Couple
 3.18 Equivalent Systems of Forces
 3.19 Equipollent Systems of Vectors
 3.20 Further Reduction of a System 

of Forces
 3.21 Reduction of a System of Forces 

to a Wrench

 3.1   INTRODUCTION  
 In the preceding chapter it was assumed that each of the bodies con-
sidered could be treated as a single particle. Such a view, however, is 
not always possible, and a body, in general, should be treated as a com-
bination of a large number of particles. The size of the body will have 
to be taken into consideration, as well as the fact that forces will act on 
different particles and thus will have different points of application. 
    Most of the bodies considered in elementary mechanics are 
assumed to be  rigid,  a  rigid body  being defined as one which does 
not deform. Actual structures and machines, however, are never 
absolutely rigid and deform under the loads to which they are sub-
jected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are considered in 
the study of mechanics of materials. 
    In this chapter you will study the effect of forces exerted on a 
rigid body, and you will learn how to replace a given system of forces 
by a simpler equivalent system. This analysis will rest on the funda-
mental assumption that the effect of a given force on a rigid body 
remains unchanged if that force is moved along its line of action ( prin-
ciple of transmissibility ). It follows that forces acting on a rigid body 
can be represented by  sliding vectors,  as indicated earlier in Sec. 2.3. 
    Two important concepts associated with the effect of a force 
on a rigid body are the  moment of a force about a point  (Sec. 3.6) 
and the  moment of a force about an axis  (Sec. 3.11). Since the deter-
mination of these quantities involves the computation of vector prod-
ucts and scalar products of two vectors, the fundamentals of vector 
algebra will be introduced in this chapter and applied to the solution 
of problems involving forces acting on rigid bodies. 
    Another concept introduced in this chapter is that of a  couple,  
i.e., the combination of two forces which have the same magnitude, 
parallel lines of action, and opposite sense (Sec. 3.12). As you will 
see, any system of forces acting on a rigid body can be replaced by 
an equivalent system consisting of one force acting at a given point 
and one couple. This basic system is called a  force-couple system.  In 
the case of concurrent, coplanar, or parallel forces, the equivalent 
force-couple system can be further reduced to a single force, called 
the  resultant  of the system, or to a single couple, called the  resultant 
couple  of the system.    

 3.2   EXTERNAL AND INTERNAL FORCES  
 Forces acting on rigid bodies can be separated into two groups: 
(1)  external forces  and (2)  internal forces.   

   1.   The  external forces  represent the action of other bodies on the 
rigid body under consideration. They are entirely responsible 
for the external behavior of the rigid body. They will either 
cause it to move or ensure that it remains at rest. We shall be 
concerned only with external forces in this chapter and in 
Chaps. 4 and 5.  
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75   2.   The  internal forces  are the forces which hold together the par-
ticles forming the rigid body. If the rigid body is structurally 
composed of several parts, the forces holding the component 
parts together are also defined as internal forces. Internal forces 
will be considered in Chaps. 6 and 7.   

    As an example of external forces, let us consider the forces 
acting on a disabled truck that three people are pulling forward by 
means of a rope attached to the front bumper ( Fig. 3.1 ). The external 
forces acting on the truck are shown in a  free-body diagram  ( Fig. 3.2 ). 
Let us first consider the  weight  of the truck. Although it embodies 
the effect of the earth’s pull on each of the particles forming the 
truck, the weight can be represented by the single force  W . The 
 point of application  of this force, i.e., the point at which the force 
acts, is defined as the  center of gravity  of the truck. It will be seen 
in Chap. 5 how centers of gravity can be determined. The weight  W  
tends to make the truck move vertically downward. In fact, it would 
actually cause the truck to move downward, i.e., to fall, if it were not 
for the presence of the ground. The ground opposes the downward 
motion of the truck by means of the reactions  R  1  and  R  2 . These 
forces are exerted  by  the ground  on  the truck and must therefore 
be included among the external forces acting on the truck. 
    The people pulling on the rope exert the force  F . The point of 
application of  F  is on the front bumper. The force  F  tends to make 
the truck move forward in a straight line and does actually make it 
move, since no external force opposes this motion. (Rolling resistance 
has been neglected here for simplicity.) This forward motion of the 
truck, during which each straight line keeps its original orientation 
(the floor of the truck remains horizontal, and the walls remain verti-
cal), is known as a  translation . Other forces might cause the truck to 
move differently. For example, the force exerted by a jack placed 
under the front axle would cause the truck to pivot about its rear axle. 
Such a motion is a  rotation . It can be concluded, therefore, that each 
of the  external forces  acting on a  rigid body  can, if unopposed, impart 
to the rigid body a motion of translation or rotation, or both.    

 3.3    PRINCIPLE OF TRANSMISSIBILITY. 
EQUIVALENT FORCES  

 The  principle of transmissibility  states that the conditions of equi-
librium or motion of a rigid body will remain unchanged if a force 
 F  acting at a given point of the rigid body is replaced by a force  F 9 of 
the same magnitude and same direction, but acting at a different point, 
 provided that the two forces have the same line of action  ( Fig. 3.3 ). 
The two forces  F  and  F 9 have the same effect on the rigid body and 
are said to be  equivalent . This principle, which states that the action 
of a force may be  transmitted  along its line of action, is based on 
experimental evidence. It  cannot  be derived from the properties 
established so far in this text and must therefore be accepted as an 
experimental law. However, as you will see in Sec. 16.5, the principle 
of transmissibility can be derived from the study of the dynamics of 
rigid bodies, but this study requires the introduction of Newton’s 

  Fig. 3.1    
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3.3 Principle of Transmissibility. 
Equivalent Forces
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76 Rigid Bodies: Equivalent Systems of Forces second and third laws and of a number of other concepts as well. 
Therefore, our study of the statics of rigid bodies will be based on 
the three principles introduced so far, i.e., the parallelogram law of 
addition, Newton’s first law, and the principle of transmissibility. 
    It was indicated in Chap. 2 that the forces acting on a particle 
could be represented by vectors. These vectors had a well-defined 
point of application, namely, the particle itself, and were therefore 
fixed, or bound, vectors. In the case of forces acting on a rigid body, 
however, the point of application of the force does not matter, as 
long as the line of action remains unchanged. Thus, forces acting on 
a rigid body must be represented by a different kind of vector, known 
as a  sliding vector , since forces may be allowed to slide along their 
lines of action. We should note that all the properties which will be 
derived in the following sections for the forces acting on a rigid body 
will be valid more generally for any system of sliding vectors. In 
order to keep our presentation more intuitive, however, we will carry 
it out in terms of physical forces rather than in terms of mathematical 
sliding vectors. 

W

F

R1 R2

W

F'

R1 R2

=

  Fig. 3.4    

    Returning to the example of the truck, we first observe that the 
line of action of the force  F  is a horizontal line passing through both 
the front and the rear bumpers of the truck ( Fig. 3.4 ). Using the 
principle of transmissibility, we can therefore replace  F  by an  equiva-
lent force   F 9 acting on the rear bumper. In other words, the condi-
tions of motion are unaffected, and all the other external forces 
acting on the truck ( W ,  R  1 ,  R  2 ) remain unchanged if the people push 
on the rear bumper instead of pulling on the front bumper. 
    The principle of transmissibility and the concept of equivalent 
forces have limitations, however. Consider, for example, a short bar 
 AB  acted upon by equal and opposite axial forces  P  1  and  P  2 , as shown 
in  Fig. 3.5  a . According to the principle of transmissibility, the force 
 P  2  can be replaced by a force  P 9 2  having the same magnitude, the 
same direction, and the same line of action but acting at  A  instead 
of  B  (Fig. 3.5 b ). The forces  P  1  and  P 9 2  acting on the same particle 
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  Fig. 3.5    
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77can be added according to the rules of Chap. 2, and, as these forces 
are equal and opposite, their sum is equal to zero. Thus, in terms of 
the external behavior of the bar, the original system of forces shown 
in Fig. 3.5 a  is equivalent to no force at all (Fig. 3.5 c ). 
    Consider now the two equal and opposite forces  P  1  and  P  2  
acting on the bar  AB  as shown in Fig. 3.5 d . The force  P  2  can be 
replaced by a force P92 having the same magnitude, the same direction, 
and the same line of action but acting at  B  instead of at  A  (Fig. 3.5 e ). 
The forces  P  1  and P92 can then be added, and their sum is again zero 
(Fig. 3.5 f  ). From the point of view of the mechanics of rigid bodies, 
the systems shown in Fig. 3.5 a  and  d  are thus equivalent. But the 
 internal forces  and  deformations  produced by the two systems are 
clearly different. The bar of Fig. 3.5 a  is in  tension  and, if not abso-
lutely rigid, will increase in length slightly; the bar of Fig. 3.5 d  is in 
 compression  and, if not absolutely rigid, will decrease in length 
slightly. Thus, while the principle of transmissibility may be used 
freely to determine the conditions of motion or equilibrium of rigid 
bodies and to compute the external forces acting on these bodies, it 
should be avoided, or at least used with care, in determining internal 
forces and deformations.    

 3.4   VECTOR PRODUCT OF TWO VECTORS  
 In order to gain a better understanding of the effect of a force on a 
rigid body, a new concept, the concept of  a moment of a force about a 
point , will be introduced at this time. This concept will be more clearly 
understood, and applied more effectively, if we first add to the mathe-
matical tools at our disposal the  vector product  of two vectors. 
    The vector product of two vectors  P  and  Q  is defined as the 
vector  V  which satisfies the following conditions.  

   1.   The line of action of  V  is perpendicular to the plane containing 
 P  and  Q  ( Fig. 3.6  a ).  

   2.   The magnitude of  V  is the product of the magnitudes of  P  and 
 Q  and of the sine of the angle u formed by  P  and  Q  (the mea-
sure of which will always be 180° or less); we thus have

   V 5 PQ sin u     (3.1)

   3.   The direction of  V  is obtained from the  right-hand rule . Close 
your right hand and hold it so that your fingers are curled in 
the same sense as the rotation through u which brings the vec-
tor  P  in line with the vector  Q ; your thumb will then indicate 
the direction of the vector  V  (Fig. 3.6 b ). Note that if  P  and  Q  
do not have a common point of application, they should first 
be redrawn from the same point. The three vectors  P ,  Q,  and 
 V —taken in that order—are said to form a  right-handed 
triad.  †  

 †We should note that the  x, y,  and  z  axes used in Chap. 2 form a right-handed system 
of orthogonal axes and that the unit vectors  i ,  j ,  k  defined in Sec. 2.12 form a 
right-handed orthogonal triad. 

Q

P

V = P × Q

θ

(a)

V

(b)

  Fig. 3.6     

3.4 Vector Product of Two Vectors
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78 Rigid Bodies: Equivalent Systems of Forces         As stated above, the vector  V  satisfying these three conditions 
(which define it uniquely) is referred to as the vector product of  P  
and  Q ; it is represented by the mathematical expression

   V 5 P 3 Q (3.2)   

   Because of the notation used, the vector product of two vectors  P  
and  Q  is also referred to as the  cross product  of  P  and  Q . 
    It follows from Eq. (3.1) that, when two vectors  P  and  Q  have 
either the same direction or opposite directions, their vector product 
is zero. In the general case when the angle u formed by the two vectors 
is neither 0° nor 180°, Eq. (3.1) can be given a simple geometric inter-
pretation: The magnitude  V  of the vector product of  P  and  Q  is equal 
to the area of the parallelogram which has  P  and  Q  for sides ( Fig. 3.7 ). 
The vector product  P 3 Q  will therefore remain unchanged if we 
replace  Q  by a vector  Q 9 which is coplanar with  P  and  Q  and such 
that the line joining the tips of  Q  and  Q 9 is parallel to  P . We write

   V 5 P 3 Q 5 P 3 Q9 (3.3)   

    From the third condition used to define the vector product  V  
of  P  and  Q , namely, the condition stating that  P ,  Q , and  V  must 
form a right-handed triad, it follows that vector products  are not 
commutative , i.e.,  Q 3 P  is not equal to  P 3 Q . Indeed, we can 
easily check that  Q 3 P  is represented by the vector  2V , which is 
equal and opposite to  V.  We thus write

   Q 3 P 5 2(P 3 Q) (3.4)    

 EXAMPLE   Let us compute the vector product  V 5 P 3 Q  where the 
vector  P  is of magnitude 6 and lies in the  zx  plane at an angle of 30° with 
the  x  axis, and where the vector  Q  is of magnitude 4 and lies along the 
 x  axis ( Fig. 3.8 ). 
    It follows immediately from the definition of the vector product that 
the vector  V  must lie along the  y  axis, have the magnitude

  V 5 PQ sin u 5 (6)(4) sin 30° 5 12   

   and be directed upward.  ◾

    We saw that the commutative property does not apply to vector 
products. We may wonder whether the  distributive  property holds, 
i.e., whether the relation

   P 3 (Q1 1 Q2) 5 P 3 Q1 1 P 3 Q2 (3.5)   

   is valid. The answer is  yes . Many readers are probably willing to accept 
without formal proof an answer which they intuitively feel is correct. 
However, since the entire structure of both vector algebra and statics 
depends upon the relation (3.5), we should take time out to derive it. 
    We can, without any loss of generality, assume that  P  is directed 
along the  y  axis ( Fig. 3.9  a ). Denoting by  Q  the sum of  Q  1  and  Q  2 , 
we drop perpendiculars from the tips of  Q ,  Q  1 , and  Q  2  onto the  zx  
plane, defining in this way the vectors  Q9 ,  Q9  1 , and  Q9  2 . These vectors 
will be referred to, respectively, as the  projections  of  Q ,  Q  1 , and  Q  2  
on the  zx  plane. Recalling the property expressed by Eq. (3.3), we 
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79note that the left-hand member of Eq. (3.5) can be replaced by 
 P 3 Q9  and that, similarly, the vector products  P 3 Q  1  and  P 3 Q  2  
can respectively be replaced by  P 3 Q91  and  P 3 Q92   . Thus, the 
relation to be proved can be written in the form

 P 3 Q9 5 P 3 Q91 1 P 3 Q92 (3.59) 

    We now observe that  P 3 Q 9 can be obtained from  Q 9 by 
multiplying this vector by the scalar  P  and rotating it counterclock-
wise through 90° in the  zx  plane (Fig. 3.9 b ); the other two vector 

products     in (3.59) can be obtained in the same manner from  Q 9 1  and 
 Q 9 2 , respectively. Now, since the projection of a parallelogram onto 
an arbitrary plane is a parallelogram, the projection  Q 9 of the sum 
 Q  of  Q  1  and  Q  2  must be the sum of the projections  Q 9 1  and  Q 9 2  of 
 Q  1  and  Q  2  on the same plane (Fig. 3.9 a ). This relation between the 
vectors  Q 9,  Q 9 1 , and  Q 9 2  will still hold after the three vectors have 
been multiplied by the scalar  P  and rotated through 90° (Fig. 3.9 b ). 
Thus, the relation (3.59) has been proved, and we can now be sure 
that the distributive property holds for vector products. 
    A third property, the associative property, does not apply to 
vector products; we have in general

   (P 3 Q) 3 S fi P 3 (Q 3 S) (3.6)       

 3.5    VECTOR PRODUCTS EXPRESSED IN TERMS 
OF RECTANGULAR COMPONENTS  

Let us now determine the vector product of any two of the unit 
vectors  i ,  j , and  k , which were defined in Chap. 2. Consider first the 
product  i 3 j  ( Fig. 3.10  a ). Since both vectors have a magnitude 
equal to 1 and since they are at a right angle to each other, their 
vector product will also be a unit vector. This unit vector must be  k , 
since the vectors  i ,  j , and  k  are mutually perpendicular and form a 
right-handed triad. On the other hand, it follows from the right-hand 
rule given on page 77 that the product  j 3 i  will be equal to  2k  
(Fig. 3.10 b ). Finally, it should be observed that the vector product 
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3.5 Vector Products Expressed in Terms 
of Rectangular Components
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80 Rigid Bodies: Equivalent Systems of Forces of a unit vector with itself, such as  i 3 i , is equal to zero, since both 
vectors have the same direction. The vector products of the various 
possible pairs of unit vectors are

 i 3 i 5 0 j 3 i 5 2k k 3 i 5 j
 i 3 j 5 k j 3 j 5 0 k 3 j 5 2i (3.7)
 i 3 k 5 2j j 3 k 5 i k 3 k 5 0

   By arranging in a circle and in counterclockwise order the three let-
ters representing the unit vectors ( Fig. 3.11 ), we can simplify the 
determination of the sign of the vector product of two unit vectors: 
The product of two unit vectors will be positive if they follow each 
other in counterclockwise order and will be negative if they follow 
each other in clockwise order. 
    We can now easily express the vector product  V  of two given 
vectors  P  and  Q  in terms of the rectangular components of these 
vectors. Resolving  P  and  Q  into components, we first write

  V 5 P 3 Q 5 (Pxi 1 Pyj 1 Pzk) 3 (Qxi 1 Qyj 1 Qzk)   

   Making use of the distributive property, we express  V  as the sum of 
vector products, such as  P x   i  3  Q y   j . Observing that each of the 
expressions obtained is equal to the vector product of two unit vec-
tors, such as  i  3  j , multiplied by the product of two scalars, such as 
 P x Q y  , and recalling the identities (3.7), we obtain, after factoring out 
 i ,  j,  and  k ,

   V 5 (PyQz 2 PzQy)i 1 (PzQx 2 PxQz)j 1 (PxQy 2 PyQx)k    (3.8)

   The rectangular components of the vector product  V  are thus found 
to be

   

Vx 5 PyQz 2 PzQy

Vy 5 PzQx 2 PxQz

Vz 5 PxQy 2 PyQx    
(3.9)

   Returning to Eq. (3.8), we observe that its right-hand member repre-
sents the expansion of a determinant. The vector product  V  can thus 
be expressed in the following form, which is more easily memorized: † 

     
V 5 †

i j k
Px Py Pz

Qx Qy Qz

†
 

(3.10)

j 

ik

  Fig. 3.11    

  †Any determinant consisting of three rows and three columns can be evaluated by 
repeating the first and second columns and forming products along each diagonal line. 
The sum of the products obtained along the red lines is then subtracted from the sum 
of the products obtained along the black lines.  

i j k i j
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81 3.6   MOMENT OF A FORCE ABOUT A POINT  
 Let us now consider a force  F  acting on a rigid body ( Fig. 3.12  a ). As we 
know, the force  F  is represented by a vector which defines its magnitude 
and direction. However, the effect of the force on the rigid body depends 
also upon its point of application  A . The position of  A  can be conve-
niently defined by the vector  r  which joins the fixed reference point  O  
with  A ; this vector is known as the  position vector  of  A.  †  The position 
vector  r  and the force  F  define the plane shown in Fig. 3.12 a.  
    We will define the  moment of   F   about O  as the vector product 
of  r  and  F :

   MO 5 r 3 F    (3.11)

    According to the definition of the vector product given in Sec. 3.4, 
the moment  M   O   must be perpendicular to the plane containing  O  and 
the force  F.  The sense of  M   O   is defined by the sense of the rotation 
which will bring the vector  r  in line with the vector  F ; this rotation will 
be observed as  counterclockwise  by an observer located at the tip of 
 M   O  . Another way of defining the sense of  M   O   is furnished by a variation 
of the right-hand rule: Close your right hand and hold it so that your 
fingers are curled in the sense of the rotation that  F  would impart to 
the rigid body about a fixed axis directed along the line of action of  M   O  ; 
your thumb will indicate the sense of the moment  M   O   (Fig. 3.12 b ). 
    Finally, denoting by u the angle between the lines of action of 
the position vector  r  and the force  F , we find that the magnitude of 
the moment of  F  about  O  is

   MO 5 rF sin u 5 Fd    (3.12)

   where  d  represents the perpendicular distance from  O  to the line of 
action of  F . Since the tendency of a force  F  to make a rigid body 
rotate about a fixed axis perpendicular to the force depends upon the 
distance of  F  from that axis as well as upon the magnitude of  F , we 
note that  the magnitude of   M   O    measures the tendency of the force   F   
to make the rigid body rotate about a fixed axis directed along   M   O  . 
    In the SI system of units, where a force is expressed in newtons 
(N) and a distance in meters (m), the moment of a force is expressed 
in newton-meters (N ? m). In the U.S. customary system of units, 
where a force is expressed in pounds and a distance in feet or inches, 
the moment of a force is expressed in lb ? ft or lb ? in. 
    We can observe that although the moment  M   O   of a force about 
a point depends upon the magnitude, the line of action, and the 
sense of the force, it does  not  depend upon the actual position of 
the point of application of the force along its line of action. Con-
versely, the moment  M   O   of a force  F  does not characterize the posi-
tion of the point of application of  F . 

3.6 Moment of a Force about a Point

  †We can easily verify that position vectors obey the law of vector addition and, thus, are 
truly vectors. Consider, for example, the position vectors  r  and  r 9 of  A  with respect to two 
reference points  O  and  O 9 and the position vector  s  of  O  with respect to  O 9 (Fig. 3.40 a , 
Sec. 3.16). We verify that the position vector  r 9 5 O¿A

¡
   can be obtained from the position 

vectors s 5  O¿O
¡

    and  r  5  OA
¡

    by applying the triangle rule for the addition of vectors.   
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  Fig. 3.12    
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82 Rigid Bodies: Equivalent Systems of Forces     However, as it will be seen presently, the moment  M   O   of a force 
 F  of given magnitude and direction  completely defines the line of 
action of   F.  Indeed, the line of action of  F  must lie in a plane 
through  O  perpendicular to the moment  M   O  ; its distance  d  from  O  
must be equal to the quotient  M   O  / F  of the magnitudes of  M   O   and 
 F ; and the sense of  M   O   determines whether the line of action of  F  
is to be drawn on one side or the other of the point  O.  
    We recall from Sec. 3.3 that the principle of transmissibility 
states that two forces  F  and  F 9 are equivalent (i.e., have the same 
effect on a rigid body) if they have the same magnitude, same direc-
tion, and same line of action. This principle can now be restated as 
follows:  Two forces   F   and   F 9  are equivalent if, and only if, they are 
equal  (i.e., have the same magnitude and same direction)  and have 
equal moments about a given point O . The necessary and sufficient 
conditions for two forces  F  and  F 9 to be equivalent are thus

   F 5 F9  and  MO 5 M9O    (3.13)

   We should observe that it follows from this statement that if the rela-
tions (3.13) hold for a given point  O , they will hold for any other point.  

 Problems Involving Only Two Dimensions.   Many applications 
deal with two-dimensional structures, i.e., structures which have length 
and breadth but only negligible depth and which are subjected to 
forces contained in the plane of the structure. Two-dimensional struc-
tures and the forces acting on them can be readily represented on a 
sheet of paper or on a blackboard. Their analysis is therefore consider-
ably simpler than that of three-dimensional structures and forces. 

F

(b) MO = – Fd

MO

d

O
MO

F

d

O

(a) MO = + Fd

  Fig. 3.13    

    Consider, for example, a rigid slab acted upon by a force  F  
( Fig. 3.13 ). The moment of  F  about a point  O  chosen in the plane 
of the figure is represented by a vector  M   O   perpendicular to that 
plane and of magnitude  Fd . In the case of Fig. 3.13 a  the vector  M   O   
points  out of  the paper, while in the case of Fig. 3.13 b  it points  into  
the paper. As we look at the figure, we observe in the first case that 
 F  tends to rotate the slab counterclockwise and in the second case 
that it tends to rotate the slab clockwise. Therefore, it is natural to 
refer to the sense of the moment of  F  about  O  in Fig. 3.13 a  as 
counterclockwise l, and in Fig. 3.13 b  as clockwise i. 
    Since the moment of a force  F  acting in the plane of the figure 
must be perpendicular to that plane, we need only specify the  magni-
tude  and the  sense  of the moment of  F  about  O . This can be done by 
assigning to the magnitude  M   O   of the moment a positive or negative sign 
according to whether the vector  M   O   points out of or into the paper.     
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83 3.7   VARIGNON’S THEOREM  
The distributive property of vector products can be used to deter-
mine the moment of the resultant of several  concurrent forces . If 
several forces  F  1 ,  F  2 , . . . are applied at the same point  A  ( Fig. 3.14 ), 
and if we denote by  r  the position vector of  A , it follows immediately 
from Eq. (3.5) of Sec. 3.4 that

 r 3 (F1 1 F2 1 . . .) 5 r 3 F1 1 r 3 F2 1 . . . (3.14)

   In words,  the moment about a given point O of the resultant of several 
concurrent forces is equal to the sum of the moments of the various 
forces about the same point O . This property, which was originally 
established by the French mathematician Varignon (1654–1722) long 
before the introduction of vector algebra, is known as  Varignon’s 
theorem.  
    The relation (3.14) makes it possible to replace the direct deter-
mination of the moment of a force  F  by the determination of the 
moments of two or more component forces. As you will see in the 
next section,  F  will generally be resolved into components parallel 
to the coordinate axes. However, it may be more expeditious in some 
instances to resolve  F  into components which are not parallel to the 
coordinate axes (see Sample Prob. 3.3).   

 3.8    RECTANGULAR COMPONENTS OF THE MOMENT 
OF A FORCE 

 In general, the determination of the moment of a force in space will 
be considerably simplified if the force and the position vector of its 
point of application are resolved into rectangular  x ,  y , and  z  compo-
nents. Consider, for example, the moment  M   O   about  O  of a force  F  
whose components are  F x  ,  F y  , and  F z   and which is applied at a point 
 A  of coordinates  x ,  y , and  z  ( Fig. 3.15 ). Observing that the compo-
nents of the position vector  r  are respectively equal to the coordi-
nates  x ,  y , and  z  of the point  A , we write

    r 5 xi 1 yj 1 zk   (3.15) 
    F 5 Fxi 1 Fyj 1 Fzk    (3.16)

   Substituting for  r  and  F  from (3.15) and (3.16) into

   MO 5 r 3 F (3.11)   

   and recalling the results obtained in Sec. 3.5, we write the moment 
 M   O   of  F  about  O  in the form

   MO 5 Mxi 1 My j 1 Mzk  (3.17)  

   where the components  M x  ,  M y  , and  M z   are defined by the relations

   

Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx    
(3.18)

  Fig. 3.14    

y

x

z

O

A

r
F1

F2

F3
F4

Fz k
x

y

z

O

zk

y j

x i
r

A (x, y, z)

Fy j

Fx i

  Fig. 3.15    

3.8 Rectangular Components of the 
Moment of a Force
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84 Rigid Bodies: Equivalent Systems of Forces   As you will see in Sec. 3.11, the scalar components  M x ,  M y,  and  M z  
of the moment  M O  measure the tendency of the force  F  to impart 
to a rigid body a motion of rotation about the  x ,  y , and  z  axes, respec-
tively. Substituting from (3.18) into (3.17), we can also write  M O  in 
the form of the determinant

   
MO 5 †

i j k
x y z
Fx Fy Fz

†
   

(3.19)

    To compute the moment  M  B  about an arbitrary point  B  of a 
force  F  applied at  A  ( Fig. 3.16 ), we must replace the position vector 
 r  in Eq. (3.11) by a vector drawn from  B  to  A . This vector is the 
 position vector of A relative to B  and will be denoted by  r  A/B.  Observ-
ing that  r  A/B  can be obtained by subtracting  r  B  from  r  A , we write

   MB 5 rA /B 3 F 5 (rA 2 rB) 3 F (3.20)  

   or, using the determinant form,

   
MB 5 †

i j k
xA /B yA /B zA /B

Fx Fy Fz

†
 

(3.21)
  

   where  x  A/B ,  y  A/B , and  z  A/B  denote the components of the vector  r  A/B :

  xA/B 5 xA 2 xB    yA/B 5 yA 2 yB    zA/B 5 zA 2 zB  

    In the case of  problems involving only two dimensions,  the 
force  F  can be assumed to lie in the  xy  plane ( Fig. 3.17 ). Setting
 z  5 0 and  F z   5 0 in Eq. (3.19), we obtain

  MO 5 (xFy 2 yFx)k  

 We verify that the moment of  F  about  O  is perpendicular to the plane 
of the figure and that it is completely defined by the scalar

   MO 5 Mz 5 xFy 2 yFx (3.22)  

  As noted earlier, a positive value for  M O  indicates that the vector  M O  
points out of the paper (the force  F  tends to rotate the body counter-
clockwise about  O ), and a negative value indicates that the vector  M O  
points into the paper (the force  F  tends to rotate the body clockwise 
about  O ). 
   To compute the moment about  B ( x B ,  y B ) of a force lying in the 
 xy  plane and applied at  A ( x A ,  y A ) ( Fig. 3.18 ), we set  z A/B  5 0 and 
 F z  5 0 in the relations (3.21) and note that the vector  M B  is perpen-
dicular to the  xy  plane and is defined in magnitude and sense by the 
scalar

   MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23) 

 Fig. 3.16 
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O
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85

 SAMPLE PROBLEM 3.1 

 A 100-lb vertical force is applied to the end of a lever which is attached to a shaft 
at  O . Determine ( a ) the moment of the 100-lb force about  O ; ( b ) the horizontal 
force applied at  A  which creates the same moment about  O ; ( c ) the smallest 
force applied at  A  which creates the same moment about  O ; ( d ) how far from 
the shaft a 240-lb vertical force must act to create the same moment about  O ; 
( e ) whether any one of the forces obtained in parts  b ,  c , and  d  is equivalent to 
the original force. 

100 lb

60°

A

O

24 in.

  SOLUTION  

 a.   Moment about  O.   The perpendicular distance from  O  to the line of 
action of the 100-lb force is

 d 5 (24 in.) cos 60° 5 12 in. 

 The magnitude of the moment about  O  of the 100-lb force is

  MO 5 Fd 5 (100 lb)(12 in.) 5 1200 lb ? in.  

  Since the force tends to rotate the lever clockwise about  O , the moment 
will be represented by a vector  M   O   perpendicular to the plane of the figure 
and pointing  into  the paper. We express this fact by writing

 MO 5 1200 lb ? in. i ◀ 

 b.   Horizontal Force.   In this case, we have

 d 5 (24 in.) sin 60° 5 20.8 in. 

 Since the moment about  O  must be 1200 lb · in., we write

  MO 5 Fd 
  1200 lb ? in. 5 F(20.8 in.) 
   F 5 57.7 lb F 5 57.7 lb y ◀ 

 c.   Smallest Force.   Since  M O  5  Fd , the smallest value of  F  occurs when 
 d  is maximum. We choose the force perpendicular to  OA  and note that  
d  5 24 in.; thus

  MO 5 Fd 
  1200 lb ? in. 5 F(24 in.) 
   F 5 50 lb F 5 50 lb c30° ◀   

 d.   240-lb Vertical Force.   In this case  M   O   5 Fd  yields

  1200 lb ? in. 5 (240 lb)d  d 5 5 in. 
 but  OB cos 60° 5 d OB 5 10 in. ◀ 

 e.   None of the forces considered in parts  b ,  c , and  d  is equivalent to the 
original 100-lb force. Although they have the same moment about  O , they 
have different  x  and  y  components. In other words, although each force 
tends to rotate the shaft in the same manner, each causes the lever to pull 
on the shaft in a different way. 

60°

MO

100 lb

A

O

24 in.

d

F

60°

MO

A

O

24 in.
d

F

MO

60°

A

O

24 in.

240 lb

MO
60°

A

B

O
d
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86

 SAMPLE PROBLEM 3.3 

 A 30-lb force acts on the end of the 3-ft lever as shown. Determine the 
moment of the force about  O.  

 SAMPLE PROBLEM 3.2 

 A force of 800 N acts on a bracket as shown. Determine the moment of the 
force about  B.  

      SOLUTION 

 The moment  M  B  of the force  F  about  B  is obtained by forming the vector 
product

  MB 5 rA/B 3 F 

  where  r  A/B  is the vector drawn from  B  to  A . Resolving  r  A/B  and  F  into 
rectangular components, we have

  rA/B 5 2(0.2 m)i 1 (0.16 m)j 
   F 5 (800 N) cos 60°i 1 (800 N) sin 60°j 
  5 (400 N)i 1 (693 N)j 

   Recalling the relations (3.7) for the cross products of unit vectors (Sec. 3.5), 
we obtain

   MB 5 rA/B 3 F 5 [2(0.2 m)i 1 (0.16 m)j] 3 [(400 N)i 1 (693 N)j] 
  5 2(138.6 N ? m)k 2 (64.0 N ? m)k 
   5 2(202.6 N ? m)k MB 5 203 N ? m i ◀ 

  The moment  M  B  is a vector perpendicular to the plane of the figure and 
pointing  into  the paper.      

60°

Fy = (693 N) j

Fx = (400 N) i

rA/B

MB

F = 800 N

+ (0.16 m) j

– (0.2 m) i

A

B

800 N

60°

B

A

160 mm

200 mm

A

O

20°

50°

30 lb

3 ft

MO

P

Q

A

O

20° 30 lb

3 ft

  SOLUTION 

 The force is replaced by two components, one component  P  in the direction 
of  OA  and one component  Q  perpendicular to  OA . Since  O  is on the line 
of action of  P , the moment of  P  about  O  is zero and the moment of the 
30-lb force reduces to the moment of  Q , which is clockwise and, thus, is 
represented by a negative scalar. 

 Q 5 (30 lb) sin 20° 5 10.26 lb 
  MO 5 2Q(3 ft) 5 2(10.26 lb)(3 ft) 5 230.8 lb ? ft 

  Since the value obtained for the scalar  M   O   is negative, the moment  M   O   
points  into  the paper. We write

  MO 5 30.8 lb ? ft i ◀        

bee29400_ch03_072-155.indd Page 86  12/1/08  2:52:31 PM user-s172bee29400_ch03_072-155.indd Page 86  12/1/08  2:52:31 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



87

 SAMPLE PROBLEM 3.4 

  A rectangular plate is supported by brackets at  A  and  B  and by a wire  CD . 
Knowing that the tension in the wire is 200 N, determine the moment about 
 A  of the force exerted by the wire on point  C .   80 mm

80 mm

A

B

C

D

240 mm

240 mm

300 mm

SOLUTION 

 The moment  M  A  about  A  of the force  F  exerted by the wire on point  C  is 
obtained by forming the vector product

   MA 5 rC/A 3 F (1) 

  where  r  C/A  is the vector drawn from  A  to  C ,

   rC/A 5 AC
¡

5 (0.3 m)i 1 (0.08 m)k  (2)

  and  F  is the 200-N force directed along  CD . Introducing the unit vector
L 5 CD

¡
/CD, we write

   
F 5 FL 5 (200 N) 

CD
¡

CD   
(3)

     

 Resolving the vector CD
¡

 into rectangular components, we have

   CD
¡

5 2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k    CD 5 0 .50 m  

  Substituting into (3), we obtain

   
 F 5

200 N
0.50 m

 [2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k]
  

    5 2(120 N)i 1 (96 N)j 2 (128 N)k    (4)

   Substituting for  r  C/A  and  F  from (2) and (4) into (1) and recalling the 
relations (3.7) of Sec. 3.5, we obtain

   MA 5 rC/A 3 F 5 (0.3i 1 0.08k) 3 (2120i 1 96j 2 128k)  
  5 (0.3)(96)k 1 (0.3)(2128)(2j) 1 (0.08)(2120)j 1 (0.08)(96)(2i)  

  MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k ◀         

Alternative Solution.   As indicated in Sec. 3.8, the moment  M  A  can be 
expressed in the form of a determinant:

    
MA 5 †

i j k
xC 2 xA yC 2 yA zC 2 zA

Fx Fy Fz

† 5 †
i j k

0.3 0 0.08
2120 96 2128

†

MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k     ◀

rC/A

A

B

C

D

x

y

z

O0.08 m

0.08 m 0.3 m

200 N
0.24 m

0.24 m

A

C

D

(28.8 N•m) j

(28.8 N•m) k

– (7.68 N•m) i

F = (200 N)�
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 SOLVING PROBLEMS
ON YOUR OWN  

In this lesson we introduced the  vector product  or  cross product  of two vectors. 
In the following problems, you may want to use the vector product to compute 

the  moment of a force about a point  and also to determine the  perpendicular dis-
tance  from a point to a line. 

 We defined the moment of the force  F about the point  O of a rigid body as

   MO 5 r 3 F   (3.11)

 where  r is the position vector  from O to any point  on the line of action of  F.  Since 
the vector product is not commutative, it is absolutely necessary when computing 
such a product that you place the vectors in the proper order and that each vector 
have the correct sense. The moment  M O  is important because its magnitude is a 
measure of the tendency of the force  F to cause the rigid body to rotate about an 
axis directed along  M O . 

 1.  Computing the moment M  O  of a force in two dimensions.  You can use one 
of the following procedures: 
  a.   Use Eq. (3.12),  M O  5  Fd , which expresses the magnitude of the moment 
as the product of the magnitude of  F and the  perpendicular distance d  from  O to 
the line of action of  F (Sample Prob. 3.1).  
  b.   Express  r and  F in component form and formally evaluate the vector prod-
uct  M O  5  r 3 F  [Sample Prob. 3.2].  
  c.   Resolve  F into components respectively parallel and perpendicular to the 
position vector  r.  Only the perpendicular component contributes to the moment 
of  F [Sample Prob. 3.3].  
  d.   Use Eq. (3.22),  M O  5  Mz  5  xF y  2  yF x . When applying this method, the 
simplest approach is to treat the scalar components of  r and  F as positive and then 
to assign, by observation, the proper sign to the moment produced by each force 
component. For example, applying this method to solve Sample Prob. 3.2, we 
observe that both force components tend to produce a clockwise rotation about  B. 
Therefore, the moment of each force about  B should be represented by a negative 
scalar. We then have for the total moment

  MB 5 2(0.16 m)(400 N) 2 (0.20 m)(693 N) 5 2202 .6 N ? m  

 2.    Computing the moment M  O  of a force F in three dimensions . Following the 
method of Sample Prob. 3.4, the first step in the process is to select the most 
convenient (simplest) position vector  r. You should next express  F in terms of its 
rectangular components. The final step is to evaluate the vector product  r 3 F  to 
determine the moment. In most three-dimensional problems you will find it easiest 
to calculate the vector product using a determinant.  

 3.   Determining the perpendicular distance d from a point A to a given line . 
First assume that a force  F of known magnitude  F lies along the given line. Next 
determine its moment about  A by forming the vector product  M A 5  r 3 F , and 
calculate this product as indicated above. Then compute its magnitude  M A. Finally, 
substitute the values of  F and  M A into the equation  M A 5  Fd  and solve for  d.  
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8989

PROBLEMS  

  3.1   A foot valve for a pneumatic system is hinged at  B. Knowing that 
a 5 28°, determine the moment of the 16-N force about point  B
by resolving the force into horizontal and vertical components. 

  3.2   A foot valve for a pneumatic system is hinged at  B. Knowing that 
a 5 28°, determine the moment of the 16-N force about point  B
by resolving the force into components along  ABC  and in a direc-
tion perpendicular to  ABC .

  3.3   A 300-N force is applied at  A as shown. Determine ( a) the moment 
of the 300-N force about  D, ( b) the smallest force applied at  B
that creates the same moment about  D.

  3.4   A 300-N force is applied at  A as shown. Determine ( a) the moment 
of the 300-N force about  D, ( b) the magnitude and sense of the 
horizontal force applied at  C that creates the same moment about 
D, ( c) the smallest force applied at  C that creates the same moment 
about  D.

  3.5 An 8-lb force  P is applied to a shift lever. Determine the moment 
of  P about  B when a is equal to 25°. 

  3.6 For the shift lever shown, determine the magnitude and the direc-
tion of the smallest force  P that has a 210-lb ? in. clockwise moment 
about  B.

  3.7   An 11-lb force  P is applied to a shift lever. The moment of  P about 
 B is clockwise and has a magnitude of 250 lb ? in. Determine the 
value of a. 

  3.8   It is known that a vertical force of 200 lb is required to remove 
the nail at  C from the board. As the nail first starts moving, deter-
mine ( a) the moment about  B of the force exerted on the nail, 
( b) the magnitude of the force  P that creates the same moment 
about  B if a 5 10°, ( c) the smallest force  P that creates the same 
moment about  B.

 Fig. P3.3   and   P3.4  

300 N
A B

D

C

25°

100 mm 200 mm

200 mm

125 mm

 Fig. P3.5  ,  P3.6,   and P3.7  

A

B

P

a

8 in.

22 in.

 Fig. P3.8  

4 in.

A

B

P

18 in.

C

a

70°

 Fig. P3.1  and  P3.2  

A

B

C

16 N

20°

a
170 mm

80 mm
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90 Rigid Bodies: Equivalent Systems of Forces   3.9   A winch puller  AB  is used to straighten a fence post. Knowing that 
the tension in cable  BC  is 1040 N and length  d is 1.90 m, deter-
mine the moment about  D of the force exerted by the cable at  C 
by resolving that force into horizontal and vertical components 
applied ( a) at point  C, ( b) at point  E.

  3.10   It is known that a force with a moment of 960 N ? m about  D is 
required to straighten the fence post  CD . If  d 5 2.80 m, determine 
the tension that must be developed in the cable of winch puller 
 AB  to create the required moment about point  D.

A

B

C

D

E

d

0.875 m

0.2 m

 Fig. P3.9  ,  P3.10,   and  P3.11  

  3.11   It is known that a force with a moment of 960 N ? m about  D is 
required to straighten the fence post  CD . If the capacity of winch 
puller  AB  is 2400 N, determine the minimum value of distance  d 
to create the specified moment about point  D.

  3.12 and 3.13   The tailgate of a car is supported by the hydraulic 
lift  BC . If the lift exerts a 125-lb force directed along its centerline 
on the ball and socket at  B, determine the moment of the force 
about  A.

 Fig. P3.12  

A

B
C

15.3 in.

12.0 in.

12.0 in.

2.33 in.

17.2 in.

4.38 in.

7.62 in.

20.5 in.

A

B
C

 Fig. P3.13  
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91Problems

  3.15   Form the vector products  B 3 C  and  B9 3 C , where  B 5  B9 , and 
use the results obtained to prove the identity

   sin a cos b 5 1
2  sin (a 1 b) 1 1

2  sin (a 2 b).  

  3.16   A line passes through the points (20 m, 16 m) and (21 m, 24 m). 
Determine the perpendicular distance  d from the line to the origin 
 O of the system of coordinates.  

  3.17   The vectors  P and  Q are two adjacent sides of a parallelogram. Deter-
mine the area of the parallelogram when ( a)  P 5 27 i 1 3 j 2 3 k 
and  Q 5 2 i 1 2 j 1 5 k, ( b)  P 5 6 i 2 5 j 2 2 k and  Q 5 22 i 1 
5 j 2  k. 

  3.18   A plane contains the vectors  A and  B. Determine the unit vector 
normal to the plane when  A and  B are equal to, respectively, 
( a)  i 1 2 j 2 5 k and 4 i 2 7 j 2 5 k, ( b) 3 i 2 3 j 1 2 k and 22 i 1 
6 j 2 4 k. 

  3.19   Determine the moment about the origin  O of the force  F 5 4 i 1 
5 j 2 3 k that acts at a point  A. Assume that the position vector of 
 A is ( a)  r 5 2 i 2 3 j 1 4 k, ( b)  r 5 2 i 1 2.5 j 2 1.5 k, (c)  r 5 2 i 1 
5 j 1 6 k. 

  3.20   Determine the moment about the origin  O of the force  F 5 
22 i 1 3 j 1 5 k that acts at a point  A. Assume that the position 
vector of  A is ( a)  r 5  i 1  j 1  k, ( b)  r 5 2 i 1 3 j 2 5 k, (c)  r 5 
24 i 1 6 j 1 10 k. 

  3.21   A 200-N force is applied as shown to the bracket  ABC . Determine 
the moment of the force about  A.

  3.14   A mechanic uses a piece of pipe  AB  as a lever when tightening 
an alternator belt. When he pushes down at  A, a force of 485 N 
is exerted on the alternator at  B. Determine the moment of that 
force about bolt  C if its line of action passes through  O.

 Fig. P3.14  

A

B

C

120 mm

90 mm

72 mm

65 mm

O

y

x

C

B

B'

a

b
b

 Fig. P3.15  

B

A

x

y

z
50 mm

60 mm

25 mm

200 N

30°
60°

C

 Fig. P3.21  
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92 Rigid Bodies: Equivalent Systems of Forces

  3.23   The 6-m boom  AB  has a fixed end  A. A steel cable is stretched 
from the free end  B of the boom to a point  C located on the verti-
cal wall. If the tension in the cable is 2.5 kN, determine the 
moment about  A of the force exerted by the cable at  B.

  3.24   A wooden board  AB , which is used as a temporary prop to  support 
a small roof, exerts at point  A of the roof a 57-lb force directed 
along  BA . Determine the moment about  C of that force. 

  3.25   The ramp  ABCD  is supported by cables at corners  C and  D. The 
tension in each of the cables is 810 N. Determine the moment 
about  A of the force exerted by ( a) the cable at  D, ( b) the cable 
at  C.

 Fig. P3.25  

x

y

z

A

B

C

D

E
F

G

H

0.6 m

0.6 m
2.7 m

1 m

2.3 m

3 m

 Fig. P3.23  

B

C

A

x

y

z

2.4 m

6 m

4 m

x

y

z

A
C

7 m

4.25 m

0.75 m
1 m

6 m

B

O

 Fig. P3.22 

y

B

C

D

36 in. 48 in.
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  3.22   Before the trunk of a large tree is felled, cables  AB  and  BC  are 
attached as shown. Knowing that the tensions in cables  AB  and  BC  
are 555 N and 660 N, respectively, determine the moment about  O 
of the resultant force exerted on the tree by the cables at  B.
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93Problems  3.26   A small boat hangs from two davits, one of which is shown in the 
figure. The tension in line  ABAD  is 82 lb. Determine the moment 
about  C of the resultant force  R A  exerted on the davit at  A.

 Fig. P3.26  
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  3.27   In Prob. 3.22, determine the perpendicular distance from point  O 
to cable  AB . 

  3.28   In Prob. 3.22, determine the perpendicular distance from point  O 
to cable  BC . 

  3.29   In Prob. 3.24, determine the perpendicular distance from point  D 
to a line drawn through points  A and  B. 

  3.30   In Prob. 3.24, determine the perpendicular distance from point  C 
to a line drawn through points  A and  B. 

  3.31   In Prob. 3.25, determine the perpendicular distance from point  A 
to portion  DE  of cable  DEF . 

  3.32   In Prob. 3.25, determine the perpendicular distance from point  A 
to a line drawn through points  C and  G. 

  3.33   In Prob. 3.26, determine the perpendicular distance from point  C 
to portion  AD  of the line  ABAD . 

  3.34   Determine the value of  a that minimizes the perpendicular dis-
tance from point  C to a section of pipeline that passes through 
points  A and  B.
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94 Rigid Bodies: Equivalent Systems of Forces 3.9   SCALAR PRODUCT OF TWO VECTORS  
The  scalar product  of two vectors  P  and  Q  is defined as the product 
of the magnitudes of  P  and  Q  and of the cosine of the angle u formed 
by  P  and  Q  ( Fig. 3.19 ). The scalar product of  P  and  Q  is denoted 
by  P ? Q . We write therefore

   P ? Q 5 PQ cos u (3.24)  

   Note that the expression just defined is not a vector but a   scalar , 
which explains the name  scalar product ; because of the notation 
used,  P ? Q  is also referred to as the  dot product  of the vectors  P  
and  Q.  
   It follows from its very definition that the scalar product of two 
vectors is  commutative , i.e., that

   P ? Q 5 Q ? P   (3.25)

  To prove that the scalar product is also  distributive,  we must prove 
the relation

   P ? (Q1 1 Q2) 5 P ? Q1 1 P ? Q2 (3.26)  

  We can, without any loss of generality, assume that  P  is directed 
along the  y  axis ( Fig. 3.20 ). Denoting by  Q  the sum of  Q  1  and  Q  2  
and by u  y   the angle  Q  forms with the  y  axis, we express the left-hand 
member of (3.26) as follows:

   P ? (Q1 1 Q2) 5 P ? Q 5 PQ cos uy 5 PQy (3.27)  

  where  Q y   is the  y  component of  Q . We can, in a similar way, express 
the right-hand member of (3.26) as

   P ? Q1 1 P ? Q2 5 P(Q1)y 1 P(Q2)y (3.28)  

  Since  Q  is the sum of  Q  1  and  Q  2 , its  y  component must be equal to 
the sum of the  y  components of  Q  1  and  Q  2 . Thus, the expressions 
obtained in (3.27) and (3.28) are equal, and the relation (3.26) has 
been proved. 
   As far as the third property—the associative property—is con-
cerned, we note that this property cannot apply to scalar products. 
Indeed, ( P ?  Q) ?  S has no meaning, since  P ?  Q is not a vector but 
a scalar. 
    The scalar product of two vectors  P  and  Q  can be expressed 
in terms of their rectangular components. Resolving  P  and  Q  into 
components, we first write

  P ? Q 5 (Pxi 1 Pyj 1 Pzk) ? (Qxi 1 Qyj 1 Qzk)  

   Making use of the distributive property, we express  P ? Q  as the sum 
of scalar products, such as  Px i ?  Qx i and  Px i ?  Qy j. However, from the 
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95definition of the scalar product it follows that the scalar products of 
the unit vectors are either zero or one.

   
i ? i 5 1   j ? j  5 1   k ? k 5 1
i ? j 5 0    j ? k 5 0     k ? i  5 0 (3.29)  

  Thus, the expression obtained for  P ?  Q  reduces to

   P ? Q 5 PxQx 1 PyQy 1 PzQz (3.30)  

 In the particular case when  P and  Q are equal, we note that

   P ? P 5 P2
x 1 P2

y 1 P2
z 5 P2 (3.31)  

Applications  

  1.    Angle formed by two given vectors .  Let two vectors be given 
in terms of their components:

   P 5 Pxi 1 Py j 1 Pzk   
  Q 5 Qxi 1 Qy j 1 Qzk  

   To determine the angle formed by the two vectors, we equate 
the expressions obtained in (3.24) and (3.30) for their scalar 
product and write

  PQ cos u 5 PxQx 1 PyQy 1 PzQz  

   Solving for cos u, we have

   
cos u 5

PxQx 1 PyQy 1 PzQz

PQ  
(3.32)  

  2.   Projection of a vector on a given axis .  Consider a vector  P 
forming an angle u with an axis, or directed line,  OL  
( Fig. 3.21 ). The  projection of   P  on the axis OL  is defined as 
the scalar

   POL 5 P cos u (3.33)  

   We note that the projection  P OL  is equal in absolute value to 
the length of the segment  OA ; it will be positive if  OA  has the 
same sense as the axis  OL , that is, if u is acute, and negative 
otherwise. If  P and  OL  are at a right angle, the projection of 
 P on  OL  is zero. 

    Consider now a vector  Q directed along  OL  and of the 
same sense as  OL  ( Fig. 3.22 ). The scalar product of  P and  Q 
can be expressed as

   P ? Q 5 PQ cos u 5 POLQ (3.34)  
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96 Rigid Bodies: Equivalent Systems of Forces    from which it follows that

   
POL 5

P ? Q
Q

5
PxQx 1 PyQy 1 PzQz

Q  
(3.35)

  

   In the particular case when the vector selected along  OL  is the 
unit vector l ( Fig. 3.23 ), we write

   POL 5 P ? l (3.36)  

   Resolving  P and l into rectangular components and recalling 
from Sec. 2.12 that the components of l along the coordinate 
axes are respectively equal to the direction cosines of  OL , we 
express the projection of  P on  OL  as

   POL 5 Px cos ux 1 Py cos uy 1 Pz cos uz (3.37)  

   where u  x , u  y , and u  z  denote the angles that the axis  OL  forms 
with the coordinate axes.  

3.10   MIXED TRIPLE PRODUCT OF THREE VECTORS  
We define the  mixed triple product  of the three vectors  S ,  P , and  Q  
as the scalar expression

   S ? (P 3 Q) (3.38)  

 obtained by forming the scalar product of  S with the vector product 
of  P and  Q.  †  
  A simple geometrical interpretation can be given for the 
mixed triple product of  S,  P, and  Q ( Fig. 3.24 ). We first recall 
from Sec. 3.4 that the vector  P 3 Q  is perpendicular to the plane 
containing  P and  Q and that its magnitude is equal to the area of 
the parallelogram which has  P and  Q for sides. On the other hand, 
Eq. (3.34) indicates that the scalar product of  S and  P 3  Q can 
be obtained by multiplying the magnitude of  P 3  Q (i.e., the area 
of the parallelogram defined by  P and  Q) by the projection of  S 
on the vector  P 3  Q (i.e., by the projection of  S on the normal 
to the plane containing the parallelogram). The mixed triple prod-
uct is thus equal, in absolute value, to the volume of the parallel-
epiped having the vectors  S,  P, and  Q for sides ( Fig. 3.25 ). We 
note that the sign of the mixed triple product will be positive if  S, 
 P, and  Q form a right-handed triad and negative if they form a 
left-handed triad [that is,  S ? ( P 3  Q) will be negative if the rotation 
which brings  P into line with  Q is observed as clockwise from the 

†Another kind of triple product will be introduced later (Chap. 15): the  vector triple 
product   S 3 ( P 3  Q).  

 Fig. 3.24  

S

P

Q

P × Q

 Fig. 3.25   

S

P

Q

y

x

z

O

A

P

L

� qx

qy

qz

 Fig. 3.23  

bee29400_ch03_072-155.indd Page 96  11/28/08  9:36:56 PM user-s172bee29400_ch03_072-155.indd Page 96  11/28/08  9:36:56 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



97tip of  S]. The mixed triple product will be zero if  S,  P, and  Q are 
coplanar. 
  Since the parallelepiped defined in the preceding paragraph is 
independent of the order in which the three vectors are taken, the 
six mixed triple products which can be formed with  S,  P, and  Q will 
all have the same absolute value, although not the same sign. It is 
easily shown that

  S ? (P 3 Q) 5 P ? (Q 3 S) 5 Q ? (S 3 P)  
  5 2S ? (Q 3 P) 5 2P ? (S 3 Q) 5 2Q ? (P 3 S)

(3.39)     

 Arranging in a circle and in counterclockwise order the letters rep-
resenting the three vectors ( Fig. 3.26 ), we observe that the sign of 
the mixed triple product remains unchanged if the vectors are per-
muted in such a way that they are still read in counterclockwise 
order. Such a permutation is said to be a  circular permutation . It 
also follows from Eq. (3.39) and from the commutative property of 
scalar products that the mixed triple product of  S,  P, and  Q can be 
defined equally well as  S ? ( P 3  Q) or ( S 3  P) ?  Q.  
  The mixed triple product of the vectors  S,  P, and  Q can be 
expressed in terms of the rectangular components of these vectors. 
Denoting  P 3  Q by  V and using formula (3.30) to express the scalar 
product of  S and  V, we write

  S ? (P 3 Q) 5 S ? V 5 SxVx 1 SyVy 1 SzVz  

 Substituting from the relations (3.9) for the components of  V, we 
obtain

  S ? (P 3  Q) 5 Sx(PyQz 2 PzQy) 1 Sy(PzQx 2 PxQz)
1 Sz(PxQy 2 PyQx) (3.40)  

 This expression can be written in a more compact form if we observe 
that it represents the expansion of a determinant:

   
S ? (P 3 Q) 5 †

Sx Sy Sz

Px Py Pz

Qx Qy Qz

†
 

(3.41)
  

 By applying the rules governing the permutation of rows in a deter-
minant, we could easily verify the relations (3.39) which were derived 
earlier from geometrical considerations.  

3.11    MOMENT OF A FORCE ABOUT A GIVEN AXIS  
Now that we have further increased our knowledge of vector alge-
bra, we can introduce a new concept, the concept of  moment of a 
force about an axis . Consider again a force  F  acting on a rigid body 
and the moment  M   O   of that force about  O  ( Fig. 3.27 ). Let  OL  be 
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98 Rigid Bodies: Equivalent Systems of Forces an axis through  O; we define the moment M OL  of   F   about OL as the 
projection OC of the moment   M   O    onto the axis OL . Denoting by L 
the unit vector along  OL  and recalling from Secs. 3.9 and 3.6, 
respectively, the expressions (3.36) and (3.11) obtained for the pro-
jection of a vector on a given axis and for the moment  M   O   of a force 
 F , we write

   MOL 5 L ? MO 5 L ? (r 3 F) (3.42)  

 which shows that the moment  M OL  of  F about the axis  OL  is the 
scalar obtained by forming the mixed triple product of L,  r, and  F. 
Expressing  M OL  in the form of a determinant, we write

   
MOL 5 †

lx ly lz

x y z
Fx Fy Fz

†
 

(3.43)
  

 where l  x , l  y , l  z  5 direction cosines of axis  OL 
               x,  y,  z 5 coordinates of point of application of  F 
           Fx ,  Fy ,  Fz  5 components of force  F 

  The physical significance of the moment  M OL  of a force  F 
about a fixed axis  OL  becomes more apparent if we resolve  F into 
two rectangular components  F 1 and  F 2, with  F 1 parallel to  OL  and 
 F 2 lying in a plane  P perpendicular to  OL  ( Fig. 3.28 ). Resolving  r 
similarly into two components  r  1  and  r  2  and substituting for  F  and  r  
into (3.42), we write

  MOL 5 L ? [(r1 1 r2) 3 (F1 1 F2)]  
 5 L ? (r1 3 F1) 1 L ? (r1 3 F2) 1 L ? (r2 3 F1) 1 l ? (r2 3 F2)  

  Noting that all of the mixed triple products except the last one are 
equal to zero, since they involve vectors which are coplanar when 
drawn from a common origin (Sec. 3.10), we have

   MOL 5 L ? (r2 3 F2)  (3.44) 

  The vector product  r  2 3  F  2  is perpendicular to the plane  P  and 
represents the moment of the component  F  2  of  F  about the point 
 Q  where  OL  intersects  P . Therefore, the scalar  M  OL , which will 
be positive if  r  2 3  F  2  and  OL  have the same sense and negative 
otherwise, measures the tendency of  F  2  to make the rigid body 
rotate about the fixed axis  OL . Since the other component  F  1  of  F  
does not tend to make the body rotate about  OL , we conclude that 
 the moment M OL  of   F   about OL measures the tendency of the force  
 F   to impart to the rigid body a motion of rotation about the fixed 
axis OL.  
   It follows from the definition of the moment of a force about 
an axis that the moment of  F  about a coordinate axis is equal to 
the component of  M   O   along that axis. Substituting successively each 

 Fig. 3.28  

r

r1 r2

F1

F2

P
Q

L

A

O

F

�

bee29400_ch03_072-155.indd Page 98  11/28/08  9:36:58 PM user-s172bee29400_ch03_072-155.indd Page 98  11/28/08  9:36:58 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



99of the unit vectors  i ,  j , and  k  for L in (3.42), we observe that the 
expressions thus obtained for the  moments of   F  about the coordinate 
axes  are respectively equal to the expressions obtained in Sec. 3.8 
for the components of the moment  M O  of  F about  O:

   

Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx   
(3.18)

   We observe that just as the components  F x  ,  F y  , and  F z   of a force  F  
acting on a rigid body measure, respectively, the tendency of  F  to 
move the rigid body in the  x ,  y , and  z  directions, the moments  M x  , 
 M y  , and  M z   of  F  about the coordinate axes measure the tendency of 
 F  to impart to the rigid body a motion of rotation about the  x ,  y , 
and  z  axes, respectively. 
   More generally, the moment of a force  F  applied at  A  about 
an axis which does not pass through the origin is obtained by 
choosing an arbitrary point  B  on the axis ( Fig. 3.29 ) and determin-
ing the projection on the axis  BL  of the moment  M  B  of  F  about  B . 
We write

   MBL 5 L ? MB 5 L ? (rA/B 3 F) (3.45)  

 where  r  A/B  5  r  A 2  r  B  represents the vector drawn from  B  to  A . 
Expressing  M BL   in the form of a determinant, we have

   
MBL 5 †

lx ly lz

xA /B yA /B zA /B

Fx Fy Fz

†
 

(3.46)
  

 where l  x , l  y , l  z  5 direction cosines of axis  BL 
xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

 Fx ,  Fy ,  Fz  5 components of force  F 

  It should be noted that the result obtained is independent of the 
choice of the point  B  on the given axis. Indeed, denoting by  M  CL  the 
result obtained with a different point  C , we have

   MCL 5 L ? [(rA 2 rC) 3 F]
 5 L ? [(rA 2 rB) 3 F] 1 L ? [(rB 2 rC) 3 F]

  But, since the vectors L and  r  B 2  r  C  lie in the same line, the vol-
ume of the parallelepiped having the vectors L,  r  B 2  r  C , and  F  
for sides is zero, as is the mixed triple product of these three vec-
tors (Sec. 3.10). The expression obtained for  M  CL  thus reduces to 
its first term, which is the expression used earlier to define  M  BL . 
In addition, it follows from Sec. 3.6 that, when computing the 
moment of  F  about the given axis,  A  can be any point on the line 
of action of  F.   
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SAMPLE PROBLEM 3.5 

 A cube of side  a  is acted upon by a force  P  as shown. Determine the 
moment of  P  ( a ) about  A , ( b ) about the edge  AB , ( c ) about the diagonal 
 AG  of the cube, ( d ). Using the result of part  c , determine the perpendicular 
distance between  AG  and  FC.   
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SOLUTION  

 a.   Moment about A.   Choosing  x ,  y , and  z  axes as shown, we resolve into
rectangular components the force  P  and the vector  r  F/A  5 AF

¡
 drawn from 

 A  to the point of application  F  of  P. 

  rF/A 5 ai 2 aj 5 a(i 2 j)   
  P 5 (P/12)j 2 (P/12)k 5 (P/12) ( j 2 k)  

The moment of  P about  A is

  MA 5 rF/A 3 P 5 a(i 2 j) 3 (P/12) (j 2 k)
MA 5 (aP/12) (i 1 j 1 k)   ◀

      b.  Moment about  AB. Projecting  M A on  AB , we write

  MAB 5 i ? MA 5 i ? (aP/12) (i 1 j 1 k)  
MAB 5 aP/12  ◀

We verify that, since  AB  is parallel to the  x axis,  M AB  is also the  x component 
of the moment  M A. 

c.  Moment about Diagonal  AG.  The moment of P about  AG  is obtained 
by projecting  M A on  AG . Denoting by L the unit vector along  AG , we have

  
L 5

AG
¡

AG
5

ai 2 aj 2 ak

a13
5 (1/13) (i 2 j 2 k)

  
 MAG 5 L ? MA 5 (1/13) (i 2 j 2 k) ? (aP/12) (i 1 j 1 k)  

 MAG 5 (aP/16) (1 2 1 2 1)  MAG 5 2aP/16   ◀

 Alternative Method.  The moment of  P about  AG  can also be expressed 
in the form of a determinant:

  
MAG 5 †

lx ly lz

xF/A yF/A zF/A

Fx Fy Fz

† 5 †
1/13 21/13 21/13

a 2a 0
0 P/12 2P/12

† 5 2aP/16
  

 d.  Perpendicular Distance between  AG  and  FC.  We first observe that  P 
is perpendicular to the diagonal  AG . This can be checked by forming the 
scalar product  P ? L and verifying that it is zero:

  P ? L5 (P/12)( j 2 k) ? (1/13)(i 2 j 2 k) 5 (P16)(0 2 1 1 1) 5 0  

The moment  M AG  can then be expressed as 2 Pd , where  d is the perpen-
dicular distance from  AG  to  FC . (The negative sign is used since the rotation 
imparted to the cube by  P appears as clockwise to an observer at  G.) Recall-
ing the value found for  M AG  in part  c,

  MAG 5 2Pd 5 2aP/16       d 5 a/16 ◀

A
B

CD

E F

G

a
P

i
k

j

A
B

CD

E
F

G
x

y

z

a

a

a

P

rF/A

O

bee29400_ch03_072-155.indd Page 100  11/28/08  9:36:59 PM user-s172bee29400_ch03_072-155.indd Page 100  11/28/08  9:36:59 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



101

 SOLVING PROBLEMS
ON YOUR OWN  

In the problems for this lesson you will apply the  scalar product  or  dot product
of two vectors to determine the  angle formed by two given vectors  and the 

projection of a force on a given axis . You will also use the  mixed triple product  of 
three vectors to find the  moment of a force about a given axis  and the  perpendicu-
lar distance between two lines.   

 1.    Calculating the angle formed by two given vectors.  First express the vectors 
in terms of their components and determine the magnitudes of the two vectors. 
The cosine of the desired angle is then obtained by dividing the scalar product of 
the two vectors by the product of their magnitudes [Eq. (3.32)].  

2.    Computing the projection of a vector  P  on a given axis OL.  In general, 
begin by expressing  P  and the unit vector L, that defines the direction of the axis, 
in component form. Take care that L has the correct sense (that is, L is directed 
from  O  to  L ). The required projection is then equal to the scalar product  P ? L.  
However, if you know the angle u formed by  P  and L, the projection is also given 
by  P  cos u.  

  3.    Determining the moment M OL  of a force about a given axis OL.  We defined 
M  OL  as

   MOL 5 L ? MO 5 L ? (r 3 F) (3.42)  

  where L is the unit vector along  OL  and  r is a position vector  from any point  on 
the line  OL   to any point  on the line of action of  F.  As was the case for the moment 
of a force about a point, choosing the most convenient position vector will simplify 
your calculations. Also, recall the warning of the previous lesson: the vectors  r  and  F  
must have the correct sense, and they must be placed in the proper order. The 
procedure you should follow when computing the moment of a force about an axis 
is illustrated in part  c  of Sample Prob. 3.5. The two essential steps in this proce-
dure are to first express L,  r , and  F  in terms of their rectangular components and 
to then evaluate the mixed triple product L ? ( r 3  F ) to determine the moment 
about the axis. In most three-dimensional problems the most convenient way to 
compute the mixed triple product is by using a determinant. 

 As noted in the text, when L is directed along one of the coordinate axes,  M OL  is 
equal to the scalar component of  M O  along that axis.  

(continued)
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102

  4.    Determining the perpendicular distance between two lines.  You should 
remember that it is the perpendicular component F 2  of the force  F  that tends to 
make a body rotate about a given axis  OL  (Fig. 3.28). It then follows that

  MOL 5 F2 d  

   where  M  OL  is the moment of  F  about axis  OL  and  d  is the perpendicular distance 
between  OL  and the line of action of  F . This last equation gives us a simple tech-
nique for determining  d . First assume that a force  F  of known magnitude  F  lies 
along one of the given lines and that the unit vector L lies along the other line. 
Next compute the moment  M  OL  of the force  F  about the second line using the 
method discussed above. The magnitude of the parallel component,  F  1 , of  F  is 
obtained using the scalar product:

  F1 5 F ? L  

 The value of  F 2 is then determined from

    F2 5 2F2 2 F2
1

  Finally, substitute the values of  M OL and  F 2 into the equation  M OL 5  F 2 d and solve 
for d.   

You should now realize that the calculation of the perpendicular distance in part  d  
of Sample Prob. 3.5 was simplified by  P  being perpendicular to the diagonal  AG. 
In general, the two given lines will not be perpendicular, so that the technique 
just outlined will have to be used when determining the perpendicular distance 
between them.  
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PROBLEMS  

  3.35   Given the vectors  P  5 3 i  2 j  1 2 k , Q  5 4 i  1 5 j  2 3 k , and  
S  5 22 i  1 3 j  2 k , compute the scalar products  P ? Q , P ? S , 
and  Q ? S . 

 3.36   Form the scalar products  B ? C  and  B9 ? C , where  B  5  B9, and 
use the results obtained to prove the identity

   cos a cos b 5 1
2 cos (a 1 b) 1 1

2  cos  (a 2 b).  

 3.37   Section  AB of a pipeline lies in the  yz plane and forms an angle 
of 37° with the  z  axis. Branch lines  CD and  EF join  AB as shown. 
Determine the angle formed by pipes  AB and  CD. 

 3.38   Section  AB of a pipeline lies in the  yz plane and forms an angle 
of 37° with the  z  axis. Branch lines  CD and  EF join  AB as shown. 
Determine the angle formed by pipes  AB and  EF. 

 3.39   Consider the volleyball net shown. Determine the angle formed by 
guy wires  AB and  AC. 

y

x

C

B

B'

a

b
b

 Fig. P3.36   

x

y

z

A

B

C
D

2 ft

1 ft

8 ft

6.5 ft

4 ft

6 ft

 Fig. P3.39    and  P3.40   

 3.40   Consider the volleyball net shown. Determine the angle formed by 
guy wires  AC and  AD. 

 3.41   Knowing that the tension in cable  AC is 1260 N, determine ( a ) the 
angle between cable  AC and the boom  AB, ( b ) the  projection on 
AB of the force exerted by cable  AC at point  A . 

 3.42   Knowing that the tension in cable  AD is 405 N, determine ( a ) the 
angle between cable  AD and the boom  AB, ( b ) the  projection on 
 AB of the force exerted by cable  AD at point  A . 

x
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z

A

B

E

C

D

40°

55°

32°

37°

45°

F

 Fig. P3.37    and  P3.38   
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 Fig. P3.41    and P3.42
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104 Rigid Bodies: Equivalent Systems of Forces  3.43   Slider  P  can move along rod  OA. An elastic cord  PC is attached 
to the slider and to the vertical member  BC. Knowing that the 
distance from  O  to  P  is 6 in. and that the tension in the cord is 
3 lb, determine ( a ) the angle between the elastic cord and the rod 
 OA, ( b ) the projection on  OA of the force exerted by cord  PC at 
point  P . 

 3.44   Slider  P  can move along rod  OA. An elastic cord  PC is attached to 
the slider and to the vertical member  BC. Determine the distance 
from  O  to  P  for which cord  PC and rod  OA are perpendicular. 

 3.45   Determine the volume of the parallelepiped of Fig. 3.25 when 
( a ) P  5 4 i  2 3 j  1 2 k , Q  5 22 i  2 5 j  1  k , and  S  5 7 i  1  
j  2  k , ( b ) P  5 5 i  2  j  1 6 k , Q  5 2 i  1 3 j  1  k , and  S  5 23 i  2 
2 j  1 4 k . 

 3.46   Given the vectors  P  5 4 i  2 2 j  1 3 k , Q  5 2 i  1 4 j  2 5 k , and  
S  5  S x  i 2  j  1 2 k , determine the value of  S x  for which the three 
vectors are coplanar.  

 3.47   The 0.61 3 1.00-m lid  ABCD  of a storage bin is hinged along side 
 AB and is held open by looping cord  DEC  over a frictionless hook 
at  E . If the tension in the cord is 66 N, determine the moment 
about each of the coordinate axes of the force exerted by the cord 
at  D . 

 Fig. P3.43    and  P3.44   

x

y

z

A

B

C
P

O

12 in.

6 in.

9 in.

15 in.

12 in.

12 in.

 3.48   The 0.61 3 1.00-m lid  ABCD  of a storage bin is hinged along side 
 AB and is held open by looping cord  DEC  over a frictionless hook 
at  E . If the tension in the cord is 66 N, determine the moment 
about each of the coordinate axes of the force exerted by the cord 
at  C . 

x

y

z

0.11 m

0.3 m

0.7 m

0.71 m

A

E

B
C

D

 Fig. P3.4  7 and  P3.48   
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105Problems 3.49   To lift a heavy crate, a man uses a block and tackle attached to the 
bottom of an I-beam at hook  B . Knowing that the moments about 
the  y  and the  z  axes of the force exerted at  B  by portion  AB of 
the rope are, respectively, 120 N ? m and –460 N ? m, determine 
the distance  a . 

 3.50   To lift a heavy crate, a man uses a block and tackle attached to 
the bottom of an I-beam at hook  B . Knowing that the man applies 
a 195-N force to end A of the rope and that the moment of that 
force about the  y  axis is 132 N ? m, determine the  distance  a . 

 3.51   A small boat hangs from two davits, one of which is shown in 
the figure. It is known that the moment about the  z  axis of the 
resultant force  R  A exerted on the davit at  A  must not exceed 
279 lb ? ft in absolute value. Determine the largest allowable ten-
sion in line  ABAD  when  x  5 6 ft. 

 3.52   For the davit of Prob. 3.51, determine the largest allowable dis-
tance  x  when the tension in line  ABAD  is 60 lb. 

 3.53   To loosen a frozen valve, a force  F  of magnitude 70 lb is applied to 
the handle of the valve. Knowing that u 5 25°,  M x  5 261 lb ? ft, 
and  M z  5 243 lb ? ft, determine f and  d . 

3 ft

x

y

z

A

C

D7.75 ft

x

B

 Fig. P3.51   
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z

B
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4 in.
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f

 Fig. P3.53    and P3.54   

x
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A

B

C

D

O

a

1.6 m
2.2 m

4.8 m

 Fig. P3.49    and P3.50   

 3.54   When a force  F  is applied to the handle of the valve shown, its 
moments about the  x  and  z  axes are, respectively,  M x  5 277 lb ? ft 
and  M z  5 281 lb ? ft. For  d  5 27 in., determine the moment  M y  
of  F  about the  y  axis. 
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106 Rigid Bodies: Equivalent Systems of Forces  3.55   The frame  ACD  is hinged at  A  and  D  and is supported by a 
cable that passes through a ring at  B  and is attached to hooks at 
 G  and  H . Knowing that the tension in the cable is 450 N, deter-
mine the moment about the diagonal  AD of the force exerted on 
the frame by portion  BH of the cable. 

 3.56   In Prob. 3.55, determine the moment about the diagonal  AD of 
the force exerted on the frame by portion  BG of the cable. 

 3.57   The triangular plate  ABC  is supported by ball-and-socket joints 
at  B  and  D  and is held in the position shown by cables  AE and 
 CF. If the force exerted by cable  AE at  A  is 55 N, determine the 
moment of that force about the line joining points  D  and  B . 

y

z

x

A

E
B

D
C

0.6 m

0.6 m

0.6 m

0.9 m

0.9 m

0.3 m

0.4 m

0.4 m

0.7 m

0.2 m

0.35 m

F

 Fig. P3.57    and P3.58   
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 Fig. P3.59    and P3.60   

x
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z

A

B
C

D

G

O

P

H

0.35 m

0.875 m

0.75 m

0.75 m

0.925 m

0.5 m
0.5 m

 Fig. P3.55   

 3.58   The triangular plate  ABC  is supported by ball-and-socket joints 
at  B  and  D  and is held in the position shown by cables  AE and 
 CF. If the force exerted by cable  CF at  C  is 33 N, determine the 
moment of that force about the line joining points  D  and  B . 

 3.59   A regular tetrahedron has six edges of length  a . A force  P  is 
directed as shown along edge BC. Determine the moment of  P  
about edge  OA. 

 3.60   A regular tetrahedron has six edges of length  a . ( a ) Show that two 
opposite edges, such as  OA and  BC, are perpendicular to each other. 
( b ) Use this property and the result obtained in Prob. 3.59 to deter-
mine the perpendicular distance between edges  OA and  BC. 
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107Problems 3.61   A sign erected on uneven ground is guyed by cables  EF and  EG. If 
the force exerted by cable  EF at  E  is 46 lb, determine the moment 
of that force about the line joining points  A  and  D .    

x

y

z

A

B

C

D

E

F

G

45 in.

47 in.

8 in.
17 in.

36 in.

12 in.
14 in.

48 in.

21 in.

57 in.

96 in.

 Fig. P3.61 and  P3.62   

 3.62   A sign erected on uneven ground is guyed by cables  EF and  EG. If 
the force exerted by cable  EG at  E  is 54 lb, determine the moment 
of that force about the line joining points  A  and  D . 

 3.63   Two forces  F 1 and  F 2 in space have the same magnitude  F . Prove 
that the moment of  F 1 about the line of action of  F 2 is equal to 
the moment of  F 2 about the line of action of  F 1. 

 *3.64   In Prob. 3.55, determine the perpendicular distance between por-
tion  BH of the cable and the diagonal  AD. 

 *3.65   In Prob. 3.56, determine the perpendicular distance between por-
tion  BG of the cable and the diagonal  AD. 

 *3.66   In Prob. 3.57, determine the perpendicular distance between 
cable  AE and the line joining points  D  and  B . 

 *3.67   In Prob. 3.58, determine the perpendicular distance between 
cable  CF and the line joining points  D  and  B . 

 *3.68   In Prob. 3.61, determine the perpendicular distance between 
cable  EF and the line joining points  A  and  D . 

 *3.69   In Prob. 3.62, determine the perpendicular distance between 
cable  EG and the line joining points  A  and  D .  
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108 Rigid Bodies: Equivalent Systems of Forces  3.12   MOMENT OF A COUPLE  
  Two forces   F   and  2 F   having the same magnitude, parallel lines of 
action, and opposite sense are said to form a couple  ( Fig. 3.30 ). 
Clearly, the sum of the components of the two forces in any direction 
is zero. The sum of the moments of the two forces about a given 
point, however, is not zero. While the two forces will not translate 
the body on which they act, they will tend to make it rotate. 
 Denoting by  r   A   and  r   B  , respectively, the position vectors of the 
points of application of  F  and 2 F  ( Fig. 3.31 ), we find that the sum 
of the moments of the two forces about  O  is

  rA 3 F 1 rB 3 (2F) 5 (rA 2 rB) 3 F  

Setting  r  A 2  r  B 5 r , where  r  is the vector joining the points of 
application of the two forces, we conclude that the sum of the 
moments of  F  and 2 F  about  O  is represented by the vector

   M 5 r 3 F (3.47)   

The vector  M  is called the  moment of the couple ; it is a vector 
perpendicular to the plane containing the two forces, and its mag-
nitude is

   M 5 rF sin u 5 Fd (3.48)   

 where  d  is the perpendicular distance between the lines of action of 
 F  and 2F. The sense of  M  is defined by the right-hand rule. 
    Since the vector  r  in (3.47) is independent of the choice of the 
origin  O  of the coordinate axes, we note that the same result would 
have been obtained if the moments of  F  and 2 F  had been computed 
about a different point  O 9. Thus, the moment  M  of a couple is a  free 
vector  (Sec. 2.3) which can be applied at any point ( Fig. 3.32 ). 
   From the definition of the moment of a couple, it also follows 
that two couples, one consisting of the forces F 1  and 2F 1 , the other 
of the forces F 2  and 2F 2  ( Fig. 3.33 ), will have equal moments if

   F1d1 5 F2d2 (3.49)   

and if the two couples lie in parallel planes (or in the same plane) 
and have the same sense. 

–F

F

 Fig. 3.30    
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Fig. 3.31   
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Fig. 3.32   

– F1

F1

d1

– F2

F2
d2

 Fig. 3.33   

Photo 3.1 The parallel upward and downward 
forces of equal magnitude exerted on the arms of 
the lug nut wrench are an example of a couple.
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109 3.13   EQUIVALENT COUPLES  
 Figure 3.34 shows three couples which act successively on the same 
rectangular box. As seen in the preceding section, the only motion a 
couple can impart to a rigid body is a rotation. Since each of the 
three couples shown has the same moment  M  (same direction and 
same magnitude  M  5 120 lb ? in.), we can expect the three couples 
to have the same effect on the box. 

  As reasonable as this conclusion appears, we should not accept 
it hastily. While intuitive feeling is of great help in the study of mechan-
ics, it should not be accepted as a substitute for logical reasoning. 
Before stating that two systems (or groups) of forces have the same 
effect on a rigid body, we should prove that fact on the basis of the 
experimental evidence introduced so far. This evidence consists of 
the parallelogram law for the addition of two forces (Sec. 2.2) and 
the principle of transmissibility (Sec. 3.3). Therefore, we will state 
that  two systems of forces are equivalent  (i.e., they have the same 
effect on a rigid body)  if we can transform one of them into the other 
by means of one or several of the following operations : (1) replacing 
two forces acting on the same particle by their resultant; (2) resolving 
a force into two components; (3) canceling two equal and opposite 
forces acting on the same particle; (4) attaching to the same particle 
two equal and opposite forces; (5) moving a force along its line of 
action. Each of these operations is easily justified on the basis of the 
parallelogram law or the principle of transmissibility. 
    Let us now prove that  two couples having the same moment   M   
are equivalent . First consider two couples contained in the same 
plane, and assume that this plane coincides with the plane of the 
figure ( Fig. 3.35 ). The first couple consists of the forces F 1  and 2F 1  
of magnitude F 1 , which are located at a distance  d  1  from each other 
(Fig. 3.35 a ), and the second couple consists of the forces F 2  and 2F 2  
of magnitude  F  2 , which are located at a distance  d  2  from each other 
(Fig. 3.35 d ). Since the two couples have the same moment M, which 
is perpendicular to the plane of the figure, they must have the same 
sense (assumed here to be counterclockwise), and the relation

   F1d1 5 F2d2 (3.49)   

 must be satisfied. To prove that they are equivalent, we shall show 
that the first couple can be transformed into the second by means 
of the operations listed above. 

3.13   Equivalent Couples  
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 Fig. 3.34    
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110 Rigid Bodies: Equivalent Systems of Forces
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 Fig. 3.35     Denoting by  A, B, C, and D  the points of intersection of the 
lines of action of the two couples, we first slide the forces F 1  and 2F 1  
until they are attached, respectively, at  A  and  B , as shown in Fig. 3.35 b . 
The force F 1  is then resolved into a component  P  along line  AB  and 
a component  Q  along  AC  (Fig. 3.35 c ); similarly, the force 2F 1  is 
resolved into 2 P  along  AB  and 2 Q  along  BD . The forces  P  and 2 P  
have the same magnitude, the same line of action, and opposite sense; 
they can be moved along their common line of action until they are 
applied at the same point and may then be canceled. Thus the couple 
formed by F 1  and 2F 1  reduces to a couple consisting of  Q  and 2Q. 
    We will now show that the forces  Q  and 2 Q  are respectively 
equal to the forces 2F 2  and F 2 . The moment of the couple formed 
by  Q  and 2 Q  can be obtained by computing the moment of  Q  about 
 B ; similarly, the moment of the couple formed by F 1  and 2F 1  is the 
moment of F 1  about  B.  But, by Varignon’s theorem, the moment of 
F 1  is equal to the sum of the moments of its components  P  and Q. 
Since the moment of  P  about  B  is zero, the moment of the couple 
formed by  Q  and 2 Q  must be equal to the moment of the couple 
formed by F 1  and 2F 1 . Recalling (3.49), we write

 Qd2 5 F1d1 5 F2d2  and  Q 5 F2   

  Thus the forces  Q  and 2 Q  are respectively equal to the forces 2F 2  
and F 2 , and the couple of Fig. 3.35 a is equivalent to the couple of 
Fig. 3.35 d .
    Next consider two couples contained in parallel planes  P  1  and 
 P  2 ; we will prove that they are equivalent if they have the same 
moment. In view of the foregoing, we can assume that the couples 
consist of forces of the same magnitude  F  acting along parallel lines 
( Fig. 3.36  a  and  d ). We propose to show that the couple contained 
in plane  P  1  can be transformed into the couple contained in plane 
 P  2  by means of the standard operations listed above. 
   Let us consider the two planes defined respectively by the lines of 
action of F 1  and 2F 2  and by those of 2F 1  and F 2  (Fig. 3.36b ). At 
a point on their line of intersection we attach two forces  F  3  and 2 F  3 , 
respectively equal to  F  1  and 2F  1 . The couple formed by  F  1  and 2 F  3  
can be replaced by a couple consisting of  F  3  and 2 F  2  (Fig. 3.36 c ), 
since both couples clearly have the same moment and are contained 
in the same plane. Similarly, the couple formed by 2 F  1  and  F  3  can 
be replaced by a couple consisting of 2 F  3  and  F  2 . Canceling the two 
equal and opposite forces  F  3  and 2 F  3 , we obtain the desired couple 
in plane  P  2  (Fig. 3.36 d ). Thus, we conclude that two couples having 
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 Fig. 3.36   
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111the same moment  M  are equivalent, whether they are contained in 
the same plane or in parallel planes. 
  The property we have just established is very important for the 
correct understanding of the mechanics of rigid bodies. It indicates 
that when a couple acts on a rigid body, it does not matter where 
the two forces forming the couple act or what magnitude and direc-
tion they have. The only thing which counts is the  moment  of the 
couple (magnitude and direction). Couples with the same moment 
will have the same effect on the rigid body.    

 3.14   ADDITION OF COUPLES  
 Consider two intersecting planes  P  1  and  P  2  and two couples acting 
respectively in  P  1  and  P  2 . We can, without any loss of generality, 
assume that the couple in  P  1  consists of two forces  F  1  and 2 F  1  per-
pendicular to the line of intersection of the two planes and acting 
respectively at  A  and  B  ( Fig. 3.37  a ). Similarly, we assume that the 
couple in  P  2  consists of two forces  F  2  and 2 F  2  perpendicular to  AB  
and acting respectively at  A  and  B . It is clear that the resultant  R  of 
 F  1  and  F  2  and the resultant 2 R  of 2 F  1  and  2    F  2  form a couple. 
Denoting by  r  the vector joining  B  to  A  and recalling the definition 
of the moment of a couple (Sec. 3.12), we express the moment  M  
of the resulting couple as follows:

  M 5 r 3 R 5 r 3 (F1 1 F2)  

and, by Varignon’s theorem,

  M 5 r 3 F1 1 r 3 F2   

But the first term in the expression obtained represents the moment 
 M  1  of the couple in  P  1 , and the second term represents the moment 
 M  2  of the couple in  P  2 . We have

   M 5 M1 1 M2 (3.50)   

 and we conclude that the sum of two couples of moments  M  1  and 
 M  2  is a couple of moment  M  equal to the vector sum of  M  1  and  M  2  
(Fig. 3.37 b )    .

 3.15   COUPLES CAN BE REPRESENTED BY VECTORS  
 As we saw in Sec. 3.13, couples which have the same moment, 
whether they act in the same plane or in parallel planes, are equiva-
lent. There is therefore no need to draw the actual forces forming a 
given couple in order to define its effect on a rigid body ( Fig. 3.38  a ). 
It is sufficient to draw an arrow equal in magnitude and direction to 
the moment  M  of the couple (Fig. 3.38 b ). On the other hand, we 
saw in Sec. 3.14 that the sum of two couples is itself a couple and 
that the moment  M  of the resultant couple can be obtained by form-
ing the vector sum of the moments  M  1  and  M  2  of the given couples. 
Thus, couples obey the law of addition of vectors, and the arrow used 
in Fig. 3.38 b to represent the couple defined in Fig. 3.38 a  can truly 
be considered a vector. 

Fig. 3.37   
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3.15   Couples Can Be Represented by Vectors  
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112 Rigid Bodies: Equivalent Systems of Forces    The vector representing a couple is called a  couple vector . Note 
that, in Fig. 3.38, a red arrow is used to distinguish the couple vector, 
 which represents the couple itself , from the  moment  of the couple, 
which was represented by a green arrow in earlier figures. Also note 
that the symbol   l is added to this red arrow to avoid any confusion 
with vectors representing forces. A couple vector, like the moment 
of a couple, is a free vector. Its point of application, therefore, can 
be chosen at the origin of the system of coordinates, if so desired 
(Fig. 3.38 c ). Furthermore, the couple vector  M  can be resolved into 
component vectors  M  x ,  M  y , and  M  z , which are directed along the 
coordinate axes (Fig. 3.38 d ). These component vectors represent cou-
ples acting, respectively, in the  yz, zx , and  xy  planes. 

y

x

z

–F

F

(a) (b) (c) (d)

d

O

y

x

z

O

y

x

z

O
x

O

M

M

My

MxMz

(M = Fd) 
y

z

= = =

 Fig. 3.38   

 3.16    RESOLUTION OF A GIVEN FORCE INTO A 
FORCE AT O AND A COUPLE  

 Consider a force  F  acting on a rigid body at a point  A  defined by 
the position vector  r  ( Fig. 3.39  a ). Suppose that for some reason we 
would rather have the force act at point  O . While we can move  F  
along its line of action (principle of transmissibility), we cannot move 
it to a point  O  which does not lie on the original line of action with-
out modifying the action of  F  on the rigid body. 

 We can, however, attach two forces at point  O , one equal to  F  
and the other equal to 2 F , without modifying the action of the orig-
inal force on the rigid body (Fig. 3.39 b ). As a result of this transforma-
tion, a force  F  is now applied at  O ; the other two forces form a 
couple of moment  M  O  5  r  3  F . Thus,  any force   F   acting on a rigid 
body can be moved to an arbitrary point O provided that a couple 
is added whose moment is equal to the moment of   F   about O.  The 

 Fig. 3.39   

–F

F

(a) (b) (c)

==O

MO

r

F
F

O r

A
A

F

O

A
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113couple tends to impart to the rigid body the same rotational motion 
about  O  that the force  F  tended to produce before it was transferred 
to  O.  The couple is represented by a couple vector  M   O     perpendicular 
to the plane containing  r  and  F . Since  M   O    is a free vector, it may 
be applied anywhere; for convenience, however, the couple vector is 
usually attached at  O , together with  F , and the combination obtained 
is referred to as a  force-couple system  (Fig. 3.39 c ). 
 If the force  F  had been moved from  A  to a different point  O 9 
( Fig. 3.40  a  and  c ), the moment  M  O 9 5  r 9 3  F  of  F  about  O 9 should 
have been computed, and a new force-couple system, consisting of 
 F  and of the couple vector  M  O9, would have been attached at  O 9. 
The relation existing between the moments of  F  about  O  and  O 9 is 
obtained by writing

  MO9 5 r9 3 F 5 (r 1 s) 3 F 5 r 3 F 1 s 3 F  

 MO9 5 MO 1 s 3 F (3.51)   

where s is the vector joining  O 9 to  O . Thus, the moment  M  O9 of  F  
about  O 9 is obtained by adding to the moment  M  O of  F  about  O  the 
vector product s 3  F  representing the moment about  O 9 of the force 
 F  applied at  O . 

 Fig. 3.40   

OO

r A

O'

s
r'

F

(a)

MO

r
A F

(b) (c)

MO'

O'

s
r' = = O

r
A

O'

s
r'

F

 This result could also have been established by observing that, 
in order to transfer to  O 9 the force-couple system attached at  O  
(Fig. 3.40 b  and  c ), the couple vector  M  O can be freely moved to  O 9; 
to move the force  F  from  O  to  O 9, however, it is necessary to add 
to  F  a couple vector whose moment is equal to the moment about 
 O 9 of the force  F  applied at  O . Thus, the couple vector  M  O9 must 
be the sum of  M  O and the vector s 3  F . 
   As noted above, the force-couple system obtained by transferring 
a force  F  from a point  A  to a point  O  consists of  F  and a couple vector 
 M  O   perpendicular to  F . Conversely, any force-couple system consisting 
of a force  F  and a couple vector  M  O   which are  mutually perpendicular  
can be replaced by a single equivalent force. This is done by moving 
the force  F  in the plane perpendicular to  M  O   until its moment about 
 O  is equal to the moment of the couple to be eliminated.  

3.16   Resolution of a Given Force into a 
Force at O and a Couple

Photo 3.2 The force exerted by each hand on 
the wrench could be replaced with an equivalent 
force-couple system acting on the nut.
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 SOLUTION 

 Our computations will be simplified if we attach two equal and opposite 
20-lb forces at  A . This enables us to replace the original 20-lb-force couple 
by two new 20-lb-force couples, one of which lies in the  zx  plane and the 
other in a plane parallel to the  xy  plane. The three couples shown in the 
adjoining sketch can be represented by three couple vectors  M   x  ,  M   y  , and 
 M   z   directed along the coordinate axes. The corresponding moments are

   Mx 5 2(30 lb)(18 in.) 5 2540 lb ? in.  
 My 5 1(20 lb)(12 in.) 5 1240 lb ? in.  
  Mz 5 1(20 lb)(9 in.) 5 1180 lb ? in.   

These three moments represent the components of the single couple  M  
equivalent to the two given couples. We write

  M 5 2(540 lb ? in.)i 1 (240 lb ? in.)j 1 (180 lb ? in.)k ◀    

Alternative Solution.   The components of the equivalent single couple  M  
can also be obtained by computing the sum of the moments of the four 
given forces about an arbitrary point. Selecting point  D , we write

  M 5 MD 5 (18 in.)j 3 (230 lb)k 1 [(9 in.)j 2 (12 in.)k] 3 (220 lb)i   

and, after computing the various cross products,

  M 5 2(540 lb ? in.)i 1 (240 lb ? in.)j 1 (180 lb ? in.)k    ◀z

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb

20 lb

9 in.

9 in.

   SAMPLE PROBLEM 3.6 

 Determine the components of the single couple equivalent to the two 
 couples shown.      

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb
z

9 in.

9 in.

20 lb

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb

20 lb

20 lb
20 lb

z

9 in.

9 in.
y

x

z

My = + (240 lb•in.) j

Mx = – (540 lb•in.) i

Mz = + (180 lb•in.) k
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        SAMPLE PROBLEM 3.7 

 Replace the couple and force shown by an equivalent single force applied 
to the lever. Determine the distance from the shaft to the point of applica-
tion of this equivalent force.      

=
C

– (400 N) j

– (400 N) j

– (84 N•m) k

O O

60°

=
B

150 mm

O

F = – (400 N) j

– (400 N) j

– (24 N•m) k
– (24 N•m) k – (60 N•m) k

O

260 mm

B

400 N

200 N

200 N

150 mm

60 mm
O

60°

300 mm

=
C

– (400 N) j
– (400 N) j

– (24 N•m) k
B

O O

B

60°

=
– (400 N) j – (400 N) j

– (24 N•m) k

– (24 N•m) k

B

150 mm

O

B

O

 SOLUTION 

 First the given force and couple are replaced by an equivalent force-couple 
system at  O . We move the force  F  5 2(400 N) j  to  O  and at the same time 
add a couple of moment  M   O   equal to the moment about  O  of the force in 
its original position. 

  MO 5 OB
¡

3 F 5 [ (0.150 m)i 1 (0.260 m)j] 3 (2400 N)j  
   5 2(60 N ? m)k

  This couple is added to the couple of moment 2(24 N · m) k  formed by the 
two 200-N forces, and a couple of moment 2(84 N · m) k  is obtained. This 
last couple can be eliminated by applying  F  at a point  C  chosen in such a 
way that

   2(84 N ? m)k 5 OC
¡

3 F   
 5 [ (OC) cos 60°i 1 (OC) sin 60°j] 3 (2400 N)j  
 5 2(OC)cos 60°(400 N)k    

   We conclude that

  (OC) cos 608 5 0.210 m 5 210 mm  OC 5 420 mm     ◀

 Alternative Solution.   Since the effect of a couple does not depend on its 
location, the couple of moment 2(24 N ? m) k  can be moved to  B ; we thus 
obtain a force-couple system at  B . The couple can now be eliminated by 
applying  F  at a point  C  chosen in such a way that

   2(24 N ? m)k 5 BC
¡

3 F   
 5 2(BC) cos 60°(400 N)k   

   We conclude that

  (BC) cos 608 5 0.060 m 5 60 mm  BC 5 120 mm  
OC 5 OB 1 BC 5 300 mm 1 120 mm  OC 5 420 mm    ◀         

115
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116

 In this lesson we discussed the properties of  couples . To solve the problems 
which follow, you will need to remember that the net effect of a couple is to 

produce a moment  M . Since this moment is independent of the point about which 
it is computed,  M  is a  free vector  and thus remains unchanged as it is moved from 
point to point. Also, two couples are  equivalent  (that is, they have the same effect 
on a given rigid body) if they produce the same moment. 

   When determining the moment of a couple, all previous techniques for computing 
moments apply. Also, since the moment of a couple is a free vector, it should be 
computed relative to the most convenient point. 

   Because the only effect of a couple is to produce a moment, it is possible to rep-
resent a couple with a vector, the  couple vector , which is equal to the moment of 
the couple. The couple vector is a free vector and will be represented by a special 
symbol, , to distinguish it from force vectors. 

   In solving the problems in this lesson, you will be called upon to perform the fol-
lowing operations:  

  1.     Adding two or more couples . This results in a new couple, the moment of 
which is obtained by adding vectorially the moments of the given couples [Sample 
Prob. 3.6].  

  2.     Replacing a force with an equivalent force-couple system at a specified 
point . As explained in Sec. 3.16, the force of the force-couple system is equal to 
the original force, while the required couple vector is equal to the moment of the 
original force about the given point. In addition, it is important to observe that 
the force and the couple vector are perpendicular to each other. Conversely, it 
follows that a force-couple system can be reduced to a single force only if the 
force and couple vector are mutually perpendicular (see the next paragraph).  

  3.     Replacing a force-couple system (with   F   perpendicular to   M )  with a single 
equivalent force . Note that the requirement that  F  and  M  be mutually perpen-
dicular will be satisfied in all two-dimensional problems. The single equivalent 
force is equal to  F  and is applied in such a way that its moment about the original 
point of application is equal to  M  [Sample Prob. 3.7].    

 SOLVING PROBLEMS
ON YOUR OWN  
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117117

  3.70   Two parallel 60-N forces are applied to a lever as shown. Deter-
mine the moment of the couple formed by the two forces ( a ) by 
resolving each force into horizontal and vertical components and 
adding the moments of the two resulting couples, ( b ) by using the 
perpendicular distance between the two forces, ( c ) by summing the 
moments of the two forces about point  A . 

 PROBLEMS  

A

B

C

60 N

60 N

20°

55°

360 mm

520 mm

 Fig. P3.70   

A

B

C

D

160 mm
M

160 mm100 mm

240 mm

140 mm

 Fig. P3.72

A

D

B

C

16 in.

d

21 lb

12 lb
12 lb

21 lb

a

 Fig. P3.71

 3.71   A plate in the shape of a parallelogram is acted upon by two cou-
ples. Determine ( a ) the moment of the couple formed by the two 
21-lb forces, ( b ) the perpendicular distance between the 12-lb forces 
if the resultant of the two couples is zero, ( c ) the value of a if the 
resultant couple is 72 lb ? in. clockwise and  d  is 42 in. 

  3.72   A couple  M  of magnitude 18 N ? m is applied to the handle of 
a screwdriver to tighten a screw into a block of wood. Deter-
mine the magnitudes of the two smallest horizontal forces that 
are equivalent to  M  if they are applied ( a ) at corners  A  and  D , 
( b ) at corners  B  and  C , ( c ) anywhere on the block. 
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118 Rigid Bodies: Equivalent Systems of Forces   3.73   Four 1-in.-diameter pegs are attached to a board as shown. Two 
strings are passed around the pegs and pulled with the forces 
indicated. ( a ) Determine the resultant couple acting on the board. 
( b ) If only one string is used, around which pegs should it pass and 
in what directions should it be pulled to create the same couple 
with the minimum tension in the string? ( c ) What is the value of 
that minimum tension? 

A B

C D
35 lb

35 lb

25 lb

25 lb

6 in.

8 in.

 Fig. P3.73    and P3.74   

z 6 lb  ft•

8 lb  ft•

x

y

 Fig. P3.75   

x

y

z

A

B

C

D

E

FG

–P

P

34 N

34 N

18 N

18 N

160 mm

150 mm

150 mm170 mm

 Fig. P3.76    and P3.79   

  3.74   Four pegs of the same diameter are attached to a board as 
shown. Two strings are passed around the pegs and pulled with 
the forces indicated. Determine the diameter of the pegs know-
ing that the resultant couple applied to the board is 485 lb ? in. 
counterclockwise. 

  3.75   The shafts of an angle drive are acted upon by the two couples 
shown. Replace the two couples with a single equivalent couple, 
specifying its magnitude and the direction of its axis. 

  3.76 and 3.77   If  P  5 0, replace the two remaining couples with a 
single equivalent couple, specifying its magnitude and the direc-
tion of its axis. 

x

y

z

B

C
D

A

E

–P
P

16 lb

16 lb

40 lb

40 lb

15 in.

15 in.

10 in.

10 in.

10 in.

 Fig. P3.77    and P3.78 

  3.78   If  P  5 20 lb, replace the three couples with a single equivalent 
couple, specifying its magnitude and the direction of its axis. 

  3.79   If  P  5 20 N, replace the three couples with a single equivalent 
couple, specifying its magnitude and the direction of its axis. 
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119Problems  3.80   Shafts  A  and  B  connect the gear box to the wheel assemblies of 
a tractor, and shaft  C  connects it to the engine. Shafts  A  and  B  
lie in the vertical  yz  plane, while shaft  C  is directed along the 
 x  axis. Replace the couples applied to the shafts with a single 
equivalent couple, specifying its magnitude and the direction of 
its axis. 

  3.81   The tension in the cable attached to the end  C  of an adjustable 
boom  ABC  is 560 lb. Replace the force exerted by the cable at  C  
with an equivalent force-couple system ( a ) at  A , ( b ) at  B . 

y

B

A

C

x
z

1200 N•m

1120 N•m

1600 N•m

20°

20°

Fig. P3.80   

10 ft
20°

30°
A

B

C

T

8 ft

 Fig. P3.81

  3.82   A 160-lb force  P  is applied at point  A  of a structural member. 
Replace  P  with ( a ) an equivalent force-couple system at  C , ( b ) an 
equivalent system consisting of a vertical force at  B  and a second 
force at  D . 

  3.83   The 80-N horizontal force  P  acts on a bell crank as shown. 
( a ) Replace  P  with an equivalent force-couple system at  B . ( b ) Find 
the two vertical forces at  C  and  D  that are equivalent to the couple 
found in part  a . 

A

B C

D

P

60°

1.25 ft

1.5 ft

2 ft 4 ft

 Fig. P3.82

B

A
P

C D

50 mm

100 mm 40 mm

 Fig. P3.83   

A B C

D
60°

6.7 m 4 m

 Fig. P3.84

  3.84   A dirigible is tethered by a cable attached to its cabin at  B . If the 
tension in the cable is 1040 N, replace the force exerted by the 
cable at  B  with an equivalent system formed by two parallel forces 
applied at  A  and  C . 
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120 Rigid Bodies: Equivalent Systems of Forces   3.85   The force  P  has a magnitude of 250 N and is applied at the end  C  
of a 500-mm rod  AC  attached to a bracket at  A  and  B . Assuming 
a 5 30° and b 5 60°, replace  P  with ( a ) an equivalent force-couple 
system at  B , ( b ) an equivalent system formed by two parallel forces 
applied at  A  and  B . 

  3.86   Solve Prob. 3.85, assuming a 5 b 5 25°. 

  3.87   A force and a couple are applied as shown to the end of a canti-
lever beam. ( a ) Replace this system with a single force  F  applied 
at point  C , and determine the distance  d  from  C  to a line drawn 
through points  D  and  E . ( b ) Solve part  a  if the directions of the 
two 360-N forces are reversed. 

  3.88   The shearing forces exerted on the cross section of a steel channel 
can be represented by a 900-N vertical force and two 250-N hori-
zontal forces as shown. Replace this force and couple with a single 
force  F  applied at point  C , and determine the distance  x  from  C  to 
line  BD . (Point  C  is defined as the  shear center  of the section.) 

A

B

C

200 mm

300 mm
P

α

β

 Fig. P3.85   

450 mm

150 mm

360 N

360 N

B

d
D

600 N

E

C

A

y

xz

 Fig. P3.87   

A

D

B

C

E

900 N

250 N

250 N

120 mm

90 mm

90 mm

x

 Fig. P3.88   

A

B

C
3.2 in.

2.8 in.

2.9 lb

2.65 lb 25°

25°

x

y

z

D

 Fig. P3.89   

20 lb

20 lb

30°
20°20°

48 lb

A

C

B
40 in.

30 in.

55°

 Fig. P3.90   

  3.89   While tapping a hole, a machinist applies the horizontal forces 
shown to the handle of the tap wrench. Show that these forces 
are equivalent to a single force, and specify, if possible, the point 
of application of the single force on the handle. 

  3.90   Three control rods attached to a lever  ABC  exert on it the forces 
shown. ( a ) Replace the three forces with an equivalent force-couple 
system at  B . ( b ) Determine the single force that is equivalent to 
the force-couple system obtained in part  a , and specify its point of 
application on the lever. 
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121Problems  3.91   A hexagonal plate is acted upon by the force  P  and the couple 
shown. Determine the magnitude and the direction of the smallest 
force  P  for which this system can be replaced with a single force 
at  E . 

  3.92   A rectangular plate is acted upon by the force and couple shown. 
This system is to be replaced with a single equivalent force. ( a ) For 
a 5 40°, specify the magnitude and the line of action of the 
equivalent force. ( b ) Specify the value of a if the line of action of 
the equivalent force is to intersect line  CD  300 mm to the right 
of  D . 

 Fig. P3.91   

a

A

B C

D

EF

300 N

300 N

P

0.2 m

  3.93   An eccentric, compressive 1220-N force  P  is applied to the end 
of a cantilever beam. Replace  P  with an equivalent force-couple 
system at  G . 

  3.94   To keep a door closed, a wooden stick is wedged between the floor 
and the doorknob. The stick exerts at  B  a 175-N force directed 
along line  AB . Replace that force with an equivalent force-couple 
system at  C . 

a

a

A
B

CD

15 N

15 N

48 N

240 mm

400 mm

 Fig. P3.92   

y

60 mm

100 mm

x
P

G
A

z

 Fig. P3.93   

z

990 mm

594 mm

100 mm

O

A

B

C

y

750 mm

67 mm

x

1850 mm

 Fig. P3.94   
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122 Rigid Bodies: Equivalent Systems of Forces   3.95   An antenna is guyed by three cables as shown. Knowing that the 
tension in cable  AB  is 288 lb, replace the force exerted at  A  by 
cable  AB  with an equivalent force-couple system at the center  O  
of the base of the antenna. 

16 ft

x

y

z

O

A

B

C

D
128 ft

96 ft

128 ft

64 ft

 Fig. P3.95    and  P3.96   

  3.96   An antenna is guyed by three cables as shown. Knowing that the 
tension in cable  AD  is 270 lb, replace the force exerted at  A  by 
cable  AD  with an equivalent force-couple system at the center  O  
of the base of the antenna. 

  3.97   Replace the 150-N force with an equivalent force-couple system at  A . 

  3.98   A 77-N force  F  1  and a 31-N ? m couple  M  1  are applied to corner  E 
of the bent plate shown. If  F  1  and  M  1  are to be replaced with 
an equivalent force-couple system ( F  2 ,  M  2 ) at corner  B  and if 
( M  2 )  z  5  0, determine ( a ) the distance  d , ( b )  F  2  and  M  2 . 

x

y

z

A

C

120 mm

40 mm
60 mm20 mm

35°

150 N D

B

200 mm

 Fig. P3.97   

x

z

y

B
A

C

E
D

G

H

J

F1

70 mm

30 mm

30 mm

d

60 mm

83.3 mm

250 mm

M1

 Fig. P3.98   
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  3.100   The handpiece for a miniature industrial grinder weighs 0.6 lb, 
and its center of gravity is located on the  y  axis. The head of the 
handpiece is offset in the  xz  plane in such a way that line  BC  
forms an angle of 25° with the  x  direction. Show that the weight 
of the handpiece and the two couples  M  1  and  M  2  can be replaced 
with a single equivalent force. Further, assuming that  M  1  5 0.68 
lb · in. and  M  2  5 0.65 lb · in., determine ( a ) the magnitude and 
the direction of the equivalent force, ( b ) the point where its line 
of action intersects the  xz  plane. 

3.17    REDUCTION OF A SYSTEM OF FORCES TO ONE 
FORCE AND ONE COUPLE  

Consider a system of forces  F  1 ,  F  2 ,  F  3 , . . . , acting on a rigid body at 
the points  A  1 ,  A  2 ,  A  3 , . . . ,  defined by the position vectors   r  1 , r  2 ,  r  3 , 
 etc . ( Fig. 3.41  a ). As seen in the preceding section,  F  1  can be moved 
from  A  1  to a given point  O  if a couple of moment  M  1  equal to the 
moment  r  1  3  F  1  of  F  1  about  O  is added to the original system of 
forces. Repeating this procedure with  F  2 ,  F  3 , . . . , we obtain the 

  3.99   A 46-lb force  F  and a 2120-lb · in. couple  M  are applied to corner 
 A  of the block shown. Replace the given force-couple system with 
an equivalent force-couple system at corner  H . 
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124 Rigid Bodies: Equivalent Systems of Forces system shown in Fig. 3.41 b , which consists of the original forces, now 
acting at  O , and the added couple vectors. Since the forces are now 
concurrent, they can be added vectorially and replaced by their 
resultant  R . Similarly, the couple vectors  M  1 ,  M  2 ,  M  3 , . . . , can be 
added   vectorially and replaced by a single couple vector  M   R    O  . Any 
system of forces, however complex, can thus be reduced to an  equiv-
alent force-couple system acting at a given point O  (Fig. 3.41 c ). We 
should note that while each of the couple vectors  M  1 ,  M  2 ,  M  3 , . . . , 
in Fig. 3.41 b  is perpendicular to its corresponding force, the resul-
tant force  R  and the resultant couple vector  M   R    O   in Fig. 3.41 c  will 
not, in general, be perpendicular to each other. 
    The equivalent force-couple system is defined by the equations

 R 5 oF  MR
O 5 oMO 5 o(r 3 F) (3.52)   

  which express that the force  R  is obtained by adding all the forces 
of the system, while the moment of the resultant couple vector  M   R    O  , 
called the  moment resultant  of the system, is obtained by adding the 
moments about  O  of all the forces of the system. 
   Once a given system of forces has been reduced to a force and 
a couple at a point  O , it can easily be reduced to a force and a couple 
at another point  O 9. While the resultant force  R  will remain 
unchanged, the new moment resultant  M   R    O9   will be equal to the 
sum of  M   R    O   and the moment about  O 9 of the force  R  attached at  O  
( Fig. 3.42 ). We have

   M   R    O9 5 M   R    O 1 s 3 R (3.53)   

 In practice, the reduction of a given system of forces to a single 
force  R  at  O  and a couple vector  M   R    O   will be carried out in terms of 
components. Resolving each position vector  r  and each force  F  of 
the system into rectangular components, we write

 r 5 xi 1 yj 1 zk (3.54)
 F 5 Fxi 1 Fyj 1 Fzk (3.55)

 Substituting for  r  and  F  in (3.52) and factoring out the unit vectors 
 i, j, k , we obtain  R  and  M   R    O   in the form

 R 5 Rxi 1 Ryj 1 Rzk    MR
O 5 Mx

Ri 1 My
Rj 1 Mz

Rk (3.56)   

  The components  R x , R y , R z   represent, respectively, the sums of the  x, 
y , and  z  components of the given forces and measure the tendency 
of the system to impart to the rigid body a motion of translation in 
the  x, y , or  z  direction. Similarly, the components  M R  x , M R  y , M R  z   repre-
sent, respectively, the sum of the moments of the given forces about 
the  x, y , and  z  axes and measure the tendency of the system to impart 
to the rigid body a motion of rotation about the  x, y , or  z  axis. 
    If the magnitude and direction of the force  R  are desired, they 
can be obtained from the components  R x , R y , R z   by means of the 
relations (2.18) and (2.19) of Sec. 2.12; similar computations will 
yield the magnitude and direction of the couple vector  M   R    O.      

Fig. 3.42   
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1253.18   EQUIVALENT SYSTEMS OF FORCES  
 We saw in the preceding section that any system of forces acting on 
a rigid body can be reduced to a force-couple system at a given point 
 O . This equivalent force-couple system characterizes completely the 
effect of the given force system on the rigid body.  Two systems of 
forces are equivalent, therefore, if they can be reduced to the same 
force-couple system at a given point O . Recalling that the force-
couple system at  O  is defined by the relations (3.52), we state that 
 two systems of forces ,  F  1 ,  F  2 ,  F  3 , . . . , and  F 9 1 , F 9 2 , F 9 3 , . . . ,  which 
act on the same rigid body are equivalent if, and only if, the sums 
of the forces and the sums of the moments about a given point O of 
the forces of the two systems are, respectively, equal . Expressed 
mathematically, the necessary and sufficient conditions for the two 
systems of forces to be equivalent are

 oF 5 oF9  and  oMO 5 oM9O (3.57)   

  Note that to prove that two systems of forces are equivalent, the 
second of the relations (3.57) must be established with respect to 
 only one point O . It will hold, however, with respect to  any point  if 
the two systems are equivalent. 
    Resolving the forces and moments in (3.57) into their rectan-
gular components, we can express the necessary and sufficient condi-
tions for the equivalence of two systems of forces acting on a rigid 
body as follows:

   oFx 5 oF9x   oFy 5 oF9y   oFz 5 oF9z
 oMx 5 oM9x  oMy 5 oM9y  oMz 5 oM9z 

(3.58)
   

  These equations have a simple physical significance. They express 
that two systems of forces are equivalent if they tend to impart to 
the rigid body (1) the same translation in the  x, y , and  z  directions, 
respectively, and (2) the same rotation about the  x, y , and  z  axes, 
respectively.    

3.19   EQUIPOLLENT SYSTEMS OF VECTORS  
In general, when two systems of vectors satisfy Eqs. (3.57) or (3.58), 
i.e., when their resultants and their moment resultants about an arbi-
trary point  O  are respectively equal, the two systems are said to be 
 equipollent . The result established in the preceding section can thus 
be restated as follows:  If two systems of forces acting on a rigid body 
are equipollent, they are also equivalent . 
    It is important to note that this statement does not apply to  any  
system of vectors. Consider, for example, a system of forces acting on 
a set of independent particles which do  not  form a rigid body. A dif-
ferent system of forces acting on the same particles may happen to be 
equipollent to the first one; i.e., it may have the same resultant and 
the same moment resultant. Yet, since different forces will now act 
on the various particles, their effects on these particles will be  different; 
the two systems of forces, while equipollent, are  not equivalent .    

3.19   Equipollent Systems of Vectors  

Photo 3.3 The forces exerted by the children 
upon the wagon can be replaced with an 
equivalent force-couple system when analyzing 
the motion of the wagon.
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126 Rigid Bodies: Equivalent Systems of Forces 3.20   FURTHER REDUCTION OF A SYSTEM OF FORCES  
 We saw in Sec. 3.17 that any given system of forces acting on a rigid 
body can be reduced to an equivalent force-couple system at  O  con-
sisting of a force  R  equal to the sum of the forces of the system and 
a couple vector M   R    O   of moment equal to the moment resultant of the 
system. 
    When  R  5 0, the force-couple system reduces to the couple 
vector  M   R    O  . The given system of forces can then be reduced to a 
single couple, called the  resultant couple  of the system. 
    Let us now investigate the conditions under which a given sys-
tem of forces can be reduced to a single force. It follows from Sec. 
3.16 that the force-couple system at  O  can be replaced by a single 
force  R  acting along a new line of action if  R  and  M   R    O   are mutually 
perpendicular. The systems of forces which can be reduced to a sin-
gle force, or  resultant , are therefore the systems for which the force 
 R  and the couple vector  M   R    O   are mutually perpendicular. While this 
condition  is generally not satisfied  by systems of forces in space, 
it will be satisfied  by systems consisting of (1) concurrent forces, 
(2) coplanar forces, or (3) parallel forces. These three cases will be 
discussed separately.  

   1.    Concurrent forces  are applied at the same point and can there-
fore be added directly to obtain their resultant  R . Thus, they 
always reduce to a single force. Concurrent forces were dis-
cussed in detail in Chap. 2.  

   2.    Coplanar forces  act in the same plane, which may be assumed to 
be the plane of the figure ( Fig. 3.43  a ). The sum  R  of the forces 
of the system will also lie in the plane of the figure, while the 
moment of each force about  O , and thus the moment resultant 
 M   R    O  , will be perpendicular to that plane. The force-couple system 
at  O  consists, therefore, of a force  R  and a couple vector M   R    O   
which are mutually perpendicular (Fig. 3.43 b ).†  They can be 
reduced to a single force  R  by moving  R  in the plane of the figure 
until its moment about  O  becomes equal to  M  R O. The distance 
from  O  to the line of action of  R  is  d 5 M  R OyR (Fig. 3.43 c ).

†Since the couple vector  M   R    O   is perpendicular to the plane of the figure, it has been 
represented by the symbol   l. A counterclockwise couple   l represents a vector pointing 
out of the paper, and a clockwise couple   i represents a vector pointing into the paper.   
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127     As noted in Sec. 3.17, the reduction of a system of forces 
is considerably simplified if the forces are resolved into rectan-
gular components. The force-couple system at  O  is then char-
acterized by the components ( Fig. 3.44  a )

 Rx 5 oFx  Ry 5 oFy  Mz
R 5 MO

R 5 oMO (3.59)   

    To reduce the system to a single force  R , we express that the 
moment of  R  about  O  must be equal to  M   R    O  . Denoting by  x  and  
y  the coordinates of the point of application of the resultant 
and recalling formula (3.22) of Sec. 3.8, we write

xRy 2 yRx 5 MO
R   

    which represents the equation of the line of action of  R . We 
can also determine directly the  x  and  y  intercepts of the line 
of action of the resultant by noting that  M   R    O   must be equal to 
the moment about  O  of the  y  component of  R  when  R  is 
attached at  B  (Fig. 3.44 b ) and to the moment of its  x  compo-
nent when  R  is attached at  C  (Fig. 3.44 c ). 

 3.    Parallel forces  have parallel lines of action and may or may not 
have the same sense. Assuming here that the forces are parallel to 
the  y  axis ( Fig. 3.45  a), we note that their sum  R  will also be paral-
lel to the  y  axis. On the other hand, since the moment of a given 
force must be perpendicular to that force, the moment about  O  of 
each force of the system, and thus the moment resultant  M   R    O, will 
lie in the  zx plane. The force-couple system at  O  consists,  therefore, 
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3.20   Further Reduction of a System of Forces  
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128 Rigid Bodies: Equivalent Systems of Forces of a force  R  and a couple   vector  M   R    O which are mutually perpen-
dicular (Fig. 3.45 b ). They can be reduced to a single force  R  
(Fig. 3.45 c ) or, if  R  5 0, to a single couple of moment  M   R    O.

     In practice, the force-couple system at  O  will be charac-
terized by the components

 Ry 5 oFy  MR
x 5 oMx  MR

z 5 oMz (3.60)   

    The reduction of the system to a single force can be carried 
out by moving  R  to a new point of application  A ( x , 0,  z ) chosen 
so that the moment of  R  about  O  is equal to  M   R    O  . We write

 r 3 R 5 MR
O

 (xi 1 zk) 3 Ryj 5 Mx
Ri 1 Mz

Rk

    By computing the vector products and equating the coefficients 
of the corresponding unit vectors in both members of the equa-
tion, we obtain two scalar equations which define the coordi-
nates of  A :

  2zRy 5 MR
x  xRy 5 MR

z

    These equations express that the moments of  R  about the  x  
and  z  axes must, respectively, be equal to  M R  x   and  M R  z  .     

*3.21    REDUCTION OF A SYSTEM 
OF FORCES TO A WRENCH  

In the general case of a system of forces in space, the equivalent force-
couple system at  O  consists of a force  R  and a couple vector  M   R    O   which 
are not perpendicular, and neither of which is zero ( Fig. 3.46  a ). Thus, 
the system of forces  cannot  be reduced to a single force or to a single 
couple. The couple vector, however, can be replaced by two other 
couple vectors obtained by resolving  M   R    O   into a component  M  1  along 
 R  and a component  M  2  in a plane perpendicular to  R  (Fig. 3.46b ). 
The couple vector  M  2  and the force  R  can then be replaced by a 
single force  R  acting along a new line of action. The original system 
of forces thus reduces to  R  and to the couple vector  M  1  (Fig. 3.46 c ), 
i.e., to  R  and a couple acting in the plane perpendicular to  R . This 
particular force-couple system is called a  wrench  because the result-
ing combination of push and twist is the same as that which would 
be caused by an actual wrench. The line of action of  R  is known as 
the  axis of the wrench , and the ratio  p 5 M  1/ R  is called the  pitch  

 Fig. 3.46   
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Photo 3.4 The parallel wind forces acting on 
the highway signs can be reduced to a single 
equivalent force. Determining this force can 
simplify the calculation of the forces acting on 
the supports of the frame to which the signs are 
attached.
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129of the   wrench. A wrench, therefore, consists of two collinear vectors, 
namely, a force  R  and a couple vector

   M1 5 pR (3.61)   

  Recalling the expression (3.35) obtained in Sec. 3.9 for the projection 
of a vector on the line of action of another vector, we note that the 
projection of  M   R    O   on the line of action of  R  is

  
M1 5

R ? MR
O

R    

 Thus, the pitch of the wrench can be expressed as † 

 
p 5

M1

R
5

R ? MR
O

R2  
(3.62)

  To define the axis of the wrench, we can write a relation involv-
ing the position vector  r  of an arbitrary point  P  located on that axis. 
Attaching the resultant force  R  and couple vector  M  1  at  P  ( Fig. 3.47 ) 
and expressing that the moment about  O  of this force-couple system 
is equal to the moment resultant  M   R    O    of the original force system, 
we write

   M1 1 r 3 R 5 MR
O (3.63)  

 or, recalling Eq. (3.61),

   pR 1 r 3 R 5 MR
O (3.64)   

†The expressions obtained for the projection of the couple vector on the line of action 
of  R  and for the pitch of the wrench are independent of the choice of point  O . Using 
the relation (3.53) of Sec. 3.17, we note that if a different point  O 9 had been used, the 
numerator in (3.62) would have been

R ? MR
O9 5 R ? (MR

O 1 s 3 R) 5 R ? MR
O 1 R ? (s 3 R)

Since the mixed triple product  R · (s 3 R ) is identically equal to zero, we have

R ? MR
O9 5 R ? MR

O

Thus, the scalar product  R  ?  MR
O is independent of the choice of point  O .  

O

MO
R

R

M1

O= R

Axis of wrench

P

r

Fig. 3.47    

3.21 Reduction of a System of Forces
to a Wrench  

Photo 3.5 The pushing-turning action 
associated with the tightening of a screw 
illustrates the collinear lines of action of the force 
and couple vector that constitute a wrench.
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SAMPLE PROBLEM 3.8 

 A 4.80-m-long beam is subjected to the forces shown. Reduce the given 
system of forces to ( a ) an equivalent force-couple system at  A, (b)  an equiva-
lent force-couple system at  B, (c)  a single force or resultant. 
   Note . Since the reactions at the supports are not included in the 
given system of forces, the given system will not maintain the beam in 
equilibrium. 

150 N 600 N 100 N 250 N

A B

1.6 m 1.2 m 2 m

A B

150 j – 600 j 100 j – 250 j

1.6 i
2.8 i

4.8 i

A B

– (600 N) j

– (1880 N•m) k

A B

– (600 N) j
– (1880 N•m) k

(2880 N•m) k4.8 m

A

– (600 N) j

(1000 N•m) k
B

A
B

– (600 N) j

x

130

     SOLUTION  

 a.  Force-Couple System at  A . The force-couple system at  A  equivalent to 
the given system of forces consists of a force  R  and a couple  MR

A    defined 
as follows:

 R 5 oF
 5 (150 N)j 2 (600 N)j 1 (100 N)j 2 (250 N)j 5 2(600 N)j
 MR

A 5 o(r 3 F)
 5 (1.6i) 3 (2600j) 1 (2.8i) 3 (100j) 1 (4.8i) 3 (2250j)
 5 2(1880 N ? m)k

   The equivalent force-couple system at  A  is thus

R 5 600 Nw  MR
A 5 1880 N ? m i ◀     

  b.   Force-Couple System at  B .   We propose to find a force-couple system 
at  B  equivalent to the force-couple system at  A  determined in part  a . The 
force  R  is unchanged, but a new couple  MR

B    must be determined, the 
moment of which is equal to the moment about  B  of the force-couple sys-
tem determined in part  a . Thus, we have

   MR
B 5 MR

A 1 BA
¡

3 R   
  5 2(1880 N ? m)k 1 (24.8 m)i 3 (2600 N)j   
  5 2(1880 N ? m)k 1 (2880 N ? m)k 5 1 (1000 N ? m)k    

 The equivalent force-couple system at  B  is thus

  R 5 600 Nw  MR
B 5 1000 N ? m l ◀   

  c.   Single Force or Resultant.   The resultant of the given system of forces 
is equal to  R , and its point of application must be such that the moment of 
 R  about  A  is equal to  MR

A   . We write

 r 3 R 5 MR
A

xi 3 (2600 N)j 5 2(1880 N ? m)k
 2x(600 N)k 5 2(1880 N ? m)k

   and conclude that  x  5 3.13 m. Thus, the single force equivalent to the given 
system is defined as

R 5 600 Nw  x 5 3.13 m ◀      
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131

 SAMPLE PROBLEM 3.9 

 Four tugboats are used to bring an ocean liner to its pier. Each tugboat 
exerts a 5000-lb force in the direction shown. Determine ( a ) the equivalent 
force-couple system at the foremast  O, (b)  the point on the hull where a 
single, more powerful tugboat should push to produce the same effect as 
the original four tugboats.      

3
2 3

4

1

4

60°

50 ft 90 ft

110 ft

200 ft
O

70 ft

45°

100

ft

100

ft

100

ft

 SOLUTION  

  a.   Force-Couple System at  O . Each of the given forces is resolved into 
components in the diagram shown (kip units are used). The force-couple 
system at  O  equivalent to the given system of forces consists of a force  R  
and a couple  M   R    O    defined as follows:

 R 5 oF
 5 (2.50i 2 4.33j) 1 (3.00i 2 4.00j) 1 (25.00j) 1 (3.54i 1 3.54j)
 5 9.04i 2 9.79j

 MR
O 5 o(r 3 F)

 5 (290i 1 50j) 3 (2.50i 2 4.33j)
  1 (100i 1 70j) 3 (3.00i 2 4.00j)
  1 (400i 1 70j) 3 (25.00j)
  1 (300i 2 70j) 3 (3.54i 1 3.54j)
 5 (390 2 125 2 400 2 210 2 2000 1 1062 1 248)k
 5 21035k

The equivalent force-couple system at  O  is thus

R 5 (9.04 kips)i 2 (9.79 kips)j  MR
O 5 2(1035 kip ? ft)k

or R 5 13.33 kips c47.3°  MR
O 5 1035 kip ? ft i ◀

   Remark.   Since all the forces are contained in the plane of the figure, 
we could have expected the sum of their moments to be perpendicular to 
that plane. Note that the moment of each force component could have been 
obtained directly from the diagram by first forming the product of its mag-
nitude and perpendicular distance to  O  and then assigning to this product 
a positive or a negative sign depending upon the sense of the moment.    

 b.   Single Tugboat.   The force exerted by a single tugboat must be equal 
to  R , and its point of application  A  must be such that the moment of  R  
about  O  is equal to  MR

O. Observing that the position vector of  A  is

r 5 xi 1 70j   

we write

 r 3 R 5 MR
O

 (xi 1 70j) 3 (9.04i 2 9.79j) 5 21035k
2x(9.79)k 2 633k 5 21035k x 5 41.1 ft ◀

– 4.33 j – 4 j – 5 j
F1

F2 F3

F4

3 i

3.54 j

3.54 i

2.5i
50 ft

110 ft

200 ft
O

70 ft90 ft 100

ft

100

ft

100

ft

MO =  –1035 kR

9.04 i

–9.79 j

47.3°

R

O

70 ft

x

9.04 i

– 9.79 jR

A

O
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SAMPLE PROBLEM 3.10 

 Three cables are attached to a bracket as shown. Replace the forces 
exerted by the cables with an equivalent force-couple system at  A .   

x

y

z

O

(17.68 N•m) j

(439 N) j – (507 N) k

(1607 N) i
(118.9 N•m) k

(30 N•m) i

 SOLUTION 

 We first determine the relative position vectors drawn from point  A  to the 
points of application of the various forces and resolve the forces into rect-
angular components. Observing that  F   B   5 (700 N)L  BE   where

  
LBE 5

BE
¡

BE
5

75i 2 150j 1 50k

175    

we have, using meters and newtons,

   rB/A 5 AB
¡

5 0.075i 1 0.050k      FB 5 300i 2 600j 1 200k  
  rC/A 5 AC

¡
5 0.075i 2 0.050k     FC 5 707i   2 707k  

 rD/A 5 AD
¡

5 0.100i 2 0.100j      FD 5 600i 1 1039j    

 The force-couple system at  A  equivalent to the given forces consists 
of a force  R  5 o F  and a couple  M   R   A 5 o( r 3 F ). The force  R  is readily 
obtained by adding respectively the  x, y , and  z  components of the forces:

R 5 oF 5 (1607 N)i 1 (439 N)j 2 (507 N)k ◀

The computation of  M   R   A  will be facilitated if we express the moments of the 
forces in the form of determinants (Sec. 3.8):

 
rByA 3 FB 5

 
† i  j k
0.075  0 0.050
300  2600 200

†
 
5 30i   245k

 
rCyA 3 FC 5

 
† i  j k
0.075  0 20.050
707  0 2707

†
 
5  17.68j

 
rDyA 3 FD 5

 
† i j    k
0.100 20.100    0
600 1039    0

   †
 
5    163.9k

 Adding the expressions obtained, we have

  MA
R 5 o(r 3 F) 5 (30 N ? m)i 1 (17.68 N ? m)j 1 (118.9 N ? m)k   ◀

 The rectangular components of the force  R  and the couple  M   R   A are shown 
in the adjoining sketch.    

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N
700 N

x

y

z

O

A
B

C

D

45º

45º

30º

60º

E(150 mm, –50 mm, 100 mm)
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A

B

C

4 ft
5 ft

5 ft

6 ft

40 kips

20 kips

12 kips

x

z

O
8 kips

y  SAMPLE PROBLEM 3.11 

 A square foundation mat supports the four columns shown. Determine the 
magnitude and point of application of the resultant of the four loads.      

x

y

z

O

– (80 kips) j

xi

zk

x

z

O– (280 kip•ft)k

– (80 kips) j

(240 kip•ft) i

y

 SOLUTION 

 We first reduce the given system of forces to a force-couple system at the 
origin  O  of the coordinate system. This force-couple system consists of a 
force  R  and a couple vector  M   R    O   defined as follows:

  R 5 oF  MR
O 5 o(r 3 F)   

 The position vectors of the points of application of the various forces are 
determined, and the computations are arranged in tabular form.        

r, ft     F, kips   r 3 F,  kip · ft    

 0 240 j   0
 10 i  212 j   2 120k   
 10 i 1 5k   28j  40i 2 80 k   
  4i 1 10 k   220 j   200 i  2 80 k   

   R 5 280 j   MR O 5 240 i  2 280 k    

 Since the force  R  and the couple vector  M   R O are mutually perpendicu-
lar, the force-couple system obtained can be reduced further to a single force 
 R . The new point of application of  R  will be selected in the plane of the mat 
and in such a way that the moment of  R  about  O  will be equal to  M   R O. Denot-
ing by  r  the position vector of the desired point of application, and by  x  and 
 z  its coordinates, we write

 r 3 R 5 MR
O

 (xi 1 zk) 3 (280j) 5 240i 2 280k
 280xk 1 80zi 5 240i 2 280k

 from which it follows that

 280x 5 2280   80z 5 240
 x 5 3.50 ft    z 5 3.00 ft   

 We conclude that the resultant of the given system of forces is

R 5 80 kipsw  at x 5 3.50 ft, z 5 3.00 ft    ◀    
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 SAMPLE PROBLEM 3.12 

 Two forces of the same magnitude  P  act on a cube of side  a  as shown. 
Replace the two forces by an equivalent wrench, and determine ( a ) the 
magnitude and direction of the resultant force  R , ( b ) the pitch of the 
wrench, ( c ) the point where the axis of the wrench intersects the  yz  plane.      

y

x
z

MO
R

R

O
Pi

Pj

– Pai

– Pak

y

x
z

R

O

=
r

M1 = pR

yj

zk

 SOLUTION  

 Equivalent Force-Couple System at  O .   We first determine the equivalent 
force-couple system at the origin  O . We observe that the position vectors 
of the points of application  E  and  D  of the two given forces are  r   E  5
a  i 1  a  j and  r   D  5 a  j 1  a  k. The resultant  R  of the two forces and their 
moment resultant  M   R    O   about  O  are

 R 5 F1 1 F2 5 Pi 1 Pj 5 P(i 1 j) (1)
 MR

O 5 rE 3 F1 1 rD 3 F2 5 (ai 1 aj) 3 Pi 1 (aj 1 ak) 3 Pj
 5 2Pak 2 Pai 5 2Pa(i 1 k) (2)

  a.   Resultant Force R.   It follows from Eq. (1) and the adjoining sketch 
that the resultant force  R  has the magnitude  R 5 P12, lies in the  xy  plane, 
and forms angles of 45° with the  x  and  y  axes. Thus

  R 5 P12   ux 5 uy 5 45°   uz 5 90°      ◀

  b.   Pitch of Wrench.   Recalling formula (3.62) of Sec. 3.21 and Eqs. (1) 
and (2) above, we write

  
p 5

R ? MR
O

R2 5
P(i 1 j) ? (2Pa)(i 1 k)

(P22)2
5

2P2a(1 1 0 1 0)

2P2  p 5 2
a
2        ◀

  c.  Axis of Wrench.   It follows from the above and from Eq. (3.61) that the 
wrench consists of the force  R  found in (1) and the couple vector

   
M1 5 pR 5 2

a
2

P(i 1 j) 5 2
Pa
2

 (i 1 j)
 

(3)   

 To find the point where the axis of the wrench intersects the  yz  plane, we 
express that the moment of the wrench about  O  is equal to the moment 
resultant  M   R    O   of the original system:

  M1 1 r 3 R 5 MR
O

 or, noting that  r  5  y  j 1  z  k and substituting for  R,  M   R    O  , and  M  1 from Eqs. 
(1), (2), and (3),

  
 2

Pa
2

(i 1 j) 1 (yj 1 zk) 3 P(i 1 j) 5 2Pa(i 1 k)
  

  
 2

Pa
2

 i 2
Pa
2

j 2 Pyk 1 Pzj 2 Pzi 5 2Pai 2 Pak
   

 Equating the coefficients of  k , and then the coefficients of  j , we find

  y 5 a  z 5 a/2 ◀     

y

x
z

A

B

C

D
E

O

F1 = Pi
F2 = Pj

a

a

a
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 SOLVING PROBLEMS
ON YOUR OWN  

 This lesson was devoted to the reduction and simplification of force systems. 
In solving the problems which follow, you will be asked to perform the opera-

tions discussed below.  

1.    Reducing a force system to a force and a couple at a given point A . The 
force is the  resultant   R  of the system and is obtained by adding the various forces; 
the moment of the couple is the  moment resultant  of the system and is obtained 
by adding the moments about  A  of the various forces. We have

  R 5 oF  MR
A 5 o(r 3 F)

where the position vector  r  is drawn from  A to any point  on the line of action of  F .  

   2.    Moving a force-couple system from point A to point B.  If you wish to 
reduce a given force system to a force-couple system at point  B  after you have 
reduced it to a force-couple system at point  A , you need not recompute the 
moments of the forces about  B . The resultant  R  remains unchanged, and the new 
moment resultant  M   R    B   can be obtained by adding to  M   R    A   the moment about  B  of 
the force  R  applied at  A  [Sample Prob. 3.8]. Denoting by s the vector drawn from 
 B  to  A , you can write

  MR
B 5 MR

A 1 s 3 R

 3.    Checking whether two force systems are equivalent . First reduce each 
force system to a force-couple system  at the same, but arbitrary, point A  (as 
explained in paragraph 1). The two systems are equivalent (that is, they have the 
same effect on the given rigid body) if the two force-couple systems you have 
obtained are identical, that is, if

  oF 5 oF9  and  oMA 5 oM9A

You should recognize that if the first of these equations is not satisfied, that is, if 
the two systems do not have the same resultant  R , the two systems cannot be 
equivalent and there is then no need to check whether or not the second equation 
is satisfied.  

   4.    Reducing a given force system to a single force . First reduce the given 
system to a force-couple system consisting of the resultant  R  and the couple vector 
 M   R    A   at some convenient point  A  (as explained in paragraph 1). You will recall from 
the previous lesson that further reduction to a single force is possible  only if the 

(continued)
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force   R   and the couple vector   M   R    A    are mutually perpendicular . This will certainly 
be the case for systems of forces which are either  concurrent, coplanar , or  parallel . 
The required single force can then be obtained by moving  R  until its moment 
about  A  is equal to  M  R    A  , as you did in several problems of the preceding lesson. 
More formally, you can write that the position vector  r  drawn from  A  to any point 
on the line of action of the single force  R  must satisfy the equation

  r 3 R 5 MR
A

This procedure was used in Sample Probs. 3.8, 3.9, and 3.11.  

   5.   Reducing a given force system to a wrench . If the given system is comprised 
of forces which are not concurrent, coplanar, or parallel, the equivalent force-
couple system at a point  A  will consist of a force  R  and a couple vector  M  R    A        which, 
in general,  are not mutually perpendicular . (To check whether  R  and  M  R   A  are 
mutually perpendicular, form their scalar product. If this product is zero, they are 
mutually perpendicular; otherwise, they are not.) If  R  and  M  R    A     are not mutually 
perpendicular, the force-couple system (and thus the given system of forces)  can-
not be reduced to a single force . However, the system can be reduced to a 
 wrench —the combination of a force  R  and a couple vector  M  1  directed along a 
common line of action called the  axis of the wrench  (Fig. 3.47). The ratio  p 5 M  1 / R  
is called the  pitch  of the wrench. 

 To reduce a given force system to a wrench, you should follow these steps:

    a.   Reduce the given system to an equivalent force-couple system ( R ,  M   R    O  ), 
typically located at the origin  O .  
   b.   Determine the pitch  p  from Eq. (3.62)

   
p 5

M1

R
5

R ? MR
O

R2    
(3.62)

  and the couple vector from  M  1 5  p  R .  
   c.   Express that the moment about  O  of the wrench is equal to the moment 
resultant  M   R    O   of the force-couple system at  O :

  M1 1 r 3 R 5 MR
O (3.63)

  This equation allows you to determine the point where the line of action of the 
wrench intersects a specified plane, since the position vector  r  is directed from  O  
to that point.      

 These steps are illustrated in Sample Prob. 3.12. Although the determination of a 
wrench and the point where its axis intersects a plane may appear difficult, the 
process is simply the application of several of the ideas and techniques developed 
in this chapter. Thus, once you have mastered the wrench, you can feel confident 
that you understand much of Chap. 3.  
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 PROBLEMS  

   3.101   A 4-m-long beam is subjected to a variety of loadings. ( a ) Replace 
each loading with an equivalent force-couple system at end  A  of the 
beam. ( b ) Which of the loadings are equivalent? 

   3.102   A 4-m-long beam is loaded as shown. Determine the loading of 
Prob. 3.101 which is equivalent to this loading. 

   3.103   Determine the single equivalent force and the distance from point  A  
to its line of action for the beam and loading of ( a ) Prob. 3.101 b , 
( b ) Prob. 3.101 d , ( c ) Prob. 3.101 e .  

   3.104   Five separate force-couple systems act at the corners of a piece of 
sheet metal, which has been bent into the shape shown. Deter-
mine which of these systems is equivalent to a force  F  5 (10 lb) i  
and a couple of moment  M  5 (15 lb ? ft) j  1 (15 lb ? ft) k  located 
at the origin. 

A B

4 m

(a)

400 N

400 N

200 N

800 N

(b)

600 N

(c)

900 N

300 N

(d) (e)

400 N 200 N

( f )

800 N

200 N

(h)

300 N 300 N 

(g)

800 N200 N

4000 N⋅m 300 N⋅m200 N⋅m

1800 N⋅m

2300 N⋅m

2400 N⋅m

900 N⋅m

4500 N⋅m

300 N⋅m300 N⋅m

400 N⋅m200 N⋅m

  Fig. P3.101     

A B

4 m
200 N 400 N

2800 N⋅m400 N⋅m
  Fig. P3.102     

5 lb•ft

5 lb•ft
15 lb•ft

5 lb•ft

15 lb•ft

15 lb•ft

15 lb•ft

15 lb•ft

80 lb•ft
25 lb•ft

10 lb

10 lb

10 lb

10 lb

10 lb

y

z

O

H

A

C

J

I

B
D

G

x

F

E

2 ft

2 ft
2 ft

1 ft

2.5 ft

  Fig. P3.104     
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138 Rigid Bodies: Equivalent Systems of Forces    3.105   The weights of two children sitting at ends  A  and  B  of a seesaw 
are 84 lb and 64 lb, respectively. Where should a third child sit 
so that the resultant of the weights of the three children will pass 
through  C  if she weighs ( a ) 60 lb, ( b ) 52 lb. 

   3.106   Three stage lights are mounted on a pipe as shown. The lights at 
 A  and  B  each weigh 4.1 lb, while the one at  C  weighs 3.5 lb. ( a ) If 
 d  5 25 in., determine the distance from  D  to the line of action of 
the resultant of the weights of the three lights. ( b ) Determine the 
value of  d  so that the resultant of the weights passes through the 
midpoint of the pipe.   Fig. P3.105     

A

B

C

6 ft

6 ft

  Fig. P3.106     

D

B

C

E

d

34 in.

10 in.

84 in.

A

   3.107   A beam supports three loads of given magnitude and a fourth load 
whose magnitude is a function of position. If  b  5 1.5 m and the 
loads are to be replaced with a single equivalent force, determine 
( a ) the value of  a  so that the distance from support  A  to the line 
of action of the equivalent force is maximum, ( b ) the magnitude 
of the equivalent force and its point of application on the beam. 

  Fig. P3.107     

ba

A B

1300 N 400 N 600 N

a
2

a
b

400     N

9 m

   3.108   Gear  C  is rigidly attached to arm  AB . If the forces and couple 
shown can be reduced to a single equivalent force at  A , determine 
the equivalent force and the magnitude of the couple  M .     

18 lb

40 lb

25 lb25°

30°

40°

A

B

C

M

22 in.

10 in.

16 in.

 Fig. P3.108
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139Problems   3.109   A couple of magnitude  M  5 54 lb ? in. and the three forces shown 
are applied to an angle bracket. ( a ) Find the resultant of this sys-
tem of forces. ( b ) Locate the points where the line of action of the 
resultant intersects line  AB  and line  BC .

   3.110   A couple  M  and the three forces shown are applied to an angle 
bracket. Find the moment of the couple if the line of action of the 
resultant of the force system is to pass through ( a ) point  A , ( b ) point B , 
( c ) point  C .  

   3.111   Four forces act on a 700 3 375-mm plate as shown. ( a ) Find the 
resultant of these forces. ( b ) Locate the two points where the line 
of action of the resultant intersects the edge of the plate. 

   3.112   Solve Prob. 3.111, assuming that the 760-N force is directed to the 
right.  

   3.113   A truss supports the loading shown. Determine the equivalent 
force acting on the truss and the point of intersection of its line 
of action with a line drawn through points  A  and  G . 

A B

C

10 lb 30 lb

60°
12 in.

45 lb

M 8 in.

 Fig. P3.109      and P3.110

A B

D E
C

500 N

600 N

760 N

340 N

500 mm
200 mm

375 mm

  Fig. P3.111     

C

A

B D F

E

G

240 lb 160 lb 300 lb

40°

180 lb

70°

x

y
4 ft

8 ft 8 ft

8 ft 8 ft 8 ft

6 ft

 Fig. P3.113     

2 in.

1 in.

210 lb

150 lb
25°

25°

4 in.

120 lb 160 lb

A B

C D

EF

r = 2 in. r = 1   in.1
2

6 in.6 in.

  Fig. P3.114     

   3.114   Pulleys  A  and  B  are mounted on bracket  CDEF . The tension on 
each side of the two belts is as shown. Replace the four forces with 
a single equivalent force, and determine where its line of action 
intersects the bottom edge of the bracket. 

C

A B

D
F

E

G H

P

200 N
240 mm

120 N

70°
15°

50 mm

50 mm

50 mm

80 N
42 N•m

40 N•m 180 mm

640 mm

520 mm

  Fig. P3.115     

   3.115   A machine component is subjected to the forces and couples shown. 
The component is to be held in place by a single rivet that can resist 
a force but not a couple. For  P  5 0, determine the location of the 
rivet hole if it is to be located ( a ) on line  FG , ( b ) on line  GH .  

   3.116   Solve Prob. 3.115, assuming that  P  5 60 N. 
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140 Rigid Bodies: Equivalent Systems of Forces    3.117   A 32-lb motor is mounted on the floor. Find the resultant of the 
weight and the forces exerted on the belt, and determine where 
the line of action of the resultant intersects the floor. 

   3.118   As follower  AB  rolls along the surface of member  C , it exerts a con-
stant force  F  perpendicular to the surface. ( a ) Replace  F  with an 
equivalent force-couple system at the point  D  obtained by drawing 
the perpendicular from the point of contact to the  x  axis. ( b ) For 
 a  5 1 m and  b  5 2 m, determine the value of  x  for which the 
moment of the equivalent force-couple system at  D  is maximum. 

   3.119   Four forces are applied to the machine component  ABDE  as shown. 
Replace these forces by an equivalent force-couple system at  A.  

  Fig. P3.117     

140 lb

30°

60 lb

O

W

2 in.

2 in.

   3.120   Two 150-mm-diameter pulleys are mounted on line shaft  AD . The 
belts at  B  and  C  lie in vertical planes parallel to the  yz  plane. 
Replace the belt forces shown with an equivalent force-couple sys-
tem at  A.  

y

b

a

C

B

A

F

D x

y = b (1 –  )x2

a2

  Fig. P3.118     

z

200 mm

40 mm

160 mm

100 mm

20 mm

x

50 N

250 N

120 N

300 N

y

B

E

D

A

  Fig. P3.119    

A

B

C

D

x

y

z

20º

10º

10º 155 N

240 N

145 N

215 N

180 mm

225 mm

225 mm

  Fig. P3.120     
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141Problems 3.121   While using a pencil sharpener, a student applies the forces and 
couple shown. ( a ) Determine the forces exerted at  B  and  C  know-
ing that these forces and the couple are equivalent to a force-
couple system at  A  consisting of the force  R  5 (2.6 lb) i  1  R y   j  2 
(0.7 lb) k  and the couple  M  R A 5  M x  i  1 (1.0 lb ? ft) j  2 (0.72 lb ? ft) k . 
( b ) Find the corresponding values of  R y  and  M x .

 3.122   A mechanic uses a crowfoot wrench to loosen a bolt at  C . The 
mechanic holds the socket wrench handle at points  A  and  B  and 
applies forces at these points. Knowing that these forces are equiv-
alent to a force-couple system at  C  consisting of the force  C  5 
2(8 lb) i  1 (4 lb) k  and the couple  M   C  5 (360 lb ? in.) i , determine 
the forces applied at  A  and at  B  when  A z  5 2 lb. 

 3.123   As an adjustable brace  BC  is used to bring a wall into plumb, the 
force-couple system shown is exerted on the wall. Replace this 
force-couple system with an equivalent force-couple system at  A  
if R  5 21.2 lb and  M  5 13.25 lb · ft. 

B

B

1 lb•ft

3.5 in.

1.75 in.

2 in.

x

y

z

A

C
Cxi

–Czk

–Cyj

Fig. P3.121     

2 in.

8 in.

10 in.

Ax

Ay

Az

Bx

By

Bz

A

Bx

y

C

z

  Fig. P3.122     

A

B

R

M

C
x

y

z

64 in.

96 in.

42 in.

48 in.

  Fig. P3.123     
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142 Rigid Bodies: Equivalent Systems of Forces    3.124   A mechanic replaces a car’s exhaust system by firmly clamping 
the catalytic converter  FG  to its mounting brackets  H  and  I  and 
then loosely assembling the mufflers and the exhaust pipes. To 
position the tailpipe  AB , he pushes in and up at  A  while pulling 
down at  B . ( a ) Replace the given force system with an equivalent 
force-couple system at  D . ( b ) Determine whether pipe  CD  tends 
to rotate clockwise or counterclockwise relative to muffler  DE , as 
viewed by the mechanic.  

   3.125   For the exhaust system of Prob. 3.124, ( a ) replace the given force 
system with an equivalent force-couple system at  F , where the 
exhaust pipe is connected to the catalytic converter, ( b ) determine 
whether pipe  EF  tends to rotate clockwise or counterclockwise, as 
viewed by the mechanic. 

   3.126   The head-and-motor assembly of a radial drill press was originally 
positioned with arm  AB  parallel to the  z  axis and the axis of the 
chuck and bit parallel to the  y  axis. The assembly was then rotated 
25° about the  y  axis and 20° about the centerline of the hori-
zontal arm  AB , bringing it into the position shown. The drilling 
process was started by switching on the motor and rotating the 
handle to bring the bit into contact with the workpiece. Replace 
the force and couple exerted by the drill press with an equivalent 
force-couple system at the center  O  of the base of the vertical 
column. 

   3.127   Three children are standing on a 5 3 5-m raft. If the weights of 
the children at points  A ,  B , and  C  are 375 N, 260 N, and 400 N, 
respectively, determine the magnitude and the point of application 
of the resultant of the three weights. 

   3.128   Three children are standing on a 5 3 5-m raft. The weights of the 
children at points  A ,  B , and  C  are 375 N, 260 N, and 400 N, respec-
tively. If a fourth child of weight 425 N climbs onto the raft, deter-
mine where she should stand if the other children remain in the 
positions shown and the line of action of the resultant of the four 
weights is to pass through the center of the raft. 

y

z

A

B

0.30 m

0.10 m

0.56 m

0.225 m
100 N

115 N
30°

GH

x

C

D

E

F

I

0.13 m

0.46 m
0.31 m

0.12 m

0.33 m

0.36 m

0.36 m

0.48 m

0.14 m

  Fig. P3.124     

  Fig. P3.127 and P3.128          
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0.25 m 0.25 m

1.5 m

1 m

2 m

O7 in.

x

y

A

z

C

11 lb

90 lb•in.

14 in.
15 in.

25°

B

  Fig. P3.126     
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143Problems   3.129   Four signs are mounted on a frame spanning a highway, and the 
magnitudes of the horizontal wind forces acting on the signs are as 
shown. Determine the magnitude and the point of application of the 
resultant of the four wind forces when  a  5 1 ft and  b  5 12 ft. 

  Fig. P3.129      and P3.130  

D

A

B

C x

y

z

E

F

G

H

a

2.5 ft

90 lb

160 lb

50 lb

105 lb

9 ft

5.5 ft

b

5 ft

8 ft

3 ft

   3.130   Four signs are mounted on a frame spanning a highway, and the 
magnitudes of the horizontal wind forces acting on the signs are 
as shown. Determine  a  and  b  so that the point of application of 
the resultant of the four forces is at  G . 

   *3.131   A group of students loads a 2 3 3.3-m flatbed trailer with two 
0.66 3 0.66 3 0.66-m boxes and one 0.66 3 0.66 3 1.2-m box. 
Each of the boxes at the rear of the trailer is positioned so that it is 
aligned with both the back and a side of the trailer. Determine the 
smallest load the students should place in a second 0.66 3 0.66 3 
1.2-m box and where on the trailer they should secure it, without 
any part of the box overhanging the sides of the trailer, if each box is 
uniformly loaded and the line of action of the resultant of the weights 
of the four boxes is to pass through the point of intersection of the 
centerlines of the trailer and the axle. ( Hint:  Keep in mind that the 
box may be placed either on its side or on its end.) 

   *3.132   Solve Prob. 3.131 if the students want to place as much weight as 
possible in the fourth box and at least one side of the box must 
coincide with a side of the trailer.  

   *3.133   Three forces of the same magnitude  P  act on a cube of side  a  as 
shown. Replace the three forces by an equivalent wrench and de-
termine ( a ) the magnitude and direction of the resultant force  R , 
( b ) the pitch of the wrench, ( c ) the axis of the wrench. 

   *3.134   A piece of sheet metal is bent into the shape shown and is acted 
upon by three forces. If the forces have the same magnitude  P , 
replace them with an equivalent wrench and determine ( a ) the 
magnitude and the direction of the resultant force  R , ( b ) the pitch 
of the wrench, ( c ) the axis of the wrench. 

224 N

392 N

176 N

1.3 m

A

B

C

1.5 m

1.8 m

  Fig. P3.131     

  Fig. P3.133     
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  Fig. P3.134     

A

B

C

D

E

F
G

H
O

x

y

z

F1

F2

F3

a

a

a

3
2 a

a

bee29400_ch03_072-155.indd Page 143  11/28/08  9:37:51 PM user-s172bee29400_ch03_072-155.indd Page 143  11/28/08  9:37:51 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



144 Rigid Bodies: Equivalent Systems of Forces    *3.135 and *3.136   The forces and couples shown are applied to 
two screws as a piece of sheet metal is fastened to a block of 
wood. Reduce the forces and the couples to an equivalent wrench 
and determine ( a ) the resultant force  R , ( b ) the pitch of the 
wrench, ( c ) the point where the axis of the wrench intersects 
the  xz  plane. 

 *3.139   Two ropes attached at  A  and  B  are used to move the trunk of a 
fallen tree. Replace the forces exerted by the ropes with an equiva-
lent wrench and determine ( a ) the resultant force  R , ( b ) the pitch 
of the wrench, ( c ) the point where the axis of the wrench intersects 
the  yz  plane. 

 *3.137 and *3.138   Two bolts at  A  and  B  are tightened by applying the 
forces and couples shown. Replace the two wrenches with a single 
equivalent wrench and determine ( a ) the resultant  R , ( b  the pitch 
of the single equivalent wrench, ( c ) the point where the axis of the 
wrench intersects the  xz  plane. 

11 lb
6 lb•in.

6 lb•in.

10 lb

15 in.

x

z

y

A

B

O

20 in.

Fig. P3.136     

1 N•m

4 N•m

15 N

20 N

100 mm

x

z

y

A

O

  Fig. P3.135    

0.1 m

0.3 m

0.6 m

x

z

y

A

B

0.4 m

30 N•m

84 N

32 N•m

80 N

  Fig. P3.137    
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30 in.

16 in.

x

z

y

A

B

238 lb•in.

17 lb

26.4 lb

220 lb•in.

Fig. P3.138     
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y

z

O

A
B

C D
1650 N

1500 N

14 m

9 m12 m

9 m

  Fig. P3.139     
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145Problems   *3.140   A flagpole is guyed by three cables. If the tensions in the cables 
have the same magnitude  P , replace the forces exerted on the pole 
with an equivalent wrench and determine ( a ) the resultant force 
 R , ( b ) the pitch of the wrench, ( c ) the point where the axis of the 
wrench intersects the  xz  plane. 

 *3.143   Replace the wrench shown with an equivalent system consisting 
of two forces perpendicular to the  y  axis and applied respectively 
at  A  and  B . 

   *3.144   Show that, in general, a wrench can be replaced with two forces 
chosen in such a way that one force passes through a given point 
while the other force lies in a given plane.  

   *3.145   Show that a wrench can be replaced with two perpendicular 
forces, one of which is applied at a given point.  

   *3.146   Show that a wrench can be replaced with two forces, one of which 
has a prescribed line of action.         

A

B

x

y

z

C

D

E O

4a

20a

12a

18a

15a

9a

  Fig. P3.140     
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  Fig. P3.141    
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34 lb

30 lb

K
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3 in.
8 in.

18 in.18 in.

Fig. P3.142     

 Fig. P3.143     
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z

B

A
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M

R

b

a

   *3.141 and *3.142   Determine whether the force-and-couple system 
shown can be reduced to a single equivalent force  R . If it can, 
determine  R  and the point where the line of action of  R  intersects 
the  yz  plane. If it cannot be so reduced, replace the given system 
with an equivalent wrench and determine its resultant, its pitch, 
and the point where its axis intersects the  yz  plane. 
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146

In this chapter we studied the effect of forces exerted on a rigid
body. We first learned to distinguish between  external  and  internal
forces [Sec. 3.2] and saw that, according to the  principle of transmis-
sibility , the effect of an external force on a rigid body remains 
unchanged if that force is moved along its line of action [Sec. 3.3]. 
In other words, two forces  F  and  F 9 acting on a rigid body at two 
different points have the same effect on that body if they have the 
same magnitude, same direction, and same one of action ( Fig. 3.48 ). 
Two such forces are said to be  equivalent .     

Before proceeding with the discussion of  equivalent systems of forces ,
we introduced the concept of the  vector product of two vectors
[Sec. 3.4]. The vector product

V 5 P 3 Q

 of the vectors  P  and  Q  was defined as a vector perpendicular to the 
plane containing  P  and  Q  ( Fig. 3.49 ), of magnitude

 V 5 PQ sin u (3.1)

 and directed in such a way that a person located at the tip of  V  will 
observe as counterclockwise the rotation through u which brings the 
vector  P  in line with the vector  Q . The three vectors  P, Q , and  V —
taken in that order—are said to form a  right-handed triad . It follows 
that the vector products  Q 3 P  and  P 3 Q  are represented by equal 
and opposite vectors. We have

 Q 3 P 5 2(P 3 Q)   (3.4)   

It also follows from the definition of the vector product of two vec-
tors that the vector products of the unit vectors  i, j , and  k  are

i 3 i 5 0  i 3 j 5 k  j 3 i 5 2k

 and so on. The sign of the vector product of two unit vectors can be 
obtained by arranging in a circle and in counterclockwise order the 
three letters representing the unit vectors ( Fig. 3.50 ): The vector 
product of two unit vectors will be positive if they follow each other 
in counterclockwise order and negative if they follow each other in 
clockwise order. 

The  rectangular components of the vector product   V  of two vectors 
 P  and  Q  were expressed [Sec. 3.5] as

Vx 5 PyQz 2 PzQy
  Vy 5 PzQx 2 PxQz (3.9)

Vz 5 PxQy 2 PyQx

  Principle of transmissibility

Vector product of two vectors    

  Rectangular components 
of vector product    

 REVIEW AND SUMMARY 

F

F'

=

 Fig. 3.48

Q

P

V = P × Q

q

(a)

V

(b)

 Fig. 3.49

i

j

k

 Fig. 3.50
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147 Using a determinant, we also wrote

   
V 5 † i j k

Px Py Pz

Qx Qy Qz

†
 

(3.10)
   

 The moment of a force   F   about a point O  was defined [Sec. 3.6] as the 
vector product

 MO 5 r 3 F (3.11)   

where  r  is the  position vector  drawn from  O  to the point of applica-
tion  A  of the force  F  ( Fig. 3.51 ). Denoting by u the angle between 
the lines of action of  r  and  F , we found that the magnitude of the 
moment of  F  about  O  can be expressed as

   MO 5 rF sin u 5 Fd (3.12)   

 where  d  represents the perpendicular distance from  O  to the line of 
action of  F . 

 The  rectangular components of the moment   M   O    of a force   F  were 
expressed [Sec. 3.8] as

Mx 5 yFz 2 zFy
  My 5 zFx 2 xFz (3.18)

Mz 5 xFy 2 yFx

 where  x, y, z  are the components of the position vector  r  ( Fig. 3.52 ). 
Using a determinant form, we also wrote

   
MO 5 † i j k

x y z
Fx Fy Fz

†
 

(3.19)   

In the more general case of the moment about an arbitrary point  B  
of a force  F  applied at  A , we had

   
MB 5 † i j k

xA/B yA/B zA/B

Fx Fy Fz

†
 

(3.21)   

 where  x A/B  ,  y A/B  , and  z A/B   denote the components of the vector  r   A/B:

xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

 In the case of  problems involving only two dimensions , the force  F  
can be assumed to lie in the  xy  plane. Its moment  M   B   about a point 
 B  in the same plane is perpendicular to that plane ( Fig. 3.53 ) and is 
completely defined by the scalar

 MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23)   

Various methods for the computation of the moment of a force about 
a point were illustrated in Sample Probs. 3.1 through 3.4. 

 The scalar product  of two vectors  P  and  Q  [Sec. 3.9] was denoted 
by  P ? Q  and was defined as the scalar quantity

   P ? Q 5 PQ cos u (3.24)   

 Moment of a force about a point     

Rectangular components of moment    

  Scalar product of two vectors    

 Fig. 3.51  
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d A

F

r
θ

O

 Fig. 3.52
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y j
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y

x

z

O
B

Fy j

Fx i

F

A

(yA – yB)j

(xA – xB)i

rA/B

MB = MB k

 Fig. 3.53    

Review and Summary
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148 Rigid Bodies: Equivalent Systems of Forces where u is the angle between  P  and  Q  ( Fig. 3.54 ). By expressing the 
scalar product of  P  and  Q  in terms of the rectangular components 
of the two vectors, we determined that

   P ? Q 5 PxQx 1 PyQy 1 PzQz (3.30)   

 The  projection of a vector   P   on an axis OL  ( Fig. 3.55 ) can be obtained 
by forming the scalar product of  P  and the unit vector  l  along  OL . 
We have

 POL 5 P ? l (3.36)   

 or, using rectangular components,

 POL 5 Px cos ux 1 Py cos uy 1 Pz cos uz (3.37)   

where u  x  , u  y  , and u  z   denote the angles that the axis  OL  forms with 
the coordinate axes. 

 The  mixed triple product  of the three vectors  S, P , and  Q  was defined 
as the scalar expression

 S ? (P 3 Q) (3.38)   

 obtained by forming the scalar product of  S  with the vector product 
of  P  and  Q  [Sec. 3.10]. It was shown that

 
S ? (P 3 Q) 5 †

Sx Sy Sz

Px Py Pz

Qx Qy Qz

†
 

(3.41)
   

 where the elements of the determinant are the rectangular compo-
nents of the three vectors. 

 The  moment of a force   F   about an axis OL  [Sec. 3.11] was defined 
as the projection  OC  on  OL  of the moment  M   O   of the force  F  
( Fig.  3.56 ), i.e., as the mixed triple product of the unit vector l, the 
position vector  r , and the force  F :

 MOL 5 l ? MO 5 l ? (r 3 F) (3.42)   

 Using the determinant form for the mixed triple product, we have

 
MOL 5 † lx

ly lz

x y z
Fx Fy Fz

†
 

(3.43)
   

 where l  x  , ly  , lz   5 direction cosines of axis  OL
   x, y, z  5 components of  r  
 Fx,  Fy ,  Fz  5 components of  F  

An example of the determination of the moment of a force about a 
skew axis was given in Sample Prob. 3.5. 

 Fig. 3.54

Q

P

q

y

x

z

O

A

P

L

� qx

qy

qz

 Fig. 3.55

y

x

z

r

L

A

C

O

MO
F

�

 Fig. 3.56

  Moment of a force about an axis    

  Mixed triple product of three vectors    

  Projection of a vector on an axis    
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149  Two forces   F   and  2 F   having the same magnitude, parallel lines of 
action, and opposite sense are said to form a couple  [Sec. 3.12]. It 
was shown that the moment of a couple is independent of the point 
about which it is computed; it is a vector  M  perpendicular to the 
plane of the couple and equal in magnitude to the product of the 
common magnitude  F  of the forces and the perpendicular distance  d  
between their lines of action ( Fig. 3.57 ). 

 Two couples having the same moment  M  are  equivalent , i.e., they 
have the same effect on a given rigid body [Sec. 3.13]. The sum of 
two couples is itself a couple [Sec. 3.14], and the moment  M  of
the resultant couple can be obtained by adding vectorially the 
moments  M  1  and  M  2  of the original couples [Sample Prob. 3.6]. It 
follows that a couple can be represented by a vector, called a  couple 
vector , equal in magnitude and direction to the moment  M  of 
the couple [Sec. 3.15]. A couple vector is a  free vector  which can be 
attached to the origin  O  if so desired and resolved into components 
( Fig. 3.58 ). 

Couples

–F

F
d

M

 Fig. 3.57   
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=
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=
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z

O

M

=
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x
O

My

MxMz

y

z

 Fig. 3.58   

 Any force  F  acting at a point  A  of a rigid body can be replaced by 
a  force-couple system  at an arbitrary point  O , consisting of the force 
 F  applied at  O  and a couple of moment  M   O   equal to the moment 
about  O  of the force  F  in its original position [Sec. 3.16]; it should 
be noted that the force  F  and the couple vector  M   O   are always per-
pendicular to each other ( Fig. 3.59 ).  

Force-couple system  

O

MO

r

A A

F
F

O=
 Fig. 3.59   

 It follows [Sec. 3.17] that  any system of forces can be reduced to a 
force-couple system at a given point O  by first replacing each of 
the forces of the system by an equivalent force-couple system at  O  

 Reduction of a system of forces 
to a force-couple system  

Review and Summary
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150 Rigid Bodies: Equivalent Systems of Forces ( Fig. 3.60 ) and then adding all the forces and all the couples deter-
mined in this manner to obtain a resultant force  R  and a resultant 
couple vector  MR

O     [Sample Probs. 3.8 through 3.11]. Note that, in 
general, the resultant  R  and the couple vector  MR

O     will not be per-
pendicular to each other. 

(a)

F1

F2

F3r2
r3

A2

A3

=
O

r1

A1

(b)

F1

F2

M1

M2

M3

=O

F3

(c)

R

MO
R

O

 Fig. 3.60   

 We concluded from the above [Sec. 3.18] that, as far as rigid 
 bodies are concerned,  two systems of forces ,  F  1 ,  F  2 ,  F  3 , . . . and   
 F 9  1 ,  F 9 2 ,  F 9 3 , . . . ,  are equivalent if, and only if ,

 oF 5 oF9  and  oMO 5 oM9O (3.57)   

 If the resultant force  R  and the resultant couple vector MR
O         are per-

pendicular to each other, the force-couple system at  O  can be further 
reduced to a single resultant force [Sec. 3.20]. This will be the case 
for systems consisting either of ( a ) concurrent forces (cf. Chap. 2), 
( b ) coplanar forces [Sample Probs. 3.8 and 3.9], or ( c ) parallel forces 
[Sample Prob. 3.11]. If the resultant  R  and the couple vector  MR

O         
are  not  perpendicular to each other, the system  cannot  be reduced 
to a single force. It can, however, be reduced to a special type 
of force-couple system called a  wrench , consisting of the resultant 
 R  and a couple vector  M  1  directed along  R  [Sec. 3.21 and Sample 
Prob. 3.12].   

 Equivalent systems of forces  

 Further reduction of a 
system of forces   
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151

REVIEW PROBLEMS

   3.147   A crate of mass 80 kg is held in the position shown. Determine 
( a ) the moment produced by the weight  W  of the crate about  E , 
( b ) the smallest force applied at  B  that creates a moment of equal 
magnitude and opposite sense about  E . 

   3.148   It is known that the connecting rod  AB  exerts on the crank  BC  a 
1.5-kN force directed down and to the left along the centerline of 
AB . Determine the moment of the force about  C . 

   3.149   A 6-ft-long fishing rod  AB  is securely anchored in the sand of a 
beach. After a fish takes the bait, the resulting force in the line is 
6 lb. Determine the moment about  A  of the force exerted by the 
line at  B . 

A B

C
E

W

0.85 m

0.5 m

0.6 m 0.6 m

D

 Fig. P3.147     

 Fig. P3.148   
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 Fig. P3.149   

   3.150   Ropes  AB  and  BC  are two of the ropes used to support a tent. 
The two ropes are attached to a stake at  B . If the tension in rope 
 AB  is 540 N, determine ( a ) the angle between rope  AB  and the 
stake, ( b ) the projection on the stake of the force exerted by rope 
 AB  at point  B . 

xz

3 m

3 m

1 m

0.38 m

0.08 m
0.16 m

Detail of the stake at B

1.5 m

A

B

C D

B

y

 Fig. P3.150   
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152 Rigid Bodies: Equivalent Systems of Forces    3.151   A farmer uses cables and winch pullers  B  and  E  to plumb one side 
of a small barn. If it is known that the sum of the moments about 
the  x  axis of the forces exerted by the cables on the barn at points 
 A  and  D  is equal to 4728 lb · ft, determine the magnitude of  T   DE   
when  T AB   5 255 lb. 

   3.152   Solve Prob. 3.151 when the tension in cable  AB  is 306 lb. 

   3.153   A wiring harness is made by routing either two or three wires 
around 2-in.-diameter pegs mounted on a sheet of plywood. If the 
force in each wire is 3 lb, determine the resultant couple acting 
on the plywood when  a  5 18 in. and ( a ) only wires  AB  and  CD  
are in place, ( b ) all three wires are in place. 

E

B
z

y

x

C
D

A

F

12 ft

12 ft
1.5 ft

1 ft

14 ft

 Fig. P3.151   

A

E

F
B

C

D

3 lb

3 lb

3 lb3 lb

3 lb

3 lb

a a10 in.

24 in.

 Fig. P3.153   

   3.154   A worker tries to move a rock by applying a 360-N force to a steel 
bar as shown. ( a ) Replace that force with an equivalent force-
couple system at  D . ( b ) Two workers attempt to move the same rock 
by applying a vertical force at  A  and another force at  D . Determine 
these two forces if they are to be equivalent to the single force of 
part  a . 

A

B

C
D

360 N

0.4 m

0.35 m

2.4 m

0.3 m

40°

30°

 Fig. P3.154   

   3.155   A 110-N force acting in a vertical plane parallel to the  yz  plane 
is applied to the 220-mm-long horizontal handle  AB  of a socket 
wrench. Replace the force with an equivalent force-couple system 
at the origin  O  of the coordinate system. 

150 mm

110 N

A

B

x

y

z

O

35°

15°

 Fig. P3.155   
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153Review Problems   3.156   Four ropes are attached to a crate and exert the forces shown. If the 
forces are to be replaced with a single equivalent force applied at a 
point on line  AB , determine ( a ) the equivalent force and the dis-
tance from  A  to the point of application of the force when a 5 30°, 
( b ) the value of a so that the single equivalent force is applied at 
point  B . 

   3.157   A blade held in a brace is used to tighten a screw at  A . ( a ) Determine 
the forces exerted at  B  and  C , knowing that these forces are equiva-
lent to a force-couple system at  A  consisting of  R  5 2(30 N) i  1  
R y    j  1  Rz  k  and  M   R A 5 2(12 N ? m) i . ( b ) Find the corresponding 
values of  R y   and  R z  . ( c ) What is the orientation of the slot in the 
head of the screw for which the blade is least likely to slip when 
the brace is in the position shown? 

A B

D C

46 in.

66 in.

10 in.

25°

65°

36 in.

100 lb

160 lb

400 lb

90 lb

a

 Fig. P3.156   
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 Fig. P3.157   

   3.158   A concrete foundation mat in the shape of a regular hexagon of 
side 12 ft supports four column loads as shown. Determine the 
magnitudes of the additional loads that must be applied at  B  and  F
 if the resultant of all six loads is to pass through the center of 
the mat. 

A

B
C

D

EF

O

15 kips

20 kips

10 kips
30 kips

y

x

z

12 ft

 Fig. P3.158   
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COMPUTER PROBLEMS

 3.  C1   A beam  AB  is subjected to several vertical forces as shown. Write a 
computer program that can be used to determine the magnitude of the re-
sultant of the forces and the distance  x C   to point  C , the point where the 
line of action of the resultant intersects  AB . Use this program to solve 
( a ) Sample Prob. 3.8 c , ( b ) Prob. 3.106 a . 

   3.C2   Write a computer program that can be used to determine the magnitude 
and the point of application of the resultant of the vertical forces  P  1 ,  P  2, . . . , 
P   n   that act at points  A  1 ,  A  2, . . . , A   n   that are located in the  xz  plane. Use this 
program to solve ( a ) Sample Prob. 3.11, ( b ) Prob. 3.127, ( c ) Prob. 3.129. 

A
C

B

xC

xn
x2

x1 F1 F2 Fn

  Fig. P3.C1    

x

y

A1

A2

Anxn

zn

Pn

P2

P1

z

  Fig. P3.C2    

a

  Fig. P3.C3    
250 mm

125 mm

1.0 m

A

A'

F
  Fig. P3.C4  

 3.C3   A friend asks for your help in designing flower planter boxes. The 
boxes are to have 4, 5, 6, or 8 sides, which are to tilt  outward at 10°, 20°, or 
30°. Write a computer program that can be used to determine the bevel angle 
a for each of the twelve planter designs. ( Hint:  The bevel angle is equal to 
 one-half of the angle formed by the inward normals of two adjacent sides.) 

 3.C4   The manufacturer of a spool for hoses wants to determine the 
moment of the force  F  about the axis  AA 9. The magnitude of the force, in 
newtons, is defined by the relation  F  5 300(1 2  x / L ), where  x  is the length 
of hose wound on the 0.6-m-diameter drum and  L  is the total length of the 
hose. Write a computer program that can be used to calculate the required 
moment for a hose 30 m long and 50 mm in diameter. Beginning with  x  5 0, 
compute the moment after every revolution of the drum until the hose is 
wound on the drum. 
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155Computer Problems 3.C5   A body is acted upon by a system of  n  forces. Write a computer 
program that can be used to calculate the equivalent force-couple system 
at the origin of the coordinate axes and to determine, if the equivalent force 
and the equivalent couple are orthogonal, the magnitude and the point of 
application in the  xz  plane of the resultant of the original force system. Use 
this program to solve ( a ) Prob. 3.113, ( b ) Prob. 3.120, ( c ) Prob. 3.127. 

 3.C6   Two cylindrical ducts,  AB  and  CD , enter a room through two parallel 
walls. The centerlines of the ducts are parallel to each other but are not 
perpendicular to the walls. The ducts are to be connected by two flexible 
elbows and a straight center portion. Write a computer program that can 
be used to determine the lengths of  AB  and  CD  that minimize the distance 
between the axis of the straight portion and a thermometer mounted on the 
wall at  E . Assume that the elbows are of negligible length and that  AB  
and  CD  have centerlines defined by l  AB  5 (7 i  2 4j  1 4k )/9 and l  CD  5 
(27 i  1 4j  2 4k )/9 and can vary in length from 9 in. to 36 in. 

x

y

z

A
B

C
D

E

4 in.

36 in.

AB�

CD�

90 in.

100 in.

96 in.

120 in.

52 in.

Fig. P3.C6
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O
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F2

Fn
r1

r2
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Fig. P3.C5
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This telecommunications tower, 

constructed in the heart of the 

Barcelona Olympic complex to 

broadcast the 1992 games, was 

designed to remain in equilibrium 

under the vertical force of gravity and 

the lateral forces exerted by wind.
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Chapter 4 Equilibrium 
of Rigid Bodies

 4.1 Introduction
 4.2 Free-Body Diagram
 4.3 Reactions at Supports and 

Connections for a Two-
Dimensional Structure

 4.4 Equilibrium of a Rigid Body in 
Two Dimensions

 4.5 Statically Indeterminate Reactions. 
Partial Constraints

 4.6 Equilibrium of a Two-Force Body
 4.7 Equilibrium of a Three-Force 

Body
 4.8 Equilibrium of a Rigid Body in 

Three Dimensions
 4.9 Reactions at Supports and 

Connections for a Three-
Dimensional Structure

4.1 INTRODUCTION
We saw in the preceding chapter that the external forces acting on 
a rigid body can be reduced to a force-couple system at some arbi-
trary point O. When the force and the couple are both equal to zero, 
the external forces form a system equivalent to zero, and the rigid 
body is said to be in equilibrium.
 The necessary and sufficient conditions for the equilibrium of 
a rigid body, therefore, can be obtained by setting R and MR

O equal 
to zero in the relations (3.52) of Sec. 3.17:

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

 Resolving each force and each moment into its rectangular 
components, we can express the necessary and sufficient conditions 
for the equilibrium of a rigid body with the following six scalar 
equations:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

The equations obtained can be used to determine unknown forces 
applied to the rigid body or unknown reactions exerted on it by its 
supports. We note that Eqs. (4.2) express the fact that the compo-
nents of the external forces in the x, y, and z directions are balanced; 
Eqs. (4.3) express the fact that the moments of the external forces 
about the x, y, and z axes are balanced. Therefore, for a rigid body 
in equilibrium, the system of the external forces will impart no trans-
lational or rotational motion to the body considered.
 In order to write the equations of equilibrium for a rigid body, 
it is essential to first identify all of the forces acting on that body 
and then to draw the corresponding free-body diagram. In this 
chapter we first consider the equilibrium of two-dimensional struc-
tures subjected to forces contained in their planes and learn how to 
draw their free-body diagrams. In addition to the forces applied to 
a structure, the reactions exerted on the structure by its supports 
will be considered. A specific reaction will be associated with each 
type of support. You will learn how to determine whether the struc-
ture is properly supported, so that you can know in advance whether 
the equations of equilibrium can be solved for the unknown forces 
and reactions.
 Later in the chapter, the equilibrium of three-dimensional 
structures will be considered, and the same kind of analysis will be 
given to these structures and their supports.
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1594.2 FREE-BODY DIAGRAM
In solving a problem concerning the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body; it is 
equally important to exclude any force which is not directly applied 
to the body. Omitting a force or adding an extraneous one would 
destroy the conditions of equilibrium. Therefore, the first step in 
the solution of the problem should be to draw a free-body diagram 
of the rigid body under consideration. Free-body diagrams have 
already been used on many occasions in Chap. 2. However, in view 
of their importance to the solution of equilibrium problems, we 
summarize here the various steps which must be followed in draw-
ing a free-body diagram.

 1. A clear decision should be made regarding the choice of the 
free body to be used. This body is then detached from the 
ground and is separated from all other bodies. The contour of 
the body thus isolated is sketched.

 2. All external forces should be indicated on the free-body dia-
gram. These forces represent the actions exerted on the free 
body by the ground and by the bodies which have been 
detached; they should be applied at the various points where 
the free body was supported by the ground or was connected 
to the other bodies. The weight of the free body should also 
be included among the external forces, since it represents the 
attraction exerted by the earth on the various particles forming 
the free body. As will be seen in Chap. 5, the weight should 
be applied at the center of gravity of the body. When the free 
body is made of several parts, the forces the various parts exert 
on each other should not be included among the external 
forces. These forces are internal forces as far as the free body 
is concerned.

 3. The magnitudes and directions of the known external forces 
should be clearly marked on the free-body diagram. When indi-
cating the directions of these forces, it must be remembered 
that the forces shown on the free-body diagram must be those 
which are exerted on, and not by, the free body. Known exter-
nal forces generally include the weight of the free body and 
forces applied for a given purpose.

 4. Unknown external forces usually consist of the reactions, 
through which the ground and other bodies oppose a possible 
motion of the free body. The reactions constrain the free body 
to remain in the same position, and, for that reason, are some-
times called constraining forces. Reactions are exerted at the 
points where the free body is supported by or connected to 
other bodies and should be clearly indicated. Reactions are dis-
cussed in detail in Secs. 4.3 and 4.8.

 5. The free-body diagram should also include dimensions, since 
these may be needed in the computation of moments of forces. 
Any other detail, however, should be omitted.

4.2 Free-Body Diagram

Photo 4.1 A free-body diagram of the tractor 
shown would include all of the external forces 
acting on the tractor: the weight of the tractor, 
the weight of the load in the bucket, and the 
forces exerted by the ground on the tires.

Photo 4.2 In Chap. 6, we will discuss how to 
determine the internal forces in structures made of 
several connected pieces, such as the forces in the 
members that support the bucket of the tractor of 
Photo 4.1.
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160 Equilibrium of Rigid Bodies
EQUILIBRIUM IN TWO DIMENSIONS

4.3  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A TWO-DIMENSIONAL STRUCTURE

In the first part of this chapter, the equilibrium of a two-dimensional 
structure is considered; i.e., it is assumed that the structure being 
analyzed and the forces applied to it are contained in the same plane. 
Clearly, the reactions needed to maintain the structure in the same 
position will also be contained in this plane.
 The reactions exerted on a two-dimensional structure can be 
divided into three groups corresponding to three types of supports, 
or connections:

 1. Reactions Equivalent to a Force with Known Line of Action. 
Supports and connections causing reactions of this type include 
rollers, rockers, frictionless surfaces, short links and cables, col-
lars on frictionless rods, and frictionless pins in slots. Each of 
these supports and connections can prevent motion in one 
direction only. They are shown in Fig. 4.1, together with the 
reactions they produce. Each of these reactions involves one 
unknown, namely, the magnitude of the reaction; this magni-
tude should be denoted by an appropriate letter. The line of 
action of the reaction is known and should be indicated clearly 
in the free-body diagram. The sense of the reaction must be 
as shown in Fig. 4.1 for the cases of a frictionless surface 
(toward the free body) or a cable (away from the free body). 
The reaction can be directed either way in the case of double-
track rollers, links, collars on rods, and pins in slots. Single-
track rollers and rockers are generally assumed to be reversible, 
and thus the corresponding reactions can also be directed 
either way.

 2. Reactions Equivalent to a Force of Unknown Direction and 
Magnitude. Supports and connections causing reactions of this 
type include frictionless pins in fitted holes, hinges, and rough 
surfaces. They can prevent translation of the free body in all 
directions, but they cannot prevent the body from rotating 
about the connection. Reactions of this group involve two 
unknowns and are usually represented by their x and y com-
ponents. In the case of a rough surface, the component normal 
to the surface must be directed away from the surface.

 3. Reactions Equivalent to a Force and a Couple. These reactions 
are caused by fixed supports, which oppose any motion of the 
free body and thus constrain it completely. Fixed supports actu-
ally produce forces over the entire surface of contact; these 
forces, however, form a system which can be reduced to a force 
and a couple. Reactions of this group involve three unknowns, 
consisting usually of the two components of the force and the 
moment of the couple.

Photo 4.3 As the link of the awning window 
opening mechanism is extended, the force it 
exerts on the slider results in a normal force being 
applied to the rod, which causes the window to 
open.

Photo 4.4 The abutment-mounted rocker 
bearing shown is used to support the roadway 
of a bridge.

Photo 4.5 Shown is the rocker expansion 
bearing of a plate girder bridge. The convex 
surface of the rocker allows the support of the 
girder to move horizontally.
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 When the sense of an unknown force or couple is not readily 
apparent, no attempt should be made to determine it. Instead, the 
sense of the force or couple should be arbitrarily assumed; the sign 
of the answer obtained will indicate whether the assumption is cor-
rect or not.

4.3 Reactions at Supports and Connections for 
a Two-Dimensional Structure

Fig. 4.1 Reactions at supports and connections.

Support or Connection Reaction Number of
Unknowns

Rollers Rocker Frictionless
surface

Force with known
line of action

Force with known
line of action

Force with known
line of action

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

90º

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

3

a

a
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162 Equilibrium of Rigid Bodies 4.4  EQUILIBRIUM OF A RIGID BODY 
IN TWO DIMENSIONS

The conditions stated in Sec. 4.1 for the equilibrium of a rigid body 
become considerably simpler for the case of a two-dimensional struc-
ture. Choosing the x and y axes to be in the plane of the structure, 
we have

Fz 5 0  Mx 5 My 5 0  Mz 5 MO

for each of the forces applied to the structure. Thus, the six equa-
tions of equilibrium derived in Sec. 4.1 reduce to

 oFx 5 0  oFy 5 0  oMO 5 0 (4.4)

and to three trivial identities, 0 5 0. Since oMO 5 0 must be satis-
fied regardless of the choice of the origin O, we can write the equa-
tions of equilibrium for a two-dimensional structure in the more 
general form

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is any point in the plane of the structure. The three equa-
tions obtained can be solved for no more than three unknowns.
 We saw in the preceding section that unknown forces include 
reactions and that the number of unknowns corresponding to a given 
reaction depends upon the type of support or connection causing 
that reaction. Referring to Sec. 4.3, we observe that the equilibrium 
equations (4.5) can be used to determine the reactions associated 
with two rollers and one cable, one fixed support, or one roller and 
one pin in a fitted hole, etc.
 Consider Fig. 4.2a, in which the truss shown is subjected to 
the given forces P, Q, and S. The truss is held in place by a pin at 
A and a roller at B. The pin prevents point A from moving by exert-
ing on the truss a force which can be resolved into the components 
Ax and Ay; the roller keeps the truss from rotating about A by exert-
ing the vertical force B. The free-body diagram of the truss is shown 
in Fig. 4.2b; it includes the reactions Ax, Ay, and B as well as the 
applied forces P, Q, S and the weight W of the truss. Expressing 
that the sum of the moments about A of all of the forces shown 
in Fig. 4.2b is zero, we write the equation oMA 5 0, which can be 
used to determine the magnitude B since it does not contain Ax or Ay. 
Next, expressing that the sum of the x components and the sum 
of the y components of the forces are zero, we write the equations 
oFx 5 0 and oFy 5 0, from which we can obtain the components 
Ax and Ay, respectively.
 An additional equation could be obtained by expressing that 
the sum of the moments of the external forces about a point other than 
A is zero. We could write, for instance, oMB 5 0. Such a statement, 
however, does not contain any new information, since it has already 
been established that the system of the forces shown in Fig. 4.2b is 
equivalent to zero. The additional equation is not independent and 
cannot be used to determine a fourth unknown. It will be useful, 

Fig. 4.2 
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A B
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A B
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163however, for checking the solution obtained from the original three 
equations of equilibrium.
 While the three equations of equilibrium cannot be augmented 
by additional equations, any of them can be replaced by another 
equation. Therefore, an alternative system of equations of equilib-
rium is

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where the second point about which the moments are summed (in 
this case, point B) cannot lie on the line parallel to the y axis that 
passes through point A (Fig. 4.2b). These equations are sufficient 
conditions for the equilibrium of the truss. The first two equations 
indicate that the external forces must reduce to a single vertical force 
at A. Since the third equation requires that the moment of this 
force be zero about a point B which is not on its line of action, the 
force must be zero, and the rigid body is in equilibrium.
 A third possible set of equations of equilibrium is

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). 
The first equation requires that the external forces reduce to a single 
force at A; the second equation requires that this force pass through 
B; and the third equation requires that it pass through C. Since the 
points A, B, C do not lie in a straight line, the force must be zero, 
and the rigid body is in equilibrium.
 The equation oMA 5 0, which expresses that the sum of the 
moments of the forces about pin A is zero, possesses a more defi-
nite physical meaning than either of the other two equations (4.7). 
These two equations express a similar idea of balance, but with 
respect to points about which the rigid body is not actually hinged. 
They are, however, as useful as the first equation, and our choice 
of equilibrium equations should not be unduly influenced by the 
physical meaning of these equations. Indeed, it will be desirable in 
practice to choose equations of equilibrium containing only one 
unknown, since this eliminates the necessity of solving simulta neous 
equations. Equations containing only one unknown can be obtained 
by summing moments about the point of intersection of the lines 
of action of two unknown forces or, if these forces are parallel, by 
summing components in a direction perpendicular to their com-
mon direction. For example, in Fig. 4.3, in which the truss shown 
is held by rollers at A and B and a short link at D, the reactions at 
A and B can be eliminated by summing x components. The reac-
tions at A and D will be eliminated by summing moments about 
C, and the reactions at B and D by summing moments about D. 
The equations obtained are

oFx 5 0  oMC 5 0  oMD 5 0

Each of these equations contains only one unknown. Fig. 4.3 
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A B

D

D

P Q S
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A B

D
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A
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4.4 Equilibrium of a Rigid Body in 
Two Dimensions
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164 Equilibrium of Rigid Bodies 4.5  STATICALLY INDETERMINATE REACTIONS. 
PARTIAL CONSTRAINTS

In the two examples considered in the preceding section (Figs. 4.2 
and 4.3), the types of supports used were such that the rigid body 
could not possibly move under the given loads or under any other 
loading conditions. In such cases, the rigid body is said to be com-
pletely constrained. We also recall that the reactions corresponding 
to these supports involved three unknowns and could be determined 
by solving the three equations of equilibrium. When such a situation 
exists, the reactions are said to be statically determinate.
 Consider Fig. 4.4a, in which the truss shown is held by pins at 
A and B. These supports provide more constraints than are necessary 
to keep the truss from moving under the given loads or under any 
other loading conditions. We also note from the free-body diagram 
of Fig. 4.4b that the corresponding reactions involve four unknowns. 
Since, as was pointed out in Sec. 4.4, only three independent equi-
librium equations are available, there are more unknowns than equa-
tions; thus, all of the unknowns cannot be determined. While the 
equations oMA 5 0 and oMB 5 0 yield the vertical components By 
and Ay, respectively, the equation oFx 5 0 gives only the sum Ax 1 Bx 
of the horizontal components of the reactions at A and B. The com-
ponents Ax and Bx are said to be statically indeterminate. They could 
be determined by considering the deformations produced in the 
truss by the given loading, but this method is beyond the scope of 
statics and belongs to the study of mechanics of materials.
 The supports used to hold the truss shown in Fig. 4.5a consist of 
rollers at A and B. Clearly, the constraints provided by these supports are 
not sufficient to keep the truss from moving. While any vertical motion 
is prevented, the truss is free to move horizontally. The truss is said to 
be partially constrained.† Turning our attention to Fig. 4.5b, we note that 
the reactions at A and B involve only two unknowns. Since three equa-
tions of equilibrium must still be satisfied, there are fewer unknowns than 
equations, and, in general, one of the equilibrium equations will not be 
satisfied. While the equations oMA 5 0 and oMB 5 0 can be satisfied by 
a proper choice of reactions at A and B, the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied forces 
happens to be zero. We thus observe that the equlibrium of the truss 
of Fig. 4.5 cannot be maintained under general loading conditions.
 It appears from the above that if a rigid body is to be com-
pletely constrained and if the reactions at its supports are to be 
statically determinate, there must be as many unknowns as there are 
equations of equilibrium. When this condition is not satisfied, we can 
be certain that either the rigid body is not completely constrained 
or that the reactions at its supports are not statically determinate; it 
is also possible that the rigid body is not completely constrained and 
that the reactions are statically indeterminate.
 We should note, however, that, while necessary, the above con-
dition is not sufficient. In other words, the fact that the number of 

Fig. 4.4 Statically indeterminate 
reactions.
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Fig. 4.5 Partial constraints.
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B †Partially constrained bodies are often referred to as unstable. However, to avoid confusion 
between this type of instability, due to insufficient constraints, and the type of instability 
considered in Chap. 10, which relates to the behavior of a rigid body when its equilibrium 
is disturbed, we shall restrict the use of the words stable and unstable to the latter case.
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165unknowns is equal to the number of equations is no guarantee that 
the body is completely constrained or that the reactions at its supports 
are statically determinate. Consider Fig. 4.6a, in which the truss 
shown is held by rollers at A, B, and E. While there are three unknown 
reactions, A, B, and E (Fig. 4.6b), the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied 
forces happens to be zero. Although there are a sufficient number of 
constraints, these constraints are not properly arranged, and the truss 
is free to move horizontally. We say that the truss is improperly con-
strained. Since only two equilibrium equations are left for determin-
ing three unknowns, the reactions will be statically indeterminate. 
Thus, improper constraints also produce static indeterminacy.
 Another example of improper constraints—and of static inde-
terminacy—is provided by the truss shown in Fig. 4.7. This truss is 
held by a pin at A and by rollers at B and C, which altogether involve 
four unknowns. Since only three independent equilibrium equations 
are available, the reactions at the supports are statically indetermi-
nate. On the other hand, we note that the equation oMA 5 0 cannot 
be satisfied under general loading conditions, since the lines of action 
of the reactions B and C pass through A. We conclude that the truss 
can rotate about A and that it is improperly constrained.†
 The examples of Figs. 4.6 and 4.7 lead us to conclude that a rigid 
body is improperly constrained whenever the supports, even though 
they may provide a sufficient number of reactions, are arranged in such 
a way that the reactions must be either concurrent or parallel.‡
 In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically 
determinate, we should verify that the reactions involve three—and only 
three—unknowns and that the supports are arranged in such a way that 
they do not require the reactions to be either concurrent or parallel.
 Supports involving statically indeterminate reactions should be 
used with care in the design of structures and only with a full knowl-
edge of the problems they may cause. On the other hand, the analysis 
of structures possessing statically indeterminate reactions often can 
be partially carried out by the methods of statics. In the case of the 
truss of Fig. 4.4, for example, the vertical components of the reactions 
at A and B were obtained from the equilibrium equations.
 For obvious reasons, supports producing partial or improper 
constraints should be avoided in the design of stationary structures. 
However, a partially or improperly constrained structure will not nec-
essarily collapse; under particular loading conditions, equilibrium can 
be maintained. For example, the trusses of Figs. 4.5 and 4.6 will be 
in equilibrium if the applied forces P, Q, and S are vertical. Besides, 
structures which are designed to move should be only partially con-
strained. A railroad car, for instance, would be of little use if it were 
completely constrained by having its brakes applied permanently.
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Fig. 4.6 Improper constraints.

Fig. 4.7 Improper constraints.
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4.5 Statically Indeterminate Reactions. 
Partial Constraints

†Rotation of the truss about A requires some “play” in the supports at B and C. In 
practice such play will always exist. In addition, we note that if the play is kept small, the 
displacements of the rollers B and C and, thus, the distances from A to the lines of action of 
the reactions B and C will also be small. The equation oMA 5 0 then requires that B and 
C be very large, a situation which can result in the failure of the supports at B and C.

‡Because this situation arises from an inadequate arrangement or geometry of the 
supports, it is often referred to as geometric instability.
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SOLUTION

Free-Body Diagram. A free-body diagram of the crane is drawn. By mul-
tiplying the masses of the crane and of the crate by g 5 9.81 m/s2, we obtain 
the corresponding weights, that is, 9810 N or 9.81 kN, and 23 500 N or 
23.5 kN. The reaction at pin A is a force of unknown direction; it is repre-
sented by its components Ax and Ay. The reaction at the rocker B is per-
pendicular to the rocker surface; thus, it is horizontal. We assume that Ax, 
Ay, and B act in the directions shown.

Determination of B. We express that the sum of the moments of all external 
forces about point A is zero. The equation obtained will contain neither Ax 
nor Ay, since the moments of Ax and Ay about A are zero. Multiplying the 
magnitude of each force by its perpendicular distance from A, we write

1loMA 5 0:  1B(1.5 m) 2 (9.81 kN)(2 m) 2 (23.5 kN)(6 m) 5 0
 B 5 1107.1 kN B 5 107.1 kN n ◀

Since the result is positive, the reaction is directed as assumed.

Determination of Ax. The magnitude of Ax is determined by expressing 
that the sum of the horizontal components of all external forces is zero.

n1 oFx 5 0:  Ax 1 B 5 0
 Ax 1 107.1 kN 5 0
 Ax 5 2107.1 kN  Ax 5 107.1 kN m ◀

Since the result is negative, the sense of Ax is opposite to that assumed 
originally.

Determination of Ay. The sum of the vertical components must also equal 
zero.

1hoFy 5 0:   Ay 2 9.81 kN 2 23.5 kN 5 0
 Ay 5 133.3 kN Ay 5 33.3 kN h ◀

 Adding vectorially the components Ax and Ay, we find that the reac-
tion at A is 112.2 kN b17.3°.

Check. The values obtained for the reactions can be checked by recalling 
that the sum of the moments of all of the external forces about any point 
must be zero. For example, considering point B, we write

1loMB 5 2(9.81 kN)(2 m) 2 (23.5 kN)(6 m) 1 (107.1 kN)(1.5 m) 5 0

SAMPLE PROBLEM 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It 
is held in place by a pin at A and a rocker at B. The center of gravity of 
the crane is located at G. Determine the components of the reactions at A 
and B.

2400 kg
A

B

G

4 m2 m

1.5 m

A

BB

23.5 kN

Ay

Ax

9.81 kN

1.5 m

4 m2 m

33.3 kN

107.1 kN

107.1 kN

A

B

23.5 kN

9.81 kN

4 m2 m

1.5 m
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SOLUTION

Free-Body Diagram. A free-body diagram of the beam is drawn. The reac-
tion at A is vertical and is denoted by A. The reaction at B is represented 
by components Bx and By. Each component is assumed to act in the direc-
tion shown.

Equilibrium Equations. We write the following three equilibrium equa-
tions and solve for the reactions indicated:

n1 oFx 5 0: Bx 5 0 Bx 5 0 ◀

1loMA 5 0:
2(15 kips)(3 ft) 1 By(9 ft) 2 (6 kips)(11 ft) 2 (6 kips)(13 ft) 5 0

 By 5 121.0 kips By 5 21.0 kips h ◀

1loMB 5 0:
2A(9 ft) 1 (15 kips)(6 ft) 2 (6 kips)(2 ft) 2 (6 kips)(4 ft) 5 0

 A 5 16.00 kips A 5 6.00 kips h ◀

Check. The results are checked by adding the vertical components of all 
of the external forces:

1hoFy 5 16.00 kips 2 15 kips 1 21.0 kips 2 6 kips 2 6 kips 5 0

Remark. In this problem the reactions at both A and B are vertical; how-
ever, these reactions are vertical for different reasons. At A, the beam is 
supported by a roller; hence the reaction cannot have any horizontal com-
ponent. At B, the horizontal component of the reaction is zero because it 
must satisfy the equilibrium equation oFx 5 0 and because none of the 
other forces acting on the beam has a horizontal component.
 We could have noticed at first glance that the reaction at B was verti-
cal and dispensed with the horizontal component Bx. This, however, is a bad 
practice. In following it, we would run the risk of forgetting the component 
Bx when the loading conditions require such a component (i.e., when a 
horizontal load is included). Also, the component Bx was found to be zero 
by using and solving an equilibrium equation, oFx 5 0. By setting Bx equal 
to zero immediately, we might not realize that we actually make use of this 
equation and thus might lose track of the number of equations available for 
solving the problem.

SAMPLE PROBLEM 4.2

Three loads are applied to a beam as shown. The beam is supported by a 
roller at A and by a pin at B. Neglecting the weight of the beam, determine 
the reactions at A and B when P 5 15 kips.

3 ft 2 ft 2 ft

6 kips 6 kipsP

6 ft

A B

3 ft 2 ft 2 ft

6 kips15 kips 6 kips

6 ft

By

BxA
A

B
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SOLUTION

Free-Body Diagram. A free-body diagram of the car is drawn. The reac-
tion at each wheel is perpendicular to the track, and the tension force T is 
parallel to the track. For convenience, we choose the x axis parallel to the 
track and the y axis perpendicular to the track. The 5500-lb weight is then 
resolved into x and y components.

 Wx 5 1(5500 lb) cos 25° 5 14980 lb
Wy 5 2(5500 lb) sin 25° 5 22320 lb

Equilibrium Equations. We take moments about A to eliminate T and R1 
from the computation.

1loMA 5 0:  2(2320 lb)(25 in.) 2 (4980 lb)(6 in.) 1 R2(50 in.) 5 0
 R2 5 11758 lb R2 5 1758 lb p ◀

Now, taking moments about B to eliminate T and R2 from the computation, 
we write

1loMB 5 0:  (2320 lb)(25 in.) 2 (4980 lb)(6 in.) 2 R1(50 in.) 5 0
 R1 5 1562 lb R1 5 1562 lb p ◀

The value of T is found by writing

q1oFx 5 0:  14980 lb 2 T 5 0
 T 5 14980 lb T 5 4980 lb r ◀

The computed values of the reactions are shown in the adjacent sketch.

Check. The computations are verified by writing

p1oFy 5 1562 lb 1 1758 lb 2 2320 lb 5 0

The solution could also have been checked by computing moments about 
any point other than A or B.

SAMPLE PROBLEM 4.3

A loading car is at rest on a track forming an angle of 25° with the vertical. 
The gross weight of the car and its load is 5500 lb, and it is applied at a 
point 30 in. from the track, halfway between the two axles. The car is held 
by a cable attached 24 in. from the track. Determine the tension in the 
cable and the reaction at each pair of wheels.

24 in.

25º
G

25 in.

25 in.
30 in.

y

x

R1

R2

2320 lb 6 in.

A

T

B

G

25 in.

25 in.

4980 lb

562 lb

1758 lb

y

x

4980 lb

25 in.

25 in.

2320 lb
6 in.

A

B

G

4980 lb
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SAMPLE PROBLEM 4.4

The frame shown supports part of the roof of a small building. Knowing that 
the tension in the cable is 150 kN, determine the reaction at the fixed end E.

SOLUTION

Free-Body Diagram. A free-body diagram of the frame and of the cable BDF 
is drawn. The reaction at the fixed end E is represented by the force compo-
nents Ex and Ey and the couple ME. The other forces acting on the free body 
are the four 20-kN loads and the 150-kN force exerted at end F of the cable.

Equilibrium Equations. Noting that DF 5 2 (4.5 m)2 1 (6 m)2 5 7.5 m, 
we write

n1 oFx 5 0: Ex 1
4.5
7.5

(150 kN) 5 0

 Ex 5 290.0 kN Ex 5 90.0 kN z ◀

1hoFy 5 0:  Ey 2 4(20 kN) 2
6

7.5
(150 kN) 5 0

 Ey 5 1200 kN Ey 5 200 kNx ◀

1loME 5 0:  (20 kN)(7.2 m) 1 (20 kN)(5.4 m) 1 (20 kN)(3.6 m)

1 (20 kN)(1.8 m) 2 
6

7.5
(150 kN)(4.5 m) 1 ME 5 0

 ME 5 1180.0 kN ? m ME 5 180.0 kN ? m l ◀

6 m

150 kNEy

Ex

ME

20 kN 20 kN 20 kN 20 kN

A B
C

D

E F

4.5 m

1.8 m 1.8 m 1.8 m 1.8 m

20 kN 20 kN 20 kN 20 kN

A B

C

D

E F1.8 m 1.8 m 1.8 m 1.8 m

2.25 m

3.75 m

4.5 m

SAMPLE PROBLEM 4.5

A 400-lb weight is attached at A to the lever shown. The constant of the 
spring BC is k 5 250 lb/in., and the spring is unstretched when u 5 0. 
Determine the position of equilibrium.

A
s

O
W

F = ks

Ry

R x

Undeformed
position

q

r

l sin q

SOLUTION

Free-Body Diagram. We draw a free-body diagram of the lever and 
 cylinder. Denoting by s the deflection of the spring from its undeformed 
position, and noting that s 5 ru, we have F 5 ks 5 kru.

Equilibrium Equation. Summing the moments of W and F about O, we write

1loMO 5 0:  Wl sin u 2 r(kru) 5 0  sin u 5 
kr2

Wl
 u

Substituting the given data, we obtain

sin u 5
(250 lb/in.) (3 in.)2

(400 lb) (8 in.)
 u   sin u 5 0.703 u

Solving by trial and error, we find  u 5 0  u 5 80.3˚ ◀

A
B C

O

k = 250 lb/in.

r = 3 in.

l = 8 in.

W = 400 lb

q
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You saw that the external forces acting on a rigid body in equilibrium form a 
system equivalent to zero. To solve an equilibrium problem your first task is 

to draw a neat, reasonably large free-body diagram on which you will show all 
external forces. Both known and unknown forces must be included.

For a two-dimensional rigid body, the reactions at the supports can involve one, 
two, or three unknowns depending on the type of support (Fig. 4.1). For the suc-
cessful solution of a problem, a correct free-body diagram is essential. Never pro-
ceed with the solution of a problem until you are sure that your free-body diagram 
includes all loads, all reactions, and the weight of the body (if appropriate).

1. You can write three equilibrium equations and solve them for three unknowns.
The three equations might be

oFx 5 0  oFy 5 0  oMO 5 0

However, there are usually several sets of equations that you can write, such as

oFx 5 0  oMA 5 0  oMB 5 0

where point B is chosen in such a way that the line AB is not parallel to the y 
axis, or

oMA 5 0  oMB 5 0  oMC 5 0

where the points A, B, and C do not lie in a straight line.

2. To simplify your solution, it may be helpful to use one of the following solu-
tion techniques if applicable.
 a. By summing moments about the point of intersection of the lines of 
action of two unknown forces, you will obtain an equation in a single unknown.
 b. By summing components in a direction perpendicular to two unknown 
parallel forces, you will obtain an equation in a single unknown.

3. After drawing your free-body diagram, you may find that one of the fol-
lowing special situations exists.
 a. The reactions involve fewer than three unknowns; the body is said to be 
partially constrained and motion of the body is possible.
 b. The reactions involve more than three unknowns; the reactions are said 
to be statically indeterminate. While you may be able to calculate one or two 
reactions, you cannot determine all of the reactions.
 c. The reactions pass through a single point or are parallel; the body is 
said to be improperly constrained and motion can occur under a general loading 
condition.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

171

4.1 A 2100-lb tractor is used to lift 900 lb of gravel. Determine the 
reaction at each of the two (a) rear wheels A, (b) front wheels B.

20 in. 40 in. 50 in.

900 lb

A B

G

Fig. P4.1

0.15 m 0.15 m

60 N

250 N

A

0.7 m

Fig. P4.2

A

C

B

15 lb 20 lb 35 lb 15 lb20 lb

6 in. 8 in. 8 in. 6 in.

Fig. P4.4

 4.2 A gardener uses a 60-N wheelbarrow to transport a 250-N bag of 
fertilizer. What force must she exert on each handle?

 4.3 The gardener of Prob. 4.2 wishes to transport a second 250-N bag 
of fertilizer at the same time as the first one. Determine the maxi-
mum allowable horizontal distance from the axle A of the wheel-
barrow to the center of gravity of the second bag if she can hold 
only 75 N with each arm.

 4.4 For the beam and loading shown, determine (a) the reaction at A, 
(b) the tension in cable BC.
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172 Equilibrium of Rigid Bodies  4.5 Two crates, each of mass 350 kg, are placed as shown in the bed 
of a 1400-kg pickup truck. Determine the reactions at each of the 
two (a) rear wheels A, (b) front wheels B.

A
C D

B

P 4 kN 20 kN

2 m 2 m3 m 3 m

Fig. P4.12 and P4.13

a

A
D C

B

6 in.
300 lb 300 lb

50 lb

8 in. 4 in. 12 in.

Fig. P4.14

 4.6 Solve Prob. 4.5, assuming that crate D is removed and that the 
position of crate C is unchanged.

 4.7 A T-shaped bracket supports the four loads shown. Determine the 
reactions at A and B (a) if a 5 10 in., (b) if a 5 7 in.

 4.8 For the bracket and loading of Prob. 4.7, determine the smallest 
distance a if the bracket is not to move.

 4.9 The maximum allowable value of each of the reactions is 180 N. 
Neglecting the weight of the beam, determine the range of the 
distance d for which the beam is safe.

 4.10 Solve Prob. 4.9 if the 50-N load is replaced by an 80-N load.

 4.11 For the beam of Sample Prob. 4.2, determine the range of values 
of P for which the beam will be safe, knowing that the maximum 
allowable value of each of the reactions is 30 kips and that the 
reaction at A must be directed upward.

 4.12 The 10-m beam AB rests upon, but is not attached to, supports at 
C and D. Neglecting the weight of the beam, determine the range 
of values of P for which the beam will remain in equilibrium.

 4.13 The maximum allowable value of each of the reactions is 50 kN, 
and each reaction must be directed upward. Neglecting the weight 
of the beam, determine the range of values of P for which the 
beam is safe.

 4.14 For the beam and loading shown, determine the range of the dis-
tance a for which the reaction at B does not exceed 100 lb down-
ward or 200 lb upward.

Fig. P4.7

6 in. 6 in. 8 in.

10 lb30 lb50 lb40 lb

A

B

a

C D

G

1.7 m 2.8 m

A B

1.8 m 1.2 m 0.75 m

Fig. P4.5

50 N 100 N 150 N

450 mm

d

A

B

450 mm

Fig. P4.9
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173Problems 4.15 Two links AB and DE are connected by a bell crank as shown. 
Knowing that the tension in link AB is 720 N, determine (a) the 
tension in link DE, (b) the reaction at C.

A

B

E

D

C

90°60 mm
90 mm

80 mm 120 mm

Fig. P4.15 and P4.16

P

D

A B

C

15 in.

7 in.

60°

Fig. P4.17 and P4.18

240 N 240 N

0.24 m
0.4 m 0.4 m

A

B

C
D

a = 0.18 m

Fig. P4.19

60°

300 mm

250 mm 250 mm

150 N

G
B

A
h

Fig. P4.21

 4.16 Two links AB and DE are connected by a bell crank as shown. 
Determine the maximum force that can be safely exerted by link 
AB on the bell crank if the maximum allowable value for the reac-
tion at C is 1600 N.

 4.17 The required tension in cable AB is 200 lb. Determine (a) the 
vertical force P that must be applied to the pedal, (b) the corre-
sponding reaction at C.

 4.18 Determine the maximum tension that can be developed in cable 
AB if the maximum allowable value of the reaction at C is 250 lb.

 4.19 The bracket BCD is hinged at C and attached to a control cable 
at B. For the loading shown, determine (a) the tension in the cable, 
(b) the reaction at C.

 4.20 Solve Prob. 4.19, assuming that a 5 0.32 m.

 4.21 Determine the reactions at A and B when (a) h 5 0, (b) h 5 200 mm.

10 in.
3 in.

20 lb

20 lb

a

A B

DE

C

8 in.

5 in.

3 in.

Fig. P4.22
 4.22 For the frame and loading shown, determine the reactions at A 

and E when (a) a 5 30°, (b) a 5 45°.
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174 Equilibrium of Rigid Bodies

B

D

30°

500 N

C

200 mm

250 mm

250 mm

A

Fig. P4.28

 4.27 A rod AB, hinged at A and attached at B to cable BD, supports 
the loads shown. Knowing that d 5 150 mm, determine (a) the 
tension in cable BD, (b) the reaction at A.

 4.28 A lever AB is hinged at C and attached to a control cable at A. If 
the lever is subjected to a 500-N horizontal force at B, determine 
(a) the tension in the cable, (b) the reaction at C.

 4.23 and 4.24 For each of the plates and loadings shown, determine 
the reactions at A and B.

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30°

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

20 in.

Fig. P4.23

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30º

20 in.

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

Fig. P4.24

 4.25 Determine the reactions at A and B when (a) a 5 0, (b) a 5 90°, 
(c) a 5 30°.

 4.26 A rod AB, hinged at A and attached at B to cable BD, supports 
the loads shown. Knowing that d 5 200 mm, determine (a) the 
tension in cable BD, (b) the reaction at A.

10 in. 10 in.

12 in.

a

A

B

750 lb ⋅ in.

Fig. P4.25

90 N

100 mm

100 mm100 mm100 mm

A

B

d

D

90 N

Fig. P4.26 and P4.27
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175Problems 4.29 A force P of magnitude 280 lb is applied to member ABCD, which 
is supported by a frictionless pin at A and by the cable CED. Since 
the cable passes over a small pulley at E, the tension may be 
assumed to be the same in portions CE and ED of the cable. For 
the case when a 5 3 in., determine (a) the tension in the cable, 
(b) the reaction at A.

 4.30 Neglecting friction, determine the tension in cable ABD and the 
reaction at support C.

A

B C

D
E

P

a 12 in.

5 in.

12 in.

12 in.

Fig. P4.29A E

C

120 N

100 mm 100 mm

B D

250 mm

Fig. P4.30

A

BC

R

P

q

Fig. P4.31 and P4.32

A

B

D

C

90°

P

q

a a

2a

Fig. P4.33 and P4.34

 4.31 Rod ABC is bent in the shape of an arc of circle of radius R. Know-
ing that u 5 30°, determine the reaction (a) at B, (b) at C.

 4.32 Rod ABC is bent in the shape of an arc of circle of radius R. Know-
ing that u 5 60°, determine the reaction (a) at B, (b) at C.

 4.33 Neglecting friction, determine the tension in cable ABD and the 
reaction at C when u 5 60°.

 4.34 Neglecting friction, determine the tension in cable ABD and the 
reaction at C when u 5 45°.
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176 Equilibrium of Rigid Bodies

120 lb

30°
A

B
C

D

8 in.

8 in.

8 in.

Fig. P4.35

A
50 lb

B

C

D

E

5 in.

8 in.

7 in.
3 in.

Fig. P4.36

400 N

400 N

100 mm

150 mm

100 mm
300 mm

500 mm

A

B

C

D

250 mm

Fig. P4.37

600 N

100 mm100 mm100 mm

80 mm

80 mm
A B C D

E

F

Fig. P4.38

 4.35 A light rod AD is supported by frictionless pegs at B and C and 
rests against a frictionless wall at A. A vertical 120-lb force is 
applied at D. Determine the reactions at A, B, and C.

 4.36 A light bar AD is suspended from a cable BE and supports a 50-lb 
block at C. The ends A and D of the bar are in contact with fric-
tionless vertical walls. Determine the tension in cable BE and the 
reactions at A and D.

 4.37 Bar AC supports two 400-N loads as shown. Rollers at A and C 
rest against frictionless surfaces and a cable BD is attached at B. 
Determine (a) the tension in cable BD, (b) the reaction at A, 
(c) the reaction at C.

 4.38 Determine the tension in each cable and the reaction at D.
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177Problems 4.39 Two slots have been cut in plate DEF, and the plate has been 
placed so that the slots fit two fixed, frictionless pins A and B. 
Knowing that P 5 15 lb, determine (a) the force each pin exerts 
on the plate, (b) the reaction at F.

P A

B

D E

F

4 in. 4 in. 7 in. 2 in.

30º

30 lb

3 in.

Fig. P4.39

 4.40 For the plate of Prob. 4.39 the reaction at F must be directed 
downward, and its maximum allowable value is 20 lb. Neglecting 
friction at the pins, determine the required range of values of P.

 4.41 Bar AD is attached at A and C to collars that can move freely on 
the rods shown. If the cord BE is vertical (a 5 0), determine the 
tension in the cord and the reactions at A and C.

A B

E

C
D

30°

80 Na

0.2 m 0.2 m

30°

0.2 m

Fig. P4.41

 4.42 Solve Prob. 4.41 if the cord BE is parallel to the rods (a 5 30°).

 4.43 An 8-kg mass can be supported in the three different ways shown. 
Knowing that the pulleys have a 100-mm radius, determine the 
reaction at A in each case.

B

A A A

B B

8 kg 8 kg 8 kg

(a) (b) (c)

1.6 m 1.6 m 1.6 m

Fig. P4.43
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178 Equilibrium of Rigid Bodies  4.44 A tension of 5 lb is maintained in a tape as it passes through the 
support system shown. Knowing that the radius of each pulley is 
0.4 in., determine the reaction at C.

 4.45 Solve Prob. 4.44, assuming that 0.6-in.-radius pulleys are used.

 4.46 A 6-m telephone pole weighing 1600 N is used to support the ends 
of two wires. The wires form the angles shown with the horizontal 
and the tensions in the wires are, respectively, T1 5 600 N and 
T2 5 375 N. Determine the reaction at the fixed end A.

C

5 lb

5 lb

3 in. 3 in.

1.8 in.

A B

Fig. P4.44

A

B

6 m

20°
T1

T2

10°

Fig. P4.46

A B C D

40 lb 40 lb

E5 ft

4 ft4 ft

W

Fig. P4.47 and P4.48

 4.47 Beam AD carries the two 40-lb loads shown. The beam is held by 
a fixed support at D and by the cable BE that is attached to the 
counterweight W. Determine the reaction at D when (a) W 5 100 lb, 
(b) W 5 90 lb.

 4.48 For the beam and loading shown, determine the range of values 
of W for which the magnitude of the couple at D does not exceed 
40 lb ? ft.
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179Problems 4.49 Knowing that the tension in wire BD is 1300 N, determine the 
reaction at the fixed support C of the frame shown.

 4.50 Determine the range of allowable values of the tension in wire BD 
if the magnitude of the couple at the fixed support C is not to 
exceed 100 N ? m.

 4.51 A vertical load P is applied at end B of rod BC. (a) Neglecting the 
weight of the rod, express the angle u corresponding to the equilib-
rium position in terms of P, l, and the counterweight W. (b) Deter-
mine the value of u corresponding to equilibrium if P 5 2W.

750 N

500 mm

150 mm
250 mm

600 mm

450 N
A

B

C D

400 mm

Fig. P4.49 and P4.50

P

B

C

l

l

q

W

A

Fig. P4.51
A

B

C

W

q

l

Fig. P4.52

 4.52 A slender rod AB, of weight W, is attached to blocks A and B, which 
move freely in the guides shown. The blocks are connected by an 
elastic cord that passes over a pulley at C. (a) Express the tension 
in the cord in terms of W and u. (b) Determine the value of u for 
which the tension in the cord is equal to 3W.

 4.53 Rod AB is acted upon by a couple M and two forces, each of 
magnitude P. (a) Derive an equation in u, P, M, and l that must 
be satisfied when the rod is in equilibrium. (b) Determine the 
value of u corresponding to equilibrium when M 5 150 N ? m, 
P 5 200 N, and l 5 600 mm.

A

B

C

l

l

P

P

q

M

Fig. P4.53

A

B

C

Q

P

q

l

a

Fig. P4.54

 4.54 Rod AB is attached to a collar at A and rests against a small roller 
at C. (a) Neglecting the weight of rod AB, derive an equation in 
P, Q, a, l, and u that must be satisfied when the rod is in equilib-
rium. (b) Determine the value of u corresponding to equilibrium 
when P 5 16 lb, Q 5 12 lb, l 5 20 in., and a 5 5 in.
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180 Equilibrium of Rigid Bodies  4.55 A collar B of weight W can move freely along the vertical rod shown. 
The constant of the spring is k, and the spring is unstretched when 
u 5 0. (a) Derive an equation in u, W, k, and l that must be satisfied 
when the collar is in equilibrium. (b) Knowing that W 5 300 N, 
l 5 500 mm, and k 5 800 N/m, determine the value of u corre-
sponding to equilibrium.

 4.56 A vertical load P is applied at end B of rod BC. The constant of 
the spring is k, and the spring is unstretched when u 5 90°. 
(a) Neglecting the weight of the rod, express the angle u corre-
sponding to equilibrium in terms of P, k, and l. (b) Determine the 
value of u corresponding to equilibrium when P 5 1

4 kl.

 4.57 Solve Sample Prob. 4.5, assuming that the spring is unstretched 
when u 5 90°.

 4.58 A slender rod AB, of weight W, is attached to blocks A and B that 
move freely in the guides shown. The constant of the spring is k, 
and the spring is unstretched when u 5 0. (a) Neglecting the weight 
of the blocks, derive an equation in W, k, l, and u that must be 
satisfied when the rod is in equilibrium. (b) Determine the value 
of u when W 5 75 lb, l 5 30 in., and k 5 3 lb/in.

 4.59 Eight identical 500 3 750-mm rectangular plates, each of mass 
m 5 40 kg, are held in a vertical plane as shown. All connections 
consist of frictionless pins, rollers, or short links. In each case, 
determine whether (a) the plate is completely, partially, or improp-
erly constrained, (b) the reactions are statically determinate or 
indeterminate, (c) the equilibrium of the plate is maintained in the 
position shown. Also, wherever possible, compute the reactions.

A

B

q

l

Fig. P4.55
A

B

C

P

q

l

l

Fig. P4.56

A

BW

q

l

Fig. P4.58

Fig. P4.59

A B

CD

1 2 3 4

5 6 7 8
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181 4.60 The bracket ABC can be supported in the eight different ways 
shown. All connections consist of smooth pins, rollers, or short 
links. For each case, answer the questions listed in Prob. 4.59, and, 
wherever possible, compute the reactions, assuming that the mag-
nitude of the force P is 100 lb.

4.6 EQUILIBRIUM OF A TWO-FORCE BODY
A particular case of equilibrium which is of considerable interest is 
that of a rigid body subjected to two forces. Such a body is commonly 
called a two-force body. It will be shown that if a two-force body is 
in equilibrium, the two forces must have the same magnitude, the 
same line of action, and opposite sense.
 Consider a corner plate subjected to two forces F1 and F2 act-
ing at A and B, respectively (Fig. 4.8a). If the plate is to be in equi-
librium, the sum of the moments of F1 and F2 about any axis must 
be zero. First, we sum moments about A. Since the moment of F1 
is obviously zero, the moment of F2 must also be zero and the line 
of action of F2 must pass through A (Fig. 4.8b). Summing moments 
about B, we prove similarly that the line of action of F1 must pass 
through B (Fig. 4.8c). Therefore, both forces have the same line of 
action (line AB). From either of the equations oFx 5 0 and oFy 5 0 
it is seen that they must also have the same magnitude but opposite 
sense.

B

A
C

13 ft

2 ft 2 ft

2 3
4

5 6 7 8

PPP

P P P P

P

Fig. P4.60

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8

1814.6 Equilibrium of a Two-Force Body
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182 Equilibrium of Rigid Bodies

 If several forces act at two points A and B, the forces acting at 
A can be replaced by their resultant F1 and those acting at B can be 
replaced by their resultant F2. Thus a two-force body can be more 
generally defined as a rigid body subjected to forces acting at only 
two points. The resultants F1 and F2 then must have the same line 
of action, the same magnitude, and opposite sense (Fig. 4.8).
 In the study of structures, frames, and machines, you will see 
how the recognition of two-force bodies simplifies the solution of 
certain problems.

4.7 EQUILIBRIUM OF A THREE-FORCE BODY
Another case of equilibrium that is of great interest is that of a three-
force body, i.e., a rigid body subjected to three forces or, more gen-
erally, a rigid body subjected to forces acting at only three points. 
Consider a rigid body subjected to a system of forces which can be 
reduced to three forces F1, F2, and F3 acting at A, B, and C, respec-
tively (Fig. 4.9a). It will be shown that if the body is in equilibrium, 
the lines of action of the three forces must be either concurrent or 
parallel.
 Since the rigid body is in equilibrium, the sum of the moments 
of F1, F2, and F3 about any axis must be zero. Assuming that the 
lines of action of F1 and F2 intersect and denoting their point of 
intersection by D, we sum moments about D (Fig. 4.9b). Since the 
moments of F1 and F2 about D are zero, the moment of F3 about 
D must also be zero, and the line of action of F3 must pass through 
D (Fig. 4.9c). Therefore, the three lines of action are concurrent. 
The only exception occurs when none of the lines intersect; the lines 
of action are then parallel.
 Although problems concerning three-force bodies can be solved 
by the general methods of Secs. 4.3 to 4.5, the property just estab-
lished can be used to solve them either graphically or mathematically 
from simple trigonometric or geometric relations.

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8 (repeated)

F2

F3

F1

B C

D
A

(a) (b) (c)

F2

F3

F1

B C

D
A

F2

F3

F1

B C

A

Fig. 4.9
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SOLUTION

Free-Body Diagram. The joist is a three-force body, since it is acted upon 
by three forces: its weight W, the force T exerted by the rope, and the 
reaction R of the ground at A. We note that

W 5 mg 5 (10 kg)(9.81 m/s2) 5 98.1 N

Three-Force Body. Since the joist is a three-force body, the forces acting 
on it must be concurrent. The reaction R, therefore, will pass through the 
point of intersection C of the lines of action of the weight W and the ten-
sion force T. This fact will be used to determine the angle a that R forms 
with the horizontal.
 Drawing the vertical BF through B and the horizontal CD through C, 
we note that

 AF 5 BF 5 (AB) cos 458 5 (4 m) cos 458 5 2.828 m
CD 5 EF 5 AE 5 1

2(AF) 5 1.414 m
BD 5 (CD) cot (458 1 258) 5 (1.414 m) tan 208 5 0.515 m
 CE 5 DF 5 BF 2 BD 5 2.828 m 2 0.515 m 5 2.313 m

We write

tan a 5
CE
AE

5
2.313 m
1.414 m

5 1.636

a 5 58.68 ◀

We now know the direction of all the forces acting on the joist.

Force Triangle. A force triangle is drawn as shown, and its interior angles 
are computed from the known directions of the forces. Using the law of 
sines, we write

T
sin 31.4°

5
R

sin 110°
5

98.1 N
sin 38.6°

T 5 81.9 N ◀

R 5 147.8 N a58.68 ◀

SAMPLE PROBLEM 4.6

A man raises a 10-kg joist, of length 4 m, by pulling on a rope. Find the 
tension T in the rope and the reaction at A.

45°

25°
4 m

B

A

A

B

C

G

T

R

W = 98.1 Na

45°

45°
4 m

A

B
C

G

D

E F

25°

a

T

R98.1 N

110°

38.6°
20°

31.4°

a = 58.6°
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The preceding sections covered two particular cases of equilibrium of a rigid 
body.

1. A two-force body is a body subjected to forces at only two points. The 
resultants of the forces acting at each of these points must have the same magni-
tude, the same line of action, and opposite sense. This property will allow you to 
simplify the solutions of some problems by replacing the two unknown compo-
nents of a reaction by a single force of unknown magnitude but of known 
direction.

2. A three-force body is subjected to forces at only three points. The resul-
tants of the forces acting at each of these points must be concurrent or parallel. 
To solve a problem involving a three-force body with concurrent forces, draw your 
free-body diagram showing that these three forces pass through the same point. 
The use of simple geometry may then allow you to complete the solution by using 
a force triangle [Sample Prob. 4.6].

Although the principle noted above for the solution of problems involving three-
force bodies is easily understood, it can be difficult to sketch the needed geo-
metric constructions. If you encounter difficulty, first draw a reasonably large 
free-body diagram and then seek a relation between known or easily calculated 
lengths and a dimension that involves an unknown. This was done in Sample 
Prob. 4.6, where the easily calculated dimensions AE and CE were used to 
determine the angle a.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

185

 4.61 Determine the reactions at A and B when a 5 180 mm.

 4.62 For the bracket and loading shown, determine the range of values 
of the distance a for which the magnitude of the reaction at B does 
not exceed 600 N.

4.63 Using the method of Sec. 4.7, solve Prob. 4.17.

4.64 Using the method of Sec. 4.7, solve Prob. 4.18.

4.65 The spanner shown is used to rotate a shaft. A pin fits in a hole at 
A, while a flat, frictionless surface rests against the shaft at B. If a 
60-lb force P is exerted on the spanner at D, find the reactions at 
A and B.

A
B

C

240 mm

300 N

a

Fig. P4.61 and P4.62

Fig. P4.65

15 in.
3 in.

PA

B

C D
50º

4.66 Determine the reactions at B and D when b 5 60 mm.

4.67 Determine the reactions at B and D when b 5 120 mm.

4.68 Determine the reactions at B and C when a 5 1.5 in.

Fig. P4.66 and P4.67

A B

C

D

75 mm80 N

90 mm

b

250 mm

5 in.2 in.3 in.

3 in.

50 lb

A

C

B

D

a

Fig. P4.68

4.69 A 50-kg crate is attached to the trolley-beam system shown. Know-
ing that a 5 1.5 m, determine (a) the tension in cable CD, (b) the 
reaction at B.

4.70 Solve Prob. 4.69, assuming that a 5 3 m.

A

B

C

D

55° 1.4 m

0.4 m

a

W

Fig. P4.69
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186 Equilibrium of Rigid Bodies  4.71 One end of rod AB rests in the corner A and the other end is 
attached to cord BD. If the rod supports a 40-lb load at its  midpoint 
C, find the reaction at A and the tension in the cord.

40 lbA

B

C

D

12 in. 12 in.

18 in.

10 in.

Fig. P4.71

 4.72 Determine the reactions at A and D when b 5 308.

 4.73 Determine the reactions at A and D when b 5 608.

 4.74 A 40-lb roller, of diameter 8 in., which is to be used on a tile floor, 
is resting directly on the subflooring as shown. Knowing that the 
thickness of each tile is 0.3 in., determine the force P required to 
move the roller onto the tiles if the roller is (a) pushed to the left, 
(b) pulled to the right.

Fig. P4.72 and P4.73

A

B

C

D

150 Nb

180 mm

100 mm

280 mm

30°

P

Fig. P4.74

A B

D

C

72 lb a = 12 in.

7 in.

24 in.

Fig. P4.75

A

B

CD

75 N

250 mm

a = 120 mm

160 mm

Fig. P4.76

 4.75 and 4.76 Member ABC is supported by a pin and bracket at B 
and by an inextensible cord attached at A and C and passing over 
a frictionless pulley at D. The tension may be assumed to be the 
same in portions AD and CD of the cord. For the loading shown 
and neglecting the size of the pulley, determine the tension in the 
cord and the reaction at B.
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187Problems 4.77 Rod AB is supported by a pin and bracket at A and rests against 
a frictionless peg at C. Determine the reactions at A and C when 
a 170-N vertical force is applied at B.

 4.78 Solve Prob. 4.77, assuming that the 170-N force applied at B is 
horizontal and directed to the left.

 4.79 Using the method of Sec. 4.7, solve Prob. 4.21.

 4.80 Using the method of Sec. 4.7, solve Prob. 4.28.

 4.81 Knowing that u 5 308, determine the reaction (a) at B, (b) at C.

 4.82 Knowing that u 5 608, determine the reaction (a) at B, (b) at C.

 4.83 Rod AB is bent into the shape of an arc of circle and is lodged 
between two pegs D and E. It supports a load P at end B. Neglecting 
friction and the weight of the rod, determine the distance c corre-
sponding to equilibrium when a 5 20 mm and R 5 100 mm.

 4.84 A slender rod of length L is attached to collars that can slide freely 
along the guides shown. Knowing that the rod is in equilibrium, 
derive an expression for the angle u in terms of the angle b.

A

B

C

170 N

150 mm

150 mm

160 mm

Fig. P4.77

A

BC

R

P

q

Fig. P4.81 and P4.82

P

A
R

C

D

E

a

a

c

B

Fig. P4.83

A

B

q

b

L

Fig. P4.84 and P4.85

 4.85 An 8-kg slender rod of length L is attached to collars that can slide 
freely along the guides shown. Knowing that the rod is in equilib-
rium and that b 5 308, determine (a) the angle u that the rod 
forms with the vertical, (b) the reactions at A and B.
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188 Equilibrium of Rigid Bodies  4.86 A slender uniform rod of length L is held in equilibrium as shown, 
with one end against a frictionless wall and the other end attached 
to a cord of length S. Derive an expression for the distance h in 
terms of L and S. Show that this position of equilibrium does not 
exist if S . 2L.

B

A

C
S

L

h

Fig. P4.86 and P4.87

A

B

q

2R

Fig. P4.88

 4.87 A slender uniform rod of length L 5 20 in. is held in equilibrium 
as shown, with one end against a frictionless wall and the other 
end attached to a cord of length S 5 30 in. Knowing that the 
weight of the rod is 10 lb, determine (a) the distance h, (b) the 
tension in the cord, (c) the reaction at B.

 4.88 A uniform rod AB of length 2R rests inside a hemispherical bowl 
of radius R as shown. Neglecting friction, determine the angle u 
corresponding to equilibrium.

 4.89 A slender rod of length L and weight W is attached to a collar at 
A and is fitted with a small wheel at B. Knowing that the wheel 
rolls freely along a cylindrical surface of radius R, and neglecting 
friction, derive an equation in u, L, and R that must be satisfied 
when the rod is in equilibrium.

R

L
A

B

C

q

Fig. P4.89

 4.90 Knowing that for the rod of Prob. 4.89, L 5 15 in., R 5 20 in., 
and W 5 10 lb, determine (a) the angle u corresponding to equi-
librium, (b) the reactions at A and B.
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189EQUILIBRIUM IN THREE DIMENSIONS

4.8  EQUILIBRIUM OF A RIGID BODY 
IN THREE DIMENSIONS

We saw in Sec. 4.1 that six scalar equations are required to express 
the conditions for the equilibrium of a rigid body in the general 
three-dimensional case:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be solved for no more than six unknowns, which 
generally will represent reactions at supports or connections.
 In most problems the scalar equations (4.2) and (4.3) will be 
more conveniently obtained if we first express in vector form the con-
ditions for the equilibrium of the rigid body considered. We write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar 
components and unit vectors. Next, we compute all vector products, 
either by direct calculation or by means of determinants (see Sec. 3.8). 
We observe that as many as three unknown reaction components 
may be eliminated from these computations through a judicious 
choice of the point O. By equating to zero the coefficients of the 
unit vectors in each of the two relations (4.1), we obtain the desired 
scalar equations.†

4.9  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A THREE-DIMENSIONAL STRUCTURE

The reactions on a three-dimensional structure range from the single 
force of known direction exerted by a frictionless surface to the 
force-couple system exerted by a fixed support. Consequently, in 
problems involving the equilibrium of a three-dimensional structure, 
there can be between one and six unknowns associated with the 
reaction at each support or connection. Various types of supports and 

†In some problems, it will be found convenient to eliminate the reactions at two points 
A and B from the solution by writing the equilibrium equation oMAB 5 0, which 
involves the determination of the moments of the forces about the axis AB joining 
points A and B (see Sample Prob. 4.10).

4.9 Reactions at Supports and Connections for 
a Three-Dimensional Structure
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190 Equilibrium of Rigid Bodies connections are shown in Fig. 4.10 with their corresponding reac-
tions. A simple way of determining the type of reaction correspond-
ing to a given support or connection and the number of unknowns 
involved is to find which of the six fundamental motions (translation in 
the x, y, and z directions, rotation about the x, y, and z axes) are 
allowed and which motions are prevented.
 Ball supports, frictionless surfaces, and cables, for example, pre-
vent translation in one direction only and thus exert a single force whose 
line of action is known; each of these supports involves one unknown, 
namely, the magnitude of the reaction. Rollers on rough surfaces and 
wheels on rails prevent translation in two directions; the corresponding 
reactions consist of two unknown force components. Rough surfaces in 
direct contact and ball-and-socket supports prevent translation in three 
directions; these supports involve three unknown force components.
 Some supports and connections can prevent rotation as well 
as translation; the corresponding reactions include couples as well as 
forces. For example, the reaction at a fixed support, which prevents 
any motion (rotation as well as translation), consists of three unknown 
forces and three unknown couples. A universal joint, which is designed 
to allow rotation about two axes, will exert a reaction consisting of 
three unknown force components and one unknown couple.
 Other supports and connections are primarily intended to pre-
vent translation; their design, however, is such that they also prevent 
some rotations. The corresponding reactions consist essentially of 
force components but may also include couples. One group of sup-
ports of this type includes hinges and bearings designed to support 
radial loads only (for example, journal bearings, roller bearings). The 
corresponding reactions consist of two force components but may 
also include two couples. Another group includes pin-and-bracket 
supports, hinges, and bearings designed to support an axial thrust as 
well as a radial load (for example, ball bearings). The corresponding 
reactions consist of three force components but may include two 
couples. However, these supports will not exert any appreciable cou-
ples under normal conditions of use. Therefore, only force compo-
nents should be included in their analysis unless it is found that 
couples are necessary to maintain the equilibrium of the rigid body, 
or unless the support is known to have been specifically designed to 
exert a couple (see Probs. 4.119 through 4.122).
 If the reactions involve more than six unknowns, there are 
more unknowns than equations, and some of the reactions are stati-
cally indeterminate. If the reactions involve fewer than six unknowns, 
there are more equations than unknowns, and some of the equations 
of equilibrium cannot be satisfied under general loading conditions; 
the rigid body is only partially constrained. Under the particular 
loading conditions corresponding to a given problem, however, the 
extra equations often reduce to trivial identities, such as 0 5 0, and 
can be disregarded; although only partially constrained, the rigid 
body remains in equilibrium (see Sample Probs. 4.7 and 4.8). Even 
with six or more unknowns, it is possible that some equations of 
equilibrium will not be satisfied. This can occur when the reactions 
associated with the given supports either are parallel or intersect the 
same line; the rigid body is then improperly constrained.

Photo 4.6 Universal joints, easily seen on the 
drive shafts of rear-wheel-drive cars and trucks, 
allow rotational motion to be transferred between 
two noncollinear shafts.

Photo 4.7 The pillow block bearing shown 
supports the shaft of a fan used in an industrial 
facility.
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Fig. 4.10 Reactions at supports and connections.
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SAMPLE PROBLEM 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by 
two flanged wheels A and B mounted on a rail and by an unflanged wheel 
C resting against a rail fixed to the wall. An 80-kg man stands on the ladder 
and leans to the right. The line of action of the combined weight W of the 
man and ladder intersects the floor at point D. Determine the reactions at 
A, B, and C.

A 0.6 m
0.6 m

0.9 m 0.3 m

x

y

z

Ck

–(981 N)j

Ayj

Azk

Bzk Byj

3 m

192

A

B

C

D
0.6 m

0.6 m

0.9 m 0.3 m

W

3 m

SOLUTION

Free-Body Diagram. A free-body diagram of the ladder is drawn. The 
forces involved are the combined weight of the man and ladder,

W 5 2mg j 5 2(80 kg 1 20 kg)(9.81 m/s2)j 5 2(981 N)j

and five unknown reaction components, two at each flanged wheel and one 
at the unflanged wheel. The ladder is thus only partially constrained; it is 
free to roll along the rails. It is, however, in equilibrium under the given 
load since the equation oFx 5 0 is satisfied.

Equilibrium Equations. We express that the forces acting on the ladder 
form a system equivalent to zero:

 oF 5 0:  Ay j 1 Azk 1 Byj 1 Bzk 2 (981 N)j 1 Ck 5 0
 (Ay 1 By 2 981 N)j 1 (Az 1 Bz 1 C)k 5 0 (1)
oMA 5 o(r 3 F) 5 0:   1.2i 3 (By j 1 Bzk) 1 (0.9i 2 0.6k) 3 (2981j)

1 (0.6i 1 3j 2 1.2k) 3 Ck 5 0

Computing the vector products, we have†

 1.2Byk 2 1.2Bz j 2 882.9k 2 588.6i 2 0.6Cj 1 3Ci 5 0
 (3C 2 588.6)i 2 (1.2Bz 1 0.6C)j 1 (1.2By 2 882.9)k 5 0 (2)

 Setting the coefficients of i, j, k equal to zero in Eq. (2), we obtain 
the following three scalar equations, which express that the sum of the 
moments about each coordinate axis must be zero:

 3C 2 588.6 5 0 C 5 1196.2 N
 1.2Bz 1 0.6C 5 0 Bz 5 298.1 N
 1.2By 2 882.9 5 0 By 5 1736 N

The reactions at B and C are therefore

B 5 1(736 N)j 2 (98.1 N)k  C 5 1(196.2 N)k ◀

Setting the coefficients of j and k equal to zero in Eq. (1), we obtain two scalar 
equations expressing that the sums of the components in the y and z directions 
are zero. Substituting for By, Bz, and C the values obtained above, we write

 Ay 1 By 2 981 5 0 Ay 1 736 2 981 5 0 Ay 5 1245 N
 Az 1 Bz 1 C 5 0 Az 2 98.1 1 196.2 5 0 Az 5 298.1 N

We conclude that the reaction at A is A 5 1(245 N)j 2 (98.1 N)k ◀

†The moments in this sample problem and in Sample Probs. 4.8 and 4.9 can also be 
expressed in the form of determinants (see Sample Prob. 3.10).
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SAMPLE PROBLEM 4.8

A 5 3 8-ft sign of uniform density weighs 270 lb and is supported by a 
ball-and-socket joint at A and by two cables. Determine the tension in each 
cable and the reaction at A.

193

W = – (270 lb) j

A x i

Azk

A y j

TEC TBD
A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft
4 ft

4 ft
4 ft

8 ft

3 ft

SOLUTION

Free-Body Diagram. A free-body diagram of the sign is drawn. The forces 
acting on the free body are the weight W 5 2(270 lb)j and the reactions 
at A, B, and E. The reaction at A is a force of unknown direction and is 
represented by three unknown components. Since the directions of the 
forces exerted by the cables are known, these forces involve only one 
unknown each, namely, the magnitudes TBD and TEC. Since there are only 
five unknowns, the sign is partially constrained. It can rotate freely about 
the x axis; it is, however, in equilibrium under the given loading, since the 
equation oMx 5 0 is satisfied.
 The components of the forces TBD and TEC can be expressed in terms 
of the unknown magnitudes TBD and TEC by writing

 BD
¡

5 2(8 ft)i 1 (4 ft)j 2 (8 ft)k    BD 5 12 ft
 EC
¡

5 2(6 ft)i 1 (3 ft)j 1 (2 ft)k    EC 5 7 ft

 TBD 5 TBDaBD
¡

BD
b 5 TBD(22

3i 1 1
3 j 2 2

3k)

 TEC 5 TECaEC
¡

EC
b 5 TEC(26

7 i 1 3
7 j 2 2

7k)

Equilibrium Equations. We express that the forces acting on the sign form 
a system equivalent to zero:

oF 5 0:  Axi 1 Ayj 1 Azk 1 TBD 1 TEC 2 (270 lb)j 5 0
(Ax 2 2

3 TBD 2 6
7 TEC)i 1 (Ay 1 1

3 TBD 1 3
7 TEC 2 270 lb)j

1 (Az 2 2
3 TBD 1 2

7 TEC)k 5 0 (1)

oMA 5 o(r 3 F) 5 0:
(8 ft)i 3 TBD(22

3 
i 1 1

3 
j 2 2

3 
k) 1 (6 ft)i 3 TEC(26

7 
i 1 3

7 
j 1 2

7 
k)

1 (4 ft)i 3 (2270 lb)j 5 0
(2.667TBD 1 2.571TEC 2 1080 lb)k 1 (5.333TBD 2 1.714TEC)j 5 0 (2)

 Setting the coefficients of j and k equal to zero in Eq. (2), we obtain 
two scalar equations which can be solved for TBD and TEC:

TBD 5 101.3 lb  TEC 5 315 lb ◀

Setting the coefficients of i, j, and k equal to zero in Eq. (1), we obtain 
three more equations, which yield the components of A. We have

A 5 1(338 lb)i 1 (101.2 lb)j 2 (22.5 lb)k ◀

A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft

5 ft

4 ft

8 ft

3 ft
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SAMPLE PROBLEM 4.9

A uniform pipe cover of radius r 5 240 mm and mass 30 kg is held in a 
horizontal position by the cable CD. Assuming that the bearing at B does 
not exert any axial thrust, determine the tension in the cable and the reac-
tions at A and B.

194

r = 240 mm

A

B

C

D

W = – (294 N) j

Bx i
By j

A x i
Ayj

Azk

160 mm

80 mm

Tr = 240 mm

r = 240 mm

x

y

z

240 mm

r = 240 mm

A

B

C

D

160 mm

240 mm
240 mm

240 mm

SOLUTION

Free-Body Diagram. A free-body diagram is drawn with the coordinate 
axes shown. The forces acting on the free body are the weight of the cover,

W 5 2mg j 5 2(30 kg)(9.81 m/s2)j 5 2(294 N)j

and reactions involving six unknowns, namely, the magnitude of the force T 
exerted by the cable, three force components at hinge A, and two at hinge B. 
The components of T are expressed in terms of the unknown magnitude T 
by resolving the vector DC

¡
 into rectangular components and writing

DC
¡

 5 2(480 mm)i 1 (240 mm)j 2 (160 mm)k  DC 5 560 mm

T 5 T 
DC
¡

DC
5 26

7 
Ti 1 3

7 
Tj 2 2

7 
T  k

Equilibrium Equations. We express that the forces acting on the pipe 
cover form a system equivalent to zero:

oF 5 0:    Axi 1 Ay j 1 Azk 1 Bxi 1 Byj 1 T 2 (294 N)j 5 0
 (Ax 1 Bx 2 6

7T)i 1 (Ay 1 By 1 3
7T 2 294 N)j 1 (Az 2 2

7T)k 5 0 (1)

oMB 5 o(r 3 F) 5 0:
2rk 3 (Axi 1 Ayj 1 Azk)
 1 (2r i 1 rk) 3 (2 67Ti 1  37Tj 2  27Tk)
  1 (ri 1 rk) 3 (2294 N)j 5 0
 (22Ay 2 3

7T 1 294 N)r i 1 (2Ax 2 2
7T)rj 1 (6

7T 2 294 N)rk 5 0 (2)

 Setting the coefficients of the unit vectors equal to zero in Eq. (2), 
we write three scalar equations, which yield

Ax 5 149.0 N  Ay 5 173.5 N  T 5 343 N ◀

Setting the coefficients of the unit vectors equal to zero in Eq. (1), we obtain 
three more scalar equations. After substituting the values of T, Ax, and Ay 
into these equations, we obtain

Az 5 198.0 N  Bx 5 1245 N  By 5 173.5 N

The reactions at A and B are therefore

A 5 1(49.0 N)i 1 (73.5 N)j 1 (98.0 N)k ◀

B 5 1(245 N)i 1 (73.5 N)j       ◀

bee29400_ch04_156-217.indd Page 194  11/29/08  3:33:56 PM user-s172bee29400_ch04_156-217.indd Page 194  11/29/08  3:33:56 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



195

SAMPLE PROBLEM 4.10

A 450-lb load hangs from the corner C of a rigid piece of 
pipe ABCD which has been bent as shown. The pipe is 
supported by the ball-and-socket joints A and D, which are 
fastened, respectively, to the floor and to a vertical wall, 
and by a cable attached at the midpoint E of the portion 
BC of the pipe and at a point G on the wall. Determine 
(a) where G should be located if the tension in the cable 
is to be minimum, (b) the corresponding minimum value 
of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

A

B C DE

x

y

z

T

�

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

A

B
C

D

G(x, y, 0)

E(6, 12, 6)

x

y

z

W

Tmin

SOLUTION

Free-Body Diagram. The free-body diagram of the pipe includes the load 
W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by the 
cable. To eliminate the reactions at A and D from the computations, we 
express that the sum of the moments of the forces about AD is zero. Denot-
ing by l the unit vector along AD, we write

 oMAD 5 0:    L ? (AE
¡

3 T) 1 L ? (AC
¡

3 W) 5 0 (1)

 The second term in Eq. (1) can be computed as follows:

 AC
¡

3 W 5 (12i 1 12j) 3 (2450j) 5 25400k

 L 5
AD
¡

AD
5

12i 1 12j 2 6k

18
5 2

3 i 1 2
3 j 2 1

3 k

 L ? (AC
¡

3 W) 5 (2
3 
i 1 2

3 
j 2 1

3 
k) ? (25400k) 5 11800

Substituting the value obtained into Eq. (1), we write

 L ? (AE
¡

3 T) 5 21800 lb ? ft (2)

Minimum Value of Tension. Recalling the commutative property for 
mixed triple products, we rewrite Eq. (2) in the form

 T ? (L 3 AE
¡

) 5 21800 lb ? ft (3)

which shows that the projection of T on the vector L 3 AE
¡

 is a constant. 
It follows that T is minimum when parallel to the vector

L 3 AE
¡

5 (2
3 i 1 2

3 j 2 1
3 k) 3 (6i 1 12j) 5 4i 2 2j 1 4k

Since the corresponding unit vector is 2
3 i 2 1

3 j 1 2
3 k, we write

 Tmin 5 T(2
3 i 2 1

3 j 1 2
3 k) (4)

Substituting for T and L 3 AE
¡

 in Eq. (3) and computing the dot products, 
we obtain 6T 5 21800 and, thus, T 5 2300. Carrying this value into (4), 
we obtain

Tmin 5 2200i 1 100j 2 200k  Tmin 5 300 lb ◀

Location of G. Since the vector EG
¡

 and the force Tmin have the same 
direction, their components must be proportional. Denoting the coordinates 
of G by x, y, 0, we write

x 2 6
2200

5
y 2 12

1100
5

0 2 6
2200

    x 5 0    y 5 15 ft ◀
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The equilibrium of a three-dimensional body was considered in the sections you 
just completed. It is again most important that you draw a complete free-body 

diagram as the first step of your solution.

1. As you draw the free-body diagram, pay particular attention to the reac-
tions at the supports. The number of unknowns at a support can range from one 
to six (Fig. 4.10). To decide whether an unknown reaction or reaction component 
exists at a support, ask yourself whether the support prevents motion of the body 
in a certain direction or about a certain axis.
 a. If motion is prevented in a certain direction, include in your free-body 
diagram an unknown reaction or reaction component that acts in the same 
direction.
 b. If a support prevents rotation about a certain axis, include in your free-
body diagram a couple of unknown magnitude that acts about the same axis.

2. The external forces acting on a three-dimensional body form a system 
equivalent to zero. Writing oF 5 0 and oMA 5 0 about an appropriate point A, 
and setting the coefficients of i, j, k in both equations equal to zero will provide 
you with six scalar equations. In general, these equations will contain six unknowns 
and may be solved for these unknowns.

3. After completing your free-body diagram, you may want to seek equations 
involving as few unknowns as possible. The following strategies may help you.
 a. By summing moments about a ball-and-socket support or a hinge, you will 
obtain equations from which three unknown reaction components have been elimi-
nated [Sample Probs. 4.8 and 4.9].
 b. If you can draw an axis through the points of application of all but one of the 
unknown reactions, summing moments about that axis will yield an equation in a 
single unknown [Sample Prob. 4.10].

4. After drawing your free-body diagram, you may find that one of the 
following situations exists.
 a. The reactions involve fewer than six unknowns; the body is said to be 
partially constrained and motion of the body is possible. However, you may be 
able to determine the reactions for a given loading condition [Sample Prob. 4.7].
 b. The reactions involve more than six unknowns; the reactions are said to 
be statically indeterminate. Although you may be able to calculate one or two 
reactions, you cannot determine all of the reactions [Sample Prob. 4.10].
 c. The reactions are parallel or intersect the same line; the body is said to 
be improperly constrained, and motion can occur under a general loading 
condition.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

197

4.91 A 4 3 8-ft sheet of plywood weighing 34 lb has been temporarily 
placed among three pipe supports. The lower edge of the sheet 
rests on small collars at A and B and its upper edge leans against 
pipe C. Neglecting friction at all surfaces, determine the reactions 
at A, B, and C.

4 ft

y

z

B

A

x

1 ft

3.75 ft
3 ft

5 ft

3 ft

4 ft

C

 Fig. P4.91  

TB

x

D

C

B

A

z

y

90 mm

90 mm

120 mm TC

 Fig. P4.92  

4.92 Two tape spools are attached to an axle supported by bearings at A
and D. The radius of spool B is 30 mm and the radius of spool C
is 40 mm. Knowing that TB 5 80 N and that the system rotates at 
a constant rate, determine the reactions at A and D. Assume that 
the bearing at A does not exert any axial thrust and neglect the 
weights of the spools and axle.

4.93 Solve Prob. 4.92, assuming that the spool C is replaced by a spool 
of radius 50 mm.
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198 Equilibrium of Rigid Bodies  4.94 Two transmission belts pass over sheaves welded to an axle supported 
by bearings at B and D. The sheave at A has a radius of 2.5 in., and 
the sheave at C has a radius of 2 in. Knowing that the system rotates 
at a constant rate, determine (a) the tension T, (b) the reactions at B 
and D. Assume that the bearing at D does not exert any axial thrust 
and neglect the weights of the sheaves and axle.

T

720 N

y

80 mm 120 mm

120 mm

200 mm

A
E

B

C

D

x

z

40 mm

 Fig. P4.95  

 4.95 A 200-mm lever and a 240-mm-diameter pulley are welded to the 
axle BE that is supported by bearings at C and D. If a 720-N verti-
cal load is applied at A when the lever is horizontal, determine 
(a) the tension in the cord, (b) the reactions at C and D. Assume 
that the bearing at D does not exert any axial thrust.

30 lb

T

24 lb

18 lb

y
8 in.

6 in.

A

B
C

D

x

z

6 in.

 Fig. P4.94  

 4.96 Solve Prob. 4.95, assuming that the axle has been rotated clockwise 
in its bearings by 30° and that the 720-N load remains vertical.
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199Problems 4.97 An opening in a floor is covered by a 1 3 1.2-m sheet of plywood 
of mass 18 kg. The sheet is hinged at A and B and is maintained in 
a position slightly above the floor by a small block C. Determine the 
vertical component of the reaction (a) at A, (b) at B, (c) at C.

y

z
x

A

B

E C

0.15 m

0.2 m

0.2 m
0.6 m

1.2 m

D

 Fig. P4.97  

x
C

A

60 in.

60 in.
60 in. 30 in.

15 in.

15 in.

B

z

y

 Fig. P4.99   and P4.100

 4.98 Solve Prob. 4.97, assuming that the small block C is moved and 
placed under edge DE at a point 0.15 m from corner E.

 4.99 The rectangular plate shown weighs 80 lb and is supported by 
three vertical wires. Determine the tension in each wire.

 4.100 The rectangular plate shown weighs 80 lb and is supported by 
three vertical wires. Determine the weight and location of the 
lightest block that should be placed on the plate if the tensions in 
the three wires are to be equal.
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200 Equilibrium of Rigid Bodies  4.101 Two steel pipes AB and BC, each having a mass per unit length of 
8 kg/m, are welded together at B and supported by three wires. 
Knowing that a 5 0.4 m, determine the tension in each wire.

 4.102 For the pipe assembly of Prob. 4.101, determine (a) the largest 
permissible value of a if the assembly is not to tip, (b) the corre-
sponding tension in each wire.

 4.103 The 24-lb square plate shown is supported by three vertical wires. 
Determine (a) the tension in each wire when a 5 10 in., (b) the 
value of a for which the tension in each wire is 8 lb.

 4.104 The table shown weighs 30 lb and has a diameter of 4 ft. It is sup-
ported by three legs equally spaced around the edge. A vertical 
load P of magnitude 100 lb is applied to the top of the table at D. 
Determine the maximum value of a if the table is not to tip over. 
Show, on a sketch, the area of the table over which P can act 
without tipping the table.

B

A

C

D

y

x

z

a

1.2 m
0.6 m

 Fig. P4.101

y

x

B C

A

a

30 in.

a

30 in.

z

 Fig. P4.103

A
B

C

D

aP

 Fig. P4.104
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201Problems 4.105 A 10-ft boom is acted upon by the 840-lb force shown. Determine 
the tension in each cable and the reaction at the ball-and-socket 
joint at A.

x

y

E

G

A

B

C D22.5 ft

16.5 ft

5 ft

6.6 ft5 ft

13 ft

6 ft

2.8 ft
3.2 ft

F

H

z

6.6 ft

 Fig. P4.108

 4.106 A 2.4-m boom is held by a ball-and-socket joint at C and by two 
cables AD and AE. Determine the tension in each cable and the 
reaction at C.

 4.107 Solve Prob. 4.106, assuming that the 3.6-kN load is applied at 
point A.

 4.108 A 600-lb crate hangs from a cable that passes over a pulley B and 
is attached to a support at H. The 200-lb boom AB is supported 
by a ball-and-socket joint at A and by two cables DE and DF. The 
center of gravity of the boom is located at G. Determine (a) the 
tension in cables DE and DF, (b) the reaction at A.

840 lb

x

y

z

E

A
B

C

D

4 ft
6 ft

7 ft

6 ft

6 ft

 Fig. P4.105

A

B

C

x

y

z

D

E

3.6 kN

1.2 m

1.2 m

1.2 m

0.6 m

0.8 m

0.8 m

 Fig. P4.106
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202 Equilibrium of Rigid Bodies  4.109 A 3-m pole is supported by a ball-and-socket joint at A and by the 
cables CD and CE. Knowing that the 5-kN force acts vertically 
downward (f 5 0), determine (a) the tension in cables CD and 
CE, (b) the reaction at A.

x

y

z

E

D

C

A
1.5 m

2 m 1 m

1.2 m

1.2 m

B

5 kN f

 Fig. P4.109 and P4.110

 4.110 A 3-m pole is supported by a ball-and-socket joint at A and by the 
cables CD and CE. Knowing that the line of action of the 5-kN force 
forms an angle f 5 30° with the vertical xy plane, determine 
(a) the tension in cables CD and CE, (b) the reaction at A.

 4.111 A 48-in. boom is held by a ball-and-socket joint at C and by two 
cables BF and DAE; cable DAE passes around a frictionless pulley 
at A. For the loading shown, determine the tension in each cable 
and the reaction at C.

A

B
C

F

x

y

z

D

E

20 in.

16 in.

320 lb

30 in.

20 in.

48 in.

 Fig. P4.111
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203Problems 4.112 Solve Prob. 4.111, assuming that the 320-lb load is applied at A.

 4.113 A 20-kg cover for a roof opening is hinged at corners A and B. The 
roof forms an angle of 30° with the horizontal, and the cover is 
maintained in a horizontal position by the brace CE. Determine 
(a) the magnitude of the force exerted by the brace, (b) the reac-
tions at the hinges. Assume that the hinge at A does not exert any 
axial thrust.

 4.114 The bent rod ABEF is supported by bearings at C and D and by 
wire AH. Knowing that portion AB of the rod is 250 mm long, 
determine (a) the tension in wire AH, (b) the reactions at C and 
D. Assume that the bearing at D does not exert any axial thrust.

250 mm50 mm 300 mm

400 N

C

D

E

F x
z

50 mm

250 mm

A B

H

y

30°

 Fig. P4.114

E

C

D

z

A

y

x

B

0.9 m

0.9 m0.6 m

30°

 Fig. P4.113
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204 Equilibrium of Rigid Bodies

 4.116 Solve Prob. 4.115, assuming that cable DCE is replaced by a cable 
attached to point E and hook C.

 4.117 The rectangular plate shown weighs 75 lb and is held in the posi-
tion shown by hinges at A and B and by cable EF. Assuming that 
the hinge at B does not exert any axial thrust, determine 
(a) the tension in the cable, (b) the reactions at A and B.

x

y

z

D

H

F

E

A

B

C

25 in.

20 in.

4 in.

12 in.

8 in.

4 in.

30 in.

 Fig. P4.117

 4.115 A 100-kg uniform rectangular plate is supported in the position 
shown by hinges A and B and by cable DCE that passes over a 
frictionless hook at C. Assuming that the tension is the same in 
both parts of the cable, determine (a) the tension in the cable, 
(b) the reactions at A and B. Assume that the hinge at B does not 
exert any axial thrust.

690 mm

960 mm

x

y

z

E

D

A

B

C

675 mm
90 mm

450 mm

270 mm

90 mm

 Fig. P4.115

 4.118 Solve Prob. 4.117, assuming that cable EF is replaced by a cable 
attached at points E and H.
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205Problems 4.119 Solve Prob. 4.114, assuming that the bearing at D is removed and 
that the bearing at C can exert couples about axes parallel to the 
y and z axes.

 4.120 Solve Prob. 4.117, assuming that the hinge at B is removed and 
that the hinge at A can exert couples about axes parallel to the y 
and z axes.

 4.121 The assembly shown is used to control the tension T in a tape that 
passes around a frictionless spool at E. Collar C is welded to rods 
ABC and CDE. It can rotate about shaft FG but its motion along 
the shaft is prevented by a washer S. For the loading shown, 
determine (a) the tension T in the tape, (b) the reaction at C.

 4.122 The assembly shown is welded to collar A that fits on the vertical 
pin shown. The pin can exert couples about the x and z axes but 
does not prevent motion about or along the y axis. For the load-
ing shown, determine the tension in each cable and the reaction 
at A.

T

A

B

C

F

D

E

S

G

x

y

z

6 lb
2 in.

1.6 in.

4.2 in.

2.4 in.

T

 Fig. P4.121

480 N

A

C

D

E

F

x

y

z

60 mm

45 mm

90 mm

120 mm

80 mm

 Fig. P4.122
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206 Equilibrium of Rigid Bodies  4.123 The rigid L-shaped member ABC is supported by a ball-and-socket 
joint at A and by three cables. If a 450-lb load is applied at F, 
determine the tension in each cable.

x

z

y

A

B

C

D

EF

450 lb

24 in.

32 in.
21 in.

21 in.

42 in.

42 in.

 Fig. P4.123

 4.124 Solve Prob. 4.123, assuming that the 450-lb load is applied at C.

 4.125 Frame ABCD is supported by a ball-and-socket joint at A and by 
three cables. For a 5 150 mm, determine the tension in each cable 
and the reaction at A.

 4.126 Frame ABCD is supported by a ball-and-socket joint at A and by three 
cables. Knowing that the 350-N load is applied at D (a 5 300 mm), 
determine the tension in each cable and the reaction at A.

 4.127 Three rods are welded together to form a “corner” that is 
 supported by three eyebolts. Neglecting friction, determine the 
reactions at A, B, and C when P 5 240 lb, a 5 12 in., b 5 8 in., 
and c 5 10 in.

 4.128 Solve Prob. 4.127, assuming that the force P is removed and is 
replaced by a couple M 5 1(600 lb ? in.)j acting at B.

A

B

C
H

DE

F

G

x

y

z

140 mm

350 N
300 mm

140 mm

200 mm

a480 mm

 Fig. P4.125 and P4.126

x

y

z

b

cA

B

C

P

a

 Fig. P4.127
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207Problems 4.129 In order to clean the clogged drainpipe AE, a plumber has discon-
nected both ends of the pipe and inserted a power snake through 
the opening at A. The cutting head of the snake is connected by a 
heavy cable to an electric motor that rotates at a constant speed as 
the plumber forces the cable into the pipe. The forces exerted by 
the plumber and the motor on the end of the cable can be rep-
resented by the wrench F 5 2(48 N)k, M 5 2(90 N ? m)k. Deter-
mine the additional reactions at B, C, and D caused by the cleaning 
operation. Assume that the reaction at each support consists of two 
force components perpendicular to the pipe.

0.5 m x

y

z

A

B

D
E

O

3 m
1 m

2 m

1 m

C

 Fig. P4.129

 4.130 Solve Prob. 4.129, assuming that the plumber exerts a force 
F 5 2(48 N)k and that the motor is turned off (M 5 0).

 4.131 The assembly shown consists of an 80-mm rod AF that is welded to 
a cross consisting of four 200-mm arms. The assembly is supported 
by a ball-and-socket joint at F and by three short links, each of which 
forms an angle of 45° with the vertical. For the loading shown, deter-
mine (a) the tension in each link, (b) the reaction at F.

x

y

z

E

F

A

B

P

CD

45º

45º

45º

200 mm 200 mm

200 mm
200 mm

80 mm

 Fig. P4.131
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208 Equilibrium of Rigid Bodies  4.132 The uniform 10-kg rod AB is supported by a ball-and-socket joint 
at A and by the cord CG that is attached to the midpoint G of the 
rod. Knowing that the rod leans against a frictionless vertical wall 
at B, determine (a) the tension in the cord, (b) the reactions at A 
and B.

x

y

z

GO  

A

B

C
150 mm

150 mm

400 mm

600 mm

 Fig. P4.132

x

y

z

A

B

C

D

E

F

8 in.

7 in.

9 in.

60 lb11 in.

16 in.

10 in.

14 in.

 Fig. P4.133

x

y

z

A

B

C

D

E

240 mm

400 mm

400 mm

200 mm
200 mm

480 mm

240 mm

 Fig. P4.135

 4.133 The bent rod ABDE is supported by ball-and-socket joints at A and 
E and by the cable DF. If a 60-lb load is applied at C as shown, 
determine the tension in the cable.

 4.134 Solve Prob. 4.133, assuming that cable DF is replaced by a cable 
connecting B and F.

 4.135 The 50-kg plate ABCD is supported by hinges along edge AB and 
by wire CE. Knowing that the plate is uniform, determine the ten-
sion in the wire.

 4.136 Solve Prob. 4.135, assuming that wire CE is replaced by a wire 
connecting E and D.
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209Problems 4.137 Two rectangular plates are welded together to form the assembly 
shown. The assembly is supported by ball-and-socket joints at B 
and D and by a ball on a horizontal surface at C. For the loading 
shown, determine the reaction at C.

B

A

y

z

D

C
x

6 in.

12 in.
8 in.

9 in.

80 lb

 Fig. P4.137 z 2 ft

2 ft

2 ft

2 ft

2 ft

x

x

y

y

A

B

C

O

H

D

E

F
12 lb12 lb

 Fig. P4.138

640 N

x

y

z

A B

C

D
E

F

240 mm

160 mm

480 mm

200 mm

490 mm

 Fig. P4.140

 4.138 Two 2 3 4-ft plywood panels, each of weight 12 lb, are nailed 
together as shown. The panels are supported by ball-and-socket 
joints at A and F and by the wire BH. Determine (a) the location 
of H in the xy plane if the tension in the wire is to be minimum, 
(b) the corresponding minimum tension.

 4.139 Solve Prob. 4.138, subject to the restriction that H must lie on the 
y axis.

 4.140 The pipe ACDE is supported by ball-and-socket joints at A and E 
and by the wire DF. Determine the tension in the wire when a 
640-N load is applied at B as shown.

 4.141 Solve Prob. 4.140, assuming that wire DF is replaced by a wire 
connecting C and F.
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210

REVIEW AND SUMMARY

This chapter was devoted to the study of the equilibrium of rigid 
bodies, i.e., to the situation when the external forces acting on a rigid 
body form a system equivalent to zero [Sec. 4.1]. We then have

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

Resolving each force and each moment into its rectangular compo-
nents, we can express the necessary and sufficient conditions for the 
equilibrium of a rigid body with the following six scalar equations:

 oFx 5 0 oFy 5 0   oFz 5 0 (4.2)
oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be used to determine unknown forces applied 
to the rigid body or unknown reactions exerted by its supports.

When solving a problem involving the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body. Therefore, 
the first step in the solution of the problem should be to draw a 
free-body diagram showing the body under consideration and all of 
the unknown as well as known forces acting on it [Sec. 4.2].

In the first part of the chapter, we considered the equilibrium of a 
two-dimensional structure; i.e., we assumed that the structure con-
sidered and the forces applied to it were contained in the same 
plane. We saw that each of the reactions exerted on the structure by 
its supports could involve one, two, or three unknowns, depending 
upon the type of support [Sec. 4.3].
 In the case of a two-dimensional structure, Eqs. (4.1), or Eqs. 
(4.2) and (4.3), reduce to three equilibrium equations, namely

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is an arbitrary point in the plane of the structure [Sec. 4.4]. 
These equations can be used to solve for three unknowns. While the 
three equilibrium equations (4.5) cannot be augmented with addi-
tional equations, any of them can be replaced by another equation. 
Therefore, we can write alternative sets of equilibrium equations, 
such as

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where point B is chosen in such a way that the line AB is not parallel 
to the y axis, or

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line.

Equilibrium equationsEquilibrium equations

Free-body diagramFree-body diagram

Equilibrium of a two-dimensional 
structure

Equilibrium of a two-dimensional 
structure
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211 Since any set of equilibrium equations can be solved for only three 
unknowns, the reactions at the supports of a rigid two-dimensional 
structure cannot be completely determined if they involve more 
than three unknowns; they are said to be statically indeterminate 
[Sec. 4.5]. On the other hand, if the reactions involve fewer than 
three unknowns, equilibrium will not be maintained under general 
loading conditions; the structure is said to be partially constrained. 
The fact that the reactions involve exactly three unknowns is no 
guarantee that the equilibrium equations can be solved for all three 
unknowns. If the supports are arranged in such a way that the reactions 
are either concurrent or parallel, the reactions are statically indeter-
minate, and the structure is said to be improperly constrained.

 Two particular cases of equilibrium of a rigid body were given 
special attention. In Sec. 4.6, a two-force body was defined as a rigid 
body subjected to forces at only two points, and it was shown that 
the resultants F1 and F2 of these forces must have the same mag-
nitude, the same line of action, and opposite sense (Fig. 4.11), a 
property which will simplify the solution of certain problems in later 
chapters. In Sec. 4.7, a three-force body was defined as a rigid body 
subjected to forces at only three points, and it was shown that the 
resultants F1, F2, and F3 of these forces must be either concurrent 
(Fig. 4.12) or parallel. This property provides us with an alternative 
approach to the solution of problems involving a three-force body 
[Sample Prob. 4.6].

Statical indeterminacyStatical indeterminacy

Partial constraintsPartial constraints

Improper constraintsImproper constraints

Two-force bodyTwo-force body

Three-force bodyThree-force body

A

B

F1

F2

 Fig. 4.11

F2

F3

F1

B C

D
A

 Fig. 4.12

 In the second part of the chapter, we considered the equilib-
rium of a three-dimensional body and saw that each of the reactions 
exerted on the body by its supports could involve between one and 
six unknowns, depending upon the type of support [Sec. 4.8].
 In the general case of the equilibrium of a three-dimensional 
body, all of the six scalar equilibrium equations (4.2) and (4.3) listed 
at the beginning of this review should be used and solved for six 
unknowns [Sec. 4.9]. In most problems, however, these equations 
will be more conveniently obtained if we first write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. The vector products can then be  computed 
either directly or by means of determinants, and the desired scalar 
equations obtained by equating to zero the coefficients of the unit vec-
tors [Sample Probs. 4.7 through 4.9].

Equilibrium of a three-dimensional 
body
Equilibrium of a three-dimensional 
body

Review and Summary
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212 Equilibrium of Rigid Bodies  We noted that as many as three unknown reaction components 
may be eliminated from the computation of oMO in the second of 
the relations (4.1) through a judicious choice of point O. Also, the 
reactions at two points A and B can be eliminated from the solution 
of some problems by writing the equation oMAB 5 0, which involves 
the computation of the moments of the forces about an axis AB join-
ing points A and B [Sample Prob. 4.10].
 If the reactions involve more than six unknowns, some of the 
reactions are statically indeterminate; if they involve fewer than six 
unknowns, the rigid body is only partially constrained. Even with six 
or more unknowns, the rigid body will be improperly constrained if 
the reactions associated with the given supports either are parallel 
or intersect the same line.

bee29400_ch04_156-217.indd Page 212  11/29/08  3:34:09 PM user-s172bee29400_ch04_156-217.indd Page 212  11/29/08  3:34:09 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



213

REVIEW PROBLEMS

 4.142 A hand truck is used to move two kegs, each of mass 40 kg. 
Neglecting the mass of the hand truck, determine (a) the vertical 
force P that should be applied to the handle to maintain equilib-
rium when a 5 35°, (b) the corresponding reaction at each of the 
two wheels.

A

P

B

G1

G2
80 mm

350 mm

300 mm

500 mm

a

Fig. P4.142

800 mm

200 mm300 N

200 mm300 N

a

A
B

C

Fig. P4.143

A

B

D

12 in.

20°
75 lb

C10 in.

15 in.

Fig. P4.144 A B C

150 mm

200 mm
80 mm 80 mm

120 N

D

Fig. P4.145

 4.143 Determine the reactions at A and C when (a) a 5 0, (b) a 5 30°.

 4.144 A lever AB is hinged at C and attached to a control cable at A. 
If the lever is subjected to a 75-lb vertical force at B, determine 
(a) the tension in the cable, (b) the reaction at C.

 4.145 Neglecting friction and the radius of the pulley, determine (a) the 
tension in cable ADB, (b) the reaction at C.
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214 Equilibrium of Rigid Bodies  4.146 The T-shaped bracket shown is supported by a small wheel at E 
and pegs at C and D. Neglecting the effect of friction, determine 
the reactions at C, D, and E when u 5 30°.

 4.147 The T-shaped bracket shown is supported by a small wheel at E 
and pegs at C and D. Neglecting the effect of friction, determine 
(a) the smallest value of u for which the equilibrium of the bracket 
is maintained, (b) the corresponding reactions at C, D, and E.

 4.148 For the frame and loading shown, determine the reactions at A 
and C.

 4.149 Determine the reactions at A and B when b 5 50°.

A B

C

D

E
3 in.

3 in.

2 in.

20 lb 40 lb

q

4 in. 4 in.

Fig. P4.146 
and P4.147

 4.150 The 6-m pole ABC is acted upon by a 455-N force as shown. The 
pole is held by a ball-and-socket joint at A and by two cables BD 
and BE. For a 5 3 m, determine the tension in each cable and 
the reaction at A.

A

B

C

D

30 lb

4 in. 6 in.

3 in.

Fig. P4.148
A

B

C

100 N

250 mm

150 mm

25°

b

Fig. P4.149

A

B

C

F

x

y

z

D

E

455 N

1.5 m

1.5 m

a

2 m

3 m

3 m

3 m

3 m

Fig. P4.150

 4.151 Solve Prob. 4.150 for a 5 1.5 m.
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215Review Problems 4.152 The rigid L-shaped member ABF is supported by a ball-and-socket 
joint at A and by three cables. For the loading shown, determine 
the tension in each cable and the reaction at A.

A
A

B B

C C

P

A

B

C

P

P

A

B

C

P

45°

45°

(a) (b)

(c) (d)

a = 30°

30°

aa

a

aa

a

aa

a

aa

a

Fig. P4.153

x

y

z

A

B

C D

E F

G

J

H

24 lb

24 lb

9 in.

16 in.

16 in.

8 in.

12 in.

16 in.

8 in.

8 in.

8 in.

O

Fig. P4.152

 4.153 A force P is applied to a bent rod ABC, which may be supported in 
four different ways as shown. In each case, if possible, determine 
the reactions at the supports.
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COMPUTER PROBLEMS

 4.C1 The position of the L-shaped rod shown is controlled by a cable 
attached at B. Knowing that the rod supports a load of magnitude P 5 50 lb, 
write a computer program that can be used to calculate the tension T in 
the cable for values of u from 0 to 120° using 10° increments. Using appro-
priate smaller increments, calculate the maximum tension T and the corre-
sponding value of u.

Fig. P4.C1

E

A

B
D

C

T

P

q

8 in.

16 in.

12 in.

15 in.

4 in.

A

B

D P
400 mm

x

1000 mm

Fig. P4.C2

W

A

a

q

B

C

R

Fig. P4.C3

R

B

R

A

W

a

y

z

x

q

Fig. P4.C4

 4.C2 The position of the 10-kg rod AB is controlled by the block shown, 
which is slowly moved to the left by the force P. Neglecting the effect of 
friction, write a computer program that can be used to calculate the mag-
nitude P of the force for values of x decreasing from 750 mm to 0 using 
50-mm increments. Using appropriate smaller increments, determine the 
maximum value of P and the corresponding value of x.

 4.C3 and 4.C4 The constant of spring AB is k, and the spring is unstretched 
when u 5 0. Knowing that R 5 10 in., a 5 20 in., and k 5 5 lb/in., write 
a computer program that can be used to calculate the weight W correspond-
ing to equilibrium for values of u from 0 to 90° using 10° increments. Using 
appropriate smaller increments, determine the value of u corresponding to 
equilibrium when W 5 5 lb.
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217Computer Problems 4.C5 A 200 3 250-mm panel of mass 20 kg is supported by hinges along 
edge AB. Cable CDE is attached to the panel at C, passes over a small 
pulley at D, and supports a cylinder of mass m. Neglecting the effect of 
friction, write a computer program that can be used to calculate the mass 
of the cylinder corresponding to equilibrium for values of u from 0 to 90° 
using 10° increments. Using appropriate smaller increments, determine the 
value of u corresponding to m 5 10 kg.

0.2 m

0.2 m

0.1 m

0.125 m

0.125 m

A

B

C

D

E
z

x

y

�
m

Fig. P4.C5

y

x

z

B

E

D

C

A
f

2000 kg

3 m

3 m

2 m
1.5

 m

1.5
 m

3 m

Fig. P4.C6

 4.C6 The derrick shown supports a 2000-kg crate. It is held by a ball-and-
socket joint at A and by two cables attached at D and E. Knowing that the 
derrick stands in a vertical plane forming an angle f with the xy plane, write 
a computer program that can be used to calculate the tension in each cable 
for values of f from 0 to 60° using 5° increments. Using appropriate smaller 
increments, determine the value of f for which the tension in cable BE is 
maximum.
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The Revelstoke Dam, located on the 

Columbia River in British Columbia, is 

subjected to three different kinds of 

distributed forces: the weights of its 

constituent elements, the pressure forces 

exerted by the water of its submerged 

face, and the pressure forces exerted 

by the ground on its base.
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Distributed Forces: Centroids 
and Centers of Gravity
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5.1 INTRODUCTION
We have assumed so far that the attraction exerted by the earth on a 
rigid body could be represented by a single force W. This force, called 
the force of gravity or the weight of the body, was to be applied at the 
center of gravity of the body (Sec. 3.2). Actually, the earth exerts a force 
on each of the particles forming the body. The action of the earth on a 
rigid body should thus be represented by a large number of small forces 
distributed over the entire body. You will learn in this chapter, however, 
that all of these small forces can be replaced by a single equivalent force 
W. You will also learn how to determine the center of gravity, i.e., the 
point of application of the resultant W, for bodies of various shapes.
 In the first part of the chapter, two-dimensional bodies, such 
as flat plates and wires contained in a given plane, are considered. 
Two concepts closely associated with the determination of the center 
of gravity of a plate or a wire are introduced: the concept of the 
centroid of an area or a line and the concept of the first moment of 
an area or a line with respect to a given axis.
 You will also learn that the computation of the area of a surface 
of revolution or of the volume of a body of revolution is directly related 
to the determination of the centroid of the line or area used to gener-
ate that surface or body of revolution (Theorems of Pappus-Guldinus). 
And, as is shown in Secs. 5.8 and 5.9, the determination of the centroid 
of an area simplifies the analysis of beams subjected to distributed 
loads and the computation of the forces exerted on submerged rect-
angular surfaces, such as hydraulic gates and portions of dams.
 In the last part of the chapter, you will learn how to determine 
the center of gravity of a three-dimensional body as well as the cen-
troid of a volume and the first moments of that volume with respect 
to the coordinate planes.

AREAS AND LINES

5.2  CENTER OF GRAVITY OF A 
TWO-DIMENSIONAL BODY

Let us first consider a flat horizontal plate (Fig. 5.1). We can divide 
the plate into n small elements. The coordinates of the first element 

 Chapter 5 Distributed Forces: 
Centroids and Centers of Gravity

 5.1 Introduction
 5.2 Center of Gravity of a Two-

Dimensional Body
 5.3 Centroids of Areas and Lines
 5.4 First Moments of Areas and Lines
 5.5 Composite Plates and Wires
 5.6 Determination of Centroids 

by Integration
 5.7 Theorems of Pappus-Guldinus
 5.8 Distributed Loads on Beams
 5.9 Forces on Submerged Surfaces
 5.10 Center of Gravity of a Three-

Dimensional Body. Centroid of 
a Volume

 5.11 Composite Bodies
 5.12 Determination of Centroids of 

Volumes by Integration

x
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z

G
O O
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⎯y

W

=

ΔW

ΣMy :  ⎯x W = Σx ΔW

ΣMx :  ⎯y W = Σy ΔW

x

y

z

y
x

Fig. 5.1 Center of gravity of a plate.

Photo 5.1 The precise balancing of the 
components of a mobile requires an understanding 
of centers of gravity and centroids, the main topics 
of this chapter.
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Fig. 5.2 Center of gravity of a wire.

x

y

z

O ⎯y

=
W ΔW

⎯x
G

x

y

y

z

O

x

ΣMy :  ⎯x W = Σx ΔW

ΣMx :  ⎯y W = Σy ΔW

5.2 Center of Gravity of a Two-Dimensional 
Body

are denoted by x1 and y1, those of the second element by x2 and y2, 
etc. The forces exerted by the earth on the elements of plate will be 
denoted, respectively, by DW1, DW2, . . . , DWn. These forces or 
weights are directed toward the center of the earth; however, for all 
practical purposes they can be assumed to be parallel. Their resultant 
is therefore a single force in the same direction. The magnitude W 
of this force is obtained by adding the magnitudes of the elemental 
weights.

oFz:  W 5 DW1 1 DW2 1 ? ? ? 1 DWn

To obtain the coordinates x and y of the point G where the resultant W 
should be applied, we write that the moments of W about the y and 
x axes are equal to the sum of the corresponding moments of the 
elemental weights,

oMy:  x W 5 x1 DW1 1 x2 DW2 1 ? ? ? 1 xn DWn

oMx:  y W 5 y1 DW1 1 y2 DW2 1 ? ? ? 1 yn DWn (5.1)

If we now increase the number of elements into which the plate is 
divided and simultaneously decrease the size of each element, we 
obtain in the limit the following expressions:

 W 5 #  dW   x W 5 #  x dW   y W 5 #  y dW  (5.2)

These equations define the weight W and the coordinates x and y 
of the center of gravity G of a flat plate. The same equations can be 
derived for a wire lying in the xy plane (Fig. 5.2). We note that the 
center of gravity G of a wire is usually not located on the wire.

bee29400_ch05_218-283.indd Page 221  11/29/08  4:54:17 PM user-s172bee29400_ch05_218-283.indd Page 221  11/29/08  4:54:17 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



5.3 CENTROIDS OF AREAS AND LINES
In the case of a flat homogeneous plate of uniform thickness, the 
magnitude DW of the weight of an element of the plate can be 
expressed as

DW 5 g t DA

 where g 5 specific weight (weight per unit volume) of the material
 t 5 thickness of the plate
 DA 5 area of the element

Similarly, we can express the magnitude W of the weight of the entire 
plate as

W 5 g tA

where A is the total area of the plate.
 If U.S. customary units are used, the specific weight g should 
be expressed in lb/ft3, the thickness t in feet, and the areas DA and A 
in square feet. We observe that DW and W will then be expressed 
in pounds. If SI units are used, g should be expressed in N/m3, t in 
meters, and the areas DA and A in square meters; the weights DW 
and W will then be expressed in newtons.†
 Substituting for DW and W in the moment equations (5.1) and 
dividing throughout by gt, we obtain

oMy:  xA 5 x1 DA1 1 x2 DA2 1 ? ? ? 1 xn DAn
oMx:  yA 5 y1 DA1 1 y2 DA2 1 ? ? ? 1 yn DAn

If we increase the number of elements into which the area A is 
divided and simultaneously decrease the size of each element, we 
obtain in the limit

 xA 5 #  x dA   yA 5 #  y dA (5.3)

These equations define the coordinates x and y of the center of 
 gravity of a homogeneous plate. The point whose coordinates are x 
and y is also known as the centroid C of the area A of the plate 
(Fig. 5.3). If the plate is not homogeneous, these equations cannot 
be used to determine the center of gravity of the plate; they still 
define, however, the centroid of the area.
 In the case of a homogeneous wire of uniform cross section, the 
magnitude DW of the weight of an element of wire can be expressed as

DW 5 ga DL

 where g 5 specific weight of the material
 a 5 cross-sectional area of the wire
 DL 5 length of the element

†It should be noted that in the SI system of units a given material is generally charac-
terized by its density r (mass per unit volume) rather than by its specific weight g. The 
specific weight of the material can then be obtained from the relation

g 5 rg

where g 5 9.81 m/s2. Since r is expressed in kg/m3, we observe that g will be expressed in 
(kg/m3)(m/s2), that is, in N/m3.

222  Distributed Forces: Centroids and Centers 
of Gravity
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The center of gravity of the wire then coincides with the centroid C of 
the line L defining the shape of the wire (Fig. 5.4). The coordinates x 
and y of the centroid of the line L are obtained from the equations

 xL 5 #  x dL   yL 5 #  y dL (5.4)

5.4 FIRST MOMENTS OF AREAS AND LINES
The integral e x dA in Eqs. (5.3) of the preceding section is known 
as the first moment of the area A with respect to the y axis and is 
denoted by Qy. Similarly, the integral e y dA defines the first moment 
of A with respect to the x axis and is denoted by Qx. We write

 Qy 5 #  x dA   Qx 5 #  y dA (5.5)

Comparing Eqs. (5.3) with Eqs. (5.5), we note that the first moments 
of the area A can be expressed as the products of the area and the 
coordinates of its centroid:

 Qy 5 xA   Qx 5 yA (5.6)

 It follows from Eqs. (5.6) that the coordinates of the centroid 
of an area can be obtained by dividing the first moments of that area 
by the area itself. The first moments of the area are also useful in 
mechanics of materials for determining the shearing stresses in 
beams under transverse loadings. Finally, we observe from Eqs. (5.6) 
that if the centroid of an area is located on a coordinate axis, the 
first moment of the area with respect to that axis is zero. Conversely, 
if the first moment of an area with respect to a coordinate axis is 
zero, then the centroid of the area is located on that axis.
 Relations similar to Eqs. (5.5) and (5.6) can be used to define 
the first moments of a line with respect to the coordinate axes and 

Fig. 5.4 Centroid of a line.
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Fig. 5.3 Centroid of an area.

5.4 First Moments of Areas and Lines
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224  Distributed Forces: Centroids and Centers 
of Gravity

to express these moments as the products of the length L of the line 
and the coordinates x and y of its centroid.
 An area A is said to be symmetric with respect to an axis BB9 
if for every point P of the area there exists a point P9 of the same 
area such that the line PP9 is perpendicular to BB9 and is divided into 
two equal parts by that axis (Fig. 5.5a). A line L is said to be sym-
metric with respect to an axis BB9 if it satisfies similar conditions. 
When an area A or a line L possesses an axis of symmetry BB9, its 
first moment with respect to BB9 is zero, and its centroid is located 
on that axis. For example, in the case of the area A of Fig. 5.5b, which 
is symmetric with respect to the y axis, we observe that for every 
element of area dA of abscissa x there exists an element dA9 of equal 
area and with abscissa 2x. It follows that the integral in the first of 
Eqs. (5.5) is zero and, thus, that Qy 5 0. It also follows from the first 
of the relations (5.3) that x 5 0. Thus, if an area A or a line L pos-
sesses an axis of symmetry, its centroid C is located on that axis.
 We further note that if an area or line possesses two axes of sym-
metry, its centroid C must be located at the intersection of the two axes 
(Fig. 5.6). This property enables us to determine immediately the cen-
troid of areas such as circles, ellipses, squares, rectangles, equilateral tri-
angles, or other symmetric figures as well as the centroid of lines in the 
shape of the circumference of a circle, the perimeter of a square, etc.

x

x

y

O

C

A

– x

dAdA'

P

P'

B'

(a)

(b)

B

Fig. 5.5

 An area A is said to be symmetric with respect to a center O if 
for every element of area dA of coordinates x and y there exists an 
element dA9 of equal area with coordinates 2x and 2y (Fig. 5.7). It 
then follows that the integrals in Eqs. (5.5) are both zero and that 
Qx 5 Qy 5 0. It also follows from Eqs. (5.3) that x 5 y 5 0, that is, 
that the centroid of the area coincides with its center of symmetry O. 
Similarly, if a line possesses a center of symmetry O, the centroid of 
the line will coincide with the center O.
 It should be noted that a figure possessing a center of symme-
try does not necessarily possess an axis of symmetry (Fig. 5.7), while 
a figure possessing two axes of symmetry does not necessarily possess 
a center of symmetry (Fig. 5.6a). However, if a figure possesses two 
axes of symmetry at a right angle to each other, the point of intersec-
tion of these axes is a center of symmetry (Fig. 5.6b).
 Determining the centroids of unsymmetrical areas and lines 
and of areas and lines possessing only one axis of symmetry will be 
discussed in Secs. 5.6 and 5.7. Centroids of common shapes of areas 
and lines are shown in Fig. 5.8A and B.
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Fig. 5.8A Centroids of common shapes of areas.

5.4 First Moments of Areas and Lines
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226  Distributed Forces: Centroids and Centers 
of Gravity

5.5 COMPOSITE PLATES AND WIRES
In many instances, a flat plate can be divided into rectangles, triangles, 
or the other common shapes shown in Fig. 5.8A. The abscissa X of its 
center of gravity G can be determined from the abscissas x1, x2, . . . , xn 
of the centers of gravity of the various parts by expressing that the 
moment of the weight of the whole plate about the y axis is equal 
to the sum of the moments of the weights of the various parts about 
the same axis (Fig. 5.9). The ordinate Y of the center of gravity of 
the plate is found in a similar way by equating moments about the 
x axis. We write

 ©My:  X(W1 1 W2 1 . . . 1 Wn) 5 x1W1 1 x2W2 1 . . . 1 xnWn

 ©Mx:  Y(W1 1 W2 1 . . . 1 Wn) 5 y1W1 1 y2W2 1 . . . 1 ynWn
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Fig. 5.8B Centroids of common shapes of lines.
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G2

G3

ΣW

ΣMy :  ⎯X Σ W = Σ⎯x W

ΣMx :  ⎯Y Σ W = Σ⎯y W

O

Fig. 5.9 Center of gravity of a composite plate.
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227or, for short,

 X©W 5©x W   Y©W 5©y W  (5.7)

These equations can be solved for the coordinates X and Y of the 
center of gravity of the plate.

=

x

y

O

C⎯X

⎯Y

A1

A3

A2

C1 C2

C3
ΣA

Qy  = ⎯X Σ A = Σ⎯x A

Qx  = ⎯Y Σ A = Σ⎯y A

x

y

O

Fig. 5.10 Centroid of a composite area.

 If the plate is homogeneous and of uniform thickness, the center 
of gravity coincides with the centroid C of its area. The abscissa X of 
the centroid of the area can be determined by noting that the first 
moment Qy of the composite area with respect to the y axis can be 
expressed both as the product of X and the total area and as the sum 
of the first moments of the elementary areas with respect to the y axis 
(Fig. 5.10). The ordinate Y of the centroid is found in a similar way 
by considering the first moment Qx of the composite area. We have

 Qy 5 X(A1 1 A2 1 . . . 1 An) 5 x1A1 1 x2 A2 1 . . . 1 xnAn

 Qx 5 Y(A1 1 A2 1 . . . 1 An) 5 y1A1 1 y2 A2 1 . . . 1 ynAn

or, for short,

 Qy 5 X©A 5©xA   Qx 5 Y©A 5©yA (5.8)

These equations yield the first moments of the composite area, or 
they can be used to obtain the coordinates X and Y of its centroid.
 Care should be taken to assign the appropriate sign to the 
moment of each area. First moments of areas, like moments of 
forces, can be positive or negative. For example, an area whose cen-
troid is located to the left of the y axis will have a negative first 
moment with respect to that axis. Also, the area of a hole should be 
assigned a negative sign (Fig. 5.11).
 Similarly, it is possible in many cases to determine the center 
of gravity of a composite wire or the centroid of a composite line 
by dividing the wire or line into simpler elements (see Sample 
Prob. 5.2).

x

y

z

x

y

⎯x1

⎯x2

⎯xA⎯x

W1
W2

W3

A1

A1 Semicircle

A2 Full rectangle

A3 Circular hole

A2 A3

+

–

A

⎯x3

⎯x1

⎯x3

⎯x2

+

+

–

+ +

–

–

Fig. 5.11

5.5 Composite Plates and Wires
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SAMPLE PROBLEM 5.1

For the plane area shown, determine (a) the first moments with respect to 
the x and y axes, (b) the location of the centroid.

y

x

80 mm

60 mm

60 mm
40 mm

120 mm

SOLUTION

Components of Area. The area is obtained by adding a rectangle, a tri-
angle, and a semicircle and by then subtracting a circle. Using the coordi-
nate axes shown, the area and the coordinates of the centroid of each of the 
component areas are determined and entered in the table below. The area 
of the circle is indicated as negative, since it is to be subtracted from the 
other areas. We note that the coordinate y of the centroid of the triangle is 
negative for the axes shown. The first moments of the component areas with 
respect to the coordinate axes are computed and entered in the table.

y y

x

80 mm

60 mm

r1 = 60 mm

r2 = 40 mm

120 mm

x x x x

y y y

= + + _
40 mm

40 mm

–20 mm

= 25.46 mm
4r1 
3 r1 = 60 mm

r2 = 40 mm

60 mm60 mm

60 mm

80 mm 105.46 mm 80 mm

�

a. First Moments of the Area. Using Eqs. (5.8), we write

 Qx 5 ©yA 5 506.2 3 103 mm3  Qx 5 506 3 103 mm3 ◀

 Qy 5 ©xA 5 757.7 3 103 mm3  Qy 5 758 3 103 mm3 ◀

b. Location of Centroid. Substituting the values given in the table into 
the equations defining the centroid of a composite area, we obtain

X©A 5 ©xA:  X(13.828 3 103 mm2) 5 757.7 3 103 mm3

X 5 54.8 mm ◀

Y©A 5 ©yA:  Y(13.828 3 103 mm2) 5 506.2 3 103 mm3

Y 5 36.6 mm ◀

y

x

C

X = 54.8 mm

Y = 36.6 mm

Component A, mm2 x, mm y, mm x A, mm3 y A, mm3

Rectangle (120)(80) 5 9.6 3 103 60 40 1576 3 103 1384 3 103

Triangle 1
2(120)(60) 5 3.6 3 103 40 220 1144 3 103 272 3 103

Semicircle 1
2p(60)2 5 5.655 3 103 60 105.46 1339.3 3 103 1596.4 3 103

Circle 2p(40)2 5 25.027 3 103 60 80 2301.6 3 103 2402.2 3 103

 oA 5 13.828 3 103   oxA 5 1757.7 3 103 oyA 5 1506.2 3 103
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SAMPLE PROBLEM 5.2

The figure shown is made from a piece of thin, homogeneous wire. Deter-
mine the location of its center of gravity.

26 in.
10 in.

24 in.

C

BA

SOLUTION

Since the figure is formed of homogeneous wire, its center of gravity coin-
cides with the centroid of the corresponding line. Therefore, that centroid 
will be determined. Choosing the coordinate axes shown, with origin at A, 
we determine the coordinates of the centroid of each line segment and 
compute the first moments with respect to the coordinate axes.

Segment L, in. x, in. y, in. x L, in2 y L, in2

AB 24 12 0 288   0
BC 26 12 5 312 130
CA 10  0 5   0  50

 oL 5 60   ©x L 5 600 ©y L 5 180

Substituting the values obtained from the table into the equations defining 
the centroid of a composite line, we obtain

X©L 5 ©x L:   X(60 in.) 5 600 in2 X 5 10 in. ◀

Y©L 5 ©y L:  Y(60 in.) 5 180 in2 Y 5  3 in. ◀

10 in.

12 in.

5 in.

24 in.

C

y

xBA

26 in.
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SAMPLE PROBLEM 5.3

A uniform semicircular rod of weight W and radius r is attached to a pin 
at A and rests against a frictionless surface at B. Determine the reactions 
at A and B.

A

B

O

r

SOLUTION

Free-Body Diagram. A free-body diagram of the rod is drawn. The forces 
acting on the rod are its weight W, which is applied at the center of gravity 
G (whose position is obtained from Fig. 5.8B); a reaction at A, represented 
by its components Ax and Ay; and a horizontal reaction at B.

Equilibrium Equations

1l oMA 5 0: B(2r) 2 W  a2r
p
b 5 0

 
B 5 1

W
p  

B 5
W
p
y ◀

y
1 ©Fx 5 0: Ax 1 B 5 0

 
Ax 5 2B 5 2

W
p
    Ax 5

W
p
z

1x©Fy 5 0: Ay 2 W 5 0 Ay 5 W  x

Adding the two components of the reaction at A:

 
A 5 cW2 1 aW

p
b2 d 1/2

 
A 5 W  a1 1

1
p2b

1/2

 ◀

tan a 5
W

W/p
5 p

 
 a 5 tan21p ◀

The answers can also be expressed as follows:

A 5 1.049W b72.3°  B 5 0.318Wy ◀

G

B

Ax

A

Ay

WB

2r

2r
�

Ay = W

a

Ax =
W
�

A
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SOLVING PROBLEMS 
ON YOUR OWN

In this lesson we developed the general equations for locating the centers of 
gravity of two-dimensional bodies and wires [Eqs. (5.2)] and the centroids of 

plane areas [Eqs. (5.3)] and lines [Eqs. (5.4)]. In the following problems, you will 
have to locate the centroids of composite areas and lines or determine the first 
moments of the area for composite plates [Eqs. (5.8)].

1. Locating the centroids of composite areas and lines. Sample Problems 5.1 
and 5.2 illustrate the procedure you should follow when solving problems of this 
type. There are, however, several points that should be emphasized.

a. The first step in your solution should be to decide how to construct the 
given area or line from the common shapes of Fig. 5.8. You should recognize that 
for plane areas it is often possible to construct a particular shape in more than one 
way. Also, showing the different components (as is done in Sample Prob. 5.1) will 
help you to correctly establish their centroids and areas or lengths. Do not forget 
that you can subtract areas as well as add them to obtain a desired shape.

b. We strongly recommend that for each problem you construct a table con-
taining the areas or lengths and the respective coordinates of the centroids. It is 
essential for you to remember that areas which are “removed” (for example, holes) 
are treated as negative. Also, the sign of negative coordinates must be included. 
Therefore, you should always carefully note the location of the origin of the coor-
dinate axes.

c. When possible, use symmetry [Sec. 5.4] to help you determine the location 
of a centroid.

d. In the formulas for the circular sector and for the arc of a circle in Fig. 5.8, 
the angle a must always be expressed in radians.

2. Calculating the first moments of an area. The procedures for locating the 
centroid of an area and for determining the first moments of an area are similar; 
however, for the latter it is not necessary to compute the total area. Also, as noted 
in Sec. 5.4, you should recognize that the first moment of an area relative to a 
centroidal axis is zero.

3. Solving problems involving the center of gravity. The bodies considered in 
the following problems are homogeneous; thus, their centers of gravity and cen-
troids coincide. In addition, when a body that is suspended from a single pin is in 
equilibrium, the pin and the body’s center of gravity must lie on the same vertical 
line.

It may appear that many of the problems in this lesson have little to do with the 
study of mechanics. However, being able to locate the centroid of composite 
shapes will be essential in several topics that you will soon encounter.
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 5.1 through 5.9 Locate the centroid of the plane area shown.

PROBLEMS

y

x

30 mm

300 mm

240 mm

30 mm

Fig. P5.1

y

x

20 mm 30 mm

36 mm

24 mm

Fig. P5.2

x

y

12 in. 21 in.

15 in.

Fig. P5.3

y

6 in.

6 in.

6 in.

6 in.

3 in.

x x

y

120 mm

r = 75 mm

Fig. P5.6

x

y

r = 4 in.

8 in.

12 in.

8 in.6 in.

Fig. P5.5Fig. P5.4

x

y

30 in.

30 in.

r = 15 in.
20 in.

Fig. P5.8

x

y

r = 38 in.
16 in.

20 in.

Fig. P5.7

x

y

60 mm

60 mm

Fig. P5.9
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233Problems 5.10 through 5.15 Locate the centroid of the plane area shown.

 5.16 Determine the y coordinate of the centroid of the shaded area in 
terms of r1, r2, and a.

Parabola

Vertex50 mm

15 mm

80 mm

y

x

Fig. P5.12

x

y

r2 = 12 in. r1 = 8 in.

Fig. P5.11

x

y

Semiellipse

70 mm

26 mm

47 mm 47 mm

Fig. P5.10

x

y

Vertex

Parabola

75 mm

60 mm

60 mm

Fig. P5.15

x

y

r

x = ky2
20 mm 20 mm

30 mm

Fig. P5.13

x = ky2

x 

y = kx2

y 

20 in.

20 in.

Fig. P5.14

x

y

α α
r1 r2

Fig. P5.16 and P5.17

 5.17 Show that as r1 approaches r2, the location of the centroid 
approaches that for an arc of circle of radius (r1 1 r2)/2.

 5.18 For the area shown, determine the ratio a/b for which x 5 y.

 5.19 For the semiannular area of Prob. 5.11, determine the ratio r2/r1 
so that y 5 3r1/4.

x

y

y = kx2

a

b

Fig. P5.18
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234 Distributed Forces: Centroids and Centers
of Gravity

300 mm

12 mm 12 mm

12 mm

12 mm

60 mm

60 mm

A

C C
x x

B

(a) (b)

450 mm

Fig. P5.20

  5.21 and 5.22 The horizontal x axis is drawn through the centroid 
C of the area shown, and it divides the area into two component 
areas A1 and A2. Determine the first moment of each component 
area with respect to the x axis, and explain the results obtained.

x

y

C

A1

A2

4.5 in.4.5 in.

7.5 in.

Fig. P5.21

x

y

C

A1

A2

0.75 in.

0.75 in.

1.50 in.

1.50 in.

2.00 in.

2.00 in.

4.00 in.

2.00 in.

1.50 in.

Fig. P5.22

 5.20 A composite beam is constructed by bolting four plates to four 
60 3 60 3 12-mm angles as shown. The bolts are equally spaced 
along the beam, and the beam supports a vertical load. As proved 
in mechanics of materials, the shearing forces exerted on the bolts 
at A and B are proportional to the first moments with respect to 
the centroidal x axis of the red shaded areas shown, respectively, 
in parts a and b of the figure. Knowing that the force exerted 
on the bolt at A is 280 N, determine the force exerted on the bolt 
at B.
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235Problems 5.23 The first moment of the shaded area with respect to the x axis 
is denoted by Qx. (a) Express Qx in terms of b, c, and the distance 
y from the base of the shaded area to the x axis. (b) For what 
value of y is Qx maximum, and what is that maximum value?

x

y

b

c
y

c

C

Fig. P5.23

 5.24 through 5.27 A thin, homogeneous wire is bent to form the 
perimeter of the figure indicated. Locate the center of gravity of 
the wire figure thus formed.

   5.24 Fig. P5.1.
   5.25 Fig. P5.2.
   5.26 Fig. P5.3.
   5.27 Fig. P5.7.

 5.28 A uniform circular rod of weight 8 lb and radius 10 in. is attached 
to a pin at C and to the cable AB. Determine (a) the tension in 
the cable, (b) the reaction at C.

 5.29 Member ABCDE is a component of a mobile and is formed from 
a single piece of aluminum tubing. Knowing that the member is 
supported at C and that l 5 2 m, determine the distance d so that 
portion BCD of the member is horizontal.

B

r

C

A

Fig. P5.28

 5.30 Member ABCDE is a component of a mobile and is formed from 
a single piece of aluminum tubing. Knowing that the member is 
supported at C and that d is 0.50 m, determine the length l of arm 
DE so that this portion of the member is horizontal.

A

B C D

E

1.50 m

d

0.75 m

l

55°55°

Fig. P5.29 and P5.30
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 5.31 The homogeneous wire ABC is bent into a semicircular arc and a 
straight section as shown and is attached to a hinge at A. Deter-
mine the value of u for which the wire is in equilibrium for the 
indicated position.

 5.32 Determine the distance h for which the centroid of the shaded 
area is as far above line BB9 as possible when (a) k 5 0.10, 
(b) k 5 0.80.

 5.33 Knowing that the distance h has been selected to maximize the 
distance y from line BB9 to the centroid of the shaded area, show 
that y 5 2h/3.

B B'

b

kb

a

h

Fig. P5.32 and P5.33

A

B

C

r

q

r

Fig. P5.31

5.6  DETERMINATION OF CENTROIDS 
BY INTEGRATION

The centroid of an area bounded by analytical curves (i.e., curves 
defined by algebraic equations) is usually determined by evaluating 
the integrals in Eqs. (5.3) of Sec. 5.3:

 xA 5 #  x dA   yA 5 #  y dA (5.3)

If the element of area dA is a small rectangle of sides dx and dy, 
the evaluation of each of these integrals requires a double integra-
tion with respect to x and y. A double integration is also necessary 
if polar coordinates are used for which dA is a small element of 
sides dr and r du.
 In most cases, however, it is possible to determine the coordi-
nates of the centroid of an area by performing a single integration. 
This is achieved by choosing dA to be a thin rectangle or strip or a 
thin sector or pie-shaped element (Fig. 5.12); the centroid of the 
thin rectangle is located at its center, and the centroid of the thin 
sector is located at a distance 23 

r from its vertex (as it is for a triangle). 
The coordinates of the centroid of the area under consideration are 
then obtained by expressing that the first moment of the entire area 
with respect to each of the coordinate axes is equal to the sum (or 
integral) of the corresponding moments of the elements of area. 

236 Distributed Forces: Centroids and Centers
of Gravity
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237Denoting by xel and yel the coordinates of the centroid of the element 
dA, we write

  Qy 5 xA 5 #  xel dA  

(5.9)

 Qx 5 yA 5 #  yel dA

If the area A is not already known, it can also be computed from 
these elements.
 The coordinates xel and yel of the centroid of the element of 
area dA should be expressed in terms of the coordinates of a point 
located on the curve bounding the area under consideration. Also, 
the area of the element dA should be expressed in terms of the 
coordinates of that point and the appropriate differentials. This has 
been done in Fig. 5.12 for three common types of elements; the 
pie-shaped element of part c should be used when the equation of 
the curve bounding the area is given in polar coordinates. The 
appropriate expressions should be substituted into formulas (5.9), 
and the equation of the bounding curve should be used to express 
one of the coordinates in terms of the other. The integration is 
thus reduced to a single integration. Once the area has been deter-
mined and the integrals in Eqs. (5.9) have been evaluated, these 
equations can be solved for the coordinates x and y of the centroid 
of the area.
 When a line is defined by an algebraic equation, its centroid can 
be determined by evaluating the integrals in Eqs. (5.4) of Sec. 5.3:

 xL 5 #  x dL   yL 5 #  y dL (5.4)

Fig. 5.12 Centroids and areas of differential elements.

⎯xel = x

⎯yel = y/2

dA = ydx

(c)

⎯yel = y

dA = (a – x) dy

(b)

⎯xel =
a + x

2

(a)

⎯xel =
2r
3

⎯yel =
2r
3

dA = 1
2

cosθ

sinθ

r2 dθ

⎯xel

⎯yel

⎯xel ⎯xel

⎯yel

⎯yel

x

a

y

x

y

x

x x

y yy

O O Odx

dy

P(x, y)

P(x, y)

r

θ

2r
3

P(  , r)θ

5.6 Determination of Centroids by Integration
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238  Distributed Forces: Centroids and Centers 
of Gravity

The differential length dL should be replaced by one of the following 
expressions, depending upon which coordinate, x, y, or u, is chosen 
as the independent variable in the equation used to define the line 
(these expressions can be derived using the Pythagorean theorem):

dL 5
B

1 1 ady

dx
b2

dx   dL 5
B

1 1 a dx
dy
b2

dy

dL 5
B

r2 1 a dr
du
b2

du

After the equation of the line has been used to express one of the 
coordinates in terms of the other, the integration can be performed, 
and Eqs. (5.4) can be solved for the coordinates x and y of the cen-
troid of the line.

5.7 THEOREMS OF PAPPUS-GULDINUS
These theorems, which were first formulated by the Greek geometer 
Pappus during the third century a.d. and later restated by the Swiss 
mathematician Guldinus, or Guldin, (1577–1643) deal with surfaces 
and bodies of revolution.
 A surface of revolution is a surface which can be generated by 
rotating a plane curve about a fixed axis. For example (Fig. 5.13), the 

A

B

CA C

B

Sphere Cone
A C

Torus

Fig. 5.13

Sphere Cone Torus

Fig. 5.14

Photo 5.2 The storage tanks shown are all 
bodies of revolution. Thus, their surface areas 
and volumes can be determined using the 
theorems of Pappus-Guldinus.

surface of a sphere can be obtained by rotating a semicircular arc ABC 
about the diameter AC, the surface of a cone can be pro duced by 
rotating a straight line AB about an axis AC, and the surface of a torus 
or ring can be generated by rotating the circumference of a circle 
about a nonintersecting axis. A body of revolution is a body which can 
be generated by rotating a plane area about a fixed axis. As shown in 
Fig. 5.14, a sphere, a cone, and a torus can each be generated by 
rotating the appropriate shape about the indicated axis.

THEOREM I. The area of a surface of revolution is equal to the 
length of the generating curve times the distance traveled by the 
centroid of the curve while the surface is being generated.

Proof. Consider an element dL of the line L (Fig. 5.15), which 
is revolved about the x axis. The area dA generated by the element 
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dL is equal to 2py dL. Thus, the entire area generated by L is 
A 5 e 2py dL. Recalling that we found in Sec. 5.3 that the integral 
e y dL is equal to yL, we therefore have

 A 5 2pyL (5.10)

where 2py is the distance traveled by the centroid of L (Fig. 5.15). 
It should be noted that the generating curve must not cross the axis 
about which it is rotated; if it did, the two sections on either side of 
the axis would generate areas having opposite signs, and the theorem 
would not apply.

THEOREM II. The volume of a body of revolution is equal to the 
generating area times the distance traveled by the centroid of the 
area while the body is being generated.

Proof. Consider an element dA of the area A which is revolved 
about the x axis (Fig. 5.16). The volume dV generated by the element 
dA is equal to 2py dA. Thus, the entire volume generated by A is 
V 5 e 2py dA, and since the integral e y dA is equal to yA 
(Sec. 5.3), we have
 V 5 2pyA (5.11)

x x

dL

dA

C

L

⎯yy

2 ⎯y�

Fig. 5.15

y

x

dV

dA

y

x

A
C

2  y�

Fig. 5.16

5.7 Theorems of Pappus-Guldinus

where 2py is the distance traveled by the centroid of A. Again, it 
should be noted that the theorem does not apply if the axis of rota-
tion intersects the generating area.
 The theorems of Pappus-Guldinus offer a simple way to compute 
the areas of surfaces of revolution and the volumes of bodies of revolu-
tion. Conversely, they can also be used to determine the centroid of a 
plane curve when the area of the surface generated by the curve is 
known or to determine the centroid of a plane area when the volume 
of the body generated by the area is known (see Sample Prob. 5.8).
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SAMPLE PROBLEM 5.4

Determine by direct integration the location of the centroid of a parabolic 
spandrel.

SOLUTION

Determination of the Constant k. The value of k is determined by sub-
stituting x 5 a and y 5 b into the given equation. We have b 5 ka2 or 
k 5 b/a2. The equation of the curve is thus

y 5
b

a2  x2    or    x 5
a

b1/2  y1/2

Vertical Differential Element. We choose the differential element shown 
and find the total area of the figure.

A 5 #  dA 5 #  y dx 5 #
a

0

 
b

a2  x2 dx 5 c b

a2

x3

3
d a

0
5

ab
3

The first moment of the differential element with respect to the y axis is 
xel dA; hence, the first moment of the entire area with respect to this axis is

Qy 5 #  xel dA 5 #  xy dx 5 #
a

0

 x a b

a2  x2b dx 5 c b

a2

x4

4
d a

0
5

a2b
4

Since Qy 5 xA, we have

xA 5 # xel dA     x  

ab
3

5
a2b
4

      x 5 3
4a ◀

Likewise, the first moment of the differential element with respect to the 
x axis is yel dA, and the first moment of the entire area is

Qx 5 #  yel dA 5 #  
y

2
  y dx 5 #

a

0

 
1
2

 a b

a2   x2b2

dx 5 c b2

2a4  

x5

5
d a

0
5

ab2

10

Since Qx 5 yA, we have

yA 5 #  yel dA     y  

ab
3

5
ab2

10
      y 5 3

10 b ◀

Horizontal Differential Element. The same results can be obtained by 
considering a horizontal element. The first moments of the area are

 Qy 5 #  xel dA 5 #  
a 1 x

2
 (a 2 x)  dy 5 #

b

0

 
a2 2 x2

2
 dy

 5
1
2

 #
b

0
 
aa2 2

a2

b
  yb dy 5

a2b
4

 Qx 5 #  yel dA 5 #  y(a 2 x)  dy 5 #  y aa 2
a

b1/2  y1/2b 

dy

 5 #
b

0
 
aay 2

a

b1/2   y3/2b 

dy 5
ab2

10

To determine x and y, the expressions obtained are again substituted into 
the equations defining the centroid of the area.

240

a

x

y

y

dA = y dx

⎯yel =
y
2

⎯xel = x

x

b

⎯yel = y

⎯xel =
a + x

2

dA = (a – x) dy

a

y

x

a
x

y = k x2

y

b
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SAMPLE PROBLEM 5.5

Determine the location of the centroid of the arc of circle shown.

SOLUTION

Since the arc is symmetrical with respect to the x axis, y 5 0. A differential 
element is chosen as shown, and the length of the arc is determined by 
integration.

L 5 #  dL 5 #
a

2a
 
r du 5 r #

a

2a
 
du 5 2ra

The first moment of the arc with respect to the y axis is

 Qy 5 #  x dL 5 #
a

2a
 
(r cos u) (r du) 5 r2 #

a

2a
 
cos u du

 5 r2 3sin u 4a2a 5 2r2 sin a

Since Qy 5 xL, we write

x(2ra) 5 2r2 sin a      x 5
r sin a
a  ◀

x

y

θ
O

r

 = θ α

dθ
dL = r dθ

x = r cosθ

 = –θ α

SAMPLE PROBLEM 5.6

Determine the area of the surface of revolution shown, which is obtained 
by rotating a quarter-circular arc about a vertical axis.

SOLUTION

According to Theorem I of Pappus-Guldinus, the area generated is equal 
to the product of the length of the arc and the distance traveled by its cen-
troid. Referring to Fig. 5.8B, we have

 x 5 2r 2
2r
p

5 2r a1 2
1
p
b

 A 5 2pxL 5 2p c 2r a1 2
1
p
b d  apr

2
b

A 5 2pr2(p 2 1) ◀

y

x

x

2r

C

2r
�

241

O

α

α

r

r

2r
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SAMPLE PROBLEM 5.7

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as 
shown. Knowing that the pulley is made of steel and that the density of steel 
is r 5 7.85 3 103 kg/m3, determine the mass and the weight of the rim.

  Distance Traveled
 Area, mm2 y, mm by C, mm Volume, mm3

 I 15000 375 2p(375) 5 2356  (5000)(2356) 5 11.78 3 106

II 21800 365 2p(365) 5 2293 (21800)(2293) 5 24.13 3 106

     Volume of rim 5 7.65 3 106

Since 1 mm 5 1023 m, we have 1 mm3 5 (1023 m)3 5 1029 m3, and we ob -
tain V 5 7.65 3 106 mm3 5 (7.65 3 106)(1029 m3) 5 7.65 3 1023 m3.

m 5 rV 5 (7.85 3 103 kg/m3)(7.65 3 1023 m3)  m 5 60.0 kg ◀

W 5 mg 5 (60.0 kg)(9.81 m/s2) 5 589 kg ? m/s2  W 5 589 N ◀

_

100 mm 60 mm

50 mm 30 mm

CII

CI II
I

375 mm 365 mm

SOLUTION

The volume of the rim can be found by applying Theorem II of Pappus-
Guldinus, which states that the volume equals the product of the given 
cross-sectional area and the distance traveled by its centroid in one complete 
revolution. However, the volume can be more easily determined if we 
observe that the cross section can be formed from rectangle I, whose area 
is positive, and rectangle II, whose area is negative.

SAMPLE PROBLEM 5.8

Using the theorems of Pappus-Guldinus, determine (a) the centroid of a 
semicircular area, (b) the centroid of a semicircular arc. We recall that the 
volume and the surface area of a sphere are 4

3pr3 and 4pr2, respectively.

242

20 mm

20 mm 20 mm
60 mm

30 mm
400 mm

100 mm

x

x

r

r2
A = 2

L =

⎯y

⎯yr

�

r�

SOLUTION

The volume of a sphere is equal to the product of the area of a semicircle 
and the distance traveled by the centroid of the semicircle in one revolution 
about the x axis.

V 5 2pyA    4
3pr3 5 2py(1

2pr2)    y 5
4r
3p  

◀

Likewise, the area of a sphere is equal to the product of the length of the gen-
erating semicircle and the distance traveled by its centroid in one revolution.

A 5 2pyL    4pr2 5 2py(pr)    y 5
2r
p  

◀
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243

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will use the equations

 xA 5 #  x dA    yA 5 #  y dA (5.3)

 xL 5 #  x dL    yL 5 #  y dL (5.4)

to locate the centroids of plane areas and lines, respectively. You will also apply 
the theorems of Pappus-Guldinus (Sec. 5.7) to determine the areas of surfaces of 
revolution and the volumes of bodies of revolution.

1. Determining by direct integration the centroids of areas and lines. When 
solving problems of this type, you should follow the method of solution shown in 
Sample Probs. 5.4 and 5.5: compute A or L, determine the first moments of the 
area or the line, and solve Eqs. (5.3) or (5.4) for the coordinates of the centroid. 
In addition, you should pay particular attention to the following points.
 a. Begin your solution by carefully defining or determining each term in the 
applicable integral formulas. We strongly encourage you to show on your sketch of 
the given area or line your choice for dA or dL and the distances to its centroid.
 b. As explained in Sec. 5.6, the x and the y in the above equations represent the 
coordinates of the centroid of the differential elements dA and dL. It is important 
to recognize that the coordinates of the centroid of dA are not equal to the coordi-
nates of a point located on the curve bounding the area under consideration. You 
should carefully study Fig. 5.12 until you fully understand this important point.
 c. To possibly simplify or minimize your computations, always examine the shape 
of the given area or line before defining the differential element that you will use. 
For example, sometimes it may be preferable to use horizontal rectangular elements 
instead of vertical ones. Also, it will usually be advantageous to use polar coordinates 
when a line or an area has circular symmetry.
 d. Although most of the integrations in this lesson are straightforward, at times 
it may be necessary to use more advanced techniques, such as trigonometric sub-
stitution or integration by parts. Of course, using a table of integrals is the fastest 
method to evaluate difficult integrals.

2. Applying the theorems of Pappus-Guldinus. As shown in Sample Probs. 5.6 
through 5.8, these simple, yet very useful theorems allow you to apply your knowl-
edge of centroids to the computation of areas and volumes. Although the theorems 
refer to the distance traveled by the centroid and to the length of the generating 
curve or to the generating area, the resulting equations [Eqs. (5.10) and (5.11)] 
contain the products of these quantities, which are simply the first moments of a 
line (y L) and an area (y A), respectively. Thus, for those problems for which the 
generating line or area consists of more than one common shape, you need only 
determine y L or y A; you do not have to calculate the length of the generating 
curve or the generating area.
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PROBLEMS

 5.34 through 5.36 Determine by direct integration the centroid of 
the area shown. Express your answer in terms of a and h.

x

y

h

a

Fig. P5.34

x

y

y = mx

y = kx2

h

a

Fig. P5.35

x

y

y = kx3

h

a

Fig. P5.36

 5.37 through 5.39 Determine by direct integration the centroid of 
the area shown.

x

y

b

a

x2

a2

y2

b2
+ = 1

Fig. P5.37

x

y

r1

r2

Fig. P5.38

x

y

a

a
2

a
2

a

a

Fig. P5.39

 5.40 and 5.41 Determine by direct integration the centroid of the 
area shown. Express your answer in terms of a and b.

x

y

b

a

y = k(x – a)2

Fig. P5.40

x

y

b

a

y1 = k1x2

y2 = k2 x4

Fig. P5.41
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245Problems 5.42 Determine by direct integration the centroid of the area shown.

 5.43 and 5.44 Determine by direct integration the centroid of the 
area shown. Express your answer in terms of a and b.

y

x
L L

a

y = a 1 – x
L

x2

L2
+  ) (

Fig. P5.42

x

y

b
2

b
2

a
2

a
2

x = ky2

Fig. P5.43

x

y

y = kx2

a a

b

b

Fig. P5.44

 5.45 and 5.46 A homogeneous wire is bent into the shape shown. 
Determine by direct integration the x coordinate of its centroid. 

x

y

a

a

π
20 ≤    ≤  θx = a cos3

y = a sin3
θ
θ

Fig. P5.45

y

x

r 45°

45°

Fig. P5.46

 *5.47 A homogeneous wire is bent into the shape shown. Determine by 
direct integration the x coordinate of its centroid. Express your 
answer in terms of a.

 *5.48 and *5.49 Determine by direct integration the centroid of the 
area shown.

x

y

a

a

y = kx
3
2

Fig. P5.47

x

y

a

y = a cos px
2L

L
2

L
2

Fig. P5.48

x

y

q

r = a eq

Fig. P5.49
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246 Distributed Forces: Centroids and Centers
of Gravity

 5.50 Determine the centroid of the area shown when a 5 2 in.

 5.51 Determine the value of a for which the ratio xyy is 9.

 5.52 Determine the volume and the surface area of the solid obtained 
by rotating the area of Prob. 5.1 about (a) the line x 5 240 mm, 
(b) the y axis.

 5.53 Determine the volume and the surface area of the solid obtained 
by rotating the area of Prob. 5.2 about (a) the line y 5 60 mm, 
(b) the y axis.

 5.54 Determine the volume and the surface area of the solid obtained by 
rotating the area of Prob. 5.8 about (a) the x axis, (b) the y axis.

 5.55 Determine the volume of the solid generated by rotating the para-
bolic area shown about (a) the x axis, (b) the axis AA9.

 5.56 Determine the volume and the surface area of the chain link 
shown, which is made from a 6-mm-diameter bar, if R 5 10 mm 
and L 5 30 mm.

y

x

a

y = (1 –    )

1 in.

1
x

Fig. P5.50 and P5.51

L

R

R

Fig. P5.56

90°

3
4

 in.

1
4
 in.1

1 in.

Fig. P5.58

R

R

Fig. P5.59

 5.57 Verify that the expressions for the volumes of the first four shapes 
in Fig. 5.21 on page 260 are correct.

 5.58 A 3
4-in.-diameter hole is drilled in a piece of 1-in.-thick steel; the 

hole is then countersunk as shown. Determine the volume of steel 
removed during the countersinking process.

 5.59 Determine the capacity, in liters, of the punch bowl shown if 
R 5 250 mm.

x

y

h

a a a A

A'

Fig. P5.55
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247Problems 5.60 Three different drive belt profiles are to be studied. If at any given 
time each belt makes contact with one-half of the circumference 
of its pulley, determine the contact area between the belt and the 
pulley for each design.

0.625 in.

(a) (b) (c)

0.08 in.
r = 0.25 in.

40°
40°

0.375 in.
0.125 in.

3 in.3 in. 3 in.

Fig. P5.60

 5.61 The aluminum shade for the small high-intensity lamp shown has 
a uniform thickness of 1 mm. Knowing that the density of alumi-
num is 2800 kg/m3, determine the mass of the shade.

32 mm

26 mm32 mm56 mm

28 mm

66 mm

8 mm

Fig. P5.61

 5.62 The escutcheon (a decorative plate placed on a pipe where the pipe 
exits from a wall) shown is cast from brass. Knowing that the 
 density of brass is 8470 kg/m3, determine the mass of the 
escutcheon.

 5.63 A manufacturer is planning to produce 20,000 wooden pegs having 
the shape shown. Determine how many gallons of paint should be 
ordered, knowing that each peg will be given two coats of paint 
and that one gallon of paint covers 100 ft2.

 5.64 The wooden peg shown is turned from a dowel 1 in. in diameter 
and 4 in. long. Determine the percentage of the initial volume of 
the dowel that becomes waste.

 *5.65 The shade for a wall-mounted light is formed from a thin sheet of 
translucent plastic. Determine the surface area of the outside of the 
shade, knowing that it has the parabolic cross section shown.

75 mm

25 mm

75 mm

26°

26°

Fig. P5.62

r = 0.1875 in.

r = 0.875 in.

3.00 in.

1.00 in.

0.50 in.

0.50 in.

0.625 in.

Fig. P5.63 and P5.64

100 mm

y

x

y = k x2

250 mm

Fig. P5.65
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248  Distributed Forces: Centroids and Centers 
of Gravity *5.8 DISTRIBUTED LOADS ON BEAMS

The concept of the centroid of an area can be used to solve other 
problems besides those dealing with the weights of flat plates. Con-
sider, for example, a beam supporting a distributed load; this load may 
consist of the weight of materials supported directly or indirectly by 
the beam, or it may be caused by wind or hydrostatic pressure. The 
distributed load can be represented by plotting the load w supported 
per unit length (Fig. 5.17); this load is expressed in N/m or in lb/ft. 
The magnitude of the force exerted on an element of beam of length 
dx is dW 5 w dx, and the total load supported by the beam is

W 5 #
L

0
 
w dx

We observe that the product w dx is equal in magnitude to the ele-
ment of area dA shown in Fig. 5.17a. The load W is thus equal in 
magnitude to the total area A under the load curve:

W 5 #  dA 5 A

 We now determine where a single concentrated load W, of the 
same magnitude W as the total distributed load, should be applied 
on the beam if it is to produce the same reactions at the supports 
(Fig. 5.17b). However, this concentrated load W, which represents the 
resultant of the given distributed loading, is equivalent to the loading 
only when considering the free-body diagram of the entire beam. The 
point of application P of the equivalent concentrated load W is obtained 
by expressing that the moment of W about point O is equal to the 
sum of the moments of the elemental loads dW about O:

(OP)W 5 #  x dW

or, since dW 5 w dx 5 dA and W 5 A,

 
(OP)A 5 #

L

0
 
x dA

 
(5.12)

Since the integral represents the first moment with respect to the w 
axis of the area under the load curve, it can be replaced by the 
product xA. We therefore have OP 5 x, where x is the distance 
from the w axis to the centroid C of the area A (this is not the cen-
troid of the beam).
 A distributed load on a beam can thus be replaced by a con-
centrated load; the magnitude of this single load is equal to the area 
under the load curve, and its line of action passes through the cen-
troid of that area. It should be noted, however, that the concentrated 
load is equivalent to the given loading only as far as external forces 
are concerned. It can be used to determine reactions but should not 
be used to compute internal forces and deflections.

(a)

(b)

w

O

w

dx
x

L

B

dW = dA

x

d W

w

O B x

L

P

W = A
W

C⎯x=

Fig. 5.17

Photo 5.3 The roofs of the buildings shown 
must be able to support not only the total weight 
of the snow but also the nonsymmetric distributed 
loads resulting from drifting of the snow.
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249*5.9 FORCES ON SUBMERGED SURFACES
The approach used in the preceding section can be used to deter-
mine the resultant of the hydrostatic pressure forces exerted on a 
rectangular surface submerged in a liquid. Consider the rectangular 
plate shown in Fig. 5.18, which is of length L and width b, where b 
is measured perpendicular to the plane of the figure. As noted in 
Sec. 5.8, the load exerted on an element of the plate of length dx is 
w dx, where w is the load per unit length. However, this load can 
also be expressed as p dA 5 pb dx, where p is the gage pressure in 
the liquid† and b is the width of the plate; thus, w 5 bp. Since the 
gage pressure in a liquid is p 5 gh, where g is the specific weight 
of the liquid and h is the vertical distance from the free surface, it 
follows that

 w 5 bp 5 bgh (5.13)

which shows that the load per unit length w is proportional to h and, 
thus, varies linearly with x.
 Recalling the results of Sec. 5.8, we observe that the resultant R 
of the hydrostatic forces exerted on one side of the plate is equal in 
magnitude to the trapezoidal area under the load curve and that its 
line of action passes through the centroid C of that area. The point P 
of the plate where R is applied is known as the center of pressure.‡
 Next, we consider the forces exerted by a liquid on a curved 
surface of constant width (Fig. 5.19a). Since the determination of the 
resultant R of these forces by direct integration would not be easy, we 
consider the free body obtained by detaching the volume of liquid ABD 
bounded by the curved surface AB and by the two plane surfaces AD 
and DB shown in Fig. 5.19b. The forces acting on the free body ABD 
are the weight W of the detached volume of liquid, the resultant R1 of 
the forces exerted on AD, the resultant R2 of the forces exerted on BD, 
and the resultant 2R of the forces exerted by the curved surface on 
the liquid. The resultant 2R is equal and opposite to, and has the same 
line of action as, the resultant R of the forces exerted by the liquid on 
the curved surface. The forces W, R1, and R2 can be determined by 
standard methods; after their values have been found, the force 2R is 
obtained by solving the equations of equilibrium for the free body of 
Fig. 5.19b. The resultant R of the hydrostatic forces exerted on the 
curved surface is then obtained by reversing the sense of 2R.
 The methods outlined in this section can be used to determine 
the resultant of the hydrostatic forces exerted on the surfaces of dams 
and rectangular gates and vanes. The resultants of forces on sub-
merged surfaces of variable width will be determined in Chap. 9.

†The pressure p, which represents a load per unit area, is expressed in N/m2 or in 
lb/ft2. The derived SI unit N/m2 is called a pascal (Pa).

‡Noting that the area under the load curve is equal to wEL, where wE is the load per 
unit length at the center E of the plate, and recalling Eq. (5.13), we can write

 R 5 wEL 5 (bpE)L 5 pE(bL) 5 pEA

where A denotes the area of the plate. Thus, the magnitude of R can be obtained by 
multiplying the area of the plate by the pressure at its center E. The resultant R, 
 however, should be applied at P, not at E.

C

R
w

L

E
P

A

B

x

dx

Fig. 5.18

(a)

(b)

A

B

A
D

B

R

R1

R2

–R
W

Fig. 5.19

5.9 Forces on Submerged Surfaces
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250

SAMPLE PROBLEM 5.9

A beam supports a distributed load as shown. (a) Determine the equivalent 
concentrated load. (b) Determine the reactions at the supports.

A B

wA = 1500 N/m

wB = 4500 N/m

L = 6 m

SOLUTION

a. Equivalent Concentrated Load. The magnitude of the resultant of the 
load is equal to the area under the load curve, and the line of action of the 
resultant passes through the centroid of the same area. We divide the area 
under the load curve into two triangles and construct the table below. To 
simplify the computations and tabulation, the given loads per unit length 
have been converted into kN/m.

Component A, kN x, m xA, kN ? m

Triangle I 4.5 2 9
Triangle II 13.5 4 54

 oA 5 18.0  oxA 5 63

Thus, X©A 5 ©xA:  X(18 kN) 5 63 kN ? m  X 5 3.5 m

The equivalent concentrated load is

W 5 18 kNw ◀

and its line of action is located at a distance

X 5 3.5 m to the right of A ◀

b. Reactions. The reaction at A is vertical and is denoted by A; the reaction 
at B is represented by its components Bx and By. The given load can be 
considered to be the sum of two triangular loads as shown. The resultant of 
each triangular load is equal to the area of the triangle and acts at its centroid. 
We write the following equilibrium equations for the free body shown:

y
1 ©Fx 5 0: Bx 5 0 ◀

1l oMA 5 0:  2(4.5 kN)(2 m) 2 (13.5 kN)(4 m) 1 By(6 m) 5 0

By 5 10.5 kNx ◀ 

1l oMB 5 0:  1(4.5 kN)(4 m) 1 (13.5 kN)(2 m) 2 A(6 m) 5 0

A 5 7.5 kNx ◀ 

Alternative Solution. The given distributed load can be replaced by its 
resultant, which was found in part a. The reactions can be determined by 
writing the equilibrium equations oFx 5 0, oMA 5 0, and oMB 5 0. We 
again obtain

Bx 5 0  By 5 10.5 kNx  A 5 7.5 kNx ◀

I

II
4.5 kN/m

1.5 kN/m

6 m
⎯x = 2 m

⎯x = 4 m

x

A B

18 kN
⎯X = 3.5 m

A

Bx

By

4.5 kN
13.5 kN

2 m

4 m

6 m
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SAMPLE PROBLEM 5.10

The cross section of a concrete dam is as shown. Consider a 1-ft-thick sec-
tion of the dam, and determine (a) the resultant of the reaction forces 
exerted by the ground on the base AB of the dam, (b) the resultant of the 
pressure forces exerted by the water on the face BC of the dam. The specific 
weights of concrete and water are 150 lb/ft3 and 62.4 lb/ft3, respectively.

5 ft

Vertex

Parabola

18 ft

A B

C

22 ft

9 ft 10 ft

x

y
2.5 ft

4 ft

E F

C D

A

B

3 ft

H

M

V

P

W1 W3

W4
W2

w = bp
    = (1 ft)(18 ft)(62.4 lb/ft3)

9 ft

22 ft

14 ft

6 ft

18 ft

6 ft

6 ft

x

y
4 ft

C D

B

G P

W4 =
7488 lbW4

–R

–R

P = 10,109 lb

a

a = 36.5°
R = 12,580 lb

6 ft

SOLUTION

a. Ground Reaction. We choose as a free body the 1-ft-thick section 
AEFCDB of the dam and water. The reaction forces exerted by the ground 
on the base AB are represented by an equivalent force-couple system at A. 
Other forces acting on the free body are the weight of the dam, represented 
by the weights of its components W1, W2, and W3; the weight of the water 
W4; and the resultant P of the pressure forces exerted on section BD by 
the water to the right of section BD. We have

 W1 5 1
2(9 ft) (22 ft) (1 ft) (150 lb/ft3) 5 14,850 lb

 W2 5 (5 ft) (22 ft) (1 ft) (150 lb/ft3) 5 16,500 lb
 W3 5 1

3(10 ft) (18 ft) (1 ft) (150 lb/ft3) 5 9000 lb
 W4 5 2

3(10 ft) (18 ft) (1 ft) (62.4 lb/ft3) 5 7488 lb
 P 5 1

2(18 ft) (1 ft) (18 ft) (62.4 lb/ft3) 5 10,109 lb

Equilibrium Equations

y
1 ©Fx 5 0:  H 2 10,109 lb 5 0 H 5 10,110 lb y ◀

1xoFy 5 0:  V 2 14,850 lb 2 16,500 lb 2 9000 lb 2 7488 lb 5 0

V  5 47,840 lbx ◀ 

1l oMA 5 0:  2(14,850 lb)(6 ft) 2 (16,500 lb)(11.5 ft)
 2 (9000 lb)(17 ft) 2 (7488 lb)(20 ft) 1 (10,109 lb)(6 ft) 1 M 5 0

M 5 520,960 lb ? ft l ◀

We can replace the force-couple system obtained by a single force acting at 
a distance d to the right of A, where

d 5
520,960 lb ? ft

47,840 lb
5 10.89 ft

b. Resultant R of Water Forces. The parabolic section of water BCD is 
chosen as a free body. The forces involved are the resultant 2R of the forces 
exerted by the dam on the water, the weight W4, and the force P. Since 
these forces must be concurrent, 2R passes through the point of intersec-
tion G of W4 and P. A force triangle is drawn from which the magnitude 
and direction of 2R are determined. The resultant R of the forces exerted 
by the water on the face BC is equal and opposite:

R 5 12,580 lb d36.5° ◀
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SOLVING PROBLEMS 
ON YOUR OWN

The problems in this lesson involve two common and very important types of 
loading: distributed loads on beams and forces on submerged surfaces of con-

stant width. As we discussed in Secs. 5.8 and 5.9 and illustrated in Sample Probs. 5.9 
and 5.10, determining the single equivalent force for each of these loadings requires 
a knowledge of centroids.

1. Analyzing beams subjected to distributed loads. In Sec. 5.8, we showed 
that a distributed load on a beam can be replaced by a single equivalent force. 
The magnitude of this force is equal to the area under the distributed load curve 
and its line of action passes through the centroid of that area. Thus, you should 
begin your solution by replacing the various distributed loads on a given beam by 
their respective single equivalent forces. The reactions at the supports of the beam 
can then be determined by using the methods of Chap. 4.

When possible, complex distributed loads should be divided into the common-
shape areas shown in Fig. 5.8A [Sample Prob. 5.9]. Each of these areas can then 
be replaced by a single equivalent force. If required, the system of equivalent 
forces can be reduced further to a single equivalent force. As you study Sample 
Prob. 5.9, note how we have used the analogy between force and area and the 
techniques for locating the centroid of a composite area to analyze a beam sub-
jected to a distributed load.

2. Solving problems involving forces on submerged bodies. The following 
points and techniques should be remembered when solving problems of this type.
 a. The pressure p at a depth h below the free surface of a liquid is equal to 
gh or rgh, where g and r are the specific weight and the density of the liquid, 
respectively. The load per unit length w acting on a submerged surface of constant 
width b is then

w 5 bp 5 bgh 5 brgh

 b. The line of action of the resultant force R acting on a submerged plane 
surface is perpendicular to the surface.
 c. For a vertical or inclined plane rectangular surface of width b, the loading 
on the surface can be represented by a linearly distributed load which is trapezoi-
dal in shape (Fig. 5.18). Further, the magnitude of R is given by

R 5 ghEA

where hE is the vertical distance to the center of the surface and A is the area of 
the surface.
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 d. The load curve will be triangular (rather than trapezoidal) when the top 
edge of a plane rectangular surface coincides with the free surface of the liquid, 
since the pressure of the liquid at the free surface is zero. For this case, the line 
of action of R is easily determined, for it passes through the centroid of a trian-
gular distributed load.
 e. For the general case, rather than analyzing a trapezoid, we suggest that you 
use the method indicated in part b of Sample Prob. 5.9. First divide the trapezoidal 
distributed load into two triangles, and then compute the magnitude of the resul-
tant of each triangular load. (The magnitude is equal to the area of the triangle 
times the width of the plate.) Note that the line of action of each resultant force 
passes through the centroid of the corresponding triangle and that the sum of 
these forces is equivalent to R. Thus, rather than using R, you can use the two 
equivalent resultant forces, whose points of application are easily calculated. Of 
course, the equation given for R in paragraph c should be used when only the 
magnitude of R is needed.
 f. When the submerged surface of constant width is curved, the resultant force 
acting on the surface is obtained by considering the equilibrium of the volume 
of liquid bounded by the curved surface and by horizontal and vertical planes 
(Fig. 5.19). Observe that the force R1 of Fig. 5.19 is equal to the weight of the 
liquid lying above the plane AD. The method of solution for problems involving 
curved surfaces is shown in part b of Sample Prob. 5.10.

In subsequent mechanics courses (in particular, mechanics of materials and 
fluid mechanics), you will have ample opportunity to use the ideas introduced 
in this lesson.
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PROBLEMS

 5.66 and 5.67 For the beam and loading shown, determine (a) the 
magnitude and location of the resultant of the distributed load, 
(b) the reactions at the beam supports.

120 lb/ft
150 lb/ft

A B

9 ft

Fig. P5.66

A B

4 m

Parabola
Vertex

200 N/m
800 N/m

Fig. P5.67

 5.68 through 5.73 Determine the reactions at the beam supports 
for the given loading.

A B

4 m6 m

6 kN/m

2 kN/m

Fig. P5.68

600 lb/ft

480 lb/ft

A D
B C

2 ft
6 ft3 ft

Fig. P5.69

9 ft

A
B

200 lb/ft

6 ft6 ft

Fig. P5.70

1000 N/m

1200 N/m

A B

3.6 m

Fig. P5.71

100 lb/ft

200 lb/ft

A B

6 ft12 ft

Parabolas

Fig. P5.72

A B

6 m

900 N/m

300 N/m

Parabola

Vertex

Fig. P5.73
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255Problems 5.74 Determine (a) the distance a so that the vertical reactions at sup-
ports A and B are equal, (b) the corresponding reactions at the 
supports.

 5.75 Determine (a) the distance a so that the reaction at support B is 
minimum, (b) the corresponding reactions at the supports.

 5.76 Determine the reactions at the beam supports for the given load-
ing when w0 5 150 lb/ft.

 5.77 Determine (a) the distributed load w0 at the end D of the beam 
ABCD for which the reaction at B is zero, (b) the corresponding 
reaction at C.

 5.78 The beam AB supports two concentrated loads and rests on soil 
that exerts a linearly distributed upward load as shown. Determine 
the values of wA and wB corresponding to equilibrium.

 5.79 For the beam and loading of Prob. 5.78, determine (a) the distance 
a for which wA 5 20 kN/m, (b) the corresponding value of wB.

A B

4 m

600 N/m

a

1800 N/m

Fig. P5.74 and P5.75

450 lb/ft
w0

A B C
D

4 ft 12 ft
2 ft

44.1 kip⋅ft

Fig. P5.76 and P5.77

A B
wA

wB

24 kN 30 kN
0.3 m

1.8 m

a = 0.6 m

Fig. P5.78

A B

C

2.4 m
4.8 m

7.2 m

Parabola

Vertex

Fig. P5.80

In the following problems, use g 5 62.4 lb/ft3 for the specific weight of fresh 
water and gc 5 150 lb/ft3 for the specific weight of concrete if U.S. customary 
units are used. With SI units, use r 5 103 kg/m3 for the density of fresh water 
and rc 5 2.40 3 103 kg/m3 for the density of concrete. (See the footnote on 
page 222 for how to determine the specific weight of a material given its 
density.)

 5.80 The cross section of a concrete dam is as shown. For a 1-m-wide 
dam section determine (a) the resultant of the reaction forces 
exerted by the ground on the base AB of the dam, (b) the point 
of application of the resultant of part a, (c) the resultant of the 
pressure forces exerted by the water on the face BC of the dam.

 5.81 The cross section of a concrete dam is as shown. For a 1-ft-wide 
dam section determine (a) the resultant of the reaction forces 
exerted by the ground on the base AB of the dam, (b) the point 
of application of the resultant of part a, (c) the resultant of the 
pressure forces exerted by the water on the face BC of the dam.

A B

C

8 ft

r = 21 ft

r = 21 ft

Fig. P5.81
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256 Distributed Forces: Centroids and Centers
of Gravity

 5.82 The 3 3 4-m side AB of a tank is hinged at its bottom A and is 
held in place by a thin rod BC. The maximum tensile force the 
rod can withstand without breaking is 200 kN, and the design 
specifications require the force in the rod not to exceed 20 percent 
of this value. If the tank is slowly filled with water, determine the 
maximum allowable depth of water d in the tank.

 5.83 The 3 3 4-m side of an open tank is hinged at its bottom A and 
is held in place by a thin rod BC. The tank is to be filled with 
glycerine, whose density is 1263 kg/m3. Determine the force T in 
the rod and the reactions at the hinge after the tank is filled to a 
depth of 2.9 m.

 5.84 The friction force between a 6 3 6-ft square sluice gate AB and 
its guides is equal to 10 percent of the resultant of the pressure 
forces exerted by the water on the face of the gate. Determine the 
initial force needed to lift the gate if it weighs 1000 lb.

 5.85 A freshwater marsh is drained to the ocean through an auto-
matic tide gate that is 4 ft wide and 3 ft high. The gate is held 
by hinges located along its top edge at A and bears on a sill at 
B. If the water level in the marsh is h 5 6 ft, determine the 
ocean level d for which the gate will open. (Specific weight of 
salt water 5 64 lb/ft3.)

 5.86 The dam for a lake is designed to withstand the additional force 
caused by silt that has settled on the lake bottom. Assuming that 
silt is equivalent to a liquid of density rs 5 1.76 3 103 kg/m3 and 
considering a 1-m-wide section of dam, determine the percentage 
increase in the force acting on the dam face for a silt accumulation 
of depth 2 m.

A

BCT

3 m
d

Fig. P5.82 and P5.83

A

B

T

15 ft

6 ft

Fig. P5.84

A

B
3 ft

Marsh

Ocean

d

h = 6 ft

Fig. P5.85

Water

Silt

6.6 m

Fig. P5.86 and P5.87

 5.87 The base of a dam for a lake is designed to resist up to 120 percent 
of the horizontal force of the water. After construction, it is found 
that silt (that is equivalent to a liquid of density rs 5 1.76 3 103 kg/m3) 
is settling on the lake bottom at the rate of 12 mm/year. Consider-
ing a 1-m-wide section of dam, determine the number of years 
until the dam becomes unsafe.

 5.88 A 0.5 3 0.8-m gate AB is located at the bottom of a tank filled 
with water. The gate is hinged along its top edge A and rests on a 
frictionless stop at B. Determine the reactions at A and B when 
cable BCD is slack.

 5.89 A 0.5 3 0.8-m gate AB is located at the bottom of a tank filled 
with water. The gate is hinged along its top edge A and rests on a 
frictionless stop at B. Determine the minimum tension required 
in cable BCD to open the gate.

A

B

C D T

0.27 m

0.45 m

0.48 m

0.64 m

Fig. P5.88 and P5.89
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257Problems 5.90 A long trough is supported by a continuous hinge along its lower 
edge and by a series of horizontal cables attached to its upper edge. 
Determine the tension in each of the cables, at a time when the 
trough is completely full of water.

A

r = 24 in.

20 in.

20 in.

20 in.

Fig. P5.90

 5.91 A 4 3 2-ft gate is hinged at A and is held in position by rod CD. 
End D rests against a spring whose constant is 828 lb/ft. The spring 
is undeformed when the gate is vertical. Assuming that the force 
exerted by rod CD on the gate remains horizontal, determine the 
minimum depth of water d for which the bottom B of the gate will 
move to the end of the cylindrical portion of the floor.

 5.92 Solve Prob. 5.91 if the gate weighs 1000 lb.

 5.93 A prismatically shaped gate placed at the end of a freshwater chan-
nel is supported by a pin and bracket at A and rests on a frictionless 
support at B. The pin is located at a distance h 5 0.10 m below 
the center of gravity C of the gate. Determine the depth of water 
d for which the gate will open.

 5.94 A prismatically shaped gate placed at the end of a freshwater chan-
nel is supported by a pin and bracket at A and rests on a frictionless 
support at B. Determine the distance h if the gate is to open when 
d 5 0.75 m.

 5.95 A 55-gallon 23-in.-diameter drum is placed on its side to act as a 
dam in a 30-in.-wide freshwater channel. Knowing that the drum 
is anchored to the sides of the channel, determine the resultant of 
the pressure forces acting on the drum.

Fig. P5.91

A

B

C
D

2 ft

3 ft
d

4 ft

B

C
h

0.75 m

0.40 m

d

A

Fig. P5.93 and P5.94

11.5 in.

23 in.

Fig. P5.95
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258  Distributed Forces: Centroids and Centers 
of Gravity VOLUMES

5.10  CENTER OF GRAVITY OF A THREE-DIMENSIONAL 
BODY. CENTROID OF A VOLUME

The center of gravity G of a three-dimensional body is obtained by 
dividing the body into small elements and by then expressing that 
the weight W of the body acting at G is equivalent to the system of 
distributed forces DW representing the weights of the small ele-
ments. Choosing the y axis to be vertical with positive sense upward 
(Fig. 5.20) and denoting by r the position vector of G, we write that 

G

y

O

=
ΔW

y

xx

z z

O

rr

W = –W j

ΔW = –ΔW j

Fig. 5.20

W is equal to the sum of the elemental weights DW and that its 
moment about O is equal to the sum of the moments about O of 
the elemental weights:

oF: 2Wj 5 o(2DWj) 
(5.14)

oMO: r 3 (2Wj) 5 o[r 3 (2DWj)] 

Rewriting the last equation in the form

 rW 3 (2j) 5 (or DW) 3 (2j) (5.15)

we observe that the weight W of the body is equivalent to the system 
of the elemental weights DW if the following conditions are satisfied:

W 5 o DW  rW 5 or DW 

Increasing the number of elements and simultaneously decreasing 
the size of each element, we obtain in the limit

 W 5 #  dW   r W 5 #  r dW  (5.16)

We note that the relations obtained are independent of the orienta-
tion of the body. For example, if the body and the coordinate axes 
were rotated so that the z axis pointed upward, the unit vector 2j 
would be replaced by 2k in Eqs. (5.14) and (5.15), but the relations 
(5.16) would remain unchanged. Resolving the vectors r  and r into 
rectangular components, we note that the second of the relations 
(5.16) is equivalent to the three scalar equations

 x W 5 #  x dW   y W 5 #  y dW   z W 5 #  z dW  (5.17)

Photo 5.4 To predict the flight characteristics 
of the modified Boeing 747 when used to 
transport a space shuttle, the center of gravity of 
each craft had to be determined.
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259 If the body is made of a homogeneous material of specific 
weight g, the magnitude dW of the weight of an infinitesimal ele-
ment can be expressed in terms of the volume dV of the element, 
and the magnitude W of the total weight can be expressed in terms 
of the total volume V. We write

dW 5 g dV  W 5 gV

Substituting for dW and W in the second of the relations (5.16), we 
write

 r V 5 #  r dV (5.18)

or, in scalar form,

 x V 5 #  x dV   y V 5 #  y dV   z V 5 #  z dV (5.19)

The point whose coordinates are x, y, z is also known as the centroid 
C of the volume V of the body. If the body is not homogeneous, 
Eqs. (5.19) cannot be used to determine the center of gravity of the 
body; however, Eqs. (5.19) still define the centroid of the volume.
 The integral e x dV is known as the first moment of the volume 
with respect to the yz plane. Similarly, the integrals e y dV and e z dV 
define the first moments of the volume with respect to the zx plane 
and the xy plane, respectively. It is seen from Eqs. (5.19) that if the 
centroid of a volume is located in a coordinate plane, the first moment 
of the volume with respect to that plane is zero.
 A volume is said to be symmetrical with respect to a given plane 
if for every point P of the volume there exists a point P9 of the same 
volume, such that the line PP9 is perpendicular to the given plane 
and is bisected by that plane. The plane is said to be a plane of sym-
metry for the given volume. When a volume V possesses a plane of 
symmetry, the first moment of V with respect to that plane is zero, 
and the centroid of the volume is located in the plane of symmetry. 
When a volume possesses two planes of symmetry, the centroid of 
the volume is located on the line of intersection of the two planes. 
Finally, when a volume possesses three planes of symmetry which 
intersect at a well-defined point (i.e., not along a common line), the 
point of intersection of the three planes coincides with the centroid 
of the volume. This property enables us to determine immediately 
the locations of the centroids of spheres, ellipsoids, cubes, rectangu-
lar parallelepipeds, etc.
 The centroids of unsymmetrical volumes or of volumes possess-
ing only one or two planes of symmetry should be determined by 
integration (Sec. 5.12). The centroids of several common volumes 
are shown in Fig. 5.21. It should be observed that in general the 
centroid of a volume of revolution does not coincide with the cen-
troid of its cross section. Thus, the centroid of a hemisphere is dif-
ferent from that of a semicircular area, and the centroid of a cone 
is different from that of a triangle.

5.10 Center of Gravity of a Three-Dimensional 
Body. Centroid of a Volume

bee29400_ch05_218-283.indd Page 259  11/29/08  4:55:02 PM user-s172bee29400_ch05_218-283.indd Page 259  11/29/08  4:55:02 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



260

Shape

Semiellipsoid
of revolution

Paraboloid 
of revolution

Cone

Pyramid

Hemisphere
C

Volume

3a
8

3h
8

h
3

h
4

h
4

1
3

abh

⎯x

a

a

a

a

a

b

C

C

C

C

h

h

h

h

⎯x

⎯x

⎯x

⎯x

⎯x

2
3

a3�

2
3

a2h�

1
2

a2h�

1
3

a2h�

Fig. 5.21 Centroids of common shapes and volumes.
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2615.11 COMPOSITE BODIES
If a body can be divided into several of the common shapes shown 
in Fig. 5.21, its center of gravity G can be determined by expressing 
that the moment about O of its total weight is equal to the sum of 
the moments about O of the weights of the various component parts. 
Proceeding as in Sec. 5.10, we obtain the following equations defin-
ing the coordinates X, Y, Z of the center of gravity G.

 X©W 5 ©x W   Y©W 5 ©y W   Z©W 5 ©z W  (5.20)

 If the body is made of a homogeneous material, its center of 
gravity coincides with the centroid of its volume, and we obtain:

 X©V 5 ©x V   Y©V 5 ©y V   Z©V 5 ©z V (5.21)

5.12  DETERMINATION OF CENTROIDS OF VOLUMES 
BY INTEGRATION

The centroid of a volume bounded by analytical surfaces can be 
determined by evaluating the integrals given in Sec. 5.10:

 x V 5 #  x dV   y V 5 #  y dV   z V 5 #  z dV (5.22)

If the element of volume dV is chosen to be equal to a small cube 
of sides dx, dy, and dz, the evaluation of each of these integrals 
requires a triple integration. However, it is possible to determine the 
coordinates of the centroid of most volumes by double integration if 
dV is chosen to be equal to the volume of a thin filament (Fig. 5.22). 
The coordinates of the centroid of the volume are then obtained by 
rewriting Eqs. (5.22) as

 x V 5 #  xel dV   y V 5 #  yel dV   z V 5 #  zel dV (5.23)

and by then substituting the expressions given in Fig. 5.22 for the 
volume dV and the coordinates xel, yel, zel. By using the equation of 
the surface to express z in terms of x and y, the integration is reduced 
to a double integration in x and y.
 If the volume under consideration possesses two planes of sym-
metry, its centroid must be located on the line of intersection of the 
two planes. Choosing the x axis to lie along this line, we have

y 5 z 5 0
and the only coordinate to determine is x. This can be done with a single 
integration by dividing the given volume into thin slabs parallel to the 
yz plane and expressing dV in terms of x and dx in the equation

 x V 5 #  xel dV (5.24)

For a body of revolution, the slabs are circular and their volume is 
given in Fig. 5.23.

P(x,y,z)

z

y

x

z

zel

xel

yel

xel = x,  yel = y,  zel =
dV = z dx dy 

z
2

dx
dy

Fig. 5.22 Determination of the centroid 
of a volume by double integration.

dx

r

xel

z

y

x

xel = x
dV =  r2 dx �

Fig. 5.23 Determination of the 
centroid of a body of revolution.

5.12 Determination of Centroids of 
Volumes by Integration
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SAMPLE PROBLEM 5.11

Determine the location of the center of gravity of the homogeneous body 
of revolution shown, which was obtained by joining a hemisphere and a 
cylinder and carving out a cone.

100 mm

x

z

60 mm

60 mm

y

O

SOLUTION

Because of symmetry, the center of gravity lies on the x axis. As shown in 
the figure below, the body can be obtained by adding a hemisphere to a 
cylinder and then subtracting a cone. The volume and the abscissa of the 
centroid of each of these components are obtained from Fig. 5.21 and are 
entered in the table below. The total volume of the body and the first 
moment of its volume with respect to the yz plane are then determined.

50 mm

xxx

yyy

O O O

60 mm

3
8

(60 mm) = 22.5 mm 3
4

(100 mm) = 75 mm

+ –

Component Volume, mm3 x, mm x V, mm4

Hemisphere
 

 
1
2

 
4p
3

 (60)3 5 0.4524 3 106

 
222.5 210.18 3 106

Cylinder p(60)2(100) 5   1.1310 3 106 150 156.55 3 106

Cone
 

 2
p

3
 (60)2(100) 5 20.3770 3 106

 
175 228.28 3 106

 oV 5     1.206 3 106  oxV 5 118.09 3 106

Thus,

XoV 5 oxV:  X(1.206 3 106 mm3) 5 18.09 3 106 mm4

X 5 15 mm ◀
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0.5 in.

0.5 in.

1 in.

1 in.

1 in.
x

z

y

4.5 in.
2.5 in.

2 in.

2 in.

SOLUTION

The machine element can be obtained by adding a rectangular parallelepi-
ped (I) to a quarter cylinder (II) and then subtracting two 1-in.-diameter 
cylinders (III and IV). The volume and the coordinates of the centroid of 
each component are determined and are entered in the table below. Using 
the data in the table, we then determine the total volume and the moments 
of the volume with respect to each of the coordinate planes.

4.5 in.
2 in.

I

II

III IV

2 in.

1 in. diam.+
_ _

0.5 in.

0.5 in.

CII CII

CICIII CIV

CI, CIII, CIV 

1 in. 1 in.

2 in. 1.5 in.

2.25 in.
0.25 in.

0.25 in.

4r
3= =4(2)

0.8488 in.

x z

y y

8 in.

�3�

3�

  V, in3 x, in. y, in. z, in. x V, in4 y V, in4 z V, in4

 I   (4.5)(2)(0.5) 5 4.5 0.25 21 2.25   1.125 24.5  10.125
 II    1

4 p(2)2(0.5) 5 1.571 1.3488 20.8488 0.25   2.119 21.333   0.393
 III 2p(0.5)2(0.5) 5 20.3927 0.25 21 3.5 20.098   0.393 21.374
 IV 2p(0.5)2(0.5) 5 20.3927 0.25 21 1.5 20.098   0.393 20.589

 oV 5 5.286    oxV 5 3.048 oyV 5 25.047 ozV 5 8.555

Thus,

XoV 5 oxV:  X(5.286 in3) 5 3.048 in4 X 5  0.577 in. ◀

YoV 5 oyV:  Y(5.286 in3) 5 25.047 in4 Y 5  20.955 in. ◀

ZoV 5 ozV:  Z(5.286 in3) 5 8.555 in4 Z 5  1.618 in. ◀

SAMPLE PROBLEM 5.12

Locate the center of gravity of the steel machine element shown. The diame-
ter of each hole is 1 in.
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SAMPLE PROBLEM 5.13

Determine the location of the centroid of the half right circular cone 
shown.

SOLUTION

Since the xy plane is a plane of symmetry, the centroid lies in this plane 
and z 5 0. A slab of thickness dx is chosen as a differential element. The 
volume of this element is

dV 5 1
2 
pr2 dx

The coordinates xel and yel of the centroid of the element are obtained from 
Fig. 5.8 (semicircular area).

xel 5 x     yel 5
4r
3p

We observe that r is proportional to x and write

r
x

5
a
h

    r 5
a
h

 x

The volume of the body is

V 5 #  dV 5 #
h

0

 12 
pr2 dx 5 #

h

0

 12 
p

  
a a

h
 xb2

dx 5
pa2h

6

The moment of the differential element with respect to the yz plane is
xel dV; the total moment of the body with respect to this plane is

# xel dV 5 #
h

0
 
x(1

2 
pr2) dx 5 #

h

0
 
x(1

2 
p)  a a

h
 xb2

dx 5
pa2h2

8

Thus,

xV 5 #  xel dV     x 

pa2h
6

5
pa2h2

8
  x 5 3

4h ◀

Likewise, the moment of the differential element with respect to the zx 
plane is yel dV; the total moment is

#  yel dV 5 #
h

0

 
4r
3p

 (1
2 pr2)dx 5

2
3 #

h

0

a a
h

 xb3

dx 5
a3h
6

Thus,

yV 5 #  yel dV     y 

pa2h
6

5
a3h
6

  y 5
a
p

 ◀

y

z
x

h

a

y

z
x

h

⎯yel

a
r

⎯xel = x
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SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will be asked to locate the centers of gravity 
of three-dimensional bodies or the centroids of their volumes. All of the tech-

niques we previously discussed for two-dimensional bodies—using symmetry, 
dividing the body into common shapes, choosing the most efficient differential 
element, etc.—may also be applied to the general three-dimensional case.

1. Locating the centers of gravity of composite bodies. In general, Eqs. (5.20) must 
be used:

XwoW 5 oxwW  YwoW 5 oywW  ZwoW 5 ozwW (5.20)

However, for the case of a homogeneous body, the center of gravity of the body 
coincides with the centroid of its volume. Therefore, for this special case, the 
center of gravity of the body can also be located using Eqs. (5.21):

 XwoV 5 oxw V  YwoV 5 oywV  ZwoV 5 ozwV (5.21)

You should realize that these equations are simply an extension of the equations 
used for the two-dimensional problems considered earlier in the chapter. As the 
solutions of Sample Probs. 5.11 and 5.12 illustrate, the methods of solution for 
two- and three-dimensional problems are identical. Thus, we once again strongly 
encourage you to construct appropriate diagrams and tables when analyzing com-
posite bodies. Also, as you study Sample Prob. 5.12, observe how the x and y 
coordinates of the centroid of the quarter cylinder were obtained using the equa-
tions for the centroid of a quarter circle.

We note that two special cases of interest occur when the given body consists of 
either uniform wires or uniform plates made of the same material.
 a. For a body made of several wire elements of the same uniform cross sec-
tion, the cross-sectional area A of the wire elements will factor out of Eqs. (5.21) 
when V is replaced with the product AL, where L is the length of a given element. 
Equations (5.21) thus reduce in this case to

XwoL 5 oxwL  YwoL 5 oywL  ZwoL 5 ozwL

 b. For a body made of several plates of the same uniform thickness, the thickness t 
of the plates will factor out of Eqs. (5.21) when V is replaced with the product tA, 
where A is the area of a given plate. Equations (5.21) thus reduce in this case to

XwoA 5 oxwA  YwoA 5 oywA  ZwoA 5 ozwA

2. Locating the centroids of volumes by direct integration. As explained in Sec. 5.12, 
evaluating the integrals of Eqs. (5.22) can be simplified by choosing either a thin fila-
ment (Fig. 5.22) or a thin slab (Fig. 5.23) for the element of volume d V. Thus, you 
should begin your solution by identifying, if possible, the d V which produces the 
single or double integrals that are the easiest to compute. For bodies of revolution, 
this may be a thin slab (as in Sample Prob. 5.13) or a thin cylindrical shell. However, 
it is important to remember that the relationship that you establish among the vari-
ables (like the relationship between r and x in Sample Prob. 5.13) will directly affect 
the complexity of the integrals you will have to compute. Finally, we again remind 
you that xel, yel, and zel in Eqs. (5.23) are the coordinates of the centroid of dV.
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PROBLEMS

266

 5.96 Determine the location of the centroid of the composite body 
shown when (a) h 5 2b, (b) h 5 2.5b.

a

CB
A

h

b

Fig. P5.96

y

x

z

h

ab

a
2

Fig. P5.97 and P5.98

y

x

z

h

a a
2

Fig. P5.99

 5.98 Determine the z coordinate of the centroid of the body shown. 
(Hint: Use the result of Sample Prob. 5.13.)

 5.99 The composite body shown is formed by removing a semiellipsoid 
of revolution of semimajor axis h and semiminor axis a/2 from a 
hemisphere of radius a. Determine (a) the y coordinate of the 
centroid when h 5 a/2, (b) the ratio h/a for which y 5 20.4a.

 5.97 Determine the y coordinate of the centroid of the body shown.
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267Problems

 5.104 For the machine element shown, locate the z coordinate of the 
center of gravity.

 5.105 For the machine element shown, locate the x coordinate of the 
center of gravity.

x

y

z

40 mm

18 mm

16 mm

100 mm 20 mm

20 mm

25 mm
25 mm

28 mm

10 mm

60 mm
24 mm

r = 13 mm r = 12 mm

Fig. P5.102 and P5.105

 5.106 and 5.107 Locate the center of gravity of the sheet-metal form 
shown.

2 in.

2 in.
2 in.

3 in.

1 in.

0.75 in.
x

y

z

r = 1.25 in.
r = 1.25 in.

2 in.

2 in.

Fig. P5.103 and P5.104

x

y

z
1.5 m

r = 1.8 m
1.2 m

0.8 m

Fig. P5.106

y

x

z

80 mm

125 mm

150 mm

250 mm

Fig. P5.107

x

y

z

12 mm

100 mm

88 mm

55 mm

45 mm34 mm

10 mm

12 mm

51 mm

62 mm

Fig. P5.100 and P5.101

 5.100 For the stop bracket shown, locate the x coordinate of the center 
of gravity.

 5.101 For the stop bracket shown, locate the z coordinate of the center 
of gravity.

 5.102 and 5.103 For the machine element shown, locate the y coor-
dinate of the center of gravity.

bee29400_ch05_218-283.indd Page 267  11/29/08  4:55:12 PM user-s172bee29400_ch05_218-283.indd Page 267  11/29/08  4:55:12 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



268 Distributed Forces: Centroids and Centers
of Gravity

 5.108 A wastebasket, designed to fit in the corner of a room, is 16 in. 
high and has a base in the shape of a quarter circle of radius 10 in. 
Locate the center of gravity of the wastebasket, knowing that it is 
made of sheet metal of uniform thickness.

x

z

r = 6 mm r = 6 mm

r = 6 mm

y

60 mm

74 mm

30 mm

r = 5 mm

69 mm

75 mm

Fig. P5.110

 5.109 A mounting bracket for electronic components is formed from 
sheet metal of uniform thickness. Locate the center of gravity of 
the bracket.

 5.110 A thin sheet of plastic of uniform thickness is bent to form a desk 
organizer. Locate the center of gravity of the organizer.

x

y

z

16 in.

10 in.
10 in.

Fig. P5.108

x

y

z

r = 0.625 in.

3 in.

1.25 in.

0.75 in.

0.75 in.

1 in. 2.5 in.

6 in.

Fig. P5.109
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269Problems 5.111 A window awning is fabricated from sheet metal of uniform thick-
ness. Locate the center of gravity of the awning.

x
z

y

76 mm

100 mm

r = 200 mm
r = 400 mm

Fig. P5.112

x

y

z

12 in.

12 in.

4 in.

8 in.

Fig. P5.113

x

y

z

4 in.

34 in.

r = 25 in.

Fig. P5.111

 5.112 An elbow for the duct of a ventilating system is made of sheet metal 
of uniform thickness. Locate the center of gravity of the elbow.

 5.113 An 8-in.-diameter cylindrical duct and a 4 3 8-in. rectangular duct 
are to be joined as indicated. Knowing that the ducts were fabri-
cated from the same sheet metal, which is of uniform thickness, 
locate the center of gravity of the assembly.
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270 Distributed Forces: Centroids and Centers
of Gravity

 5.114 A thin steel wire of uniform cross section is bent into the shape 
shown. Locate its center of gravity.

 5.117 The frame of a greenhouse is constructed from uniform aluminum 
channels. Locate the center of gravity of the portion of the frame 
shown.

 5.118 A scratch awl has a plastic handle and a steel blade and shank. 
Knowing that the density of plastic is 1030 kg/m3 and of steel is 
7860 kg/m3, locate the center of gravity of the awl.

x

y

z

A

B

D

O

1.5 m

0.6 m
1 m

Fig. P5.115

x

y

z

A

B

E
D

O

30 in.

r = 16 in.

Fig. P5.116

10 mm

3.5 mm

r

90 mm

25 mm

80 mm

50 mm

Fig. P5.118
Fig. P5.117

5 ft

3 ft
2 ft x

y

r

z

x

y

z

A

O

B
C

D

0.6 m0.6 m

60°

0.8 m

Fig. P5.114

 5.115 and 5.116 Locate the center of gravity of the figure shown, 
knowing that it is made of thin brass rods of uniform diameter.
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271Problems

0.40 in.

1.00 in.

1.80 in.

1.125 in.
0.5 in.

0.75 in.

Fig. P5.1194 in.

1.6 in.

2.5 in.

3 in.

Fig. P5.120

r = 280 mm

r = 180 mm

Fig. P5.121

 5.121 The three legs of a small glass-topped table are equally spaced and 
are made of steel tubing, which has an outside diameter of 24 mm 
and a cross-sectional area of 150 mm2. The diameter and the thick-
ness of the table top are 600 mm and 10 mm, respectively. Knowing 
that the density of steel is 7860 kg/m3 and of glass is 2190 kg/m3, 
locate the center of gravity of the table.

  5.122 through 5.124 Determine by direct integration the values of 
x for the two volumes obtained by passing a vertical cutting plane 
through the given shape of Fig. 5.21. The cutting plane is parallel 
to the base of the given shape and divides the shape into two vol-
umes of equal height.

 5.122 A hemisphere

 5.123 A semiellipsoid of revolution

 5.124 A paraboloid of revolution.

 5.125 and 5.126 Locate the centroid of the volume obtained by rotat-
ing the shaded area about the x axis.

 5.119 A bronze bushing is mounted inside a steel sleeve. Knowing that the 
specific weight of bronze is 0.318 lb/in3 and of steel is 0.284 lb/in3, 
determine the location of the center of gravity of the assembly.

 5.120 A brass collar, of length 2.5 in., is mounted on an aluminum rod of 
length 4 in. Locate the center of gravity of the composite body. 
(Specific weights: brass 5 0.306 lb/in3, aluminum 5 0.101 lb/in3.)

y

x

a

h

y = kx1/3

y

x

a

h

y = k(x – h)2

Fig. P5.125 Fig. P5.126
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272 Distributed Forces: Centroids and Centers
of Gravity

 5.127 Locate the centroid of the volume obtained by rotating the shaded 
area about the line x 5 h.

y

aa

b

x

y = b sin x
2a
π

Fig. P5.128 and P5.129

x

y

z
R

R

Fig. P5.131

R

R

Fig. P5.132

 *5.129 Locate the centroid of the volume generated by revolving the por-
tion of the sine curve shown about the y axis. (Hint: Use a thin 
cylindrical shell of radius r and thickness dr as the element of 
volume.)

 *5.130 Show that for a regular pyramid of height h and n sides (n 5 
3, 4, . . . ) the centroid of the volume of the pyramid is located at 
a distance h/4 above the base.

 5.131 Determine by direct integration the location of the centroid of 
one-half of a thin, uniform hemispherical shell of radius R.

 5.132 The sides and the base of a punch bowl are of uniform thickness t. 
If t V R and R 5 250 mm, determine the location of the center 
of gravity of (a) the bowl, (b) the punch.

y

x

x2

h2
y2

a2+ = 1

h

a

Fig. P5.127

 *5.128 Locate the centroid of the volume generated by revolving the por-
tion of the sine curve shown about the x axis.
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273Problems 5.133 After grading a lot, a builder places four stakes to designate the 
corners of the slab for a house. To provide a firm, level base for 
the slab, the builder places a minimum of 3 in. of gravel beneath 
the slab. Determine the volume of gravel needed and the x coor-
dinate of the centroid of the volume of the gravel. (Hint: The bot-
tom surface of the gravel is an oblique plane, which can be 
represented by the equation y 5 a 1 bx 1 cz.)

y

x
z ba

Fig. P5.134

y

xz

h

h
3

a
a

Fig. P5.135

xz

h

y

a

a
b

b

Fig. P5.136

y

x

z     

5 in.

3 in.

8 in.

6 in.

30 ft
50 ft

Fig. P5.133

 5.134 Determine by direct integration the location of the centroid of the 
volume between the xz plane and the portion shown of the surface 
y 5 16h(ax 2 x2)(bz 2 z2)/a2b2.

 5.135 Locate the centroid of the section shown, which was cut from a 
thin circular pipe by two oblique planes.

 *5.136 Locate the centroid of the section shown, which was cut from an 
elliptical cylinder by an oblique plane.
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REVIEW AND SUMMARY

This chapter was devoted chiefly to the determination of the center 
of gravity of a rigid body, i.e., to the determination of the point G
where a single force W, called the weight of the body, can be applied 
to represent the effect of the earth’s attraction on the body.

In the first part of the chapter, we considered two-dimensional 
 bodies, such as flat plates and wires contained in the xy plane. By 
adding force components in the vertical z direction and moments 
about the horizontal y and x axes [Sec. 5.2], we derived the 
relations

 W 5 #  dW   xW 5 #  x dW   yW 5 #  y dW  (5.2)

which define the weight of the body and the coordinates x and y of 
its center of gravity.

In the case of a homogeneous flat plate of uniform thickness [Sec. 5.3], 
the center of gravity G of the plate coincides with the centroid C of 
the area A of the plate, the coordinates of which are defined by the 
relations

 xA 5 #  x dA   yA 5 #  y dA (5.3)

Similarly, the determination of the center of gravity of a homoge-
neous wire of uniform cross section contained in a plane reduces to 
the determination of the centroid C of the line L representing the 
wire; we have

 xL 5 # x dL    yL 5 #y dL (5.4)

The integrals in Eqs. (5.3) are referred to as the first moments of 
the area A with respect to the y and x axes and are denoted by Qy
and Qx, respectively [Sec. 5.4]. We have

Qy 5 xA   Qx 5 yA (5.6)

The first moments of a line can be defined in a similar way.

The determination of the centroid C of an area or line is simplified 
when the area or line possesses certain properties of symmetry. If 
the area or line is symmetric with respect to an axis, its centroid C

Center of gravity of a 
two-dimensional body

Centroid of an area or line

First moments

Properties of symmetry
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275Review and Summarylies on that axis; if it is symmetric with respect to two axes, C is 
located at the intersection of the two axes; if it is symmetric with 
respect to a center O, C coincides with O.

The areas and the centroids of various common shapes are tabulated in 
Fig. 5.8. When a flat plate can be divided into several of these shapes, 
the coordinates X and Y of its center of gravity G can be determined 
from the coordinates x1, x2, . . . and y1, y2, . . . of the centers of 
gravity G1, G2, . . . of the various parts [Sec. 5.5]. Equating moments 
about the y and x axes, respectively (Fig. 5.24), we have

 XwoW 5 oxwW  YwoW 5 oywW (5.7)

Center of gravity of a 
composite body

x

y

z

x

y

z

OO
G

⎯X

⎯Y

ΣW =
G1

G2

G3

W1 W2

W3

Fig. 5.24

If the plate is homogeneous and of uniform thickness, its center of 
gravity coincides with the centroid C of the area of the plate, and 
Eqs. (5.7) reduce to

 Qy 5 XwoA 5 oxwA  Qx 5 YwoA 5 oywA (5.8)

These equations yield the first moments of the composite area, or 
they can be solved for the coordinates X and Y of its centroid [Sam-
ple Prob. 5.1]. The determination of the center of gravity of a com-
posite wire is carried out in a similar fashion [Sample Prob. 5.2].

When an area is bounded by analytical curves, the coordinates of its 
centroid can be determined by integration [Sec. 5.6]. This can be 
done by evaluating either the double integrals in Eqs. (5.3) or a sin-
gle integral which uses one of the thin rectangular or pie-shaped 
elements of area shown in Fig. 5.12. Denoting by xel and yel the 
coordinates of the centroid of the element dA, we have

 Qy 5 xA 5 #  xel dA   Qx 5 yA 5 #  yel dA (5.9)

It is advantageous to use the same element of area to compute both 
of the first moments Qy and Qx; the same element can also be used 
to determine the area A [Sample Prob. 5.4].

Determination of centroid 
by integration
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276  Distributed Forces: Centroids and Centers 
of Gravity

The theorems of Pappus-Guldinus relate the determination of the 
area of a surface of revolution or the volume of a body of revolution 
to the determination of the centroid of the generating curve or area 
[Sec. 5.7]. The area A of the surface generated by rotating a curve 
of length L about a fixed axis (Fig. 5.25a) is

 A 5 2pyL (5.10)

where y represents the distance from the centroid C of the curve to 
the fixed axis. Similarly, the volume V of the body generated by 
rotating an area A about a fixed axis (Fig. 5.25b) is

 V 5 2pyyyA (5.11)

where y represents the distance from the centroid C of the area to 
the fixed axis.

The concept of centroid of an area can also be used to solve problems 
other than those dealing with the weight of flat plates. For example, 
to determine the reactions at the supports of a beam [Sec. 5.8], we 
can replace a distributed load w by a concentrated load W equal in 
magnitude to the area A under the load curve and passing through 
the centroid C of that area (Fig. 5.26). The same approach can be 
used to determine the resultant of the hydrostatic forces exerted on a 
rectangular plate submerged in a liquid [Sec. 5.9].

Theorems of Pappus-Guldinus

Distributed loads

w w

O O

w

dx
x

L

B B

dW = dA

x x

L

P

x

W = A
Wd W

C=

Fig. 5.26

The last part of the chapter was devoted to the determination of the 
center of gravity G of a three-dimensional body. The coordinates x, 
y, z of G were defined by the relations

 xW 5 #  x dW   yW 5 #  y dW   z W 5 #  z dW  (5.17)

In the case of a homogeneous body, the center of gravity G coincides 
with the centroid C of the volume V of the body; the coordinates of 
C are defined by the relations

 xV 5 #  x dV   yV 5 #  y dV   zV 5 #  z dV (5.19)

If the volume possesses a plane of symmetry, its centroid C will lie 
in that plane; if it possesses two planes of symmetry, C will be located 
on the line of intersection of the two planes; if it possesses three 
planes of symmetry which intersect at only one point, C will coincide 
with that point [Sec. 5.10].

Center of gravity of a three-
dimensional body

Centroid of a volume

(a) (b)

x

C

L

⎯y
y

x

A
C

2   y�2   y�

Fig. 5.25
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277Review and SummaryThe volumes and centroids of various common three-dimensional 
shapes are tabulated in Fig. 5.21. When a body can be divided into 
several of these shapes, the coordinates X, Y, Z of its center of gravity 
G can be determined from the corresponding coordinates of the 
centers of gravity of its various parts [Sec. 5.11]. We have

 XwoW 5 oxw W  YwoW 5 oyw W  Zw oW 5 ozw W (5.20)

If the body is made of a homogeneous material, its center of gravity 
coincides with the centroid C of its volume, and we write [Sample 
Probs. 5.11 and 5.12]

 XwoV 5 oxw V  YwoV 5 oyw V  Zw oV 5 ozw V (5.21)

When a volume is bounded by analytical surfaces, the coordinates of 
its centroid can be determined by integration [Sec. 5.12]. To avoid 
the computation of the triple integrals in Eqs. (5.19), we can use ele-
ments of volume in the shape of thin filaments, as shown in Fig. 5.27. 

Center of gravity of a composite 
body

Determination of centroid 
by integration

P(x,y,z)

z

y

x

z

zel

xel

yel

xel = x,  yel = y,  zel =
dV = z dx dy 

z
2

dx
dy

Fig. 5.27

Denoting by xel, yel, and zel the coordinates of the centroid of the 
element dV, we rewrite Eqs. (5.19) as

 xV 5 #  xel dV   yV 5 #  yel dV   zV 5 #  zel dV (5.23)

which involve only double integrals. If the volume possesses two 
planes of symmetry, its centroid C is located on their line of intersec-
tion. Choosing the x axis to lie along that line and dividing the vol-
ume into thin slabs parallel to the yz plane, we can determine C 
from the relation

 xV 5 #  xel dV (5.24)

with a single integration [Sample Prob. 5.13]. For a body of revolution, 
these slabs are circular and their volume is given in Fig. 5.28.

dx

r

xel

z

y

x

xel = x
dV =   r2 dx �

Fig. 5.28
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278

REVIEW PROBLEMS

  5.137 and 5.138 Locate the centroid of the plane area shown.

x

y

54 mm 72 mm

30 mm

54 mm

48 mm

Fig. P5.137

x

y

a = 8 in.

x = ky2

b = 4 in.

Fig. P5.138

5.139 The frame for a sign is fabricated from thin, flat steel bar stock of 
mass per unit length 4.73 kg/m. The frame is supported by a pin 
at C and by a cable AB. Determine (a) the tension in the cable, 
(b) the reaction at C.

A

C

B

R
0.75 m

0.8 m

0.2 m

1.35 m

0.6 m

Fig. P5.139

x

y

y = m x + b

y = k(1 – cx2)

h

a

Fig. P5.140

 5.140 Determine by direct integration the centroid of the area shown. 
Express your answer in terms of a and h.
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279Review Problems 5.141 Determine by direct integration the centroid of the area shown. 
Express your answer in terms of a and b.

A
B

C

3 m
1 m

900 N/m

Fig. P5.143

A

wA

wBC

wDE

B C D E
F

6 m

3.1 m
0.6 m

1.0 m0.8 m

1200 N/m

Fig. P5.144

30°

A

B1.8 ft

d

Fig. P5.145

 5.145 The square gate AB is held in the position shown by hinges 
along its top edge A and by a shear pin at B. For a depth of 
water d 5 3.5 ft, determine the force exerted on the gate by 
the shear pin.

4 in.

4 in.

10 in.

Fig. P5.142

x

y

b

a

2b

y = 2b – cx2

y = kx2

Fig. P5.141

 5.142 Knowing that two equal caps have been removed from a 10-in.-
diameter wooden sphere, determine the total surface area of the 
remaining portion.

 5.143 Determine the reactions at the beam supports for the given 
loading.

 5.144 A beam is subjected to a linearly distributed downward load and 
rests on two wide supports BC and DE, which exert uniformly 
distributed upward loads as shown. Determine the values of wBC 
and wDE corresponding to equilibrium when wA 5 600 N/m.
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280 Distributed Forces: Centroids and Centers 
of Gravity

 5.148 Locate the centroid of the volume obtained by rotating the shaded 
area about the x axis.

y

a

z

x

b
2

L h

b

Fig. P5.146

 5.146 Consider the composite body shown. Determine (a) the value of x 
when h 5 L/2, (b) the ratio h/L for which x 5 L.

x

y

z
0.16 m

0.2 m

0.12 m

0.1 m

0.05 m

r = 0.18 m

Fig. P5.147

y

x
1 m

3 m

y = (1 –     )1
x

Fig. P5.148

 5.147 Locate the center of gravity of the sheet-metal form shown.
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281

COMPUTER PROBLEMS

 5.C1 A beam is to carry a series of uniform and uniformly varying distrib-
uted loads as shown in part a of the figure. Divide the area under each 
portion of the load curve into two triangles (see Sample Prob. 5.9), and then 
write a computer program that can be used to calculate the reactions at A
and B. Use this program to calculate the reactions at the supports for the 
beams shown in parts b and c of the figure.

A B A B A B

L01

w0 w1 w2

(a) (b) (c)

wn+ 1

L12
3 ft

2 ft

300 lb/ft
240 lb/ft 150 lb/ft

420 lb/ft
400 lb/ft

3 ft 3 .5 ft
L

5 ft 4 ft4 .5 ft

Fig. P5.C1

α  

x

y

z

R h

Fig. P5.C2

60°

A

B

C

d

2.1 m

Fig. P5.C3

 5.C2 The three-dimensional structure shown is fabricated from five thin 
steel rods of equal diameter. Write a computer program that can be used 
to calculate the coordinates of the center of gravity of the structure. Use 
this program to locate the center of gravity when (a) h 5 12 m, R 5 5 m, 
a 5 90°; (b) h 5 570 mm, R 5 760 mm, a 5 30°; (c) h 5 21 m, R 5 20 m, 
a 5 135°.

 5.C3 An open tank is to be slowly filled with water. (The density of water 
is 103 kg/m3.) Write a computer program that can be used to determine the 
resultant of the pressure forces exerted by the water on a 1-m-wide section 
of side ABC of the tank. Determine the resultant of the pressure forces for 
values of d from 0 to 3 m using 0.25-m increments.
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282 Distributed Forces: Centroids and Centers 
of Gravity

 5.C4 Approximate the curve shown using 10 straight-line segments, and 
then write a computer program that can be used to determine the location 
of the centroid of the line. Use this program to determine the location of the 
centroid when (a) a 5 1 in., L 5 11 in., h 5 2 in.; (b) a 5 2 in., L 5 17 in., 
h 5 4 in.; (c) a 5 5 in., L 5 12 in., h 5 1 in.

x

y

h

a

L

L – a
10

a
xy = h(1 –    )

Fig. P5.C4

y = kxm

x

y

b b�

Δa

c c�
d d�

Δa
2

a

h

Fig. P5.C5

 5.C5 Approximate the general spandrel shown using a series of n rectan-
gles, each of width Da and of the form bcc9b9, and then write a computer 
program that can be used to calculate the coordinates of the centroid of the 
area. Use this program to locate the centroid when (a) m 5 2, a 5 80 mm, 
h 5 80 mm; (b) m 5 2, a 5 80 mm, h 5 500 mm; (c) m 5 5, a 5 80 mm, 
h 5 80 mm; (d) m 5 5, a 5 80 mm, h 5 500 mm. In each case, compare 
the answers obtained to the exact values of x and y computed from the 
formulas given in Fig. 5.8A and determine the percentage error.

 5.C6 Solve Prob. 5.C5, using rectangles of the form bdd9b9.

 *5.C7 A farmer asks a group of engineering students to determine the 
volume of water in a small pond. Using cord, the students first establish a 
2 3 2-ft grid across the pond and then record the depth of the water, in 
feet, at each intersection point of the grid (see the accompanying table). 
Write a computer program that can be used to determine (a) the volume 
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283Computer Problemsof water in the pond, (b) the location of the center of gravity of the water. 
Approximate the depth of each 2 3 2-ft element of water using the average 
of the water depths at the four corners of the element.

Cord
 1 2 3 4 5 6 7 8 9 10

 1 . . . . . . . . . . . . 0 0 0 . . . . . . . . .
 2 . . . . . . 0 0 0 1 0 0 0 . . .
 3 . . . 0 0 1 3 3 3 1 0 0
 4 0 0 1 3 6 6 6 3 1 0
 5 0 1 3 6 8 8 6 3 1 0
 6 0 1 3 6 8 7 7 3 0 0
 7 0 3 4 6 6 6 4 1 0 . . .
 8 0 3 3 3 3 3 1 0 0 . . .
 9 0 0 0 1 1 0 0 0 . . . . . .
10 . . . . . . 0 0 0 0 . . . . . . . . . . . .

C
or

d
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Trusses, such as this Pratt-style 

cantilever arch bridge in New York 

State, provide both a practical and an 

economical solution to many 

engineering problems.
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Analysis of Structures

C H A P T E R
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286

6.1 INTRODUCTION
The problems considered in the preceding chapters concerned the 
equilibrium of a single rigid body, and all forces involved were exter-
nal to the rigid body. We now consider problems dealing with the 
equilibrium of structures made of several connected parts. These 
problems call for the determination not only of the external forces 
acting on the structure but also of the forces which hold together 
the various parts of the structure. From the point of view of the 
structure as a whole, these forces are internal forces.
 Consider, for example, the crane shown in Fig. 6.1a, which 
carries a load W. The crane consists of three beams AD, CF, and 
BE connected by frictionless pins; it is supported by a pin at A and 
by a cable DG. The free-body diagram of the crane has been drawn 
in Fig. 6.1b. The external forces, which are shown in the diagram, 
include the weight W, the two components Ax and Ay of the reaction 
at A, and the force T exerted by the cable at D. The internal forces 
holding the various parts of the crane together do not appear in the 
diagram. If, however, the crane is dismembered and if a free-body 
diagram is drawn for each of its component parts, the forces holding 
the three beams together will also be represented, since these forces 
are external forces from the point of view of each component part 
(Fig. 6.1c).

Chapter 6 Analysis of Structures
 6.1 Introduction
 6.2 Definition of a Truss
 6.3 Simple Trusses
 6.4 Analysis of Trusses by the 

Method of Joints
 6.5 Joints under Special Loading 

Conditions
 6.6 Space Trusses
 6.7 Analysis of Trusses by the 

Method of Sections
 6.8 Trusses Made of Several Simple 

Trusses
 6.9 Structures Containing Multiforce 

Members
 6.10 Analysis of a Frame
 6.11 Frames Which Cease to Be Rigid 

When Detached from Their 
Supports

 6.12 Machines

 It will be noted that the force exerted at B by member BE on 
member AD has been represented as equal and opposite to the force 
exerted at the same point by member AD on member BE; the 
force exerted at E by BE on CF is shown equal and opposite to the 
force exerted by CF on BE; and the components of the force exerted 
at C by CF on AD are shown equal and opposite to the components 
of the force exerted by AD on CF. This is in conformity with  Newton’s 
third law, which states that the forces of action and reaction between 
bodies in contact have the same magnitude, same line of action, and 
opposite sense. As pointed out in Chap. 1, this law, which is based 
on experimental evidence, is one of the six fundamental principles 
of elementary mechanics, and its application is essential to the solu-
tion of problems involving connected bodies.

Fig. 6.1

TT

A

B

C

D

E
F

W

B

C

D

E

E

F
E

F

W W

G

(a)

B

B

C
C

D

(b) (c)

Ay

Ax

A
Ay

Ax

A
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287 In this chapter, three broad categories of engineering structures 
will be considered:

 1. Trusses, which are designed to support loads and are usually 
stationary, fully constrained structures. Trusses consist exclu-
sively of straight members connected at joints located at the 
ends of each member. Members of a truss, therefore, are two-
force members, i.e., members acted upon by two equal and 
opposite forces directed along the member.

 2. Frames, which are also designed to support loads and are also 
usually stationary, fully constrained structures. However, like 
the crane of Fig. 6.1, frames always contain at least one mul-
tiforce member, i.e., a member acted upon by three or more 
forces which, in general, are not directed along the 
member.

 3. Machines, which are designed to transmit and modify forces 
and are structures containing moving parts. Machines, like 
frames, always contain at least one multiforce member.

TRUSSES

6.2 DEFINITION OF A TRUSS
The truss is one of the major types of engineering structures. It 
provides both a practical and an economical solution to many engi-
neering situations, especially in the design of bridges and buildings. 
A typical truss is shown in Fig. 6.2a. A truss consists of straight 
members connected at joints. Truss members are connected at their 
extremities only; thus no member is continuous through a joint. In 
Fig. 6.2a, for example, there is no member AB; there are instead two 
distinct members AD and DB. Most actual structures are made of 
several trusses joined together to form a space framework. Each truss 
is designed to carry those loads which act in its plane and thus may 
be treated as a two-dimensional structure.
 In general, the members of a truss are slender and can sup-
port little lateral load; all loads, therefore, must be applied to the 
various joints, and not to the members themselves. When a con-
centrated load is to be applied between two joints, or when a dis-
tributed load is to be supported by the truss, as in the case of a 
bridge truss, a floor system must be provided which, through the 
use of stringers and floor beams, transmits the load to the joints 
(Fig. 6.3).
 The weights of the members of the truss are also assumed to 
be applied to the joints, half of the weight of each member being 
applied to each of the two joints the member connects. Although 
the members are actually joined together by means of welded, 
bolted, or riveted connections, it is customary to assume that the 
members are pinned together; therefore, the forces acting at each 
end of a member reduce to a single force and no couple. Thus, the 
only forces assumed to be applied to a truss member are a single 

A B

C

D

(a)

(b)

P

A B

C

D

P

Fig. 6.2

6.2 Defi nition of a Truss

Photo 6.1 Shown is a pin-jointed connection 
on the approach span to the San Francisco–
Oakland Bay Bridge.
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288  Analysis of Structures

Fig. 6.5

Pratt

Pratt

Howe

Howe

Fink
Typical Roof Trusses

Typical Bridge Trusses
Baltimore

Warren

K truss

Stadium

Cantilever portion
of a truss Bascule

Other Types of Trusses

Floor beams

Stringers

Fig. 6.3

force at each end of the member. Each member can then be treated 
as a two-force member, and the entire truss can be considered as a 
group of pins and two-force members (Fig. 6.2b). An individual 
member can be acted upon as shown in either of the two sketches 
of Fig. 6.4. In Fig. 6.4a, the forces tend to pull the member apart, 
and the member is in tension; in Fig. 6.4b, the forces tend to com-
press the member, and the member is in compression. A number 
of typical trusses are shown in Fig. 6.5.

(a) (b)

Fig. 6.4
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2896.3 SIMPLE TRUSSES
Consider the truss of Fig. 6.6a, which is made of four members con-
nected by pins at A, B, C, and D. If a load is applied at B, the truss 
will greatly deform, completely losing its original shape. In contrast, 
the truss of Fig. 6.6b, which is made of three members connected 
by pins at A, B, and C, will deform only slightly under a load applied 
at B. The only possible deformation for this truss is one involving 
small changes in the length of its members. The truss of Fig. 6.6b 
is said to be a rigid truss, the term rigid being used here to indicate 
that the truss will not collapse.

†The three joints must not be in a straight line.

Fig. 6.6

A

B

B'

C

A

B

C A

B

C

C'

D

D

A

B C

DE F

G

(a) (b) (c) (d )

 As shown in Fig. 6.6c, a larger rigid truss can be obtained by 
adding two members BD and CD to the basic triangular truss of 
Fig. 6.6b. This procedure can be repeated as many times as desired, 
and the resulting truss will be rigid if each time two new members 
are added, they are attached to two existing joints and connected at 
a new joint.† A truss which can be constructed in this manner is 
called a simple truss.
 It should be noted that a simple truss is not necessarily made 
only of triangles. The truss of Fig. 6.6d, for example, is a simple truss 
which was constructed from triangle ABC by adding successively the 
joints D, E, F, and G. On the other hand, rigid trusses are not always 
simple trusses, even when they appear to be made of triangles. The 
Fink and Baltimore trusses shown in Fig. 6.5, for instance, are not 
simple trusses, since they cannot be constructed from a single trian-
gle in the manner described above. All the other trusses shown in 
Fig. 6.5 are simple trusses, as may be easily checked. (For the K 
truss, start with one of the central triangles.)
 Returning to Fig. 6.6, we note that the basic triangular truss of 
Fig. 6.6b has three members and three joints. The truss of Fig. 6.6c 
has two more members and one more joint, i.e., five members and 
four joints altogether. Observing that every time two new members 
are added, the number of joints is increased by one, we find that in 
a simple truss the total number of members is m 5 2n 2 3, where 
n is the total number of joints.

6.3 Simple Trusses

Photo 6.2 Two K-trusses were used as the 
main components of the movable bridge shown 
which moved above a large stockpile of ore. 
The bucket below the trusses picked up ore and 
redeposited it until the ore was thoroughly mixed.
The ore was then sent to the mill for processing 
into steel.
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290  Analysis of Structures 6.4  ANALYSIS OF TRUSSES BY THE METHOD
OF JOINTS

We saw in Sec. 6.2 that a truss can be considered as a group of pins 
and two-force members. The truss of Fig. 6.2, whose free-body  diagram 
is shown in Fig. 6.7a, can thus be dismembered, and a free-body dia-
gram can be drawn for each pin and each member (Fig. 6.7b). Each 
member is acted upon by two forces, one at each end; these forces have 
the same magnitude, same line of action, and opposite sense (Sec. 4.6). 
Furthermore, Newton’s third law indicates that the forces of action and 
reaction between a member and a pin are equal and opposite. There-
fore, the forces exerted by a member on the two pins it connects must 
be directed along that member and be equal and opposite. The common 
magnitude of the forces exerted by a member on the two pins it con-
nects is commonly referred to as the force in the member considered, 
even though this quantity is actually a scalar. Since the lines of action of 
all the internal forces in a truss are known, the analysis of a truss reduces 
to computing the forces in its various members and to determining 
whether each of its members is in tension or in compression.
 Since the entire truss is in equilibrium, each pin must be in 
equilibrium. The fact that a pin is in equilibrium can be expressed by 
drawing its free-body diagram and writing two equilibrium equations 
(Sec. 2.9). If the truss contains n pins, there will, therefore, be 2n 
equations available, which can be solved for 2n unknowns. In the case 
of a simple truss, we have m 5 2n 2 3, that is, 2n 5 m 1 3, and the 
number of unknowns which can be determined from the free-body 
diagrams of the pins is thus m 1 3. This means that the forces in all 
the members, the two components of the reaction RA, and the reaction 
RB can be found by considering the free-body diagrams of the pins.
 The fact that the entire truss is a rigid body in equilibrium can 
be used to write three more equations involving the forces shown in 
the free-body diagram of Fig. 6.7a. Since they do not contain any 
new information, these equations are not independent of the equa-
tions associated with the free-body diagrams of the pins. Neverthe-
less, they can be used to determine the components of the reactions 
at the supports. The arrangement of pins and members in a simple 
truss is such that it will then always be possible to find a joint involv-
ing only two unknown forces. These forces can be determined by 
the methods of Sec. 2.11 and their values transferred to the adjacent 
joints and treated as known quantities at these joints. This procedure 
can be repeated until all unknown forces have been determined.
 As an example, the truss of Fig. 6.7 will be analyzed by con-
sidering the equilibrium of each pin successively, starting with a joint 
at which only two forces are unknown. In the truss considered, all 
pins are subjected to at least three unknown forces. Therefore, the 
reactions at the supports must first be determined by considering 
the entire truss as a free body and using the equations of equilibrium 
of a rigid body. We find in this way that RA is vertical and determine 
the magnitudes of RA and RB.
 The number of unknown forces at joint A is thus reduced to 
two, and these forces can be determined by considering the equilib-
rium of pin A. The reaction RA and the forces FAC and FAD exerted 

Fig. 6.7

DA B

C

C

B

P

P

(a)

(b)

RB

RB

D

RA

A

RA

Photo 6.3 Because roof trusses, such as those 
shown, require support only at their ends, it is 
possible to construct buildings with large, 
unobstructed floor areas.
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291on pin A by members AC and AD, respectively, must form a force 
triangle. First we draw RA (Fig. 6.8); noting that FAC and FAD are 
directed along AC and AD, respectively, we complete the triangle 
and determine the magnitude and sense of FAC and FAD. The mag-
nitudes FAC and FAD represent the forces in members AC and AD. 
Since FAC is directed down and to the left, that is, toward joint A, 
member AC pushes on pin A and is in compression. Since FAD is 
directed away from joint A, member AD pulls on pin A and is in 
tension.

Fig. 6.8

Free-body diagram

Joint A

Joint D

Joint C

Joint B B

Force  polygon

FAC

FAC

FAD

FDA

FCA
FCB

FCD

FCD

FCA

FCB

RB

RBFBD

FBDFBC

FBC

FDA

FDC

FDCFDB

FDB

P

P

FAD
RA

RAA

D

C

 We can now proceed to joint D, where only two forces, FDC and 
FDB, are still unknown. The other forces are the load P, which is 
given, and the force FDA exerted on the pin by member AD. As indi-
cated above, this force is equal and opposite to the force FAD exerted 
by the same member on pin A. We can draw the force polygon cor-
responding to joint D, as shown in Fig. 6.8, and determine the forces 

6.4 Analysis of Trusses by the Method of Joints
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292  Analysis of Structures FDC and FDB from that polygon. However, when more than three 
forces are involved, it is usually more convenient to solve the equa-
tions of equilibrium oFx 5 0 and oFy 5 0 for the two unknown 
forces. Since both of these forces are found to be directed away from 
joint D, members DC and DB pull on the pin and are in tension.
 Next, joint C is considered; its free-body diagram is shown in 
Fig. 6.8. It is noted that both FCD and FCA are known from the 
analysis of the preceding joints and that only FCB is unknown. Since 
the equilibrium of each pin provides sufficient information to deter-
mine two unknowns, a check of our analysis is obtained at this joint. 
The force triangle is drawn, and the magnitude and sense of FCB are 
determined. Since FCB is directed toward joint C, member CB 
pushes on pin C and is in compression. The check is obtained by 
verifying that the force FCB and member CB are parallel.
 At joint B, all of the forces are known. Since the corresponding 
pin is in equilibrium, the force triangle must close and an additional 
check of the analysis is obtained.
 It should be noted that the force polygons shown in Fig. 6.8 
are not unique. Each of them could be replaced by an alternative 
configuration. For example, the force triangle corresponding to joint 
A could be drawn as shown in Fig. 6.9. The triangle actually shown 
in Fig. 6.8 was obtained by drawing the three forces RA, FAC, and 
FAD in tip-to-tail fashion in the order in which their lines of action 
are encountered when moving clockwise around joint A. The other 
force polygons in Fig. 6.8, having been drawn in the same way, can 
be made to fit into a single diagram, as shown in Fig. 6.10. Such a 
diagram, known as Maxwell’s diagram, greatly facilitates the  graphical 
analysis of truss problems.

*6.5  JOINTS UNDER SPECIAL LOADING
CONDITIONS

Consider Fig. 6.11a, in which the joint shown connects four mem-
bers lying in two intersecting straight lines. The free-body diagram 
of Fig. 6.11b shows that pin A is subjected to two pairs of directly 
opposite forces. The corresponding force polygon, therefore, must 
be a parallelogram (Fig. 6.11c), and the forces in opposite members 
must be equal.

Fig. 6.9
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FAD

FAC

Fig. 6.10

RA

RB

FBD

FAD
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FBC

FCD

(a)

A A
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(b) (c)

FAD

FAB

FAE

FAC

FAB

FAD

FAE

FAC

Fig. 6.11
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293 Consider next Fig. 6.12a, in which the joint shown connects 
three members and supports a load P. Two of the members lie in 
the same line, and the load P acts along the third member. The free-
body diagram of pin A and the corresponding force polygon will be 
as shown in Fig. 6.11b and c, with FAE replaced by the load P. Thus, 
the forces in the two opposite members must be equal, and the force 
in the other member must equal P. A particular case of special inter-
est is shown in Fig. 6.12b. Since, in this case, no external load is 
applied to the joint, we have P 5 0, and the force in member AC is 
zero. Member AC is said to be a zero-force member.
 Consider now a joint connecting two members only. From 
Sec. 2.9, we know that a particle which is acted upon by two forces will 
be in equilibrium if the two forces have the same magnitude, same line 
of action, and opposite sense. In the case of the joint of Fig. 6.13a, 
which connects two members AB and AD lying in the same line, the 
forces in the two members must be equal for pin A to be in equilibrium. 
In the case of the joint of Fig. 6.13b, pin A cannot be in equilibrium 
unless the forces in both members are zero. Members connected as 
shown in Fig. 6.13b, therefore, must be zero-force members.
 Spotting the joints which are under the special loading condi-
tions listed above will expedite the analysis of a truss. Consider, for 
example, a Howe truss loaded as shown in Fig. 6.14. All of the mem-
bers represented by green lines will be recognized as zero-force 
members. Joint C connects three members, two of which lie in the 
same line, and is not subjected to any external load; member BC is 
thus a zero-force member. Applying the same reasoning to joint K, 
we find that member JK is also a zero-force member. But joint J is 
now in the same situation as joints C and K, and member IJ must be 
a zero-force member. The examination of joints C, J, and K also shows 
that the forces in members AC and CE are equal, that the forces in 
members HJ and JL are equal, and that the forces in members IK 
and KL are equal. Turning our attention to joint I, where the 20-kN 
load and member HI are collinear, we note that the force in member 
HI is 20 kN (tension) and that the forces in members GI and IK are 
equal. Hence, the forces in members GI, IK, and KL are equal.

6.5 Joints Under Special Loading Conditions

Fig. 6.12
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Fig. 6.14
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20 kN
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K
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 Note that the conditions described above do not apply to joints B 
and D in Fig. 6.14, and it would be wrong to assume that the force in 
member DE is 25 kN or that the forces in members AB and BD are 
equal. The forces in these members and in all remaining members 
should be found by carrying out the analysis of joints A, B, D, E, F, G, 
H, and L in the usual manner. Thus, until you have become thoroughly 
familiar with the conditions under which the rules established in this 

Photo 6.4 Three-dimensional or space trusses 
are used for broadcast and power transmission 
line towers, roof framing, and spacecraft 
applications, such as components of the 
International Space Station.
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294  Analysis of Structures section can be applied, you should draw the free-body diagrams of all 
pins and write the corresponding equilibrium equations (or draw the 
corresponding force polygons) whether or not the joints being consid-
ered are under one of the special loading conditions described above.
 A final remark concerning zero-force members: These mem-
bers are not useless. For example, although the zero-force members 
of Fig. 6.14 do not carry any loads under the loading conditions 
shown, the same members would probably carry loads if the loading 
conditions were changed. Besides, even in the case considered, these 
members are needed to support the weight of the truss and to main-
tain the truss in the desired shape.

*6.6 SPACE TRUSSES
When several straight members are joined together at their extremi-
ties to form a three-dimensional configuration, the structure obtained 
is called a space truss.
 We recall from Sec. 6.3 that the most elementary two-
dimensional rigid truss consisted of three members joined at their 
extremities to form the sides of a triangle; by adding two members at a 
time to this basic configuration, and connecting them at a new joint, it 
was possible to obtain a larger rigid structure which was defined as a 
simple truss. Similarly, the most elementary rigid space truss consists of 
six members joined at their extremities to form the edges of a  tetrahedron 
ABCD (Fig. 6.15a). By adding three members at a time to this basic 
configuration, such as AE, BE, and CE, attaching them to three existing 
joints, and connecting them at a new joint,† we can obtain a larger rigid 
structure which is defined as a simple space truss (Fig. 6.15b). Observ-
ing that the basic tetrahedron has six members and four joints and that 
every time three members are added, the number of joints is increased 
by one, we conclude that in a simple space truss the total number of 
members is m 5 3n 2 6, where n is the total number of joints.
 If a space truss is to be completely constrained and if the reac-
tions at its supports are to be statically determinate, the supports 
should consist of a combination of balls, rollers, and balls and sockets 
which provides six unknown reactions (see Sec. 4.9). These unknown 
reactions may be readily determined by solving the six equations 
expressing that the three-dimensional truss is in equilibrium.
 Although the members of a space truss are actually joined to-
gether by means of bolted or welded connections, it is assumed that 
each joint consists of a ball-and-socket connection. Thus, no couple 
will be applied to the members of the truss, and each member can be 
treated as a two-force member. The conditions of equilibrium for each 
joint will be expressed by the three equations oFx 5 0, oFy 5 0, and 
oFz 5 0. In the case of a simple space truss containing n joints, writ-
ing the conditions of equilibrium for each joint will thus yield 3n 
equations. Since m 5 3n 2 6, these equations suffice to determine 
all unknown forces (forces in m members and six reactions at the 
supports). However, to avoid the necessity of solving simultaneous 
equations, care should be taken to select joints in such an order that 
no selected joint will involve more than three unknown forces.

Fig. 6.15
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†The four joints must not lie in a plane.
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295

SAMPLE PROBLEM 6.1

Using the method of joints, determine the force in each member of the 
truss shown.

SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is drawn; 
external forces acting on this free body consist of the applied loads and the 
reactions at C and E. We write the following equilibrium equations.

 1loMC 5 0: (2000 lb)(24 ft) 1 (1000 lb)(12 ft) 2 E(6 ft) 5 0
 E 5 110,000 lb E 5 10,000 lbx

y
1 oFx 5 0: Cx 5 0

 1xoFy 5 0: 22000 lb 2 1000 lb 1 10,000 lb 1 Cy 5 0
 Cy 5 27000 lb Cy 5 7000 lbw

Free-Body: Joint A. This joint is subjected to only two unknown forces, 
namely, the forces exerted by members AB and AD. A force triangle is used 
to determine FAB and FAD. We note that member AB pulls on the joint and 
thus is in tension and that member AD pushes on the joint and thus is in 
compression. The magnitudes of the two forces are obtained from the 
proportion

2000 lb
4

5
FAB

3
5

FAD

5
FAB 5 1500 lb T ◀

FAD 5 2500 lb C ◀

Free-Body: Joint D. Since the force exerted by member AD has been 
determined, only two unknown forces are now involved at this joint. Again, 
a force triangle is used to determine the unknown forces in members DB 
and DE.

 FDB 5 FDA FDB 5 2500 lb T ◀

 FDE 5 2(3
5)FDA FDE 5 3000 lb C ◀

FDA = 2500 lb
FDB

FDB
FDE

FDE FDA

3 3
4 45 5

FAD
FAD

FAB

FAB

A

2000 lb

2000 lb

3

3

4
45 5

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E
E

2000 lb 1000 lb Cy

C x

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E

2000 lb 1000 lb
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296

Free-Body: Joint B. Since more than three forces act at this joint, we 
determine the two unknown forces FBC and FBE by solving the equilibrium 
equations oFx 5 0 and oFy 5 0. We arbitrarily assume that both unknown 
forces act away from the joint, i.e., that the members are in tension. The 
positive value obtained for FBC indicates that our assumption was correct; 
member BC is in tension. The negative value of FBE indicates that our 
assumption was wrong; member BE is in compression.

1xoFy 5 0: 21000 2 4
5(2500) 2 4

5FBE 5 0
 FBE 5 23750 lb FBE 5 3750 lb C ◀

y
1 oFx 5 0:  FBC 2 1500 2 3

5(2500) 2 3
5(3750) 5 0

 FBC 5 15250 lb FBC 5 5250 lb T ◀

Free-Body: Joint E. The unknown force FEC is assumed to act away from 
the joint. Summing x components, we write

y
1 oFx 5 0:  3

5FEC 1 3000 1 3
5(3750) 5 0

 FEC 5 28750 lb FEC 5 8750 lb C ◀

 Summing y components, we obtain a check of our computations:

 1xoFy 5 10,000 2 4
5(3750) 2 4

5(8750)
 5 10,000 2 3000 2 7000 5 0 (checks)

Free-Body: Joint C. Using the computed values of FCB and FCE, we can 
determine the reactions Cx and Cy by considering the equilibrium of 
this joint. Since these reactions have already been determined from the 
equilibrium of the entire truss, we will obtain two checks of our com-
putations. We can also simply use the computed values of all forces acting 
on the joint (forces in members and reactions) and check that the joint is 
in equilibrium:

 y
1 oFx 5 25250 1 3

5(8750) 5 25250 1 5250 5 0 (checks)
 1xoFy 5 27000 1 4

5(8750) 5 27000 1 7000 5 0 (checks)

FCB = 5250 lb

FCE = 8750 lb

Cy = 7000 lb

Cx = 0
C

3
4

FEB = 3750 lb FEC

FED = 3000 lb

E = 10,000 lb

E
33

44

FBA = 1500 lb

FBD = 2500 lb FBE

B
FBC

1000 lb

33
44
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to use the method of joints to determine the forces in 
the members of a simple truss, that is, a truss that can be constructed from a 

basic triangular truss by adding to it two new members at a time and connecting 
them at a new joint.

Your solution will consist of the following steps:

1. Draw a free-body diagram of the entire truss, and use this diagram to 
determine the reactions at the supports.

2. Locate a joint connecting only two members, and draw the free-body 
diagram of its pin. Use this free-body diagram to determine the unknown force 
in each of the two members. If only three forces are involved (the two unknown 
forces and a known one), you will probably find it more convenient to draw and 
solve the corresponding force triangle. If more than three forces are involved, you 
should write and solve the equilibrium equations for the pin, oFx 5 0 and oFy 5 0, 
assuming that the members are in tension. A positive answer means that the mem-
ber is in tension, a negative answer that the member is in compression. Once the 
forces have been found, enter their values on a sketch of the truss, with T for 
tension and C for compression.

3. Next, locate a joint where the forces in only two of the connected mem-
bers are still unknown. Draw the free-body diagram of the pin and use it as 
indicated above to determine the two unknown forces.

4. Repeat this procedure until the forces in all the members of the truss have 
been found. Since you previously used the three equilibrium equations associated 
with the free-body diagram of the entire truss to determine the reactions at the 
supports, you will end up with three extra equations. These equations can be used 
to check your computations.

5. Note that the choice of the first joint is not unique. Once you have deter-
mined the reactions at the supports of the truss, you can choose either of two 
joints as a starting point for your analysis. In Sample Prob. 6.1, we started at joint 
A and proceeded through joints D, B, E, and C, but we could also have started at 
joint C and proceeded through joints E, B, D, and A. On the other hand, having 
selected a first joint, you may in some cases reach a point in your analysis beyond 
which you cannot proceed. You must then start again from another joint to com-
plete your solution.

 Keep in mind that the analysis of a simple truss can always be carried out 
by the method of joints. Also remember that it is helpful to outline your solution 
before starting any computations.

bee29400_ch06_284-351.indd Page 297  12/2/08  3:36:38 PM user-s172bee29400_ch06_284-351.indd Page 297  12/2/08  3:36:38 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



PROBLEMS

298

 6.1 through 6.8 Using the method of joints, determine the force 
in each member of the truss shown. State whether each member 
is in tension or compression.

A

B
C

1.92 kN

3 m 4.5 m

4 m

Fig. P6.3

A

B
C

3.75 ft

945 lb 

9 ft

12 ft

Fig. P6.2

A

B

C

84 kN

3 m

1.25 m

4 m

Fig. P6.1

A B C

D
E F

4 kips

2.4 kips

1 kip1 kip

6.4 ft

12 ft 12 ft

Fig. P6.4

A B C

D

10.8 kips 10.8 kips

22.5 ft 35 ft

12 ft

Fig. P6.5

A

B C

D

8.4 kN

8.4 kN

2.8 m

4.5 m

4.5 m

Fig. P6.7

A B

C

D E

12 ft

693 lb

5 ft 5 ft11 ft

Fig. P6.8

A B

C D

E F

900 N

900 N

2.25 m

2.25 m

3 m

Fig. P6.6

bee29400_ch06_284-351.indd Page 298  12/2/08  3:36:43 PM user-s172bee29400_ch06_284-351.indd Page 298  12/2/08  3:36:43 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



299Problems 6.9 Determine the force in each member of the Pratt roof truss shown. 
State whether each member is in tension or compression.

1.5 m 1.5 m 1.5 m 1.5 m 1.5 m 1.5 m

2 kN 2 kN
2 kN 2 kN2 kN

1 kN 1 kN

A
B

C

D
E

F

G

H
I
2 m

Fig. P6.10

C

D

E

F

G H
A

B

6 ft

8 ft 8 ft 8 ft 8 ft

300 lb
300 lb

600 lb
600 lb

600 lb

2 ft 4 in.

Fig. P6.12

5.7 kN

10.5 kN

5.7 kN

10.5 kN

9.6 kN

A

B

C

D

E

F

G

H
2.4 m

3.8 m 3.2 m 3.2 m 3.8 m

Fig. P6.9

A

B

C

D

E

F

G
H

600 lb

600 lb

300 lb

600 lb

300 lb

8 ft8 ft8 ft8 ft

6 ft

6 ft

Fig. P6.11

 6.10 Determine the force in each member of the fan roof truss shown. 
State whether each member is in tension or compression.

 6.11 Determine the force in each member of the Howe roof truss 
shown. State whether each member is in tension or compression.

 6.12 Determine the force in each member of the Gambrel roof truss 
shown. State whether each member is in tension or compression.

 6.13 Determine the force in each member of the truss shown.

A B C

D

E

F

G

12.5 kN 12.5 kN 12.5 kN 12.5 kN

2 m 2 m 2 m

2.5 m

Fig. P6.13
C

D

E

F

A

B
1.2 kN

2.4 kN

9 m 9 m

1.2 kN

2.4 kN

6 m 6 m 6 m

7.5 m

Fig. P6.14
 6.14 Determine the force in each member of the roof truss shown. State 

whether each member is in tension or compression.
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300 Analysis of Structures  6.15 Determine the force in each member of the Warren bridge truss 
shown. State whether each member is in tension or compression.

C
D

E

F

G
H

A
B

400 lb

400 lb

5.76 ft 5.76 ft 5.76 ft 5.76 ft

800 lb

800 lb
800 lb

10.54 ft 12.5 ft

6.72 ft

Fig. P6.17 and P6.18

C

D

E

F

G
A

B

12 ft

9 ft9 ft

6 kips 6 kips

18 ft 18 ft 18 ft

18 ft18 ft

Fig. P6.15

 6.22 Determine the force in member FG and in each of the members 
located to the right of FG for the studio roof truss shown. State 
whether each member is in tension or compression.

C

D

E

F

G

H

I
J

K LA

B
1 kN

1 kN

2 kN

2 kN

2 m 2 m 2 m 2 m 2 m 2 m

1 m
1 m
1 m
1 m
1 m

Fig. P6.19 and P6.20

C

D

E

F

G

H

I

J

K
LA

B

200 lb 200 lb
400 lb

400 lb
400 lb

400 lb
400 lb

6 ft 6 ft 6 ft

6 ft6 ft6 ft

9 ft

9 ft9 ft

3 ft

Fig. P6.21 and P6.22

 6.16 Solve Prob. 6.15 assuming that the load applied at E has been 
removed.

 6.17 Determine the force in member DE and in each of the members 
located to the left of DE for the inverted Howe roof truss shown. 
State whether each member is in tension or compression.

 6.18 Determine the force in each of the members located to the right 
of DE for the inverted Howe roof truss shown. State whether each 
member is in tension or compression.

 6.19 Determine the force in each of the members located to the left of 
FG for the scissors roof truss shown. State whether each member 
is in tension or compression.

 6.20 Determine the force in member FG and in each of the members 
located to the right of FG for the scissors roof truss shown. State 
whether each member is in tension or compression.

 6.21 Determine the force in each of the members located to the left of 
line FGH for the studio roof truss shown. State whether each 
member is in tension or compression.
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301Problems 6.23 Determine the force in each of the members connecting joints A 
through F of the vaulted roof truss shown. State whether each 
member is in tension or compression.

 6.24 The portion of truss shown represents the upper part of a power 
transmission line tower. For the given loading, determine the force 
in each of the members located above HJ. State whether each 
member is in tension or compression.

1.6 m 1.6 m 1.6 m 1.6 m 1.6 m 1.6 m

1.2 kN

1.2 kN

2.4 kN
2.4 kN

1.8 m1.8 m1.8 m1.8 m

0.9 m

A

B

C

D

E

F
G

H

I

J
K
2.4 m

2.4 m

Fig. P6.23

 6.25 For the tower and loading of Prob. 6.24 and knowing that FCH 5 
FEJ 5 1.2 kN C and FEH 5 0, determine the force in member HJ 
and in each of the members located between HJ and NO. State 
whether each member is in tension or compression.

 6.26 Solve Prob. 6.24 assuming that the cables hanging from the right 
side of the tower have fallen to the ground.

 6.27 Determine the force in each member of the truss shown. State 
whether each member is in tension or compression.

 6.28 Determine the force in each member of the truss shown. State 
whether each member is in tension or compression.

C

D

E

F

G

H

I

J

K

L

M

N O

P

Q R

A

B

1.60 m

1.2 kN

1.2 kN1.2 kN

1.2 kN

1.2 kN1.2 kN

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

S T

2.21 m 2.21 m

1.20 m

1.20 m2.97 m

Fig. P6.24

A
B

C

D

E

F

G

H

48 kN

4 m 4 m 4 m 4 m

4.5 m

Fig. P6.28

A

B C

D E

F G

15 kips

5 ft 5 ft

4 ft

40 kips

10 ft

10 ft

6 ft

10 ft

Fig. P6.27
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302 Analysis of Structures  6.29 Determine whether the trusses of Probs. 6.31a, 6.32a, and 6.33a 
are simple trusses.

 6.30 Determine whether the trusses of Probs. 6.31b, 6.32b, and 6.33b 
are simple trusses.

 6.31 For the given loading, determine the zero-force members in each 
of the two trusses shown.

 6.32 For the given loading, determine the zero-force members in each 
of the two trusses shown.

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

(a)

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

(b)

Fig. P6.31

A B C

D E F G

H
I J K

L

P

(a)

A B C D E

F G H I

J
K L M

P Q

N O
P

(b)

a
2

a
2

aaaa

Fig. P6.32

 6.33 For the given loading, determine the zero-force members in each 
of the two trusses shown.

 6.34 Determine the zero-force members in the truss of (a) Prob. 6.23, 
(b) Prob. 6.28.

A B C D E

F G H

I J K

P

(a)

A B C D E

F G

H

I J

K

L M

P

Q

N
O

(b)

a

a

a

a a a

Fig. P6.33
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303Problems *6.35 The truss shown consists of six members and is supported by a 
short link at A, two short links at B, and a ball and socket at D. 
Determine the force in each of the members for the given loading.

A

B

C

DO

x

y

z

7 ft 7 ft

10 ft

24 ft

400 lb

Fig. P6.35

 *6.39 The truss shown consists of nine members and is supported by a 
ball and socket at B, a short link at C, and two short links at D. 
(a) Check that this truss is a simple truss, that it is completely 
constrained, and that the reactions at its supports are statically 
determinate. (b) Determine the force in each member for P 5 
(21200 N)j and Q 5 0.

 *6.40 Solve Prob. 6.39 for P 5 0 and Q 5 (2900 N)k.

z

2.1 m

2.1 m

A

B

C

D

P

Q

O
x

y

0.8 m

4.8 m

2 m

Fig. P6.36 and P6.37

6 ft
6 ft

6 ft
1600 lb

7.5 ft x

y

z

A

B

C

D

E
8 ft

6 ft

Fig. P6.38

y

A

B

C

D
E

O

P

Q

z
1.2 m

0.6 m

0.6 m

x
0.75 m

2.25 m

3 m

Fig. P6.39

 *6.36 The truss shown consists of six members and is supported by a ball 
and socket at B, a short link at C, and two short links at D. Deter-
mine the force in each of the members for P 5 (22184 N)j and 
Q 5 0.

 *6.37 The truss shown consists of six members and is supported by a 
ball and socket at B, a short link at C, and two short links at D. 
Determine the force in each of the members for P 5 0 and 
Q 5 (2968 N)i.

 *6.38 The truss shown consists of nine members and is supported by a 
ball and socket at A, two short links at B, and a short link at C. 
Determine the force in each of the members for the given loading.
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 *6.41 The truss shown consists of 18 members and is supported by a ball 
and socket at A, two short links at B, and one short link at G. 
(a) Check that this truss is a simple truss, that it is completely 
constrained, and that the reactions at its supports are statically 
determinate. (b) For the given loading, determine the force in each 
of the six members joined at E.

 *6.42 The truss shown consists of 18 members and is supported by a ball 
and socket at A, two short links at B, and one short link at G. 
(a) Check that this truss is a simple truss, that it is completely 
constrained, and that the reactions at its supports are statically 
determinate. (b) For the given loading, determine the force in each 
of the six members joined at G.

6.7  ANALYSIS OF TRUSSES BY THE METHOD 
OF SECTIONS

The method of joints is most effective when the forces in all the 
members of a truss are to be determined. If, however, the force in 
only one member or the forces in a very few members are desired, 
another method, the method of sections, is more efficient.
 Assume, for example, that we want to determine the force in 
member BD of the truss shown in Fig. 6.16a. To do this, we must 
determine the force with which member BD acts on either joint B 
or joint D. If we were to use the method of joints, we would choose 
either joint B or joint D as a free body. However, we can also choose 
as a free body a larger portion of the truss, composed of several joints 
and members, provided that the desired force is one of the external 
forces acting on that portion. If, in addition, the portion of the truss 
is chosen so that there is a total of only three unknown forces acting 
upon it, the desired force can be obtained by solving the equations 
of equilibrium for this portion of the truss. In practice, the portion 
of the truss to be utilized is obtained by passing a section through 
three members of the truss, one of which is the desired member, 
i.e., by drawing a line which divides the truss into two completely 
separate parts but does not intersect more than three members. 
Either of the two portions of the truss obtained after the intersected 
members have been removed can then be used as a free body.†
 In Fig. 6.16a, the section nn has been passed through members 
BD, BE, and CE, and the portion ABC of the truss is chosen as the 
free body (Fig. 6.16b). The forces acting on the free body are the 
loads P1 and P2 at points A and B and the three unknown forces FBD, 
FBE, and FCE. Since it is not known whether the members removed 
were in tension or compression, the three forces have been arbitrarily 
drawn away from the free body as if the members were in tension.

†In the analysis of certain trusses, sections are passed which intersect more than three 
members; the forces in one, or possibly two, of the intersected members may be 
obtained if equilibrium equations can be found, each of which involves only one 
unknown (see Probs. 6.61 through 6.64).

Fig. 6.16

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

A

E

H

G

C

FD

B

x

y

z

10.08 ft

9.60 ft

11.00 ft

(275 lb) i

(240 lb) k

Fig. P6.41 and P6.42

304 Analysis of Structures
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6.8 Trusses Made of Several Simple Trusses 305 The fact that the rigid body ABC is in equilibrium can be 
expressed by writing three equations which can be solved for the 
three unknown forces. If only the force FBD is desired, we need write 
only one equation, provided that the equation does not contain the 
other unknowns. Thus the equation oME 5 0 yields the value of 
the magnitude FBD of the force FBD (Fig. 6.16b). A positive sign in 
the answer will indicate that our original assumption regarding the 
sense of FBD was correct and that member BD is in tension; a nega-
tive sign will indicate that our assumption was incorrect and that BD 
is in compression.
 On the other hand, if only the force FCE is desired, an equation 
which does not involve FBD or FBE should be written; the appropriate 
equation is oMB 5 0. Again a positive sign for the magnitude FCE of 
the desired force indicates a correct assumption, that is, tension; and a 
negative sign indicates an incorrect assumption, that is, compression.
 If only the force FBE is desired, the appropriate equation is 
oFy 5 0. Whether the member is in tension or compression is again 
determined from the sign of the answer.
 When the force in only one member is determined, no inde-
pendent check of the computation is available. However, when all 
the unknown forces acting on the free body are determined, the 
computations can be checked by writing an additional equation. For 
instance, if FBD, FBE, and FCE are determined as indicated above, 
the computation can be checked by verifying that oFx 5 0.

*6.8 TRUSSES MADE OF SEVERAL SIMPLE TRUSSES
Consider two simple trusses ABC and DEF. If they are connected by 
three bars BD, BE, and CE as shown in Fig. 6.17a, they will form 
together a rigid truss ABDF. The trusses ABC and DEF can also be 
combined into a single rigid truss by joining joints B and D into a single 
joint B and by connecting joints C and E by a bar CE (Fig. 6.17b). 
The truss thus obtained is known as a Fink truss. It should be noted 
that the trusses of Fig. 6.17a and b are not simple trusses; they cannot 
be constructed from a triangular truss by adding successive pairs of 
members as prescribed in Sec. 6.3. They are rigid trusses, however, 
as we can check by comparing the systems of connections used to hold 
the simple trusses ABC and DEF together (three bars in Fig. 6.17a, 
one pin and one bar in Fig. 6.17b) with the systems of supports dis-
cussed in Secs. 4.4 and 4.5. Trusses made of several simple trusses 
rigidly connected are known as compound trusses.

A

B

C

D

E
F

(a)

A

B

C E
F

(b)

Fig. 6.17
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306  Analysis of Structures  In a compound truss the number of members m and the num-
ber of joints n are still related by the formula m 5 2n 2 3. This can 
be verified by observing that, if a compound truss is supported by a 
frictionless pin and a roller (involving three unknown reactions), the 
total number of unknowns is m 1 3, and this number must be equal 
to the number 2n of equations obtained by expressing that the n pins 
are in equilibrium; it follows that m 5 2n 2 3. Compound trusses 
supported by a pin and a roller, or by an equivalent system of sup-
ports, are statically determinate, rigid, and completely constrained. 
This means that all of the unknown reactions and the forces in all 
the members can be determined by the methods of statics, and that 
the truss will neither collapse nor move. The forces in the members, 
however, cannot all be determined by the method of joints, except 
by solving a large number of simultaneous equations. In the case of 
the compound truss of Fig. 6.17a, for example, it is more efficient 
to pass a section through members BD, BE, and CE to determine 
the forces in these members.
 Suppose, now, that the simple trusses ABC and DEF are con-
nected by four bars BD, BE, CD, or CE (Fig. 6.18). The number of 
members m is now larger than 2n 2 3; the truss obtained is overrigid, 
and one of the four members BD, BE, CD, or CE is said to be redun-
dant. If the truss is supported by a pin at A and a roller at F, the 
total number of unknowns is m 1 3. Since m . 2n 2 3, the number 
m 1 3 of unknowns is now larger than the number 2n of available 
independent equations; the truss is statically indeterminate.
 Finally, let us assume that the two simple trusses ABC and 
DEF are joined by a pin as shown in Fig. 6.19a. The number of mem-
bers m is smaller than 2n 2 3. If the truss is supported by a pin at 
A and a roller at F, the total number of unknowns is m 1 3. Since 
m , 2n 2 3, the number m 1 3 of unknowns is now smaller than 
the number 2n of equilibrium equations which should be satisfied; 
the truss is non-rigid and will collapse under its own weight. How-
ever, if two pins are used to support it, the truss becomes rigid 
and will not collapse (Fig. 6.19b). We note that the total number 
of unknowns is now m 1 4 and is equal to the number 2n of equa-
tions. More generally, if the reactions at the supports involve r 
unknowns, the condition for a compound truss to be statically deter-
minate, rigid, and completely constrained is m 1 r 5 2n. However, 
while necessary this condition is not sufficient for the equilibrium of 
a structure which ceases to be rigid when detached from its supports 
(see Sec. 6.11).

A

B

C

D

E
F

Fig. 6.18

A

B

C E
F

(a) (b)

A

B

C E
F

Fig. 6.19

A

B

C

D

E
F

(a)

Fig. 6.17 (repeated )
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307

SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is 
drawn; external forces acting on this free body consist of the applied 
loads and the reactions at B and J. We write the following equilibrium 
equations.

 1loMB 5 0:
 2(28 kips)(8 ft) 2 (28 kips)(24 ft) 2 (16 kips)(10 ft) 1 J(32 ft) 5 0

J 5 133 kips  J 5 33 kipsx

y
1 oFx 5 0:  Bx 1 16 kips 5 0

Bx 5 216 kips  Bx 5 16 kipsz

 1loMJ 5 0:
 (28 kips)(24 ft) 1 (28 kips)(8 ft) 2 (16 kips)(10 ft) 2 By(32 ft) 5 0

By 5 123 kips  By 5 23 kipsx

Force in Member EF. Section nn is passed through the truss so that it 
intersects member EF and only two additional members. After the inter-
sected members have been removed, the left-hand portion of the truss is 
chosen as a free body. Three unknowns are involved; to eliminate the two 
horizontal forces, we write

 1xoFy 5 0:  123 kips 2 28 kips 2 FEF 5 0
 FEF 5 25 kips

The sense of FEF was chosen assuming member EF to be in tension; the 
negative sign obtained indicates that the member is in compression.

FEF 5 5 kips C ◀

Force in Member GI. Section mm is passed through the truss so that it 
intersects member GI and only two additional members. After the inter-
sected members have been removed, we choose the right-hand portion of 
the truss as a free body. Three unknown forces are again involved; to elimi-
nate the two forces passing through point H, we write

 1loMH 5 0:  (33 kips)(8 ft) 2 (16 kips)(10 ft) 1 FGI(10 ft) 5 0
FGI 5 210.4 kips  FGI 5 10.4 kips C ◀

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft

J
By

Bx

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

16 kips

n

n

m

m
23 kips 33 kips

FEG

FEF

FDF
D

28 kips

16 kips

23 kips

A

B

C E

FGI

FHI

FHJ

10 ft

8 ft

H

I

J

K

16 kips

33 kips

SAMPLE PROBLEM 6.2

Determine the force in members EF and GI of the truss shown.
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308

SOLUTION

Free Body: Entire Truss. From the free-body diagram of the entire truss, 
we find the reactions at A and L:

A 5 12.50 kNx  L 5 7.50 kNx

We note that

tan a 5
FG
GL

5
8 m

15 m
5 0.5333   a 5 28.07°

Force in Member GI. Section nn is passed through the truss as shown. 
Using the portion HLI of the truss as a free body, the value of FGI is obtained 
by writing

 1loMH 5 0:  (7.50 kN)(10 m) 2 (1 kN)(5 m) 2 FGI(5.33 m) 5 0
FGI 5 113.13 kN  FGI 5 13.13 kN T ◀

Force in Member FH. The value of FFH is obtained from the equation 
oMG 5 0. We move FFH along its line of action until it acts at point F, 
where it is resolved into its x and y components. The moment of FFH with 
respect to point G is now equal to (FFH cos a)(8 m).

 1loMG 5 0:
 (7.50 kN)(15 m) 2 (1 kN)(10 m) 2 (1 kN)(5 m) 1 (FFH cos a)(8 m) 5 0

FFH 5 213.81 kN  FFH 5 13.81 kN C ◀

Force in Member GH. We first note that

 tan b 5
GI
HI

5
5 m

2
3(8 m)

5 0.9375   b 5 43.15°

The value of FGH is then determined by resolving the force FGH into x and 
y components at point G and solving the equation oML 5 0.

 1loML 5 0:  (1 kN)(10 m) 1 (1 kN)(5 m) 1 (FGH cos b)(15 m) 5 0
FGH 5 21.371 kN  FGH 5 1.371 kN C ◀

SAMPLE PROBLEM 6.3

Determine the force in members FH, GH, and GI of the roof truss 
shown.h = 8 m

A
B

C

D

F

G

H

I

J

K
L

E

1 kN

1 kN
1 kN

1 kN
1 kN

5 kN5 kN5 kN
6 panels @ 5 m = 30 m

A

B

C

D
F

G

H

I

J

K
L

E

1 kN
1 kN

1 kN
1 kN

1 kN

5 kN5 kN5 kN
n

n

12.50 kN
7.50 kN

a = 28.07°

H

I

J

K
L

FGI

FFH

FGH

1 kN

1 kN

7.50 kN

(8 m) = 5.33 m2
3

5 m 5 m

F

G

H

I

J

K
L

FGI

FGH

FFH sin a
FFH cos a

1 kN

1 kN

7.50 kN

a = 28.07°

5 m5 m

8 m

5 m

G

H

I

J

K
L

FGI

FFH

FGH sin b

b = 43.15°

FGH cos b

1 kN

1 kN

7.50 kN
5 m5 m 5 m
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309

The method of joints that you studied earlier is usually the best method to use 
when the forces in all the members of a simple truss are to be found. However, 

the method of sections, which was covered in this lesson, is more effective when 
the force in only one member or the forces in a very few members of a simple 
truss are desired. The method of sections must also be used when the truss is not 
a simple truss.

A. To determine the force in a given truss member by the method of sections, 
you should follow these steps:

1. Draw a free-body diagram of the entire truss, and use this diagram to 
determine the reactions at the supports.

2. Pass a section through three members of the truss, one of which is the 
desired member. After you have removed these members, you will obtain two 
separate portions of truss.

3. Select one of the two portions of truss you have obtained, and draw its 
free-body diagram. This diagram should include the external forces applied to 
the selected portion as well as the forces exerted on it by the intersected members 
before these members were removed.

4. You can now write three equilibrium equations which can be solved for the 
forces in the three intersected members.

5. An alternative approach is to write a single equation, which can be solved 
for the force in the desired member. To do so, first observe whether the forces 
exerted by the other two members on the free body are parallel or whether their 
lines of action intersect.
 a. If these forces are parallel, they can be eliminated by writing an equilib-
rium equation involving components in a direction perpendicular to these two 
forces.
 b. If their lines of action intersect at a point H, they can be eliminated by 
writing an equilibrium equation involving moments about H.

6. Keep in mind that the section you use must intersect three members only.
This is because the equilibrium equations in step 4 can be solved for three 
unknowns only. However, you can pass a section through more than three mem-
bers to find the force in one of those members if you can write an equilibrium 
equation containing only that force as an unknown. Such special situations are 
found in Probs. 6.61 through 6.64.

SOLVING PROBLEMS
ON YOUR OWN

(continued)
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B. About completely constrained and determinate trusses:

1. First note that any simple truss which is simply supported is a completely 
constrained and determinate truss.

2. To determine whether any other truss is or is not completely constrained 
and determinate, you first count the number m of its members, the number n 
of its joints, and the number r of the reaction components at its supports. You 
then compare the sum m 1 r representing the number of unknowns and the 
product 2n representing the number of available independent equilibrium 
equations.
 a. If m 1 r , 2n, there are fewer unknowns than equations. Thus, some of 
the equations cannot be satisfied; the truss is only partially constrained.
 b. If m 1 r . 2n, there are more unknowns than equations. Thus, some of 
the unknowns cannot be determined; the truss is indeterminate.
 c. If m 1 r 5 2n, there are as many unknowns as there are equations. This, 
however, does not mean that all the unknowns can be determined and that all the 
equations can be satisfied. To find out whether the truss is completely or improp-
erly constrained, you should try to determine the reactions at its supports and the 
forces in its members. If all can be found, the truss is completely constrained and 
determinate.
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PROBLEMS

311

 6.43 A Warren bridge truss is loaded as shown. Determine the force in 
members CE, DE, and DF.

 6.44 A Warren bridge truss is loaded as shown. Determine the force in 
members EG, FG, and FH.

 6.45 Determine the force in members BD and DE of the truss shown.
A

B

C

D

E

F

G

H

I

J

K

6.25 ft 12.5 ft

12.5 ft 12.5 ft 12.5 ft 12.5 ft 12.5 ft

12.5 ft 12.5 ft 12.5 ft

6000 lb

15 ft

6000 lb

Fig. P6.43 and P6.44

 6.46 Determine the force in members DG and EG of the truss shown.

 6.47 A floor truss is loaded as shown. Determine the force in members 
CF, EF, and EG.

A

B C

D E

F G

135 kN

135 kN

135 kN

2.4 m

2.4 m

4.5 m

2.4 m

Fig. P6.45 and P6.46

A

B

C

D E

F

G H

I

J

K

L

2 kN 2 kN 2 kN4 kN 4 kN 3 kN 1 kN
0.8 m0.8 m0.8 m0.8 m0.8 m0.8 m

0.4 m

Fig. P6.47 and P6.48

 6.48 A floor truss is loaded as shown. Determine the force in members 
FI, HI, and HJ.

 6.49 A pitched flat roof truss is loaded as shown. Determine the force 
in members CE, DE, and DF.

 6.50 A pitched flat roof truss is loaded as shown. Determine the force 
in members EG, GH, and HJ.

1 kN

1 kN

2 kN
2 kN

2 kN

0.46 m

2.4 m2.4 m2.4 m2.4 m

A

B

C

D

E

F

G

H

I

J

2.62 m

Fig. P6.49 and P6.50
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312 Analysis of Structures  6.51 A Howe scissors roof truss is loaded as shown. Determine the force 
in members DF, DG, and EG.

 6.52 A Howe scissors roof truss is loaded as shown. Determine the force 
in members GI, HI, and HJ.

 6.53 A Pratt roof truss is loaded as shown. Determine the force in 
members CE, DE, and DF.

A

B

C

D

E

F

G

H

I

J

K
L

0.8 kip 0.8 kip

1.6 kips
1.6 kips 1.6 kips

1.6 kips 1.6 kips

6 ft

4.5 ft

8 ft8 ft8 ft8 ft8 ft8 ft

Fig. P6.51 and P6.52

A

B

C

D

E

F

G

H

I

J
1.5 kN 1.5 kN

3 kN

3 kN

3 kN

3 kN

3 kN

6.75 m

3 m3 m3 m3 m3 m3 m

K

L

Fig. P6.53 and P6.54

 6.56 Determine the force in members DG, FG, and FH of the truss 
shown.

 6.57 A stadium roof truss is loaded as shown. Determine the force in 
members AB, AG, and FG.

 6.58 A stadium roof truss is loaded as shown. Determine the force in 
members AE, EF, and FJ.

A

B C

D

E
F

G

H
I K

36 kN

20 kN 20 kN

4.5 m 4.5 m 4.5 m

2.4 m

J

Fig. P6.55 and P6.56

A
B

C
D

E F G H

I J

K L

0.9 kips

0.9 kips

1.8 kips
1.8 kips

8 ft 8 ft

31.5 ft

9 ft

12 ft 14 ft 14 ft

Fig. P6.57 and P6.58

 6.54 A Pratt roof truss is loaded as shown. Determine the force in 
members FH, FI, and GI.

 6.55 Determine the force in members AD, CD, and CE of the truss 
shown.
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313Problems 6.59 A Polynesian, or duopitch, roof truss is loaded as shown. Deter-
mine the force in members DF, EF, and EG.

A
B

C

D

E

F

G

H

I

J

K

L

M
N

6 ft 6 ft

200 lb
400 lb

400 lb
400 lb

350 lb

300 lb
300 lb 300 lb

150 lb 4 ft

4.5 ft

9.6 ft 9.6 ft8.4 ft 8.4 ft

6 ft6 ft6 ft6 ft6 ft6 ft6 ft6 ft

Fig. P6.59 and P6.60

 6.60 A Polynesian, or duopitch, roof truss is loaded as shown. Deter-
mine the force in members HI, GI, and GJ.

 6.61 Determine the force in members AF and EJ of the truss shown 
when P 5 Q 5 1.2 kN. (Hint: Use section aa.)

aa

3 m3 m3 m3 m

4 m

4 m

P Q

A B C D E

F
G

H

I
J

K L M N O

Fig. P6.61 and P6.62

B

D

a

G I

b

L O

N
P

M

K

H

F

a b

JE

A

15 ft 15 ft 15 ft 15 ft 15 ft 15 ft

C

12 kips 12 kips 12 kips

8 ft

8 ft

Fig. P6.63 and P6.64

 6.62 Determine the force in members AF and EJ of the truss shown 
when P 5 1.2 kN and Q 5 0. (Hint: Use section aa.)

 6.63 Determine the force in members EH and GI of the truss shown. 
(Hint: Use section aa.)

 6.64 Determine the force in members HJ and IL of the truss shown. 
(Hint: Use section bb.)
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314 Analysis of Structures   6.65 and 6.66 The diagonal members in the center panels of the 
power transmission line tower shown are very slender and can act 
only in tension; such members are known as counters. For the 
given loading, determine (a) which of the two counters listed below 
is acting, (b) the force in that counter.

 6.65 Counters CJ and HE.
 6.66 Counters IO and KN.

C

D

E

F

G

H

I

J

K

L

M

N O

P

Q R

A

B
1.60 m

1.2 kN

1.2 kN1.2 kN

1.2 kN

1.2 kN1.2 kN

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

20°

20°

20°

20°

20° 20°

0.60 m

S T

2.21 m

2.21 m

2.21 m

1.20 m

1.20 m2.97 m

Fig. P6.65 and P6.66

  6.67 and 6.68 The diagonal members in the center panels of the 
truss shown are very slender and can act only in tension; such 
members are known as counters. Determine the forces in the 
counters that are acting under the given loading.

 6.69 Classify each of the structures shown as completely, partially, 
or improperly constrained; if completely constrained, further clas-
sify as determinate or indeterminate. (All members can act both 
in tension and in compression.)

A
B C D E

F G H

4.8 kips4.8 kips4.8 kips 2.4 kips2.4 kips

11 ft 11 ft11 ft11 ft

9.6 ft

Fig. P6.67

A
B C D E

F G H

4.8 kips4.8 kips4.8 kips 2.4 kips2.4 kips

11 ft 11 ft11 ft11 ft

9.6 ft

Fig. P6.68

P

P

(a)

P

P

(b) (c)

P

P

P

P

Fig. P6.69
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315Problems  6.70 through 6.74 Classify each of the structures shown as com-
pletely, partially, or improperly constrained; if completely con-
strained, further classify as determinate or indeterminate. (All 
members can act both in tension and in compression.)

P

(a) (b) (c)

PP

P

(a) (b) (c)

PP

PPP

(a) (b) (c)

PPP PPP

PPP

(a) (b) (c)

PPP PPP

PP

(a) (b) (c)

PP PP

Fig. P6.74

Fig. P6.70

Fig. P6.71

Fig. P6.72

Fig. P6.73
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316  Analysis of Structures
 FRAMES AND MACHINES

6.9 STRUCTURES CONTAINING MULTIFORCE MEMBERS
Under trusses, we have considered structures consisting entirely of 
pins and straight two-force members. The forces acting on the two-
force members were known to be directed along the members them-
selves. We now consider structures in which at least one of the 
members is a multiforce member, i.e., a member acted upon by three 
or more forces. These forces will generally not be directed along the 
members on which they act; their direction is unknown, and they 
should be represented therefore by two unknown components.
 Frames and machines are structures containing multiforce 
members. Frames are designed to support loads and are usually sta-
tionary, fully constrained structures. Machines are designed to trans-
mit and modify forces; they may or may not be stationary and will 
always contain moving parts.

6.10 ANALYSIS OF A FRAME
As a first example of analysis of a frame, the crane described in Sec. 6.1, 
which carries a given load W (Fig. 6.20a), will again be considered. 
The free-body diagram of the entire frame is shown in Fig. 6.20b. This 
diagram can be used to determine the external forces acting on the 
frame. Summing moments about A, we first determine the force T 
exerted by the cable; summing x and y components, we then deter-
mine the components Ax and Ay of the reaction at the pin A.
 In order to determine the internal forces holding the various 
parts of a frame together, we must dismember the frame and draw 
a free-body diagram for each of its component parts (Fig. 6.20c). 
First, the two-force members should be considered. In this frame, 
member BE is the only two-force member. The forces acting at each 
end of this member must have the same magnitude, same line of 
action, and opposite sense (Sec. 4.6). They are therefore directed 
along BE and will be denoted, respectively, by FBE and 2FBE. Their 
sense will be arbitrarily assumed as shown in Fig. 6.20c; later the 
sign obtained for the common magnitude FBE of the two forces will 
confirm or deny this assumption.
 Next, we consider the multiforce members, i.e., the members 
which are acted upon by three or more forces. According to  Newton’s 
third law, the force exerted at B by member BE on member AD 
must be equal and opposite to the force FBE exerted by AD on BE. 
Similarly, the force exerted at E by member BE on member CF 
must be equal and opposite to the force 2FBE exerted by CF on BE. 
Thus the forces that the two-force member BE exerts on AD and 
CF are, respectively, equal to 2FBE and FBE; they have the same 
magnitude FBE and opposite sense, and should be directed as shown 
in Fig. 6.20c.
 At C two multiforce members are connected. Since neither 
the direction nor the magnitude of the forces acting at C is known, 
these forces will be represented by their x and y components. The 
components Cx and Cy of the force acting on member AD will be 

F

W

A

A B

B

C

C

D E

E

F

W

(c)

FBE

FBE

–FBE– FBE

T

Ay

A x

Cy

C x

–Cy

–C x

T

B

C

D

E
F

W

B

C

D

E

G

(a)

(b)

Ay

Ax

A

Fig. 6.20
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3176.11 Frames Which Cease to Be Rigid When 
Detached from Their Supports

arbitrarily directed to the right and upward. Since, according to 
Newton’s third law, the forces exerted by member CF on AD and by 
member AD on CF are equal and opposite, the components of the 
force acting on member CF must be directed to the left and down-
ward; they will be denoted, respectively, by 2Cx and 2Cy. Whether 
the force Cx is actually directed to the right and the force 2Cx is 
actually directed to the left will be determined later from the sign 
of their common magnitude Cx, a plus sign indicating that the 
assumption made was correct, and a minus sign that it was wrong. 
The free-body diagrams of the multiforce members are completed 
by showing the external forces acting at A, D, and F.†
 The internal forces can now be determined by considering the 
free-body diagram of either of the two multiforce members. Choos-
ing the free-body diagram of CF, for example, we write the equations 
oMC 5 0, oME 5 0, and oFx 5 0, which yield the values of the 
magnitudes FBE, Cy, and Cx, respectively. These values can be checked 
by verifying that member AD is also in equilibrium.
 It should be noted that the pins in Fig. 6.20 were assumed to 
form an integral part of one of the two members they connected and 
so it was not necessary to show their free-body diagram. This assump-
tion can always be used to simplify the analysis of frames and 
machines. When a pin connects three or more members, however, 
or when a pin connects a support and two or more members, or 
when a load is applied to a pin, a clear decision must be made in 
choosing the member to which the pin will be assumed to belong. 
(If multiforce members are involved, the pin should be attached to 
one of these members.) The various forces exerted on the pin should 
then be clearly identified. This is illustrated in Sample Prob. 6.6.

6.11  FRAMES WHICH CEASE TO BE RIGID WHEN 
DETACHED FROM THEIR SUPPORTS

The crane analyzed in Sec. 6.10 was so constructed that it could keep 
the same shape without the help of its supports; it was therefore 
considered as a rigid body. Many frames, however, will collapse if 
detached from their supports; such frames cannot be considered as 
rigid bodies. Consider, for example, the frame shown in Fig. 6.21a, 
which consists of two members AC and CB carrying loads P and Q 
at their midpoints; the members are supported by pins at A and B 
and are connected by a pin at C. If detached from its supports, this 
frame will not maintain its shape; it should therefore be considered 
as made of two distinct rigid parts AC and CB.

†It is not strictly necessary to use a minus sign to distinguish the force exerted by one 
member on another from the equal and opposite force exerted by the second member 
on the first, since the two forces belong to different free-body diagrams and thus cannot 
easily be confused. In the Sample Problems, the same symbol is used to represent equal 
and opposite forces which are applied to different free bodies. It should be noted that, 
under these conditions, the sign obtained for a given force component will not directly 
relate the sense of that component to the sense of the corresponding coordinate axis. 
Rather, a positive sign will indicate that the sense assumed for that component in the 
free-body diagram is correct, and a negative sign will indicate that it is wrong.

A B

C

(a)

QP

A B

C C

(b)

Ay

A x

By

Bx

Cy

C x

–Cy

–C x

QP

A B

C

(c)
Ay

A x

By

Bx

QP

Fig. 6.21
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318  Analysis of Structures  The equations oFx 5 0, oFy 5 0, oM 5 0 (about any given 
point) express the conditions for the equilibrium of a rigid body 
(Chap. 4); we should use them, therefore, in connection with the 
free-body diagrams of rigid bodies, namely, the free-body diagrams 
of members AC and CB (Fig. 6.21b). Since these members are multi-
force members, and since pins are used at the supports and at the 
connection, the reactions at A and B and the forces at C will each be 
represented by two components. In accordance with Newton’s third 
law, the components of the force exerted by CB on AC and the com-
ponents of the force exerted by AC on CB will be represented by 
vectors of the same magnitude and opposite sense; thus, if the first 
pair of components consists of Cx and Cy, the second pair will be 
represented by 2Cx and 2Cy. We note that four unknown force 
components act on free body AC, while only three independent equa-
tions can be used to express that the body is in equilibrium; similarly, 
four unknowns, but only three equations, are associated with CB. 
However, only six different unknowns are involved in the analysis of 
the two members, and altogether six equations are available to express 
that the members are in equilibrium. Writing oMA 5 0 for free body 
AC and oMB 5 0 for CB, we obtain two simultaneous equations 
which may be solved for the common magnitude Cx of the compo-
nents Cx and 2Cx, and for the common magnitude Cy of the com-
ponents Cy and 2Cy. We then write oFx 5 0 and oFy 5 0 for each 
of the two free bodies, obtaining, successively, the magnitudes Ax, Ay, 
Bx, and By.

A B

C

(a)

QP

A B

C C

(b)

Ay

A x

By

Bx

Cy

C x

–Cy

–C x

QP

A B

C

(c)
Ay

A x

By

Bx

QP

Fig. 6.21 (repeated)

 It can now be observed that since the equations of equilibrium 
oFx 5 0, oFy 5 0, and oM 5 0 (about any given point) are satisfied 
by the forces acting on free body AC, and since they are also satisfied 
by the forces acting on free body CB, they must be satisfied when the 
forces acting on the two free bodies are considered simultaneously. 
Since the internal forces at C cancel each other, we find that the equa-
tions of equilibrium must be satisfied by the external forces shown on 
the free-body diagram of the frame ACB itself (Fig. 6.21c), although 
the frame is not a rigid body. These equations can be used to deter-
mine some of the components of the reactions at A and B. We will 
also find, however, that the reactions cannot be completely determined 
from the free-body diagram of the whole frame. It is thus necessary to 
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3196.11 Frames Which Cease to Be Rigid When 
Detached from Their Supports

dismember the frame and to consider the free-body diagrams of 
its component parts (Fig. 6.21b), even when we are interested in 
determining external reactions only. This is because the equilibrium 
equations obtained for free body ACB are necessary conditions for 
the equilibrium of a nonrigid structure, but are not sufficient 
conditions.
 The method of solution outlined in the second paragraph of 
this section involved simultaneous equations. A more efficient method 
is now presented, which utilizes the free body ACB as well as the 
free bodies AC and CB. Writing oMA 5 0 and oMB 5 0 for free 
body ACB, we obtain By and Ay. Writing oMC 5 0, oFx 5 0, and 
oFy 5 0 for free body AC, we obtain, successively, Ax, Cx, and Cy. 
Finally, writing oFx 5 0 for ACB, we obtain Bx.
 We noted above that the analysis of the frame of Fig. 6.21 
involves six unknown force components and six independent equilib-
rium equations. (The equilibrium equations for the whole frame 
were obtained from the original six equations and, therefore, are not 
independent.) Moreover, we checked that all unknowns could be 
actually determined and that all equations could be satisfied. The 
frame considered is statically determinate and rigid.† In general, to 
determine whether a structure is statically determinate and rigid, we 
should draw a free-body diagram for each of its component parts and 
count the reactions and internal forces involved. We should also 
determine the number of independent equilibrium equations (exclud-
ing equations expressing the equilibrium of the whole structure or 
of groups of component parts already analyzed). If there are more 
unknowns than equations, the structure is statically indeterminate. 
If there are fewer unknowns than equations, the structure is non-
rigid. If there are as many unknowns as equations, and if all unknowns 
can be determined and all equations satisfied under general loading 
conditions, the structure is statically determinate and rigid. If, how-
ever, due to an improper arrangement of members and supports, all 
unknowns cannot be determined and all equations cannot be satis-
fied, the structure is statically indeterminate and nonrigid.

A B

C

(a)

QP

A B

C C

(b)

Ay

A x

By

Bx

Cy

C x

–Cy

–C x

QP

A B

C

(c)
Ay

A x

By

Bx

QP

Fig. 6.21 (repeated)

†The word “rigid” is used here to indicate that the frame will maintain its shape as long 
as it remains attached to its supports.
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320

SAMPLE PROBLEM 6.4

In the frame shown, members ACE and BCD are connected by a pin at C 
and by the link DE. For the loading shown, determine the force in link DE 
and the components of the force exerted at C on member BCD.

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three 
unknowns, we compute the reactions by considering the free-body diagram 
of the entire frame.

 1xoFy 5 0: Ay 2 480 N 5 0  Ay 5 1480 N Ay 5 480 Nx
 1loMA 5 0:  2(480 N)(100 mm) 1 B(160 mm) 5 0
  B 5 1300 N B 5 300 Ny
y
1 oFx 5 0: B 1 Ax 5 0
 300 N 1 Ax 5 0 Ax 5 2300 N Ax 5 300 Nz

Members. We now dismember the frame. Since only two members are 
connected at C, the components of the unknown forces acting on ACE and 
BCD are, respectively, equal and opposite and are assumed directed as 
shown. We assume that link DE is in tension and exerts equal and opposite 
forces at D and E, directed as shown.

Free Body: Member BCD. Using the free body BCD, we write

 1ioMC 5 0:
(FDE sin a)(250 mm) 1 (300 N)(80 mm) 1 (480 N)(100 mm) 5 0

 FDE 5 2561 N FDE 5 561 N C ◀

y
1 oFx 5 0: Cx 2 FDE cos a 1 300 N 5 0
 Cx 2 (2561 N) cos 28.07° 1 300 N 5 0 Cx 5 2795 N
 1xoFy 5 0: Cy 2 FDE sin a 2 480 N 5 0
 Cy 2 (2561 N) sin 28.07° 2 480 N 5 0 Cy 5 1216 N

From the signs obtained for Cx and Cy we conclude that the force compo-
nents Cx and Cy exerted on member BCD are directed, respectively, to the 
left and up. We have

Cx 5 795 Nz, Cy 5 216 Nx ◀

Free Body: Member ACE (Check). The computations are checked by 
considering the free body ACE. For example,

 1loMA 5 (FDE cos a)(300 mm) 1 (FDE sin a)(100 mm) 2 Cx(220 mm)
 5 (2561 cos a)(300) 1 (2561 sin a)(100) 2 (2795)(220) 5 0

A

B

C D

E

160 mm

80 mm

480 N

100 mm
150 mm

Ay

B

A x

a

a = tan–1 = 28.07°80
150

C

A

E

D

E

80 mm

480 N

100 mm

aCy

Cx
FDE

FDE

FDE

300 N

220 mm

B

C

D

60 mm

60 mm
480 N

100 mm
150 mm

a

Cy

Cx

FDE

300 N

A

B

C D

E

60 mm

60 mm

80 mm

480 N

100 mm
150 mm

160 mm
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SAMPLE PROBLEM 6.5

Determine the components of the forces acting on each member of the 
frame shown.

2400 N

A

C
D

E F

3.6 m

4.8 m

Ey F
Ex

B

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three 
unknowns, we compute the reactions by considering the free-body diagram 
of the entire frame.

 1loME 5 0:  2(2400 N)(3.6 m) 1 F(4.8 m) 5 0
 F 5 11800 N F 5 1800 Nx ◀

 1xoFy 5 0: 22400 N 1 1800 N 1 Ey 5 0
 Ey 5 1600 N Ey 5 600 Nx ◀

y
1 oFx 5 0:   Ex 5 0 ◀

Members. The frame is now dismembered; since only two members are 
connected at each joint, equal and opposite components are shown on each 
member at each joint.

Free Body: Member BCD

 1loMB 5 0: 2(2400 N)(3.6 m) 1 Cy(2.4 m) 5 0 Cy 5 13600 N ◀

 1loMC 5 0: 2(2400 N)(1.2 m) 1 By(2.4 m) 5 0 By 5 11200 N ◀

y
1 oFx 5 0: 2Bx 1 Cx 5 0

We note that neither Bx nor Cx can be obtained by considering only member 
BCD. The positive values obtained for By and Cy indicate that the force 
components By and Cy are directed as assumed.

Free Body: Member ABE

 1loMA 5 0: Bx(2.7 m) 5 0 Bx 5 0 ◀

y
1 oFx 5 0: 1Bx 2 Ax 5 0 Ax 5 0 ◀

 1xoFy 5 0: 2Ay 1 By 1 600 N 5 0
 2Ay 1 1200 N 1 600 N 5 0 Ay 5 11800 N ◀

Free Body: Member BCD. Returning now to member BCD, we write

y
1 oFx 5 0: 2Bx 1 Cx 5 0  0 1 Cx 5 0 Cx 5 0 ◀

Free Body: Member ACF (Check). All unknown components have now 
been found; to check the results, we verify that member ACF is in 
equilibrium.

 1loMC 5 (1800 N)(2.4 m) 2 Ay(2.4 m) 2 Ax(2.7 m)
 5 (1800 N)(2.4 m) 2 (1800 N)(2.4 m) 2 0 5 0  (checks)600 N 1800 N

2.7 m

2.7 m

By Cy

Bx

By

Ay

Ay

Ax

Ax

Bx

Cx

Cy

Cx

A
A

B

B

C

E F

2400 N

C
D

2.4 m

2.4 m

1.2 m

2400 N

A

B

C
D

E F

2.7 m

3.6 m

4.8 m

2.7 m
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SAMPLE PROBLEM 6.6

A 600-lb horizontal force is applied to pin A of the frame shown. Determine 
the forces acting on the two vertical members of the frame.

600 lb A

B

C

D

E F

Ey

Ex

Fy

Fx

6 ft

10 ft

SOLUTION

Free Body: Entire Frame. The entire frame is chosen as a free body; 
although the reactions involve four unknowns, Ey and Fy may be deter-
mined by writing

 1loME 5 0:  2(600 lb)(10 ft) 1 Fy(6 ft) 5 0
 Fy 5 11000 lb Fy 5 1000 lbx ◀

 1xoFy 5 0:  Ey 1 Fy 5 0
 Ey 5 21000 lb Ey 5 1000 lbw ◀

Members. The equations of equilibrium of the entire frame are not suffi-
cient to determine Ex and Fx. The free-body diagrams of the various mem-
bers must now be considered in order to proceed with the solution. In 
dismembering the frame we will assume that pin A is attached to the mul-
tiforce member ACE and, thus, that the 600-lb force is applied to that 
member. We also note that AB and CD are two-force members.

Free Body: Member ACE

 1xoFy 5 0:  2 5
13FAB 1 5

13FCD 2 1000 lb 5 0
 1loME 5 0:  2(600 lb)(10 ft) 2 (12

13FAB)(10 ft) 2 (12
13FCD)(2.5 ft) 5 0

Solving these equations simultaneously, we find

FAB 5 21040 lb  FCD 5 11560 lb ◀

The signs obtained indicate that the sense assumed for FCD was correct and 
the sense for FAB incorrect. Summing now x components,

y
1 oFx 5 0:  600 lb 1 12

13(21040 lb) 1 12
13(11560 lb) 1 Ex 5 0

 Ex 5 21080 lb Ex 5 1080 lbz ◀

Free Body: Entire Frame. Since Ex has been determined, we can return 
to the free-body diagram of the entire frame and write

y
1 oFx 5 0:  600 lb 2 1080 lb 1 Fx 5 0
 Fx 5 1480 lb Fx 5 480 lby ◀

Free Body: Member BDF (Check). We can check our computations by 
verifying that the equation oMB 5 0 is satisfied by the forces acting on 
member BDF.

 1loMB 5 2(12
13FCD)(2.5 ft) 1 (Fx)(7.5 ft)

 5 212
13(1560 lb)(2.5 ft) 1 (480 lb)(7.5 ft)

 5 23600 lb ? ft 1 3600 lb ? ft 5 0  (checks)

A

B

C

D

FAB

FAB

FCD

FCD

600 lb A

B

C

D

E F

FAB

FAB

FCD

FCD

Ey = 1000 lb Fy = 1000 lb
Ex Fx

12

12

13

13

5

5

2.5 ft

5 ft

7.5 ft

2.5 ft

600 lb A

B

C

D

E F

2.5 ft

2.5 ft

2.5 ft

2.5 ft

6 ft
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In this lesson you learned to analyze frames containing one or more multiforce 
members. In the problems that follow you will be asked to determine the exter-

nal reactions exerted on the frame and the internal forces that hold together the 
members of the frame.

In solving problems involving frames containing one or more multiforce members, 
follow these steps:

1. Draw a free-body diagram of the entire frame. Use this free-body diagram 
to calculate, to the extent possible, the reactions at the supports. (In Sample 
Prob. 6.6 only two of the four reaction components could be found from the free 
body of the entire frame.)

2. Dismember the frame, and draw a free-body diagram of each member.

3. Considering first the two-force members, apply equal and opposite forces to 
each two-force member at the points where it is connected to another member. 
If the two-force member is a straight member, these forces will be directed along 
the axis of the member. If you cannot tell at this point whether the member is in 
tension or compression, just assume that the member is in tension and direct both 
of the forces away from the member. Since these forces have the same unknown 
magnitude, give them both the same name and, to avoid any confusion later, do 
not use a plus sign or a minus sign.

4. Next, consider the multiforce members. For each of these members, show 
all the forces acting on the member, including applied loads, reactions, and inter-
nal forces at connections. The magnitude and direction of any reaction or reaction 
component found earlier from the free-body diagram of the entire frame should 
be clearly indicated.
 a. Where a multiforce member is connected to a two-force member, apply 
to the multiforce member a force equal and opposite to the force drawn on the 
free-body diagram of the two-force member, giving it the same name.

b. Where a multiforce member is connected to another multiforce member,
use horizontal and vertical components to represent the internal forces at that 
point, since neither the direction nor the magnitude of these forces is known. The 
direction you choose for each of the two force components exerted on the first 
multiforce member is arbitary, but you must apply equal and opposite force com-
ponents of the same name to the other multiforce member. Again, do not use a 
plus sign or a minus sign.

(continued)

SOLVING PROBLEMS
ON YOUR OWN
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5. The internal forces may now be determined, as well as any reactions that 
you have not already found.
 a. The free-body diagram of each of the multiforce members can provide 
you with three equilibrium equations.
 b. To simplify your solution, you should seek a way to write an equation 
involving a single unknown. If you can locate a point where all but one of the un-
known force components intersect, you will obtain an equation in a single unknown 
by summing moments about that point. If all unknown forces except one are 
 parallel, you will obtain an equation in a single unknown by summing force com-
ponents in a direction perpendicular to the parallel forces.
 c. Since you arbitrarily chose the direction of each of the unknown forces, 
you cannot determine until the solution is completed whether your guess was cor-
rect. To do that, consider the sign of the value found for each of the unknowns: 
a positive sign means that the direction you selected was correct; a negative sign 
means that the direction is opposite to the direction you assumed.

6. To be more effective and efficient as you proceed through your solution, 
observe the following rules:
 a. If an equation involving only one unknown can be found, write that 
equation and solve it for that unknown. Immediately replace that unknown wher-
ever it appears on other free-body diagrams by the value you have found. Repeat 
this process by seeking equilibrium equations involving only one unknown until 
you have found all of the internal forces and unknown reactions.
 b. If an equation involving only one unknown cannot be found, you may 
have to solve a pair of simultaneous equations. Before doing so, check that you 
have shown the values of all of the reactions that were obtained from the free-body 
diagram of the entire frame.
 c. The total number of equations of equilibrium for the entire frame and for 
the individual members will be larger than the number of unknown forces and 
reactions. After you have found all the reactions and all the internal forces, you 
can use the remaining equations to check the accuracy of your computations.
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PROBLEMS

325

 6.75 For the frame and loading shown, determine the force acting on 
member ABC (a) at B, (b) at C.

A
BC

D

20 lb

15 in. 15 in.

θ

Fig. P6.77

A

B

C DJ

E

F

8 in.

12 in. 4 in.4 in.

6 in.

2 in.

q60 lb

Fig. P6.79 and P6.80

A

B

C
D

510 mm

240 mm
135 mm

120 mm

400 N

450 mm

Fig. P6.76

A

B J
C

D
200 N

120 mm

90 mm

120 mm 120 mm

Fig. P6.75

 6.76 Determine the force in member BD and the components of the 
reaction at C.

 6.77 Rod CD is fitted with a collar at D that can be moved along rod 
AB, which is bent in the shape of an arc of circle. For the position 
when u 5 30°, determine (a) the force in rod CD, (b) the reaction 
at B.

 6.78 Solve Prob. 6.77 when u 5 150°.

 6.79 Determine the components of all forces acting on member ABCD 
when u 5 0.

 6.80 Determine the components of all forces acting on member ABCD
when u 5 90°.

 6.81 For the frame and loading shown, determine the components of 
all forces acting on member ABC.

 6.82 Solve Prob. 6.81 assuming that the 18-kN load is replaced by a 
clockwise couple of magnitude 72 kN ? m applied to member 
CDEF at point D.

C

D

E

F

B

A

3.6 m

18 kN 2 m

2 m

2 m

Fig. P6.81
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326 Analysis of Structures  6.83 and 6.84 Determine the components of the reactions at A and 
E if a 750-N force directed vertically downward is applied (a) at B, 
(b) at D.

A B

C

D

E

240 mm240 mm

240 mm

160 mm

Fig. P6.83 and P6.85

A B

CD

E

80 mm
170 mm

75 mm

125 mm

Fig. P6.84 and P6.86

 6.85 and 6.86 Determine the components of the reactions at A 
and E if the frame is loaded by a clockwise couple of magnitude 
36 N ? m applied (a) at B, (b) at D.

 6.87 Determine the components of the reactions at A and B, (a) if the 
500-N load is applied as shown, (b) if the 500-N load is moved 
along its line of action and is applied at point F.

 6.88 The 48-lb load can be moved along the line of action shown and 
applied at A, D, or E. Determine the components of the reactions 
at B and F if the 48-lb load is applied (a) at A, (b) at D, (c) at E.

 6.89 The 48-lb load is removed and a 288-lb ? in. clockwise couple is 
applied successively at A, D, and E. Determine the components of 
the reactions at B and F if the couple is applied (a) at A, (b) at D, 
(c) at E.

 6.90 (a) Show that when a frame supports a pulley at A, an equivalent 
loading of the frame and of each of its component parts can be 
obtained by removing the pulley and applying at A two forces 
equal and parallel to the forces that the cable exerted on the pul-
ley. (b) Show that if one end of the cable is attached to the frame 
at a point B, a force of magnitude equal to the tension in the cable 
should also be applied at B.

A B

C

D

F

E

100 lb
4 in.

5 in.

5 in.

10 in.

Fig. P6.87

A

D

B

C

E F

5 in.

7 in.

48 lb

8 in. 8 in.

Fig. P6.88 and P6.89

T T
T T

T
T

T

TA A AB AB

= =

(a) (b)

Fig. P6.90

 6.91 Knowing that the pulley has a radius of 50 mm, determine the 
components of the reactions at B and E.

A
B

C
D

E

300 N

180 mm 120 mm

150 mm

Fig. P6.91
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327Problems 6.92 Knowing that each pulley has a radius of 250 mm, determine the 
components of the reactions at D and E.

2 m

1.5 m

2 m

4.8 kN

C

B D

A E

Fig. P6.92

A B C

D

2400 lb

2900 lb

2 ft
9 ft 3 ft 5 ft 4 ft

Fig. P6.95

15 in.

8 in.

24 in.

r = 4.5 in.

1

2

A

B

C

D
E

F

G
r = 4.5 in.

Fig. P6.93

 6.93 Two 9-in.-diameter pipes (pipe 1 and pipe 2) are supported every 
7.5 ft by a small frame like that shown. Knowing that the com-
bined weight of each pipe and its contents is 30 lb/ft and assuming 
frictionless surfaces, determine the components of the reactions at 
A and G.

 6.94 Solve Prob. 6.93 assuming that pipe 1 is removed and that only 
pipe 2 is supported by the frames.

 6.95 A trailer weighing 2400 lb is attached to a 2900-lb pickup truck by 
a ball-and-socket truck hitch at D. Determine (a) the reactions at 
each of the six wheels when the truck and trailer are at rest, (b) the 
additional load on each of the truck wheels due to the trailer.

DE

F

Bar spring

Chain under
tension T

1.7 ft

Fig. P6.96

 6.96 In order to obtain a better weight distribution over the four wheels 
of the pickup truck of Prob. 6.95, a compensating hitch of the type 
shown is used to attach the trailer to the truck. The hitch consists 
of two bar springs (only one is shown in the figure) that fit into 
bearings inside a support rigidly attached to the truck. The springs 
are also connected by chains to the trailer frame, and specially 
designed hooks make it possible to place both chains in tension. 
(a) Determine the tension T required in each of the two chains if 
the additional load due to the trailer is to be evenly distributed 
over the four wheels of the truck. (b) What are the resulting reac-
tions at each of the six wheels of the trailer-truck combination?
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328 Analysis of Structures  6.97 The cab and motor units of the front-end loader shown are con-
nected by a vertical pin located 2 m behind the cab wheels. The 
distance from C to D is 1 m. The center of gravity of the 300-kN 
motor unit is located at Gm, while the centers of gravity of the 
100-kN cab and 75-kN load are located, respectively, at Gc and 
Gl. Knowing that the machine is at rest with its brakes released, 
determine (a) the reactions at each of the four wheels, (b) the 
forces exerted on the motor unit at C and D.

A

C

D

B

Gc
Gm

3.2 m

0.8 m

1.2 m

2.8 m2 m

75 kN

100 kN
300 kN

Gl

Fig. P6.97

 6.98 Solve Prob. 6.97 assuming that the 75-kN load has been removed.

 6.99 For the frame and loading shown, determine the components of 
the forces acting on member CFE at C and F.

 6.100 For the frame and loading shown, determine the components of 
the forces acting on member CDE at C and D.

 6.101 and 6.102 For the frame and loading shown, determine the 
components of all forces acting on member ABE.

40 lb

A

B
C

D

E F

6 in.

4 in.

5 in. 4 in. 4 in.

Fig. P6.99

D E

B

C

F

A

2 in. 4 in.
6 in.

25 lb

30°

30°

8 in.

4 in.

Fig. P6.100

A

B C D

E F

0.3 m

12 kN

0.9 m 0.9 m

1.2 m

0.6 m

Fig. P6.101

2.7 m

2.7 m

3.6 m

2400 N

1.5 m

4.8 m

A

B C D

J

E F

Fig. P6.102
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329Problems

 6.110 For the frame and loading shown, determine (a) the reaction at C, 
(b) the force in member AD.

A

B

C
D

E

G

F

P

P

Q

Q

15 in. 15 in.10 in.

4 in.
4 in.

Fig. P6.103 and P6.104

 6.103 Knowing that P 5 15 lb and Q 5 65 lb, determine the components 
of the forces exerted (a) on member BCDF at C and D, (b) on 
member ACEG at E.

 6.104 Knowing that P 5 25 lb and Q 5 55 lb, determine the components 
of the forces exerted (a) on member BCDF at C and D, (b) on 
member ACEG at E.

 6.105 For the frame and loading shown, determine the components of 
the forces acting on member DABC at B and D.

 6.106 Solve Prob. 6.105 assuming that the 6-kN load has been removed.

 6.107 The axis of the three-hinge arch ABC is a parabola with vertex at 
B. Knowing that P 5 112 kN and Q 5 140 kN, determine (a) the 
components of the reaction at A, (b) the components of the force 
exerted at B on segment AB.

 6.108 The axis of the three-hinge arch ABC is a parabola with vertex at 
B. Knowing that P 5 140 kN and Q 5 112 kN, determine (a) the 
components of the reaction at A, (b) the components of the force 
exerted at B on segment AB.

 6.109 Knowing that the surfaces at A and D are frictionless, determine 
the forces exerted at B and C on member BCE.

CBA

D

G H

E F

12 kN

6 kN

0.5 m

0.5 m

0.6 m 0.2 m 0.4 m

Fig. P6.105

A

B
C

P Q

1.8 m

1.4 m

3 m 3 m

8 m 6 m

Fig. P6.107 and P6.108

A B

C
D

E

6 in.6 in.
50 lb

4 in.

2 in.

6 in.

12 in.

Fig. P6.109

A

B

C

D

E

F

100 lb
20 in.

15 in.

15 in.

15 in.

Fig. P6.110

bee29400_ch06_284-351.indd Page 329  12/2/08  3:37:13 PM user-s172bee29400_ch06_284-351.indd Page 329  12/2/08  3:37:13 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



330 Analysis of Structures  6.111, 6.112, and 6.113 Members ABC and CDE are pin-connected 
at C and supported by four links. For the loading shown, deter-
mine the force in each link.

 6.114 Members ABC and CDE are pin-connected at C and supported 
by the four links AF, BG, DG, and EH. For the loading shown, 
determine the force in each link.

 6.115 Solve Prob. 6.113 assuming that the force P is replaced by a 
clockwise couple of moment M0 applied to member CDE at D.

 6.116 Solve Prob. 6.114 assuming that the force P is replaced by a 
clockwise couple of moment M0 applied to member CDE at D.

 6.117 Four beams, each of length 3a, are held together by single nails at 
A, B, C, and D. Each beam is attached to a support located at a 
distance a from an end of the beam as shown. Assuming that only 
vertical forces are exerted at the connections, determine the verti-
cal reactions at E, F, G, and H.

I

A B C D E

F
G H

P

a

aaaa

Fig. P6.111

A B C D E

F
G

H

P

a

aaaa

Fig. P6.112

A B C D E

F
G

H

P

aaaa

a

Fig. P6.113

P

A

B

C D

F

G

H

E

a

a

a

a

a a

Fig. P6.114
B

CD

E

F
G

H

a

a

2a

2a

A

P

Fig. P6.117

 6.118 Four beams, each of length 2a, are nailed together at their mid-
points to form the support system shown. Assuming that only verti-
cal forces are exerted at the connections, determine the  vertical 
reactions at A, D, E, and H.

A

B C D

E F G

H

P

Fig. P6.118
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6.12 MACHINES
Machines are structures designed to transmit and modify forces. 
Whether they are simple tools or include complicated mechanisms, 
their main purpose is to transform input forces into output forces. 
Consider, for example, a pair of cutting pliers used to cut a wire 
(Fig. 6.22a). If we apply two equal and opposite forces P and 2P on 
their handles, they will exert two equal and opposite forces Q and 
2Q on the wire (Fig. 6.22b).

 6.119 through 6.121 Each of the frames shown consists of two 
L-shaped members connected by two rigid links. For each frame, 
determine the reactions at the supports and indicate whether the 
frame is rigid.

BA

P

(a)

2a 2aa

a

(c)

BA

P

2a 2aa

a

A C

B

P

(b)

2a 2aa

a

Fig. P6.121

(a)

A

B

P

2a 2aa

a A

C

B

P

2a 2aa

a

(c)

A

B

P

2a 2aa

a

(b)

Fig. P6.120

(a)

B

P

2a 2aa

A

a

1
4

a

(c)

B

P

2a 2aa

A

a

1
4

a

(b)

P

2a 2aa

A

B
a

1
4

a

Fig. P6.119
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 To determine the magnitude Q of the output forces when the 
magnitude P of the input forces is known (or, conversely, to deter-
mine P when Q is known), we draw a free-body diagram of the pliers 
alone, showing the input forces P and 2P and the reactions 2Q and 
Q that the wire exerts on the pliers (Fig. 6.23). However, since a 
pair of pliers forms a nonrigid structure, we must use one of the 
component parts as a free body in order to determine the unknown 
forces. Considering Fig. 6.24a, for example, and taking moments 
about A, we obtain the relation Pa 5 Qb, which defines the magni-
tude Q in terms of P or P in terms of Q. The same free-body diagram 
can be used to determine the components of the internal force at A; 
we find Ax 5 0 and Ay 5 P 1 Q.

332 Analysis of Structures

A

(a) (b)

P

–P

Q

–Qba

Fig. 6.22

 In the case of more complicated machines, it generally will be 
necessary to use several free-body diagrams and, possibly, to solve 
simultaneous equations involving various internal forces. The free 
 bodies should be chosen to include the input forces and the reactions 
to the output forces, and the total number of unknown force compo-
nents involved should not exceed the number of available independent 
equations. It is advisable, before attempting to solve a problem, to 
determine whether the structure considered is determinate. There is 
no point, however, in discussing the rigidity of a machine, since a 
machine includes moving parts and thus must be nonrigid.

Fig. 6.24

–A x

A

A

(a)

(b)

Ay

–Ay

A x

P
Q

–P
–Q

a b

Photo 6.5 The lamp shown can be placed 
in many positions. By considering various free 
bodies, the force in the springs and the internal 
forces at the joints can be determined.

Q

–Q

A

P

–P

Fig. 6.23
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SAMPLE PROBLEM 6.7

A hydraulic-lift table is used to raise a 1000-kg crate. It con-
sists of a platform and two identical linkages on which hydrau-
lic  cylinders exert equal forces. (Only one linkage and one 
cylinder are shown.) Members EDB and CG are each of length 
2a, and member AD is pinned to the midpoint of EDB. If the 
crate is placed on the table, so that half of its weight is sup-
ported by the system shown, determine the force exerted by 
each cylinder in raising the crate for u 5 60°, a 5 0.70 m, and 
L 5 3.20 m. Show that the result obtained is independent of 
the distance d.

SOLUTION

The machine considered consists of the platform and of the link-
age. Its free-body diagram includes an input force FDH exerted 
by the cylinder, the weight 1

2 W, equal and opposite to the output 
force, and reactions at E and G that we assume to be directed 
as shown. Since more than three unknowns are involved, this 
diagram will not be used. The mechanism is dismembered and 
a free-body diagram is drawn for each of its component parts. 
We note that AD, BC, and CG are two-force members. We 
already assumed member CG to be in  compression; we now 
assume that AD and BC are in tension and direct as shown the 
forces exerted on them. Equal and opposite vectors will be used 
to represent the forces exerted by the two-force members on the 
platform, on member BDE, and on roller C.

A B C

D

E G
H

2a

W1
2

q

L
2

L
2

d

FDH

FCGEy

Ex
E G

A B C

D

W1
2

FAD

A B

B

C

C

W1
2

q

d

A

D

FAD

FAD

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

B CFBC FBC

FCG

FCG

G

C

FCG

FBC
C

C

q
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Free Body: Platform ABC.

y
1 oFx 5 0: FAD cos u 5 0 FAD 5 0
 1xoFy 5 0: B 1 C 2 

1
2W 5 0 B 1 C 5 1

2W (1)

Free Body: Roller C. We draw a force triangle and obtain FBC 5 C cot u.

FAD

A B

B

C

C

W1
2

q

d

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

Free Body: Member BDE. Recalling that FAD 5 0,

 1loME 5 0: FDH cos (f 2 90°)a 2 B(2a cos u) 2 FBC(2a sin u) 5 0
 FDHa sin f 2 B(2a cos u) 2 (C cot u)(2a sin u) 5 0
 FDH sin f 2 2(B 1 C) cos u 5 0

Recalling Eq. (1), we have

 
FDH 5 W  

 cos u
 sin f  

(2)

and we observe that the result obtained is independent of d. ◀

 Applying first the law of sines to triangle EDH, we write

 
 sin f
EH

5
 sin u
DH

  sin f 5
EH
DH

 sin u
 

(3)

Using now the law of cosines, we have

 (DH)2 5 a2 1 L2 2 2aL cos u
 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 60°
 (DH)2 5 8.49  DH 5 2.91 m

We also note that

W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN

Substituting for sin f from (3) into (2) and using the numerical data, we 
write

FDH 5 W  

DH
EH

 cot u 5 (9.81 kN) 

2.91 m
3.20 m

 cot 60°

FDH 5 5.15 kN ◀

a
f

D

H
E

q

L

FCG

FBC

C

q

FCG

FBC
C

C

q
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This lesson was devoted to the analysis of machines. Since machines are designed 
to transmit or modify forces, they always contain moving parts. However, the 

machines considered here will always be at rest, and you will be working with the 
set of forces required to maintain the equilibrium of the machine.

Known forces that act on a machine are called input forces. A machine transforms 
the input forces into output forces, such as the cutting forces applied by the pliers 
of Fig. 6.22. You will determine the output forces by finding the forces equal and 
opposite to the output forces that should be applied to the machine to maintain 
its equilibrium.

In the preceding lesson you analyzed frames; you will now use almost the same 
procedure to analyze machines:

1. Draw a free-body diagram of the whole machine, and use it to determine 
as many as possible of the unknown forces exerted on the machine.

2. Dismember the machine, and draw a free-body diagram of each member.

3. Considering first the two-force members, apply equal and opposite forces to 
each two-force member at the points where it is connected to another member. 
If you cannot tell at this point whether the member is in tension or in compression 
just assume that the member is in tension and direct both of the forces away from 
the member. Since these forces have the same unknown magnitude, give them both 
the same name.

4. Next consider the multiforce members. For each of these members, show all 
the forces acting on the member, including applied loads and forces, reactions, 
and internal forces at connections.
 a. Where a multiforce member is connected to a two-force member, apply 
to the multiforce member a force equal and opposite to the force drawn on the 
free-body diagram of the two-force member, giving it the same name.
 b. Where a multiforce member is connected to another multiforce member, 
use horizontal and vertical components to represent the internal forces at that 
point. The directions you choose for each of the two force components exerted on 
the first multiforce member are arbitrary, but you must apply equal and opposite 
force components of the same name to the other multiforce member.

5. Equilibrium equations can be written after you have completed the various 
free-body diagrams.
 a. To simplify your solution, you should, whenever possible, write and solve 
equilibrium equations involving single unknowns.
 b. Since you arbitrarily chose the direction of each of the unknown forces, you 
must determine at the end of the solution whether your guess was correct. To that 
effect, consider the sign of the value found for each of the unknowns. A positive sign 
indicates that your guess was correct, and a negative sign indicates that it was not.

6. Finally, you should check your solution by substituting the results obtained 
into an equilibrium equation that you have not previously used.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

336

 6.122 An 84-lb force is applied to the toggle vise at C. Knowing that 
u 5 90°, determine (a) the vertical force exerted on the block at D, 
(b) the force exerted on member ABC at B.

 6.123 Solve Prob. 6.122 when u 5 0.

 6.124 The control rod CE passes through a horizontal hole in the body 
of the toggle system shown. Knowing that link BD is 250 mm long, 
determine the force Q required to hold the system in equilibrium 
when b 5 20°.

A
B

C

D

E

100 N

35 mmβ Q

200 mm

150 mm

Fig. P6.124

A

B

C

D

E

20°

60°

15° P

400 mm

200 mm

Fig. P6.126 and P6.127

A

B

C
D

q

84 lb

7 in.

24 in.

24 in.

9 in.

40 in.

Fig. P6.122

 6.125 Solve Prob. 6.124 when (a) b 5 0, (b) b 5 6°.

 6.126 The press shown is used to emboss a small seal at E. Knowing that 
P 5 250 N, determine (a) the vertical component of the force 
exerted on the seal, (b) the reaction at A.

 6.127 The press shown is used to emboss a small seal at E. Knowing that 
the vertical component of the force exerted on the seal must be 
900 N, determine (a) the required vertical force P, (b) the corre-
sponding reaction at A.

 6.128 Water pressure in the supply system exerts a downward force of 
135 N on the vertical plug at A. Determine the tension in the 
fusible link DE and the force exerted on member BCE at B.

24 mm

A
D

B

E
C

24 mm
6 mm

16 mm

Fig. P6.128
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337Problems 6.129 A couple M of magnitude 1.5 kN ? m is applied to the crank of 
the engine system shown. For each of the two positions shown, 
determine the force P required to hold the system in 
equilibrium.

A

B

C

D

θ

M

25 lb

10 in.

6 in.

8 in.

Fig. P6.131 and P6.132

A

B

C

D

θ

M

160 mm 90 mm
240 N

180 mm

320 mm

300 mm

125 mm

Fig. P6.133 and P6.134

M
A

B

P

(a) (b)

C

50 mm

75 mm
175 mm

A

B

M

P

C

75 mm 100 mm

50 mm

Fig. P6.129 and P6.130

 6.130 A force P of magnitude 16 kN is applied to the piston of the engine 
system shown. For each of the two positions shown, determine the 
couple M required to hold the system in equilibrium.

 6.131 The pin at B is attached to member ABC and can slide freely along 
the slot cut in the fixed plate. Neglecting the effect of friction, 
determine the couple M required to hold the system in equilib-
rium when u 5 30°.

 6.132 The pin at B is attached to member ABC and can slide freely along 
the slot cut in the fixed plate. Neglecting the effect of friction, 
determine the couple M required to hold the system in equilib-
rium when u 5 60°.

 6.133 Arm ABC is connected by pins to a collar at B and to crank CD 
at C. Neglecting the effect of friction, determine the couple M 
required to hold the system in equilibrium when u 5 0.

 6.134 Arm ABC is connected by pins to a collar at B and to crank CD 
at C. Neglecting the effect of friction, determine the couple M 
required to hold the system in equilibrium when u 5 90°.
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338 Analysis of Structures  6.135 and 6.136 Two rods are connected by a slider block as shown. 
Neglecting the effect of friction, determine the couple MA required 
to hold the system in equilibrium.

15 in. 25°
250 lb⋅in.

A B

C

D

MA

15 in.

Fig. P6.135

15 in. 25°
250 lb⋅in.

A B

C

D

MA

15 in.

Fig. P6.136

 6.137 and 6.138 Rod CD is attached to the collar D and passes 
through a collar welded to end B of lever AB. Neglecting the effect 
of friction, determine the couple M required to hold the system 
in equilibrium when u 5 30°.

q
A

B
C

D
M

300 N
200 mm

Fig. P6.137
A

B

C

D

M

q
150 N

100 mm80 mm

Fig. P6.138  6.139 Two hydraulic cylinders control the position of the robotic arm 
ABC. Knowing that in the position shown the cylinders are  parallel, 
determine the force exerted by each cylinder when P 5 160 N and 
Q 5 80 N.

 6.140 Two hydraulic cylinders control the position of the robotic arm 
ABC. In the position shown, the cylinders are parallel and both 
are in tension. Knowing that FAE 5 600 N and FDG 5 50 N, 
determine the forces P and Q applied at C to arm ABC.

A
B

C

D

E F G

150 mm

150 mm
200 mm

P

Q

600 mm300 mm

400 mm

Fig. P6.139 and P6.140 
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339Problems 6.141 A log weighing 800 lb is lifted by a pair of tongs as shown. Deter-
mine the forces exerted at E and F on tong DEF.

 6.142 A 39-ft length of railroad rail of weight 44 lb/ft is lifted by the tongs 
shown. Determine the forces exerted at D and F on tong BDF.

A B

C D

E

F G

3 in.3 in.

1.5 in.

800 lb

1.5 in.

12 in.

2.5 in.

3.5 in.

12 in.

Fig. P6.141

D

A

CB

9.6 in. 9.6 in.

FE

6 in.

8 in.

12 in.

0.8 in.
0.8 in.

Fig. P6.142

55 mm55 mm

45 kN

22 mmG

A B

Fig. P6.144

A B

C D

E F

25 mm

60 mm

75 mm

85 mm

90 mm

Fig. P6.143

 6.143 The tongs shown are used to apply a total upward force of 45 kN 
on a pipe cap. Determine the forces exerted at D and F on 
tong ADF.

 6.144 If the toggle shown is added to the tongs of Prob. 6.143 and a 
single vertical force is applied at G, determine the forces exerted 
at D and F on tong ADF.
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340 Analysis of Structures  6.145 The pliers shown are used to grip a 0.3-in.-diameter rod. Knowing 
that two 60-lb forces are applied to the handles, determine (a) the 
magnitude of the forces exerted on the rod, (b) the force exerted 
by the pin at A on portion AB of the pliers.

BA

C

1.2 in. 60 lb

60 lb

30°

9.5 in.

Fig. P6.145

12 mm

24 mm

24 mm

24 mm

300 N

300 N

460 mm
96 mm

A
B

C
D

E

Fig. P6.146

 6.146 In using the bolt cutter shown, a worker applies two 300-N forces 
to the handles. Determine the magnitude of the forces exerted by 
the cutter on the bolt.

 6.147 Determine the magnitude of the gripping forces exerted along line 
aa on the nut when two 50-lb forces are applied to the handles as 
shown. Assume that pins A and D slide freely in slots cut in the 
jaws.

 6.148 Determine the magnitude of the gripping forces produced when 
two 300-N forces are applied as shown.

A B

a

a

C
D E

50 lb

50 lb

4.5 in.

0.75 in.

0.5 in.

Fig. P6.147

A
B

C D

300 N

300 N

12 mm 120 mm
36 mm

30 mm

30 mm

6 mm

42 mm96 mm

Fig. P6.148
A

B

C

D

E

50 lb

P

a

6 in.

10 in. 10 in.

Fig. P6.149 and P6.150

 6.149 Knowing that the frame shown has a sag at B of a 5 1 in., deter-
mine the force P required to maintain equilibrium in the position 
shown.

 6.150 Knowing that the frame shown has a sag at B of a 5 0.5 in., 
determine the force P required to maintain equilibrium in the 
position shown.
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341Problems 6.151 The garden shears shown consist of two blades and two handles. 
The two handles are connected by pin C and the two blades are 
connected by pin D. The left blade and the right handle are con-
nected by pin A; the right blade and the left handle are connected 
by pin B. Determine the magnitude of the forces exerted on the 
small branch at E when two 80-N forces are applied to the handles 
as shown.

A B

C

D

A

D

E

120 mm

300 mm

80 N 80 N

30 mm

30 mm

A B

C

D

12 mm 12 mm

Fig. P6.151

AB

C

D

5 m

2.4 m

0.9 m

0.5 m

θ

Fig. P6.152 and P6.153

C

B

A

D
q10 kN

1.5 m

0.5 m 0.8 m

90°

Fig. P6.154

 6.152 The telescoping arm ABC is used to provide an elevated platform 
for construction workers. The workers and the platform together 
have a mass of 200 kg and have a combined center of gravity 
located directly above C. For the position when u 5 20°, deter-
mine (a) the force exerted at B by the single hydraulic  cylinder BD, 
(b) the force exerted on the supporting carriage at A.

 6.153 The telescoping arm ABC can be lowered until end C is close to 
the ground, so that workers can easily board the platform. For the 
position when u 5 220°, determine (a) the force exerted at B by 
the single hydraulic cylinder BD, (b) the force exerted on the sup-
porting carriage at A.

 6.154 The position of member ABC is controlled by the hydraulic  cylinder 
CD. Knowing that u 5 30°, determine for the loading shown 
(a) the force exerted by the hydraulic cylinder on pin C, (b) the 
reaction at B.
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342 Analysis of Structures  6.155 The motion of the bucket of the front-end loader shown is con-
trolled by two arms and a linkage that are pin-connected at D. The 
arms are located symmetrically with respect to the central, verti-
cal, and longitudinal plane of the loader; one arm AFJ and its 
control cylinder EF are shown. The single linkage GHDB and its 
control cylinder BC are located in the plane of symmetry. For the 
position and loading shown, determine the force exerted (a) by 
cylinder BC, (b) by cylinder EF.

A
B C

D
E

F

G

H

12 in.

12 in.
12 in.

20 in.

20 in.

24 in.

22 in.

28 in.
75 in.

4500 lb

10 in.

18 in.

J

Fig. P6.155

 6.156 The bucket of the front-end loader shown carries a 3200-lb load. 
The motion of the bucket is controlled by two identical mecha-
nisms, only one of which is shown. Knowing that the mechanism 
shown supports one-half of the 3200-lb load, determine the force 
exerted (a) by cylinder CD, (b) by cylinder FH.

A B

CD

E

F

3200 lb

Dimensions in inches

G

H

8

15

15

16

12
6

24

15 20 16 24 6

Fig. P6.156
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343Problems 6.157 The motion of the backhoe bucket shown is controlled by the 
hydraulic cylinders AD, CG, and EF. As a result of an attempt to 
dislodge a portion of a slab, a 2-kip force P is exerted on the bucket 
teeth at J. Knowing that u 5 45°, determine the force exerted by 
each cylinder.

A

B
C

G
H

J

D E

P

F

I

12 in.

10 in.

16 in.

60 in.

20 in.
48 in.

10 in.
15 in.

35 in.

36 in.

40 in.

8 in.

16 in.16 in.

18 in.

10 in.

θ

Fig. P6.157

 6.158 Solve Prob. 6.157 assuming that the 2-kip force P acts horizontally 
to the right (u 5 0).

 6.159 The gears D and G are rigidly attached to shafts that are held by 
frictionless bearings. If rD 5 90 mm and rG 5 30 mm, determine 
(a) the couple M0 that must be applied for equilibrium, (b) the 
reactions at A and B.

x

y

z

H

E

A

B
D

G

rG

rD

M0

30 N.m

C

F

180 mm

120 mm

200 mm

120 mm

Fig. P6.159

bee29400_ch06_284-351.indd Page 343  12/2/08  3:37:33 PM user-s172bee29400_ch06_284-351.indd Page 343  12/2/08  3:37:33 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



344 Analysis of Structures  6.160 In the planetary gear system shown, the radius of the central gear 
A is a 5 18 mm, the radius of each planetary gear is b, and the 
radius of the outer gear E is (a 1 2b). A clockwise couple of mag-
nitude MA 5 10 N ? m is applied to the central gear A and a 
counterclockwise couple of magnitude MS 5 50 N ? m is applied 
to the spider BCD. If the system is to be in equilibrium, determine 
(a) the required radius b of the planetary gears, (b) the magnitude 
ME of the couple that must be applied to the outer gear E.

 *6.161 Two shafts AC and CF, which lie in the vertical xy plane, are con-
nected by a universal joint at C. The bearings at B and D do not 
exert any axial force. A couple of magnitude 500 lb ? in. (clockwise 
when viewed from the positive x axis) is applied to shaft CF at F. 
At a time when the arm of the crosspiece attached to shaft CF is 
horizontal, determine (a) the magnitude of the couple that must 
be applied to shaft AC at A to maintain equilibrium, (b) the reac-
tions at B, D, and E. (Hint: The sum of the couples exerted on the 
crosspiece must be zero.)

A

B

C

D

E

Fig. P6.160

A

B

C

D

E
x

y

z

4 in.

6 in.

5 in.

30°

500 lb-in.

F

Fig. P6.161

 *6.162 Solve Prob. 6.161 assuming that the arm of the crosspiece attached 
to shaft CF is vertical.

 *6.163 The large mechanical tongs shown are used to grab and lift a thick 
7500-kg steel slab HJ. Knowing that slipping does not occur 
between the tong grips and the slab at H and J, determine the 
components of all forces acting on member EFH. (Hint: Consider 
the symmetry of the tongs to establish relationships between the 
components of the force acting at E on EFH and the components 
of the force acting at D on CDF.)

A

B CD E

F G

H J

W

0.3 m

0.5 m

0.5 m

1.8 m

0.9 m

1.8 m

1.3 m

1 m

Fig. P6.163
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REVIEW AND SUMMARY

In this chapter you learned to determine the internal forces holding 
together the various parts of a structure.

The first half of the chapter was devoted to the analysis of trusses,
i.e., to the analysis of structures consisting of straight members con-
nected at their extremities only. The members being slender and 
unable to support lateral loads, all the loads must be applied at the 
joints; a truss may thus be assumed to consist of pins and two-force 
members [Sec. 6.2].

A truss is said to be rigid if it is designed in such a way that it will 
not greatly deform or collapse under a small load. A triangular truss 
consisting of three members connected at three joints is clearly a 
rigid truss (Fig. 6.25a) and so will be the truss obtained by adding 
two new members to the first one and connecting them at a new 
joint (Fig. 6.25b). Trusses obtained by repeating this procedure are 
called simple trusses. We may check that in a simple truss the total 
number of members is m 5 2n 2 3, where n is the total number of 
joints [Sec. 6.3].

Analysis of trusses

Simple trusses

The forces in the various members of a simple truss can be deter-
mined by the method of joints [Sec. 6.4]. First, the reactions at the 
supports can be obtained by considering the entire truss as a free 
body. The free-body diagram of each pin is then drawn, showing the 
forces exerted on the pin by the members or supports it connects. 
Since the members are straight two-force members, the force exerted 
by a member on the pin is directed along that member, and only the 
magnitude of the force is unknown. It is always possible in the case 
of a simple truss to draw the free-body diagrams of the pins in such 
an order that only two unknown forces are included in each dia-
gram. These forces can be obtained from the corresponding two 
equilibrium equations or—if only three forces are involved—from 
the  corresponding force triangle. If the force exerted by a member 
on a pin is directed toward that pin, the member is in compression;

Fig. 6.25

(a) (b)

A

B

C A

B

C

D

Method of joints
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346  Analysis of Structures if it is directed away from the pin, the member is in tension [Sam-
ple Prob. 6.1]. The analysis of a truss is sometimes expedited by 
first recognizing joints under special loading conditions [Sec. 6.5]. 
The method of joints can also be extended to the analysis of three-
dimensional or space trusses [Sec. 6.6].

The method of sections is usually preferred to the method of joints 
when the force in only one member—or very few members—of a 
truss is desired [Sec. 6.7]. To determine the force in member BD of 
the truss of Fig. 6.26a, for example, we pass a section through mem-
bers BD, BE, and CE, remove these members, and use the portion 
ABC of the truss as a free body (Fig. 6.26b). Writing oME 5 0, we 
determine the magnitude of the force FBD, which represents the 
force in member BD. A positive sign indicates that the member is 
in tension; a negative sign indicates that it is in compression [Sample 
Probs. 6.2 and 6.3].

Method of sections

Fig. 6.26

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

The method of sections is particularly useful in the analysis of com-
pound trusses, i.e., trusses which cannot be constructed from the 
basic triangular truss of Fig. 6.25a but which can be obtained by 
rigidly connecting several simple trusses [Sec. 6.8]. If the component 
trusses have been properly connected (e.g., one pin and one link, or 
three nonconcurrent and nonparallel links) and if the resulting struc-
ture is properly supported (e.g., one pin and one roller), the 
 compound truss is statically determinate, rigid, and completely con-
strained. The following necessary—but not sufficient—condition is 
then satisfied: m 1 r 5 2n, where m is the number of members, r is 
the number of unknowns representing the reactions at the supports, 
and n is the number of joints.

Compound trusses
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347The second part of the chapter was devoted to the analysis of frames 
and machines. Frames and machines are structures which contain 
multiforce members, i.e., members acted upon by three or more 
forces. Frames are designed to support loads and are usually station-
ary, fully constrained structures. Machines are designed to transmit 
or modify forces and always contain moving parts [Sec. 6.9].

To analyze a frame, we first consider the entire frame as a free body 
and write three equilibrium equations [Sec. 6.10]. If the frame 
remains rigid when detached from its supports, the reactions involve 
only three unknowns and may be determined from these equations 
[Sample Probs. 6.4 and 6.5]. On the other hand, if the frame ceases 
to be rigid when detached from its supports, the reactions involve 
more than three unknowns and cannot be completely determined 
from the equilibrium equations of the frame [Sec. 6.11; Sample 
Prob. 6.6].

We then dismember the frame and identify the various members as 
either two-force members or multiforce members; pins are assumed 
to form an integral part of one of the members they connect. We 
draw the free-body diagram of each of the multiforce members, 
noting that when two multiforce members are connected to the 
same two-force member, they are acted upon by that member with 
equal and opposite forces of unknown magnitude but known direc-
tion. When two multiforce members are connected by a pin, they 
exert on each other equal and opposite forces of unknown direction, 
which should be represented by two unknown components. The 
equilibrium equations obtained from the free-body diagrams of the 
multiforce members can then be solved for the various internal 
forces [Sample Probs. 6.4 and 6.5]. The equilibrium equations can 
also be used to complete the determination of the reactions at the 
supports [Sample Prob. 6.6]. Actually, if the frame is statically deter-
minate and rigid, the free-body diagrams of the multiforce members 
could provide as many equations as there are unknown forces 
(including the reactions) [Sec. 6.11]. However, as suggested above, 
it is advisable to first consider the free-body diagram of the entire 
frame to minimize the number of equations that must be solved 
simultaneously.

To analyze a machine, we dismember it and, following the same 
procedure as for a frame, draw the free-body diagram of each of the 
multiforce members. The corresponding equilibrium equations yield 
the output forces exerted by the machine in terms of the input forces 
applied to it, as well as the internal forces at the various connections 
[Sec. 6.12; Sample Prob. 6.7].

Frames and machines

Analysis of a frame

Multiforce members

Analysis of a machine

Review and Summary
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REVIEW PROBLEMS

 6.164 Using the method of joints, determine the force in each member 
of the truss shown. State whether each member is in tension or 
compression.

 6.165 Using the method of joints, determine the force in each member 
of the double-pitch roof truss shown. State whether each member 
is in tension or compression.

 6.166 The truss shown was designed to support the roof of a food mar-
ket. For the given loading, determine the force in members FG, 
EG, and EH.

A

C D
EB

4 ft 4 ft8 ft 8 ft

600 lb

300 lb 300 lb
6 ft

Fig. P6.164

C

D

E

F

G

HA

B

4 m4 m4 m
3 m 3 m

1 kN

2 kN

2 kN

1.75 kN

1.5 kN

0.75 kN
6 m

6 m6 m6 m

Fig. P6.165

A

B

CDE

4 ft

20 kips

5 ft 5 ft

Fig. P6.168

1 kN 1 kN
1.2 kN

A

B

C

D

E

F G

H

I
J

K

L

M

N

O

P

1.75 m

0.6 kN 0.6 kN

1.24 kN 1.24 kN
1.04 kN 1.04 kN

2.87 m

3.68 m

3.6 m3.6 m 3.6 m3.6 m
3.84 m3.84 m

2.4 m2.4 m

4.80 m

Fig. P6.166 and P6.167

 6.167 The truss shown was designed to support the roof of a food mar-
ket. For the given loading, determine the force in members KM, 
LM, and LN.

 6.168 For the frame and loading shown, determine the components of 
all forces acting on member ABC.

 6.169 Solve Prob. 6.168 assuming that the 20-kip load is replaced by a 
clockwise couple of magnitude 100 kip ? ft applied to member 
EDC at point D.

 6.170 Knowing that the pulley has a radius of 0.5 m, determine the 
components of the reactions at A and E.

1 m

1 m
3 m 3 m

2 m

700 N

C

B D

A E

Fig. P6.170
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349Review Problems 6.171 For the frame and loading shown, determine the reactions at A, B, 
D, and E. Assume that the surface at each support is frictionless.

 6.172 For the system and loading shown, determine (a) the force P 
required for equilibrium, (b) the corresponding force in member 
BD, (c) the corresponding reaction at C.

8 in. 8 in.

6 in.

6 in.

30°

1000 lb

A B

C

D E

Fig. P6.171200 mm

100 N

50 N

A

B
C

D

E

30° P

75 mm

Fig. P6.172
A

B

C D

P

a

a

6 in.9 in.

18 in.

Fig. P6.173

 6.173 A small barrel weighing 60 lb is lifted by a pair of tongs as shown. 
Knowing that a 5 5 in., determine the forces exerted at B and D 
on tong ABD.

 6.174 A 20-kg shelf is held horizontally by a self-locking brace that con-
sists of two parts EDC and CDB hinged at C and bearing against 
each other at D. Determine the force P required to release the 
brace.

50 mm
200 mm

150 mm

20 mm

100 mm

150 mm

A
B

C

D

E

P

Fig. P6.174

 6.175 The specialized plumbing wrench shown is used in confined areas 
(e.g., under a basin or sink). It consists essentially of a jaw BC 
pinned at B to a long rod. Knowing that the forces exerted on the 
nut are equivalent to a clockwise (when viewed from above) couple 
of magnitude 135 lb ? in., determine (a) the magnitude of the force 
exerted by pin B on jaw BC, (b) the couple M0 that is applied to 
the wrench.

A

B

C

M0

5
8

in.

3
8

in.
1
8

in.1

Fig. P6.175
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COMPUTER PROBLEMS

 6.C1 A Pratt steel truss is to be designed to support three 10-kip loads as 
shown. The length of the truss is to be 40 ft. The height of the truss and 
thus the angle u, as well as the cross-sectional areas of the various members, 
are to be selected to obtain the most economical design. Specifically, the 
cross-sectional area of each member is to be chosen so that the stress (force 
divided by area) in that member is equal to 20 kips/in2, the allowable stress 
for the steel used; the total weight of the steel, and thus its cost, must be 
as small as possible. (a) Knowing that the specific weight of the steel used 
is 0.284 lb/in3, write a computer program that can be used to calculate the 
weight of the truss and the cross-sectional area of each load-bearing member 
located to the left of DE for values of u from 20° to 80° using 5° increments. 
(b) Using appropriate smaller increments, determine the optimum value of 
u and the corresponding values of the weight of the truss and of the cross-
sectional areas of the various members. Ignore the weight of any zero-force 
member in your computations.

 6.C2 The floor of a bridge will rest on stringers that will be simply sup-
ported by transverse floor beams, as in Fig. 6.3. The ends of the beams will 
be connected to the upper joints of two trusses, one of which is shown in 
Fig. P6.C2. As part of the design of the bridge, it is desired to simulate the 
effect on this truss of driving a 12-kN truck over the bridge. Knowing that 
the distance between the truck’s axles is b 5 2.25 m and assuming that the 
weight of the truck is equally distributed over its four wheels, write a com-
puter program that can be used to calculate the forces created by the truck 
in members BH and GH for values of x from 0 to 17.25 m using 0.75-m 
increments. From the results obtained, determine (a) the maximum tensile 
force in BH, (b) the maximum compressive force in BH, (c) the maximum 
tensile force in GH. Indicate in each case the corresponding value of x. 
(Note: The increments have been selected so that the desired values are 
among those that will be tabulated.)

B D F

F C E G
H

10 ft 10 ft 10 ft 10 ft

10 kips 10 kips 10 kips

θ

Fig. P6.C1

A B C D E

F G H I
J

3 kN3 kN

3.75 m 3.75 m 3.75 m 3.75 m

x – b
x

b

5 m

D

Fig. P6.C2
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351Computer Problems 6.C3 In the mechanism shown the position of boom AC is controlled by 
arm BD. For the loading shown, write a computer program and use it to 
determine the couple M required to hold the system in equilibrium for 
values of u from 230° to 90° using 10° increments. Also, for the same values 
of u, determine the reaction at A. As a part of the design process of the 
mechanism, use appropriate smaller increments and determine (a) the value 
of u for which M is maximum and the corresponding value of M, 
(b) the value of u for which the reaction at A is maximum and the corre-
sponding magnitude of this reaction.

 6.C4 The design of a robotic system calls for the two-rod mechanism 
shown. Rods AC and BD are connected by a slider block D as shown. 
Neglecting the effect of friction, write a computer program and use it to 
determine the couple MA required to hold the rods in equilibrium for values 
of u from 0 to 120° using 10° increments. For the same values of u, deter-
mine the magnitude of the force F exerted by rod AC on the slider block.

 6.C5 The compound-lever pruning shears shown can be adjusted by placing 
pin A at various ratchet positions on blade ACE. Knowing that the length 
AB is 0.85 in., write a computer program and use it to determine the mag-
nitude of the vertical forces applied to the small branch for values of d from 
0.4 in. to 0.6 in. using 0.025 in. increments. As a part of the design of the 
shears, use appropriate smaller increments and determine the smallest allow-
able value of d if the force in link AB is not to exceed 500 lb.

8 ft

5 ft

800 lbM

θ

A

B

C

D

3 ft

Fig. P6.C3

θ

250 mm

A B

C

D

MA

150 mm

2.5 N⋅m

Fig. P6.C4

 6.C6 Rod CD is attached to collar D and passes through a collar welded 
to end B of lever AB. As an initial step in the design of lever AB, write a 
computer program and use it to calculate the magnitude M of the couple 
required to hold the system in equilibrium for values of u from 15° to 90° 
using 5° increments. Using appropriate smaller increments, determine the 
value of u for which M is minimum and the corresponding value of M.

A

B

C

D

E

3.5 in.
1.6 in.

1.05 in. d

0.25 in.

0.75 in.

30 lb

30 lb

Fig. P6.C5

A

B

C

D

M

θ
150  N

100 mm80 mm

Fig. P6.C6
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The George Washington Bridge 

connects Manhattan, New York, and 

Fort Lee, New Jersey. This suspension 

bridge carries traffic on two levels over 

roadways that are supported by a 

system of beams. Trusses are used both 

to connect these roadways to complete 

the overall bridge span as well as to 

form the towers. The bridge span itself 

is supported by the cable system.
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354

*7.1 INTRODUCTION
In preceding chapters, two basic problems involving structures were 
considered: (1) determining the external forces acting on a structure 
(Chap. 4) and (2) determining the forces which hold together the 
various members forming a structure (Chap. 6). The problem of 
determining the internal forces which hold together the various parts 
of a given member will now be considered.
 We will first analyze the internal forces in the members of a 
frame, such as the crane considered in Secs. 6.1 and 6.10, noting 
that whereas the internal forces in a straight two-force member can 
produce only tension or compression in that member, the internal 
forces in any other type of member usually produce shear and bend-
ing as well.
 Most of this chapter will be devoted to the analysis of the 
 internal forces in two important types of engineering structures, 
namely,

 1. Beams, which are usually long, straight prismatic members 
designed to support loads applied at various points along the 
member.

 2. Cables, which are flexible members capable of withstanding 
only tension, designed to support either concentrated or dis-
tributed loads. Cables are used in many engineering applica-
tions, such as suspension bridges and transmission lines.

*7.2 INTERNAL FORCES IN MEMBERS
Let us first consider a straight two-force member AB (Fig. 7.1a). 
From Sec. 4.6, we know that the forces F and 2F acting at A and B, 
respectively, must be directed along AB in opposite sense and have 
the same magnitude F. Now, let us cut the member at C. To maintain 
the equilibrium of the free bodies AC and CB thus obtained, we 
must apply to AC a force 2F equal and opposite to F, and to CB a 
force F equal and opposite to 2F (Fig. 7.1b). These new forces are 
directed along AB in opposite sense and have the same magnitude 
F. Since the two parts AC and CB were in equilibrium before the 
member was cut, internal forces equivalent to these new forces must 
have existed in the member itself. We conclude that in the case of 
a straight two-force member, the internal forces that the two portions 
of the member exert on each other are equivalent to axial forces. 
The common magnitude F of these forces does not depend upon the 
location of the section C and is referred to as the force in member 
AB. In the case considered, the member is in tension and will elon-
gate under the action of the internal forces. In the case represented 
in Fig. 7.2, the member is in compression and will decrease in length 
under the action of the internal forces.
 Next, let us consider a multiforce member. Take, for instance, 
member AD of the crane analyzed in Sec. 6.10. This crane is shown 
again in Fig. 7.3a, and the free-body diagram of member AD is 
drawn in Fig. 7.3b. We now cut member AD at J and draw a free-
body diagram for each of the portions JD and AJ of the member 

 Chapter 7 Forces in Beams
and Cables

 7.1 Introduction
 7.2 Internal Forces in Members
 7.3 Various Types of Loading 

and Support
 7.4 Shear and Bending Moment 

in a Beam
 7.5 Shear and Bending-Moment 

Diagrams
 7.6 Relations among Load, Shear, 

and Bending Moment
 7.7 Cables with Concentrated Loads
 7.8 Cables with Distributed Loads
 7.9 Parabolic Cable
 7.10 Catenary
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355

(Fig. 7.3c and d). Considering the free body JD, we find that its 
equilibrium will be maintained if we apply at J a force F to balance 
the vertical component of T, a force V to balance the horizontal 
component of T, and a couple M to balance the moment of T about 
J. Again we conclude that internal forces must have existed at J 
before member AD was cut. The internal forces acting on the por-
tion JD of member AD are equivalent to the force-couple system 
shown in Fig. 7.3c. According to Newton’s third law, the internal 
forces acting on AJ must be equivalent to an equal and opposite 
force-couple system, as shown in Fig. 7.3d. It is clear that the action 
of the internal forces in member AD is not limited to producing 
tension or compression as in the case of straight two-force members; 
the internal forces also produce shear and bending. The force F is 
an axial force; the force V is called a shearing force; and the moment 
M of the couple is known as the bending moment at J. We note that 
when determining internal forces in a member, we should clearly 
indicate on which portion of the member the forces are supposed to 
act. The deformation which will occur in member AD is sketched in 
Fig. 7.3e. The actual analysis of such a deformation is part of the 
study of mechanics of materials.
 It should be noted that in a two-force member which is not 
straight, the internal forces are also equivalent to a force-couple sys-
tem. This is shown in Fig. 7.4, where the two-force member ABC 
has been cut at D.
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Fig. 7.3 

7.2 Internal Forces in Members

(a)

D

B

CAP

– P

(b)

D

AP

M

V

F

(c)

D

B

C

– P–F

–M

–V

Fig. 7.4

Photo 7.1 The design of the shaft of a circular 
saw must account for the internal forces resulting 
from the forces applied to the teeth of the blade. 
At a given point in the shaft, these internal 
forces are equivalent to a force-couple system 
consisting of axial and shearing forces and a 
couple representing the bending and torsional 
moments.
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SOLUTION

Reactions and Forces at Connections. The reactions and the forces acting 
on each member of the frame are determined; this has been previously done 
in Sample Prob. 6.5, and the results are repeated here.

a. Internal Forces at J. Member ACF is cut at point J, and the two parts 
shown are obtained. The internal forces at J are represented by an equiva-
lent force-couple system and can be determined by considering the equi-
librium of either part. Considering the free body AJ, we write

 1l oMJ 5 0: 2(1800 N)(1.2 m) 1 M 5 0
 M 5 12160 N ? m  M 5 2160 N ? m l ◀

 1q  oFx 5 0: F 2 (1800 N) cos 41.7° 5 0
 F 5 11344 N F 5 1344 N q ◀

 1p  oFy 5 0: 2V 1 (1800 N) sin 41.7° 5 0
 V 5 11197 N V 5 1197 N o ◀

The internal forces at J are therefore equivalent to a couple M, an axial 
force F, and a shearing force V. The internal force-couple system acting on 
part JCF is equal and opposite.

b. Internal Forces at K. We cut member BCD at K and obtain the two 
parts shown. Considering the free body BK, we write

 1l oMK 5 0: (1200 N)(1.5 m) 1 M 5 0
 M 5 21800 N ? m M 5 1800 N ? m i ◀

y
1 oFx 5 0: F 5 0 F 5 0 ◀

 1xoFy 5 0: 21200 N 2 V 5 0
 V 5 21200 N V 5 1200 Nx ◀

2400 N

A A

B

B C

C

DK

J

FE

1200 N

1200 N

3600 N

3600 N

1800 N

1800 N

1800 N

600 N

2400 N1200 N
3600 N

V
M

F
–M

–V

–FB C DKK

y

x

1.5 m

SAMPLE PROBLEM 7.1

In the frame shown, determine the internal forces (a) in member ACF at 
point J, (b) in member BCD at point K. This frame has been previously 
considered in Sample Prob. 6.5.

1.2 m

1.5 m

2400 N
a

A

B C
D

K

J

FE

3.6 m

2.7 m

2.7 m

4.8 m

A

C

J

J

F

3600 N

1800 N

1800 N
a = 41.7° y

x

V M

F
1.2 m

–F

–M
–V
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357

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to determine the internal forces in the member of a 
frame. The internal forces at a given point in a straight two-force member

reduce to an axial force, but in all other cases, they are equivalent to a force-couple 
system consisting of an axial force F, a shearing force V, and a couple M repre-
senting the bending moment at that point.

To determine the internal forces at a given point J of the member of a frame, you 
should take the following steps.

1. Draw a free-body diagram of the entire frame, and use it to determine as 
many of the reactions at the supports as you can.

2. Dismember the frame, and draw a free-body diagram of each of its 
members. Write as many equilibrium equations as are necessary to find all the 
forces acting on the member on which point J is located.

3. Cut the member at point J, and draw a free-body diagram of each of the 
two portions of the member that you have obtained, applying to each portion at 
point J the force components and couple representing the internal forces exerted 
by the other portion. Note that these force components and couples are equal in 
magnitude and opposite in sense.

4. Select one of the two free-body diagrams you have drawn and use it to 
write three equilibrium equations for the corresponding portion of member.
 a. Summing moments about J and equating them to zero will yield the bend-
ing moment at point J.
 b. Summing components in directions parallel and perpendicular to the 
member at J and equating them to zero will yield, respectively, the axial and shear-
ing force.

5. When recording your answers, be sure to specify the portion of the 
 member you have used, since the forces and couples acting on the two portions 
have opposite senses.

Since the solutions of the problems in this lesson require the determination of the 
forces exerted on each other by the various members of a frame, be sure to review 
the methods used in Chap. 6 to solve this type of problem. When frames involve 
pulleys and cables, for instance, remember that the forces exerted by a pulley on 
the member of the frame to which it is attached have the same magnitude and 
direction as the forces exerted by the cable on the pulley [Prob. 6.90].
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PROBLEMS

358

 7.1 and 7.2 Determine the internal forces (axial force, shearing 
force, and bending moment) at point J of the structure indicated.

 7.1 Frame and loading of Prob. 6.79
 7.2 Frame and loading of Prob. 6.80

 7.3 Determine the internal forces at point J when a 5 90°.

CB

A

D

Ja

1.4 kN

300 mm

400 mm

175 mm

200 mm

200 mm

Fig. P7.3 and P7.4

 7.4 Determine the internal forces at point J when a 5 0.

 7.5 Determine the internal forces at point J of the structure shown.

 7.6 Determine the internal forces at point K of the structure shown.

 7.7 A semicircular rod is loaded as shown. Determine the internal 
forces at point J.

A

B

C D

J

K
60 mm
60 mm

135 mm
400 N

225 mm

225 mm

240 mm

Fig. P7.5 and P7.6

 7.8 A semicircular rod is loaded as shown. Determine the internal 
forces at point K.

A

B

J

K

120 N

60°

30°

180 mm

180 mm

Fig. P7.7 and P7.8
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359Problems 7.9 An archer aiming at a target is pulling with a 45-lb force on the 
bowstring. Assuming that the shape of the bow can be approxi-
mated by a parabola, determine the internal forces at point J.

 7.10 For the bow of Prob. 7.9, determine the magnitude and location 
of the maximum (a) axial force, (b) shearing force, (c) bending 
moment.

 7.11 Two members, each consisting of a straight and a quarter-circular 
portion of rod, are connected as shown and support a 75-lb load 
at A. Determine the internal forces at point J.

B

A

J

C

D

24 in.
8 in.

16 in.

16 in.

32 in.

Fig. P7.9A

B

E

F
J

C

D

75 lb

K

6 in. 3 in. 3 in. 6 in. 3 in.

3 in.

3 in.

Fig. P7.11 and P7.12

A B

J

C

D

280 N

q

160 mm

120 mm

160 mm 160 mm

Fig. P7.13 and P7.14

 7.12 Two members, each consisting of a straight and a quarter-circular 
portion of rod, are connected as shown and support a 75-lb load 
at A. Determine the internal forces at point K.

 7.13 A semicircular rod is loaded as shown. Determine the internal 
forces at point J knowing that u 5 30°.

 7.14 A semicircular rod is loaded as shown. Determine the magnitude 
and location of the maximum bending moment in the rod.
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360 Forces in Beams and Cables  7.15 Knowing that the radius of each pulley is 150 mm, that a 5 20°, 
and neglecting friction, determine the internal forces at (a) point J, 
(b) point K.

A B

C

K

D

J

500 N

0.6 m

a

0.6 m

0.9 m

0.9 m

Fig. P7.15 and P7.16

 7.16 Knowing that the radius of each pulley is 150 mm, that a 5 30°, 
and neglecting friction, determine the internal forces at (a) point J, 
(b) point K.

 7.17 Knowing that the radius of each pulley is 200 mm and neglecting 
friction, determine the internal forces at point J of the frame 
shown.

A B

C
D

E

r = 2.5 in.

9 in.

6.75 in.12 in.

Fig. P7.19

0.2 m
0.8 m 0.8 m 0.8 m

A

B
C

D

K

J

E

360 N

1 m

1.8 m

Fig. P7.17 and P7.18

 7.18 Knowing that the radius of each pulley is 200 mm and neglecting 
friction, determine the internal forces at point K of the frame 
shown.

 7.19 A 5-in.-diameter pipe is supported every 9 ft by a small frame 
consisting of two members as shown. Knowing that the combined 
weight of the pipe and its contents is 10 lb/ft and neglecting the 
effect of friction, determine the magnitude and location of the 
maximum bending moment in member AC.

 7.20 For the frame of Prob. 7.19, determine the magnitude and location 
of the maximum bending moment in member BC.
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361Problems 7.21 and 7.22 A force P is applied to a bent rod that is supported 
by a roller and a pin and bracket. For each of the three cases shown, 
determine the internal forces at point J.

3
4

3
4

B

C D

J

A

P

(a) (b) (c)

a

a

a a
B

C D

J

A

P

3
4

a

a

a a
B

C D

J

A

P

a

a

a a

Fig. P7.21

B

C D

J

P

(a) (b) (c)

a

a

a a

B

C

D

J

P

3

4

3
4

a

a

a a

B

C
D

J

A A A

P

a

a

a a

Fig. P7.22

 7.23 A semicircular rod of weight W and uniform cross section is sup-
ported as shown. Determine the bending moment at point J when 
u 5 60°.

 7.24 A semicircular rod of weight W and uniform cross section is sup-
ported as shown. Determine the bending moment at point J when 
u 5 150°.

 7.25 and 7.26 A quarter-circular rod of weight W and uniform cross 
section is supported as shown. Determine the bending moment at 
point J when u 5 30°.

B

J

A
q

r

Fig. P7.25

B

J

A

q

r

Fig. P7.26

q

B

J

A

r

r

Fig. P7.23 and P7.24

 7.27 For the rod of Prob. 7.25, determine the magnitude and location 
of the maximum bending moment.

 7.28 For the rod of Prob. 7.26, determine the magnitude and location 
of the maximum bending moment.
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362 Forces in Beams and Cables
BEAMS

*7.3 VARIOUS TYPES OF LOADING AND SUPPORT
A structural member designed to support loads applied at various 
points along the member is known as a beam. In most cases, the loads 
are perpendicular to the axis of the beam and will cause only shear 
and bending in the beam. When the loads are not at a right angle to 
the beam, they will also produce axial forces in the beam.
 Beams are usually long, straight prismatic bars. Designing a 
beam for the most effective support of the applied loads is a two-part 
process: (1) determining the shearing forces and bending moments 
produced by the loads and (2) selecting the cross section best suited 
to resist the shearing forces and bending moments determined in 
the first part. Here we are concerned with the first part of the prob-
lem of beam design. The second part belongs to the study of mechan-
ics of materials.
 A beam can be subjected to concentrated loads P1, P2, . . ., 
expressed in newtons, pounds, or their multiples kilonewtons and 
kips (Fig. 7.5a), to a distributed load w, expressed in N/m, kN/m, 
lb/ft, or kips/ft (Fig. 7.5b), or to a combination of both. When the 
load w per unit length has a constant value over part of the beam 
(as between A and B in Fig. 7.5b), the load is said to be uniformly 
distributed over that part of the beam. The determination of the 
reactions at the supports is considerably simplified if distributed 
loads are replaced by equivalent concentrated loads, as explained in 
Sec. 5.8. This substitution, however, should not be performed, or at 
least should be performed with care, when internal forces are being 
computed (see Sample Prob. 7.3).
 Beams are classified according to the way in which they are 
supported. Several types of beams frequently used are shown in 
Fig. 7.6. The distance L between supports is called the span. It 
should be noted that the reactions will be determinate if the supports 
involve only three unknowns. If more unknowns are involved, the 

Fig. 7.6

(a) Simply supported beam

(d ) Continuous beam

(b) Overhanging beam

(e) Beam fixed at one end
     and simply supported

at the other end

( f ) Fixed beam

(c) Cantilever beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L L L

LLL1 L2

(a) Concentrated loads

(b) Distributed load

A
B C

A
B

C

D

P1 P2

w

Fig. 7.5
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363reactions will be statically indeterminate and the methods of statics 
will not be sufficient to determine the reactions; the properties of 
the beam with regard to its resistance to bending must then be 
taken into consideration. Beams supported by two rollers are not 
shown here; they are only partially constrained and will move under 
certain loadings.
 Sometimes two or more beams are connected by hinges to 
form a single continuous structure. Two examples of beams hinged 
at a point H are shown in Fig. 7.7. It will be noted that the reactions 
at the supports involve four unknowns and cannot be determined 
from the free-body diagram of the two-beam system. They can be 
determined, however, by considering the free-body diagram of each 
beam separately; six unknowns are involved (including two force 
components at the hinge), and six equations are available.

*7.4 SHEAR AND BENDING MOMENT IN A BEAM
Consider a beam AB subjected to various concentrated and distrib-
uted loads (Fig. 7.8a). We propose to determine the shearing force 
and bending moment at any point of the beam. In the  example con-
sidered here, the beam is simply supported, but the method used 
could be applied to any type of statically determinate beam.
 First we determine the reactions at A and B by choosing the 
entire beam as a free body (Fig. 7.8b); writing oMA 5 0 and oMB 5 
0, we obtain, respectively, RB and RA.
 To determine the internal forces at C, we cut the beam at C 
and draw the free-body diagrams of the portions AC and CB of the 

Fig. 7.7

A

A
B

B
C

H

H

(a)

(b)

7.4 Shear and Bending Moment in a Beam

Fig. 7.8

A B
C

A B
C

A B
C

C

w1 w2

(a)

(b)

(c)

P1 P2 P3

w1 w2P1

w1P1

P2 P3

w2P2 P3

M M'

V V'

RA RB

RA RB

Photo 7.2 The internal forces in the beams of 
the overpass shown vary as the truck crosses the 
overpass.

bee29400_ch07_352-409.indd Page 363  12/2/08  1:14:33 AM user-s173bee29400_ch07_352-409.indd Page 363  12/2/08  1:14:33 AM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



364 Forces in Beams and Cables beam (Fig. 7.8c). Using the free-body diagram of AC, we can deter-
mine the shearing force V at C by equating to zero the sum of the 
vertical components of all forces acting on AC. Similarly, the bending 
moment M at C can be found by equating to zero the sum of the 
moments about C of all forces and couples acting on AC. Alterna-
tively, we could use the free-body diagram of CB† and determine 
the shearing force V9 and the bending moment M9 by equating to 
zero the sum of the vertical components and the sum of the moments 
about C of all forces and couples acting on CB. While this choice of 
free bodies may facilitate the computation of the numerical values 
of the shearing force and bending moment, it makes it necessary to 
indicate on which portion of the beam the internal forces considered 
are acting. If the shearing force and bending moment are to be 
computed at every point of the beam and efficiently recorded, we 
must find a way to avoid having to specify every time which portion 
of the beam is used as a free body. We shall adopt, therefore, the 
following conventions:
 In determining the shearing force in a beam, it will always be 
assumed that the internal forces V and V9 are directed as shown in 
Fig. 7.8c. A positive value obtained for their common magnitude V 
will indicate that this assumption was correct and that the shearing 
forces are actually directed as shown. A negative value obtained for 
V will indicate that the assumption was wrong and that the shearing 
forces are directed in the opposite way. Thus, only the magnitude V, 
together with a plus or minus sign, needs to be recorded to define 
completely the shearing forces at a given point of the beam. The 
scalar V is commonly referred to as the shear at the given point of 
the beam.
 Similarly, it will always be assumed that the internal couples M 
and M9 are directed as shown in Fig. 7.8c. A positive value obtained 
for their magnitude M, commonly referred to as the bending moment, 
will indicate that this assumption was correct, and a negative value 
will indicate that it was wrong. Summarizing the sign conventions we 
have presented, we state:
 The shear V and the bending moment M at a given point of 
a beam are said to be positive when the internal forces and cou-
ples acting on each portion of the beam are directed as shown in 
Fig. 7.9a.
 These conventions can be more easily remembered if we note 
that:

 1. The shear at C is positive when the external forces (loads and 
reactions) acting on the beam tend to shear off the beam at C 
as indicated in Fig. 7.9b.

 2. The bending moment at C is positive when the external forces 
acting on the beam tend to bend the beam at C as indicated in 
Fig. 7.9c.

C

(b) Effect of external forces
(positive shear) 

(a) Internal forces at section
(positive shear and positive bending moment) 

(c) Effect of external forces
(positive bending moment)

C

M

V M'

V'

Fig. 7.9

†The force and couple representing the internal forces acting on CB will now be denoted 
by V9 and M9, rather than by 2V and 2M as done earlier, in order to avoid confusion 
when applying the sign convention which we are about to introduce.
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365 It may also help to note that the situation described in Fig. 7.9, 
in which the values of the shear and of the bending moment are 
positive, is precisely the situation which occurs in the left half of a 
simply supported beam carrying a single concentrated load at its 
midpoint. This particular example is fully discussed in the following 
section.

*7.5 SHEAR AND BENDING-MOMENT DIAGRAMS
Now that shear and bending moment have been clearly defined in 
sense as well as in magnitude, we can easily record their values at 
any point of a beam by plotting these values against the distance x 
measured from one end of the beam. The graphs obtained in this 
way are called, respectively, the shear diagram and the bending-
moment diagram. As an example, consider a simply supported 
beam AB of span L subjected to a single concentrated load P 
applied at its midpoint D (Fig. 7.10a). We first determine the reac-
tions at the supports from the free-body diagram of the entire beam 
(Fig. 7.10b); we find that the magnitude of each reaction is equal 
to P/2.
 Next we cut the beam at a point C between A and D and 
draw the free-body diagrams of AC and CB (Fig. 7.10c). Assuming 
that shear and bending moment are positive, we direct the internal 
forces V and V9 and the internal couples M and M9 as indicated 
in Fig. 7.9a. Considering the free body AC and writing that the 
sum of the vertical components and the sum of the moments about 
C of the forces acting on the free body are zero, we find V 5 1P/2 
and M 5 1Px/2. Both shear and bending moment are therefore 
positive; this can be checked by observing that the reaction at A 
tends to shear off and to bend the beam at C as indicated in 
Fig. 7.9b and c. We can plot V and M between A and D (Fig. 7.10e 
and f ); the shear has a constant value V 5 P/2, while the bending 
moment increases linearly from M 5 0 at x 5 0 to M 5 PL/4 at 
x 5 L/2.
 Cutting, now, the beam at a point E between D and B and 
considering the free body EB (Fig. 7.10d), we write that the sum of 
the vertical components and the sum of the moments about E of the 
forces acting on the free body are zero. We obtain V 5 2P/2 and 
M 5 P(L 2 x)/2. The shear is therefore negative and the bending 
moment positive; this can be checked by observing that the reaction 
at B bends the beam at E as indicated in Fig. 7.9c but tends to shear 
it off in a manner opposite to that shown in Fig. 7.9b. We can com-
plete, now, the shear and bending-moment diagrams of Fig. 7.10e 
and f; the shear has a constant value V 5 2P/2 between D and B, 
while the bending moment decreases linearly from M 5 PL/4 at x 5 
L/2 to M 5 0 at x 5 L.
 It should be noted that when a beam is subjected to concen-
trated loads only, the shear is of constant value between loads and 
the bending moment varies linearly between loads, but when a beam 
is subjected to distributed loads, the shear and bending moment vary 
quite differently (see Sample Prob. 7.3).

7.5 Shear and Bending-Moment Diagrams
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Fig. 7.10
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366

SAMPLE PROBLEM 7.2

Draw the shear and bending-moment diagrams for the beam and loading 
shown.

SOLUTION

Free-Body: Entire Beam. From the free-body diagram of the entire beam, 
we find the reactions at B and D:

RB 5 46 kNx  RD 5 14 kNx

Shear and Bending Moment. We first determine the internal forces just 
to the right of the 20-kN load at A. Considering the stub of beam to the 
left of section 1 as a free body and assuming V and M to be positive (accord-
ing to the standard convention), we write

 1xoFy 5 0: 220 kN 2 V1 5 0 V1 5 220 kN
 1l oM1 5 0: (20 kN)(0 m) 1 M1 5 0 M1 5 0

 We next consider as a free body the portion of the beam to the left 
of section 2 and write

 1xoFy 5 0: 220 kN 2 V2 5 0 V2 5 220 kN
 1l oM2 5 0: (20 kN)(2.5 m) 1 M2 5 0 M2 5 250 kN ? m

 The shear and bending moment at sections 3, 4, 5, and 6 are deter-
mined in a similar way from the free-body diagrams shown. We obtain

 V3 5 126 kN M3 5 250 kN ? m
 V4 5 126 kN M4 5 128 kN ? m
 V5 5 214 kN M5 5 128 kN ? m
 V6 5 214 kN M6 5 0

For several of the latter sections, the results are more easily obtained by 
considering as a free body the portion of the beam to the right of the 
 section. For example, considering the portion of the beam to the right of 
section 4, we write

 1xoFy 5 0: V4 2 40 kN 1 14 kN 5 0 V4 5 126 kN
 1l oM4 5 0: 2M4 1 (14 kN)(2 m) 5 0 M4 5 128 kN ? m

Shear and Bending-Moment Diagrams. We can now plot the six points 
shown on the shear and bending-moment diagrams. As indicated in Sec. 7.5, 
the shear is of constant value between concentrated loads, and the bending 
moment varies linearly; we therefore obtain the shear and bending-moment 
diagrams shown.

A
DB

C

V

M

M1

V1

M2
V2

M3

V3

M4V4

M5

V5

M6

V6

M'4

V'4

20 kN

20 kN

20 kN

20 kN

20 kN

20 kN

20 kN

40 kN

40 kN

40 kN

40 kN

46 kN

46 kN

46 kN

46 kN

46 kN

14 kN

1 2 3 4 5 6

–14 kN–20 kN
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–50 kN⋅m

+26 kN

2.5 m 3 m 2 m
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x

x

14 kN

A D
B

C

20 kN 40 kN
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367

SAMPLE PROBLEM 7.3

Draw the shear and bending-moment diagrams for the beam AB. The dis-
tributed load of 40 lb/in. extends over 12 in. of the beam, from A to C, and 
the 400-lb load is applied at E.

SOLUTION

Free-Body: Entire Beam. The reactions are determined by considering the 
entire beam as a free body.

 1l oMA 5 0: By(32 in.) 2 (480 lb)(6 in.) 2 (400 lb)(22 in.) 5 0
 By 5 1365 lb By 5 365 lbx
 1l oMB 5 0: (480 lb)(26 in.) 1 (400 lb)(10 in.) 2 A(32 in.) 5 0
 A 5 1515 lb A 5 515 lbx
y
1 oFx 5 0: Bx 5 0 Bx 5 0

The 400-lb load is now replaced by an equivalent force-couple system acting 
on the beam at point D.

Shear and Bending Moment. From A to C. We determine the internal 
forces at a distance x from point A by considering the portion of the beam to 
the left of section 1. That part of the distributed load acting on the free body 
is replaced by its resultant, and we write

 1xoFy 5 0: 515 2 40x 2 V 5 0 V 5 515 2 40x
 1l oM1 5 0: 2515x 1 40x(1

2 x) 1 M 5 0 M 5 515x 2 20x2

Since the free-body diagram shown can be used for all values of x smaller 
than 12 in., the expressions obtained for V and M are valid throughout the 
region 0 , x , 12 in.

From C to D. Considering the portion of the beam to the left of section 2 
and again replacing the distributed load by its resultant, we obtain

 1xoFy 5 0:  515 2 480 2 V 5 0 V 5 35 lb
 1l oM2 5 0: 2515x 1 480(x 2 6) 1 M 5 0 M 5 (2880 1 35x) lb ? in.

These expressions are valid in the region 12 in. , x , 18 in.

From D to B. Using the portion of the beam to the left of section 3, we 
obtain for the region 18 in. , x , 32 in.

 1xoFy 5 0: 515 2 480 2 400 2 V 5 0  V 5 2365 lb
 1l oM3 5 0: 2515x 1 480(x 2 6) 2 1600 1 400(x 2 18) 1 M 5 0

M 5 (11,680 2 365x) lb ? in.

Shear and Bending-Moment Diagrams. The shear and bending-moment 
diagrams for the entire beam can now be plotted. We note that the couple 
of moment 1600 lb ? in. applied at point D introduces a discontinuity into 
the bending-moment diagram.

A B
C D
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6 in. 4 in.
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12 in. 10 in.
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D
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368

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to determine the shear V and the bending moment 
M at any point in a beam. You also learned to draw the shear diagram and the 

bending-moment diagram for the beam by plotting, respectively, V and M against 
the distance x measured along the beam.

A. Determining the shear and bending moment in a beam. To determine the 
shear V and the bending moment M at a given point C of a beam, you should 
take the following steps.

1. Draw a free-body diagram of the entire beam, and use it to determine the 
reactions at the beam supports.

2. Cut the beam at point C, and, using the original loading, select one of the 
two portions of the beam you have obtained.

3. Draw the free-body diagram of the portion of the beam you have selected,
showing:
 a. The loads and the reaction exerted on that portion of the beam, replacing 
each distributed load by an equivalent concentrated load as explained earlier in 
Sec. 5.8.
 b. The shearing force and the bending couple representing the internal 
forces at C. To facilitate recording the shear V and the bending moment M after 
they have been determined, follow the convention indicated in Figs. 7.8 and 7.9. 
Thus, if you are using the portion of the beam located to the left of C, apply at C
a shearing force V directed downward and a bending couple M directed counter-
clockwise. If you are using the portion of the beam located to the right of C, apply 
at C a shearing force V9 directed upward and a bending couple M9 directed clock-
wise [Sample Prob. 7.2].

4. Write the equilibrium equations for the portion of the beam you have 
selected. Solve the equation oFy 5 0 for V and the equation oMC 5 0 for M.

5. Record the values of V and M with the sign obtained for each of them. A 
positive sign for V means that the shearing forces exerted at C on each of the two 
portions of the beam are directed as shown in Figs. 7.8 and 7.9; a negative sign 
means that they have the opposite sense. Similarly, a positive sign for M means 
that the bending couples at C are directed as shown in these figures, and a nega-
tive sign means that they have the opposite sense. In addition, a positive sign for 
M means that the concavity of the beam at C is directed upward, and a negative 
sign means that it is directed downward.
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B. Drawing the shear and bending-moment diagrams for a beam. These 
diagrams are obtained by plotting, respectively, V and M against the distance x 
measured along the beam. However, in most cases the values of V and M need to 
be computed only at a few points.

1. For a beam supporting only concentrated loads, we note [Sample Prob. 7.2] 
that
 a. The shear diagram consists of segments of horizontal lines. Thus, to 
draw the shear diagram of the beam you will need to compute V only just to the 
left or just to the right of the points where the loads or the reactions are 
applied.
 b. The bending-moment diagram consists of segments of oblique straight 
lines. Thus, to draw the bending-moment diagram of the beam you will need to 
compute M only at the points where the loads or the reactions are applied.

2. For a beam supporting uniformly distributed loads, we note [Sample 
Prob. 7.3] that under each of the distributed loads:
 a. The shear diagram consists of a segment of an oblique straight 
line. Thus, you will need to compute V only where the distributed load begins 
and where it ends.
 b. The bending-moment diagram consists of an arc of parabola. In most 
cases you will need to compute M only where the distributed load begins and 
where it ends.

3. For a beam with a more complicated loading, it is necessary to consider 
the free-body diagram of a portion of the beam of arbitrary length x and determine 
V and M as functions of x. This procedure may have to be repeated several times, 
since V and M are often represented by different functions in various parts of the 
beam [Sample Prob. 7.3].

4. When a couple is applied to a beam, the shear has the same value on both 
sides of the point of application of the couple, but the bending-moment diagram 
will show a discontinuity at that point, rising or falling by an amount equal to the 
magnitude of the couple. Note that a couple can either be applied directly to the 
beam, or result from the application of a load on a curved member rigidly attached 
to the beam [Sample Prob. 7.3].
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PROBLEMS
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 7.29 through 7.32 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.

PP

A
B

C

a a

Fig. P7.29

A
B

C

P

L
3

2L
3

Fig. P7.30

w

A
B

C

L
2

L
2

Fig. P7.32

w

A
B C

D

L
4

L
2

L
4

Fig. P7.31

7.33 and 7.34 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.35 and 7.36 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

M0 = PL

P

A
B

L

Fig. P7.33

M0

A
B

C

L
2

L
2

Fig. P7.34
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D E
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0.5 m0.5 m0.5 m
15 kN

1 m

Fig. P7.35

0.6 m 0.9 m
0.2 m

A B
C D E

40 kN 32 kN 16 kN

1.5 m

Fig. P7.36

120 lb 120 lb300 lb

10 in. 20 in. 15 in.

A B
C D E

25 in.

Fig. P7.38

6 kips 12 kips 4.5 kips

2 ft2 ft2 ft2 ft

A B
C D E

Fig. P7.37

7.37 and 7.38 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.
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371Problems 7.39 through 7.42 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.

8 kips 8 kips
2 ft 2 ft

C D

5 ft

4 kips/ft

A B

Fig. P7.41

60 kN
25 kN/m

1 m

A BC D

2 m 2 m

Fig. P7.39

30 kN/m

C
A

80 kN

B
D

3 m
2 m2 m

Fig. P7.40

2.5 kips/ft

12 kips

A B
C

6 ft 4 ft

Fig. P7.42

 7.43 Assuming the upward reaction of the ground on beam AB to be 
uniformly distributed and knowing that a 5 0.3 m, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.

A B
C

D

200 mm 200 mm200 mm

600 N

Fig. P7.49

3 kN

A B
C D

3 kN

1.5 m
aa

Fig. P7.43

A B
C D

6 ft
3 ft3 ft

3 kips/ft 3 kips/ft

Fig. P7.45

A B
C D

6 ft3 ft 3 ft

3 kips/ft

Fig. P7.46

A B
C ED

w wP

a a a a

Fig. P7.47

 7.44 Solve Prob. 7.43 knowing that a 5 0.5 m.

 7.45 and 7.46 Assuming the upward reaction of the ground on beam 
AB to be uniformly distributed, (a) draw the shear and bending-
moment diagrams, (b) determine the maximum absolute values of 
the shear and bending moment.

 7.47 Assuming the upward reaction of the ground on beam AB to be 
uniformly distributed and knowing that P 5 wa, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.48 Solve Prob. 7.47 knowing that P 5 3wa.

 7.49 Draw the shear and bending-moment diagrams for the beam AB, 
and determine the shear and bending moment (a) just to the left 
of C, (b) just to the right of C.
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372 Forces in Beams and Cables  7.50 Two small channel sections DF and EH have been welded to the 
uniform beam AB of weight W 5 3 kN to form the rigid structural 
member shown. This member is being lifted by two cables attached 
at D and E. Knowing that u 5 30° and neglecting the weight of 
the channel sections, (a) draw the shear and bending-moment dia-
grams for beam AB, (b) determine the maximum absolute values 
of the shear and bending moment in the beam.

 7.51 Solve Prob. 7.50 when u 5 60°.

 7.52 through 7.54 Draw the shear and bending-moment diagrams 
for the beam AB, and determine the maximum absolute values of 
the shear and bending moment.

A

D

F G H

C

qq

0.5 m
B

E

1.5 m 1.5 m1 m1 m

Fig. P7.50

 7.55 For the structural member of Prob. 7.50, determine (a) the angle 
u for which the maximum absolute value of the bending moment 
in beam AB is as small as possible, (b) the corresponding value of 
|M|max. (Hint: Draw the bending-moment diagram and then equate 
the absolute values of the largest positive and negative bending 
moments obtained.)

 7.56 For the beam of Prob. 7.43, determine (a) the distance a for which 
the maximum absolute value of the bending moment in the beam 
is as small as possible, (b) the corresponding value of |M|max. (See 
hint for Prob. 7.55.)

 7.57 For the beam of Prob. 7.47, determine (a) the ratio k 5 P/wa for 
which the maximum absolute value of the bending moment in the 
beam is as small as possible, (b) the corresponding value of |M|max. 
(See hint for Prob. 7.55.)

 7.58 A uniform beam is to be picked up by crane cables attached at A 
and B. Determine the distance a from the ends of the beam to the 
points where the cables should be attached if the maximum absolute 
value of the bending moment in the beam is to be as small as possi-
ble. (Hint: Draw the bending-moment diagram in terms of a, L, and 
the weight w per unit length, and then equate the absolute values of 
the largest positive and negative bending moments obtained.)

 7.59 For the beam shown, determine (a) the magnitude P of the two 
upward forces for which the maximum absolute value of the bend-
ing moment in the beam is as small as possible, (b) the correspond-
ing value of |M|max. (See hint for Prob. 7.55.)
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 7.60 Knowing that P 5 Q 5 150 lb, determine (a) the distance a for 
which the maximum absolute value of the bending moment in 
beam AB is as small as possible, (b) the corresponding value of 
|M|max. (See hint for Prob. 7.55.)

 7.61 Solve Prob. 7.60 assuming that P 5 300 lb and Q 5 150 lb.

 *7.62 In order to reduce the bending moment in the cantilever beam 
AB, a cable and counterweight are permanently attached at end B. 
Determine the magnitude of the counterweight for which the 
maximum absolute value of the bending moment in the beam is 
as small as possible and the corresponding value of |M|max. Con-
sider (a) the case when the distributed load is permanently applied 
to the beam, (b) the more general case when the distributed load 
may either be applied or removed.

*7.6  RELATIONS AMONG LOAD, SHEAR, 
AND BENDING MOMENT

When a beam carries more than two or three concentrated loads, or 
when it carries distributed loads, the method outlined in Sec. 7.5 for 
plotting shear and bending moment is likely to be quite cumber-
some. The construction of the shear diagram and, especially, of the 
bending-moment diagram will be greatly facilitated if certain rela-
tions existing among load, shear, and bending moment are taken into 
consideration.
 Let us consider a simply supported beam AB carrying a distrib-
uted load w per unit length (Fig. 7.11a), and let C and C9 be two 
points of the beam at a distance Dx from each other. The shear and 
bending moment at C will be denoted by V and M, respectively, and 
will be assumed positive; the shear and bending moment at C9 will 
be denoted by V 1 DV and M 1 DM.
 Let us now detach the portion of beam CC9 and draw its free-
body diagram (Fig. 7.11b). The forces exerted on the free body 
include a load of magnitude w Dx and internal forces and couples at 
C and C9. Since shear and bending moment have been assumed posi-
tive, the forces and couples will be directed as shown in the figure.

Relations between Load and Shear. We write that the 
sum of the vertical components of the forces acting on the free body 
CC9 is zero:

V 2 (V 1 DV) 2 w Dx 5 0
DV 5 2w Dx

Dividing both members of the equation by Dx and then letting Dx 
approach zero, we obtain

 
dV
dx

5 2w
 

(7.1)

Formula (7.1) indicates that for a beam loaded as shown in Fig. 7.11a, 
the slope dV/dx of the shear curve is negative; the numerical value of 
the slope at any point is equal to the load per unit length at that point.

7.6 Relations among Load, Shear, 
and Bending Moment

P Q
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C D
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Fig. 7.11
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374 Forces in Beams and Cables  Integrating (7.1) between points C and D, we obtain

 
VD 2 VC 5 2 #

xD

xC

 
w dx

 
(7.2)

VD 2 VC 5 2(area under load curve between C and D) (7.29)

Note that this result could also have been obtained by considering 
the equilibrium of the portion of beam CD, since the area under the 
load curve represents the total load applied between C and D.
 It should be observed that formula (7.1) is not valid at a point 
where a concentrated load is applied; the shear curve is discontinuous 
at such a point, as seen in Sec. 7.5. Similarly, formulas (7.2) and (7.29) 
cease to be valid when concentrated loads are applied between C and 
D, since they do not take into account the sudden change in shear 
caused by a concentrated load. Formulas (7.2) and (7.29), therefore, 
should be applied only between successive concentrated loads.

Relations between Shear and Bending Moment. Re-
turning to the free-body diagram of Fig. 7.11b, and writing now that 
the sum of the moments about C9 is zero, we obtain

(M 1 ¢M) 2 M 2 V ¢x 1 w¢x 

¢x
2

5 0

¢M 5 V ¢x 2 1
2 
w(¢x)2

Dividing both members of the equation by Dx and then letting Dx 
approach zero, we obtain

 
dM
dx

5 V
 

(7.3)

Formula (7.3) indicates that the slope dM/dx of the bending-moment 
curve is equal to the value of the shear. This is true at any point 
where the shear has a well-defined value, i.e., at any point where no 
concentrated load is applied. Formula (7.3) also shows that the shear 
is zero at points where the bending moment is maximum. This prop-
erty facilitates the determination of the points where the beam is 
likely to fail under bending.
 Integrating (7.3) between points C and D, we obtain

 
MD 2 MC 5 #

xD

xC

 
V dx

 
(7.4)

MD 2 MC 5 area under shear curve between C and D (7.49)

Note that the area under the shear curve should be considered 
 positive where the shear is positive and negative where the shear is 
negative. Formulas (7.4) and (7.49) are valid even when concentrated 
loads are applied between C and D, as long as the shear curve has 
been correctly drawn. The formulas cease to be valid, however, if a 
couple is applied at a point between C and D, since they do not take 
into account the sudden change in bending moment caused by a 
couple (see Sample Prob. 7.7).
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Fig. 7.11 (repeated )
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375EXAMPLE Let us consider a simply supported beam AB of span L car-
rying a uniformly distributed load w (Fig. 7.12a). From the free-body dia-
gram of the entire beam we determine the magnitude of the reactions at 
the supports: RA 5 RB 5 wL/2 (Fig. 7.12b). Next, we draw the shear dia-
gram. Close to the end A of the beam, the shear is equal to RA, that is, to 
wL/2, as we can check by considering a very small portion of the beam as 
a free body. Using formula (7.2), we can then determine the shear V at any 
distance x from A. We write

V 2 VA 5 2 #
x

0
 
w dx 5 2wx

V 5 VA 2 wx 5
wL
2

2 wx 5 waL
2

2 xb
The shear curve is thus an oblique straight line which crosses the x axis at 
x 5 L/2 (Fig. 7.12c). Considering, now, the bending moment, we first 
observe that MA 5 0. The value M of the bending moment at any distance 
x from A can then be obtained from formula (7.4); we have

M 2 MA 5 #
x

0
 
V dx

M 5 #
x

0
 
waL

2
2 xb  dx 5

w
2

 (Lx 2 x2)

The bending-moment curve is a parabola. The maximum value of the bend-
ing moment occurs when x 5 L/2, since V (and thus dM/dx) is zero for that 
value of x. Substituting x 5 L/2 in the last equation, we obtain Mmax 5 
wL2/8. ◾

 In most engineering applications, the value of the bending 
moment needs to be known only at a few specific points. Once the 
shear diagram has been drawn, and after M has been determined at 
one of the ends of the beam, the value of the bending moment can 
then be obtained at any given point by computing the area under 
the shear curve and using formula (7.49). For instance, since MA 5 0 
for the beam of Fig. 7.12, the maximum value of the bending moment 
for that beam can be obtained simply by measuring the area of the 
shaded triangle in the shear diagram:

Mmax 5
1
2

  
L
2

  
wL
2

5
wL2

8

 In this example, the load curve is a horizontal straight line, the 
shear curve is an oblique straight line, and the bending-moment curve 
is a parabola. If the load curve had been an oblique straight line (first 
degree), the shear curve would have been a parabola (second degree), 
and the bending-moment curve would have been a cubic (third degree). 
The shear and bending-moment curves will always be, respectively, one 
and two degrees higher than the load curve. Thus, once a few values 
of the shear and bending moment have been computed, we should be 
able to sketch the shear and bending-moment diagrams without actu-
ally determining the functions V(x) and M(x). The sketches obtained 
will be more accurate if we make use of the fact that at any point where 
the curves are continuous, the slope of the shear curve is equal to 2w 
and the slope of the bending-moment curve is equal to V.

Fig. 7.12 
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7.6 Relations among Load, Shear, 
and Bending Moment
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376

SAMPLE PROBLEM 7.4

Draw the shear and bending-moment diagrams for the beam and loading 
shown.

SOLUTION

Free-Body: Entire Beam. Considering the entire beam as a free body, we 
determine the reactions:

 1olMA 5 0:
 D(24 ft) 2 (20 kips)(6 ft) 2 (12 kips)(14 ft) 2 (12 kips)(28 ft) 5 0
 D 5 126 kips D 5 26 kipsx
 1xoFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0
 Ay 5 118 kips A y 5 18 kipsx
y
1 oFx 5 0: Ax 5 0 A x 5 0

We also note that at both A and E the bending moment is zero; thus two 
points (indicated by small circles) are obtained on the bending-moment 
diagram.

Shear Diagram. Since dV/dx 5 2w, we find that between concentrated 
loads and reactions the slope of the shear diagram is zero (i.e., the shear is 
constant). The shear at any point is determined by dividing the beam into two 
parts and considering either part as a free body. For example, using the por-
tion of beam to the left of section 1, we obtain the shear between B and C:

 1xoFy 5 0: 118 kips 2 20 kips 2 V 5 0 V 5 22 kips

We also find that the shear is 112 kips just to the right of D and zero at 
end E. Since the slope dV/dx 5 2w is constant between D and E, the shear 
diagram between these two points is a straight line.

Bending-Moment Diagram. We recall that the area under the shear curve 
between two points is equal to the change in bending moment between the 
same two points. For convenience, the area of each portion of the shear 
diagram is computed and is indicated on the diagram. Since the bending 
moment MA at the left end is known to be zero, we write

MB 2 MA 5 1108 MB 5 1108 kip ? ft
MC 2 MB 5 2 16 MC 5 1  92 kip ? ft
MD 2 MC 5 2140 MD 5 2 48 kip ? ft
ME 2 MD 5 1 48 ME 5 0

Since ME is known to be zero, a check of the computations is obtained.
 Between the concentrated loads and reactions the shear is constant; 
thus the slope dM/dx is constant, and the bending-moment diagram is drawn 
by connecting the known points with straight lines. Between D and E, where 
the shear diagram is an oblique straight line, the bending-moment diagram 
is a parabola.
 From the V and M diagrams we note that Vmax 5 18 kips and 
Mmax 5 108 kip ? ft.

A
B C D

E

20 kips 12 kips 1.5 kips/ft

6 ft
8 ft 8 ft10 ft

Ax

Ay

12 kips

1.5 kips/ft

4 ft

M

V

V(kips)
+18

M(kip⋅ft)

(+108)

(– 16)
+12

(+48)

–14

�2

+108
+92

�48

D

6 ft
8 ft 8 ft10 ft

A

B C D
E

20 kips 12 kips

B 1 C D
E

20 kips

18 kips

18 kips

20 kips
26 kips

12 kips

A

x

x
(�140)
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SOLUTION

Free-Body: Entire Beam. Considering the entire beam as a free body, we 
obtain the reactions

RA 5 80 kNx  RC 5 40 kNx

Shear Diagram. The shear just to the right of A is VA 5 180 kN. Since 
the change in shear between two points is equal to minus the area under 
the load curve between the same two points, we obtain VB by writing

 VB 2 VA 5 2(20 kN/m)(6 m) 5 2120 kN
 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

Since the slope dV/dx 5 2w is constant between A and B, the shear dia-
gram between these two points is represented by a straight line. Between 
B and C, the area under the load curve is zero; therefore,

VC 2 VB 5 0    VC 5 VB 5 240 kN

and the shear is constant between B and C.

Bending-Moment Diagram. We note that the bending moment at each 
end of the beam is zero. In order to determine the maximum bending 
moment, we locate the section D of the beam where V 5 0. We write

 VD 2 VA 5 2wx
 0 2 80 kN 5 2(20 kN/m)x

and, solving for x: x 5 4 m ◀

 The maximum bending moment occurs at point D, where we have 
dM/dx 5 V 5 0. The areas of the various portions of the shear diagram are 
computed and are given (in parentheses) on the diagram. Since the area of 
the shear diagram between two points is equal to the change in bending 
moment between the same two points, we write

 MD 2 MA 5 1160 kN ? m MD 5 1160 kN ? m
 MB 2 MD 5 2 40 kN ? m M B 5 1120 kN ? m
 MC 2 MB 5 2120 kN ? m M C 5 0

The bending-moment diagram consists of an arc of parabola followed by a 
segment of straight line; the slope of the parabola at A is equal to the value 
of V at that point.
 The maximum bending moment is

Mmax 5 MD 5 1160 kN ? m ◀

SAMPLE PROBLEM 7.5

Draw the shear and bending-moment diagrams for the beam and loading 
shown and determine the location and magnitude of the maximum bending 
moment.

A
B

C

20 kN/m

6 m 3 m

(�40)

A

A

A

B

BD

C

C

20 kN/m

6 m

a

w

V

M

x x

x

80 kN

80 kN

40 kN

�40 kN

(+160)

b

x = 4 m

(�120)

160 kN⋅m
120 kN⋅m
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SAMPLE PROBLEM 7.6

Sketch the shear and bending-moment diagrams for the cantilever beam 
shown.

SAMPLE PROBLEM 7.7

The simple beam AC is loaded by a couple of magnitude T applied at point B. 
Draw the shear and bending-moment diagrams for the beam.

SOLUTION

Free Body: Entire Beam. The entire beam is taken as a free body, and we 
obtain

RA 5
T
L
x   RC 5

T
L

 w

Shear and Bending-Moment Diagrams. The shear at any section is con-
stant and equal to T/L. Since a couple is applied at B, the bending-moment 
diagram is discontinuous at B; the bending moment decreases suddenly by 
an amount equal to T.

x

V

M

a

T
L

A C
B

T

L

x

a
LT

–T(1 –    )a
L

A
B C

x

M

V

w0

1
2�    w0a

1
2�    w0a

1
2

[�   w0a(L � a)]1
3

[�    w0a2]

1
6�    w0a(3L � a)

1
3�    w0a2

a
L

x

SOLUTION

Shear Diagram. At the free end of the beam, we find VA 5 0. Between 
A and B, the area under the load curve is 1

2 w0 a; we find VB by writing

VB 2 VA 5 21
2 
w0 

a   VB 5 21
2 
w0 

a

Between B and C, the beam is not loaded; thus VC 5 VB. At A, we have 
w 5 w0, and, according to Eq. (7.1), the slope of the shear curve is dV/dx 5 
2w0, while at B the slope is dV/dx 5 0. Between A and B, the loading 
decreases linearly, and the shear diagram is parabolic. Between B and C, 
w 5 0, and the shear diagram is a horizontal line.

Bending-Moment Diagram. We note that MA 5 0 at the free end of the 
beam. We compute the area under the shear curve and write

 MB 2 MA 5 21
3 
w0  

a2    MB 5 21
3 
w0  

a2

 MC 2 MB 5 21
2 
w0  

a(L 2 a)   
 MC 5 21

6 
w0a(3L 2 a)  

The sketch of the bending-moment diagram is completed by recalling that 
dM/dx 5 V. We find that between A and B the diagram is represented by 
a cubic curve with zero slope at A, and between B and C the diagram is 
represented by a straight line.
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned how to use the relations existing among load, shear, 
and bending moment to simplify the drawing of the shear and bending-moment 

diagrams. These relations are

 
dV
dx

5 2w
 

(7.1)

 
 
dM
dx

5 V
 

(7.3)

VD 2 VC 5 2(area under load curve between C and D) (7.29)
MD 2 MC 5 (area under shear curve between C and D) (7.49)

Taking into account these relations, you can use the following procedure to draw 
the shear and bending-moment diagrams for a beam.

1. Draw a free-body diagram of the entire beam, and use it to determine the 
reactions at the beam supports.

2. Draw the shear diagram. This can be done as in the preceding lesson by 
cutting the beam at various points and considering the free-body diagram of one 
of the two portions of the beam that you have obtained [Sample Prob. 7.3]. You 
can, however, consider one of the following alternative procedures.

a. The shear V at any point of the beam is the sum of the reactions and 
loads to the left of that point; an upward force is counted as positive, and a 
downward force is counted as negative.

b. For a beam carrying a distributed load, you can start from a point where 
you know V and use Eq. (7.29) repeatedly to find V at all the other points of 
interest.

3. Draw the bending-moment diagram, using the following procedure.
a. Compute the area under each portion of the shear curve, assigning a 

positive sign to areas located above the x axis and a negative sign to areas located 
below the x axis.

b. Apply Eq. (7.49) repeatedly [Sample Probs. 7.4 and 7.5], starting from the 
left end of the beam, where M 5 0 (except if a couple is applied at that end, or 
if the beam is a cantilever beam with a fixed left end).
 c. Where a couple is applied to the beam, be careful to show a disconti-
nuity in the bending-moment diagram by increasing the value of M at that point 
by an amount equal to the magnitude of the couple if the couple is clockwise,
or decreasing the value of M by that amount if the couple is counterclockwise
[Sample Prob. 7.7].

(continued)
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4. Determine the location and magnitude of |M|max. The maximum absolute 
value of the bending moment occurs at one of the points where dM/dx 5 0, that 
is, according to Eq. (7.3), at a point where V is equal to zero or changes sign. You 
should, therefore:
 a. Determine from the shear diagram the value of |M| where V changes 
sign; this will occur under the concentrated loads [Sample Prob. 7.4].
 b. Determine the points where V 5 0 and the corresponding values of 
|M|; this will occur under a distributed load. To find the distance x between point 
C, where the distributed load starts, and point D, where the shear is zero, use 
Eq. (7.29); for VC use the known value of the shear at point C, for VD use zero, 
and express the area under the load curve as a function of x [Sample Prob. 7.5].

5. You can improve the quality of your drawings by keeping in mind that at 
any given point, according to Eqs. (7.1) and (7.3), the slope of the V curve is equal 
to 2w and the slope of the M curve is equal to V.

6. Finally, for beams supporting a distributed load expressed as a function 
w (x ), remember that the shear V can be obtained by integrating the function 
2w(x), and the bending moment M can be obtained by integrating V(x) [Eqs. (7.3) 
and (7.4)].
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PROBLEMS

381

 7.63 Using the method of Sec. 7.6, solve Prob. 7.29.

7.64 Using the method of Sec. 7.6, solve Prob. 7.30.

7.65 Using the method of Sec. 7.6, solve Prob. 7.31.

7.66 Using the method of Sec. 7.6, solve Prob. 7.32.

7.67 Using the method of Sec. 7.6, solve Prob. 7.33.

7.68 Using the method of Sec. 7.6, solve Prob. 7.34.

 7.69 and 7.70 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.71 Using the method of Sec. 7.6, solve Prob. 7.39.

7.72 Using the method of Sec. 7.6, solve Prob. 7.40.

7.73 Using the method of Sec. 7.6, solve Prob. 7.41.

7.74 Using the method of Sec. 7.6, solve Prob. 7.42.

7.75 and 7.76 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

3.2 m
0.8 m

2 kN/m

4 kN

A
B

C

Fig. P7.69

0.3 m
0.4 m0.4 m0.4 m

2400 N/m
500 N500 N

A
B C D

E

Fig. P7.70

A B
C D

2 kips 4 kips

5 kip⋅ft

5 ft 5 ft 5 ft

Fig. P7.75

A B
C D E

2 kips 4 kips3 kips

6 ft6 ft6 ft6 ft

6 kip⋅ft 12 kip⋅ft

Fig. P7.76

0.8 m
2.4 m

8 kN/m

A B
C

Fig. P7.77 

20 kN/m

A B
C D

1.25 m 0.5 m
2 m

Fig. P7.78

  7.77 and 7.78 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the magnitude and 
location of the maximum bending moment.

A
B

C

1 kip/ft

4.5 ft
 18 ft

27 kip⋅ft

Fig. P7.79

6 ft4 ft
6000 lb

A
B

C

1500 lb/ft

Fig. P7.80

 7.79 and 7.80 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the magnitude and 
location of the maximum absolute value of the bending moment.
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382 Forces in Beams and Cables  7.81 (a) Draw the shear and bending-moment diagrams for beam AB, 
(b) determine the magnitude and location of the maximum abso-
lute value of the bending moment.

 7.82 Solve Prob. 7.81 assuming that the 300-lb force applied at D is 
directed upward.

 7.83 For the beam and loading shown, (a) draw the shear and bending-
moment diagrams, (b) determine the magnitude and location of 
the maximum absolute value of the bending moment.

A B
C

D

300 lb/ft

300 lb

2 ft2 ft
4 ft

Fig. P7.81

4 m

25 kN/m
20 kN⋅m

A B

Fig. P7.83
A

B

w

L

x

w0

Fig. P7.85
 7.84 Solve Prob. 7.83 assuming that the 20-kN ? m couple applied at B 

is counterclockwise.

 7.85 and 7.86 For the beam and loading shown, (a) write the equa-
tions of the shear and bending-moment curves, (b) determine the 
magnitude and location of the maximum bending moment.

 7.87 For the beam and loading shown, (a) write the equations of the 
shear and bending-moment curves, (b) determine the magnitude 
and location of the maximum bending moment.

w0
1
3

B

L

x

w0

w

A

Fig. P7.86

A
B

x

y
w = w0 cos px

2L

L

Fig. P7.87

 7.88 The beam AB, which lies on the ground, supports the parabolic load 
shown. Assuming the upward reaction of the ground to be uniformly 
distributed, (a) write the equations of the shear and bending-moment 
curves, (b) determine the maximum bending moment.

 7.89 The beam AB is subjected to the uniformly distributed load shown 
and to two unknown forces P and Q. Knowing that it has been 
experimentally determined that the bending moment is 1800 N ? 
m at D and 11300 N ? m at E, (a) determine P and Q, (b) draw the 
shear and bending-moment diagrams for the beam.

 7.90 Solve Prob. 7.89 assuming that the bending moment was found to 
be 1650 N ? m at D and 11450 N ? m at E.

A B

w

L

x

w0
w =   L x – x2

4w0

L2 (       )

Fig. P7.88

0.3 m 0.3 m 0.3 m0.3 m

A B
C D E

20 kN/m
P Q

Fig. P7.89
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 *7.91 The beam AB is subjected to the uniformly distributed load shown 
and to two unknown forces P and Q. Knowing that it has been 
experimentally determined that the bending moment is 16.10 kip ? ft 
at D and 15.50 kip ? ft at E, (a) determine P and Q, (b) draw the 
shear and bending-moment diagrams for the beam.

 *7.92 Solve Prob. 7.91 assuming that the bending moment was found to 
be 15.96 kip ? ft at D and 16.84 kip ? ft at E.

 CABLES

*7.7 CABLES WITH CONCENTRATED LOADS
Cables are used in many engineering applications, such as suspension 
bridges, transmission lines, aerial tramways, guy wires for high towers, etc. 
Cables may be divided into two categories, according to their loading: 
(1) cables supporting concentrated loads, (2) cables supporting distrib-
uted loads. In this section, cables of the first category are examined.
 Consider a cable attached to two fixed points A and B and sup-
porting n vertical concentrated loads P1, P2, . . . , Pn (Fig. 7.13a). We 
assume that the cable is flexible, i.e., that its resistance to bending is 
small and can be neglected. We further assume that the weight of the 
cable is negligible compared with the loads supported by the cable. 
Any portion of cable between successive loads can therefore be con-
sidered as a two-force member, and the internal forces at any point 
in the cable reduce to a force of tension directed along the cable.
 We assume that each of the loads lies in a given vertical line, i.e., 
that the horizontal distance from support A to each of the loads is 
known; we also assume that the horizontal and vertical distances 
between the supports are known. We propose to determine the shape of 
the cable, i.e., the vertical distance from support A to each of the points 
C1, C2, . . . , Cn, and also the tension T in each portion of the cable.

2 ft 2 ft
4 ft

2 ft2 ft

A B
C D E F

P Q
250 lb/ft

Fig. P7.91

3837.7 Cables with Concentrated Loads

†Clearly, the cable is not a rigid body; the equilibrium equations represent, therefore, 
necessary but not sufficient conditions (see Sec. 6.11).

(b)(a)
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A x
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BxBC1
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P2 P3
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d

x1

x2

x3

A

B
C1

C2 C3

P1

P2 P3

L

d

x1

x2

x3

Fig. 7.13

 We first draw the free-body diagram of the entire cable (Fig. 7.13b). 
Since the slope of the portions of cable attached at A and B is not known, 
the reactions at A and B must be represented by two components each. 
Thus, four unknowns are involved, and the three equations of equilib-
rium are not sufficient to determine the reactions at A and B.† We must 

Photo 7.3 Since the weight of the cable of 
the chairlift shown is negligible compared to the 
weights of the chairs and skiers, the methods of 
this section can be used to determine the force 
at any point in the cable.
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384 Forces in Beams and Cables

therefore obtain an additional equation by considering the equilibrium 
of a portion of the cable. This is possible if we know the coordinates 
x and y of a point D of the cable. Drawing the free-body diagram of 
the portion of cable AD (Fig. 7.14a) and writing oMD 5 0, we obtain 
an additional relation between the scalar components Ax and Ay and 
can determine the reactions at A and B. The problem would remain 
indeterminate, however, if we did not know the coordinates of D, 
unless some other relation between Ax and Ay (or between Bx and By) 
were given. The cable might hang in any of various possible ways, as 
indicated by the dashed lines in Fig. 7.13b.
 Once Ax and Ay have been determined, the vertical distance 
from A to any point of the cable can easily be found. Considering 
point C2, for example, we draw the free-body diagram of the portion 
of cable AC2 (Fig. 7.14b). Writing oMC2

5 0, we obtain an equation 
which can be solved for y2. Writing oFx 5 0 and oFy 5 0, we obtain 
the components of the force T representing the tension in the por-
tion of cable to the right of C2. We observe that T cos u 5 2Ax; the 
horizontal component of the tension force is the same at any point 
of the cable. It follows that the tension T is maximum when cos u is 
minimum, i.e., in the portion of cable which has the largest angle of 
inclination u. Clearly, this portion of cable must be adjacent to one 
of the two supports of the cable.

*7.8 CABLES WITH DISTRIBUTED LOADS
Consider a cable attached to two fixed points A and B and carrying 
a distributed load (Fig. 7.15a). We saw in the preceding section that 
for a cable supporting concentrated loads, the internal force at any 
point is a force of tension directed along the cable. In the case of a 
cable carrying a distributed load, the cable hangs in the shape of a 
curve, and the internal force at a point D is a force of tension T 
directed along the tangent to the curve. In this section, you will learn 
to determine the tension at any point of a cable supporting a given 
distributed load. In the following sections, the shape of the cable will 
be determined for two particular types of distributed loads.
 Considering the most general case of distributed load, we draw 
the free-body diagram of the portion of cable extending from the 
lowest point C to a given point D of the cable (Fig. 7.15b). The 
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385

forces acting on the free body are the tension force T0 at C, which 
is horizontal, the tension force T at D, directed along the tangent to 
the cable at D, and the resultant W of the distributed load supported 
by the portion of cable CD. Drawing the corresponding force trian-
gle (Fig. 7.15c), we obtain the following relations:

 T cos u 5 T0         T sin u 5 W  (7.5)

 
T 5 2T2

0 1 W2       tan u 5
W
T0 

(7.6)

From the relations (7.5), it appears that the horizontal component 
of the tension force T is the same at any point and that the vertical 
component of T is equal to the magnitude W of the load measured 
from the lowest point. Relations (7.6) show that the tension T is 
minimum at the lowest point and maximum at one of the two points 
of support.

*7.9 PARABOLIC CABLE
Let us assume, now, that the cable AB carries a load uniformly dis-
tributed along the horizontal (Fig. 7.16a). Cables of suspension 
bridges may be assumed loaded in this way, since the weight of the 
cables is small compared with the weight of the roadway. We denote 
by w the load per unit length (measured horizontally) and express it 
in N/m or in lb/ft. Choosing coordinate axes with origin at the lowest 
point C of the cable, we find that the magnitude W of the total load 
carried by the portion of cable extending from C to the point D of 
coordinates x and y is W 5 wx. The relations (7.6) defining the 
magnitude and direction of the tension force at D become

 
T 5 2T  

2
0 1 w2x2      tan u 5

wx
T0  

(7.7)

Moreover, the distance from D to the line of action of the resultant 
W is equal to half the horizontal distance from C to D (Fig. 7.16b). 
Summing moments about D, we write

 1l oMD 5 0:
 

wx 

x
2

2 T0 
y 5 0
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7.9 Parabolic Cable
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386 Forces in Beams and Cables and, solving for y,

 
y 5

wx2

2T0  
(7.8)

This is the equation of a parabola with a vertical axis and its vertex 
at the origin of coordinates. The curve formed by cables loaded uni-
formly along the horizontal is thus a parabola.†
 When the supports A and B of the cable have the same eleva-
tion, the distance L between the supports is called the span of the 
cable and the vertical distance h from the supports to the lowest 
point is called the sag of the cable (Fig. 7.17a). If the span and sag 
of a cable are known, and if the load w per unit horizontal length is 
given, the minimum tension T0 may be found by substituting x 5 
L/2 and y 5 h in Eq. (7.8). Equations (7.7) will then yield the ten-
sion and the slope at any point of the cable and Eq. (7.8) will define 
the shape of the cable.
 When the supports have different elevations, the position of the 
lowest point of the cable is not known and the coordinates xA, yA and 
xB, yB of the supports must be determined. To this effect, we express 
that the coordinates of A and B satisfy Eq. (7.8) and that xB 2 xA 5 L 
and yB 2 yA 5 d, where L and d denote, respectively, the horizontal 
and vertical distances between the two supports (Fig. 7.17b and c).
 The length of the cable from its lowest point C to its support 
B can be obtained from the formula

 
sB 5 #

xB

0

 
B

1 1 ady

dx
b

2

 dx
 

(7.9)

Differentiating (7.8), we obtain the derivative dy/dx 5 wx/T0; sub-
stituting into (7.9) and using the binomial theorem to expand the 
radical in an infinite series, we have

sB 5 #
xB

0

 
B

1 1
w2x2

T2
0

 dx 5 #
xB

0
 
a1 1

w2x2

2T2
0

2
w4x4

8T 4
0

1 pb dx

sB 5 xB 
a1 1

w2x2
B

6T2
0

2
w4x4

B

40T4
0

1 pb
and, since wx2

B/2T0 5 yB,

 
sB 5 xB c 1 1

2
3

 ayB

xB
b2

2
2
5

 ayB

xB
b4

1 p d
 

(7.10)

The series converges for values of the ratio yB/xB less than 0.5; in 
most cases, this ratio is much smaller, and only the first two terms 
of the series need be computed.

†Cables hanging under their own weight are not loaded uniformly along the horizontal, 
and they do not form a parabola. The error introduced by assuming a parabolic shape for 
cables hanging under their weight, however, is small when the cable is sufficiently taut. A 
complete discussion of cables hanging under their own weight is given in the next section.

Fig. 7.17

(b)

(a)

A B

C

y

x

yB

yA

xBxA

xA < 0

L

h

A

B

C

y

x

y

x

L

d

A

B

L

xB

yB

yA

d

(c)

C
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SOLUTION

Reactions at Supports. The reaction components Ax and Ay are deter-
mined as follows:

Free Body: Entire Cable

 1l  oME 5 0:
Ax(20 ft) 2 Ay(60 ft) 1 (6 kips)(40 ft) 1 (12 kips)(30 ft) 1 (4 kips)(15 ft) 5 0
 20Ax 2 60Ay 1 660 5 0

Free Body: ABC

 1l  oMC 5 0:  2Ax(5 ft) 2 Ay(30 ft) 1 (6 kips)(10 ft) 5 0
 25Ax 2 30Ay 1 60 5 0

Solving the two equations simultaneously, we obtain

 Ax 5 218 kips  Ax 5 18 kips z
 Ay 5 15 kips   Ay 5 5 kipsx

a. Elevation of Points B and D.
Free Body: AB Considering the portion of cable AB as a free body, 
we write

 1l  oMB 5 0:  (18 kips)yB 2 (5 kips)(20 ft) 5 0
yB 5 5.56 ft below A ◀

Free Body: ABCD Using the portion of cable ABCD as a free body, 
we write

 1l  oMD 5 0:
2(18 kips)yD 2 (5 kips)(45 ft) 1 (6 kips)(25 ft) 1 (12 kips)(15 ft) 5 0

yD 5 5.83 ft above A ◀

b. Maximum Slope and Maximum Tension. We observe that the maxi-
mum slope occurs in portion DE. Since the horizontal component of the 
tension is constant and equal to 18 kips, we write

 
tan u 5

14 .17
15 ft  

u 5 43.4° ◀

 
Tmax 5

18 kips

cos u  
Tmax 5 24.8 kips ◀

SAMPLE PROBLEM 7.8

The cable AE supports three vertical loads from the points indicated. If 
point C is 5 ft below the left support, determine (a) the elevation of points 
B and D, (b) the maximum slope and the maximum tension in the cable.

D

BA C

E

6 kips 12 kips

4 kips
20 ft

5 ft

20 ft 15 ft 15 ft10 ft

yB

yD

Ax

Ay

Ex

Ey

D

BA C

E

6 kips

18 kips
5 kips

12 kips

4 kips

14.17 ft

5.83 ft

15 ft

Ex =18 kips
Ey

BA C

6 kips 12 kips

5 ft

20 ft 10 ft

Ax

Ay

q

BA

6 kips

5 kips

20 ft

20 ft 15 ft10 ft

D

BA C

6 kips

18 kips

18 kips

5 kips

12 kips
4 kips

D

B

A
C

E

6 kips 12 kips

4 kips

20 ft
5 ft

20 ft 15 ft 15 ft10 ft
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SOLUTION

a. Load P. We denote by C the lowest point of the cable and draw the 
free-body diagram of the portion CB of cable. Assuming the load to be 
uniformly distributed along the horizontal, we write

w 5 (0.75 kg/m)(9.81 m/s2) 5 7.36 N/m

The total load for the portion CB of cable is

W 5 wxB 5 (7.36 N/m)(20 m) 5 147.2 N

and is applied halfway between C and B. Summing moments about B, we 
write

 1l  oMB 5 0: (147.2 N)(10 m) 2 T0(0.5 m) 5 0 T0 5 2944 N

From the force triangle we obtain

 TB 5 2T2
0 1 W2

 5 2 (2944 N)2 1 (147.2 N)2 5 2948 N

Since the tension on each side of the pulley is the same, we find

P 5 TB 5 2948 N ◀

b. Slope of Cable at B.  We also obtain from the force triangle

tan u 5
W
T0

5
147.2 N
2944 N

5 0.05

u 5 2.9° ◀

c. Length of Cable. Applying Eq. (7.10) between C and B, we write

 sB 5 xB c 1 1
2
3

 ayB

xB
b2

1 p d
 5 (20 m) c 1 1

2
3

 a0.5 m
20 m

b2

1 p d 5 20.00833 m

The total length of the cable between A and B is twice this value,

Length 5 2sB 5 40.0167 m ◀

SAMPLE PROBLEM 7.9

A light cable is attached to a support at A, passes over a small pulley at B, 
and supports a load P. Knowing that the sag of the cable is 0.5 m and that 
the mass per unit length of the cable is 0.75 kg/m, determine (a) the mag-
nitude of the load P, (b) the slope of the cable at B, (c) the total length of 
the cable from A to B. Since the ratio of the sag to the span is small, assume 
the cable to be parabolic. Also, neglect the weight of the portion of cable 
from B to D.

C

B

W = 147.2 N

T0

TB

q
y

10 m 10 m

0.5 m

x

C

B
y

x

yB = 0.5 m

xB = 20 m

A B

D0.5 m

P

40 m

W = 147.2 N

T0

TB

q
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SOLVING PROBLEMS
ON YOUR OWN

In the problems of this section you will apply the equations of equilibrium to 
cables that lie in a vertical plane. We assume that a cable cannot resist bending, 

so that the force of tension in the cable is always directed along the cable.

A. In the first part of this lesson we considered cables subjected to concen-
trated loads. Since the weight of the cable is neglected, the cable is straight 
between loads.

Your solution will consist of the following steps:

1. Draw a free-body diagram of the entire cable showing the loads and the 
horizontal and vertical components of the reaction at each support. Use this free-
body diagram to write the corresponding equilibrium equations.

2. You will be confronted with four unknown components and only three 
equations of equilibrium (see Fig. 7.13). You must therefore find an additional 
piece of information, such as the position of a point on the cable or the slope of 
the cable at a given point.

3. After you have identified the point of the cable where the additional 
information exists, cut the cable at that point, and draw a free-body diagram of 
one of the two portions of the cable you have obtained.
 a. If you know the position of the point where you have cut the cable, writing 
oM 5 0 about that point for the new free body will yield the additional equation 
required to solve for the four unknown components of the reactions. [Sample 
Prob. 7.8].
 b. If you know the slope of the portion of the cable you have cut, writing 
oFx 5 0 and oFy 5 0 for the new free body will yield two equilibrium equations 
which, together with the original three, can be solved for the four reaction com-
ponents and for the tension in the cable where it has been cut.

4. To find the elevation of a given point of the cable and the slope and 
tension at that point once the reactions at the supports have been found, you 
should cut the cable at that point and draw a free-body diagram of one of the two 
portions of the cable you have obtained. Writing oM 5 0 about the given point 
yields its elevation. Writing oFx 5 0 and oFy 5 0 yields the components of the 
tension force, from which its magnitude and direction can easily be found.

(continued)

bee29400_ch07_352-409.indd Page 389  12/2/08  1:15:12 AM user-s173bee29400_ch07_352-409.indd Page 389  12/2/08  1:15:12 AM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



390

5. For a cable supporting vertical loads only, you will observe that the hori-
zontal component of the tension force is the same at any point. It follows that, for 
such a cable, the maximum tension occurs in the steepest portion of the cable.

B. In the second portion of this lesson we considered cables carrying a load 
uniformly distributed along the horizontal. The shape of the cable is then 
parabolic.

Your solution will use one or more of the following concepts:

1. Placing the origin of coordinates at the lowest point of the cable and 
directing the x and y axes to the right and upward, respectively, we find that the 
equation of the parabola is

 
y 5

wx2

2T0  
(7.8)

The minimum cable tension occurs at the origin, where the cable is horizontal, 
and the maximum tension is at the support where the slope is maximum.

2. If the supports of the cable have the same elevation, the sag h of the cable 
is the vertical distance from the lowest point of the cable to the horizontal line 
joining the supports. To solve a problem involving such a parabolic cable, you 
should write Eq. (7.8) for one of the supports; this equation can be solved for one 
unknown.

3. If the supports of the cable have different elevations, you will have to write 
Eq. (7.8) for each of the supports (see Fig. 7.17).

4. To find the length of the cable from the lowest point to one of the supports, 
you can use Eq. (7.10). In most cases, you will need to compute only the first two 
terms of the series.
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PROBLEMS

391

 7.93 Two loads are suspended as shown from the cable ABCD. Knowing 
that hB 5 1.8 m, determine (a) the distance hC, (b) the components 
of the reaction at D, (c) the maximum tension in the cable.

A

B C

D

E

300 lb

300 lb

200 lb

8 ft 8 ft 8 ft 8 ft

6 ft d C

Fig. P7.95 and P7.96

B
C

DA

6 kN
10 kN

3 m 3 m 4 m

hB hC

Fig. P7.93 and P7.94

A

B

C

D

E

d B

2 m 2 m

5 kN

5 kN

10 kN

d C d D 4 m

3 m 3 m

Fig. P7.97 and P7.98

 7.94 Knowing that the maximum tension in cable ABCD is 15 kN, 
determine (a) the distance hB, (b) the distance hC.

 7.95 If dC 5 8 ft, determine (a) the reaction at A, (b) the reaction at E.

 7.96 If dC 5 4.5 ft, determine (a) the reaction at A, (b) the reaction 
at E.

 7.97 Knowing that dC 5 3 m, determine (a) the distances dB and dD, 
(b) the reaction at E.

 7.98 Determine (a) distance dC for which portion DE of the cable is 
horizontal, (b) the corresponding reactions at A and E.

 7.99 If dC 5 15 ft, determine (a) the distances dB and dD, (b) the maxi-
mum tension in the cable.

 7.100 Determine (a) the distance dC for which portion BC of the cable is 
horizontal, (b) the corresponding components of the reaction at E.

A

B
C

7.5 ft

6 ft 9 ft 6 ft 9 ft

d B

D

d D

d C

E

2 kips2 kips
2 kips

Fig. P7.99 and P7.100
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392 Forces in Beams and Cables  7.101 Cable ABC supports two loads as shown. Knowing that b 5 4 ft, 
determine (a) the required magnitude of the horizontal force P, 
(b) the corresponding distance a.

 7.102 Cable ABC supports two loads as shown. Determine the distances 
a and b when a horizontal force P of magnitude 60 lb is applied 
at A.

 7.103 Knowing that mB 5 70 kg and mC 5 25 kg, determine the mag-
nitude of the force P required to maintain equilibrium.

A B C

h 3 m

90 m 60 m

Fig. P7.108

P

A

B

C

D

4 m4 m 6 m

3 m
5 m

mB

mC

Fig. P7.103 and P7.104

80 lb

40 lb

P

A

B

C

10 ft

5 ft

b

a

Fig. P7.101 and P7.102

P

A

B

C

D

E2 m

2 m

120 kN

Q

4 m 4 m 4 m 4 m

a

Fig. P7.105 and P7.106

 7.104 Knowing that mB 5 18 kg and mC 5 10 kg, determine the mag-
nitude of the force P required to maintain equilibrium.

 7.105 If a 5 3 m, determine the magnitudes of P and Q required to 
maintain the cable in the shape shown.

 7.106 If a 5 4 m, determine the magnitudes of P and Q required to 
maintain the cable in the shape shown.

 7.107 A wire having a mass per unit length of 0.65 kg/m is suspended 
from two supports at the same elevation that are 120 m apart. 
If the sag is 30 m, determine (a) the total length of the wire, (b) the 
maximum tension in the wire.

 7.108 Two cables of the same gauge are attached to a transmission tower 
at B. Since the tower is slender, the horizontal component of the 
resultant of the forces exerted by the cables at B is to be zero. 
Knowing that the mass per unit length of the cables is 0.4 kg/m, 
determine (a) the required sag h, (b) the maximum tension in each 
cable.
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393Problems 7.109 Each cable of the Golden Gate Bridge supports a load w 5 
11.1 kips/ft along the horizontal. Knowing that the span L is 
4150 ft and that the sag h is 464 ft, determine (a) the maximum 
tension in each cable, (b) the length of each cable.

 7.110 The center span of the George Washington Bridge, as originally 
constructed, consisted of a uniform roadway suspended from 
four cables. The uniform load supported by each cable was w 5 
9.75 kips/ft along the horizontal. Knowing that the span L is 3500 ft 
and that the sag h is 316 ft, determine for the original configura-
tion (a) the maximum tension in each cable, (b) the length of each 
cable.

 7.111 The total mass of cable AC is 25 kg. Assuming that the mass of 
the cable is distributed uniformly along the horizontal, determine 
the sag h and the slope of the cable at A and C.

 7.112 A 50.5-m length of wire having a mass per unit length of 0.75 kg/m 
is used to span a horizontal distance of 50 m. Determine (a) the 
approximate sag of the wire, (b) the maximum tension in the wire. 
[Hint: Use only the first two terms of Eq. (7.10).]

 7.113 A cable of length L 1 D is suspended between two points that are 
at the same elevation and a distance L apart. (a) Assuming that D 
is small compared to L and that the cable is parabolic, determine 
the approximate sag in terms of L and D. (b) If L 5 100 ft and 
D 5 4 ft, determine the approximate sag. [Hint: Use only the first 
two terms of Eq. (7.10).]

 7.114 The center span of the Verrazano-Narrows Bridge consists of two 
uniform roadways suspended from four cables. The design of the 
bridge allows for the effect of extreme temperature changes that 
cause the sag of the center span to vary from hw 5 386 ft in winter 
to hs 5 394 ft in summer. Knowing that the span is L 5 4260 ft, 
determine the change in length of the cables due to extreme tem-
perature changes.

 7.115 Each cable of the side spans of the Golden Gate Bridge supports 
a load w 5 10.2 kips/ft along the horizontal. Knowing that for the 
side spans the maximum vertical distance h from each cable to the 
chord AB is 30 ft and occurs at midspan, determine (a) the maxi-
mum tension in each cable, (b) the slope at B.

h

450 kg

A B

C

2.5 m

2.5 m

3 m

5 m

Fig. P7.111

A

B
1100 ft

496 ft

10.2 kips/ft

C

h = 30 ft

Fig. P7.115
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394 Forces in Beams and Cables  7.116 A steam pipe weighing 45 lb/ft that passes between two buildings 
40 ft apart is supported by a system of cables as shown. Assuming 
that the weight of the cable system is equivalent to a uniformly 
distributed loading of 5 lb/ft, determine (a) the location of the 
lowest point C of the cable, (b) the maximum tension in the 
cable.

A

B

a

12 m

1.8 m

45 kg /m

Aθ

Bθ

Fig. P7.117 and P7.118

40 ft

A

BC
5 ft
4 ft
4 ft

Fig. P7.116

B

C

A'

A

B'
C'

P1

P1

P2

P2

P3

P3

Pn

Pn

a
h

L

Fig. P7.119

 7.117 Cable AB supports a load uniformly distributed along the horizon-
tal as shown. Knowing that at B the cable forms an angle uB 5 35° 
with the horizontal, determine (a) the maximum tension in the 
cable, (b) the vertical distance a from A to the lowest point of 
the cable.

 7.118 Cable AB supports a load uniformly distributed along the horizon-
tal as shown. Knowing that the lowest point of the cable is located 
at a distance a 5 0.6 m below A, determine (a) the maximum 
tension in the cable, (b) the angle uB that the cable forms with the 
horizontal at B.

 *7.119 A cable AB of span L and a simple beam A9B9 of the same span 
are subjected to identical vertical loadings as shown. Show that the 
magnitude of the bending moment at a point C9 in the beam is 
equal to the product T0h, where T0 is the magnitude of the hori-
zontal component of the tension force in the cable and h is the 
vertical distance between point C and the chord joining the points 
of support A and B.

 7.120 through 7.123 Making use of the property established in Prob. 
7.119, solve the problem indicated by first solving the  corresponding 
beam problem.

 7.120 Prob. 7.94a.
 7.121 Prob. 7.97a.
 7.122 Prob. 7.99a.
 7.123 Prob. 7.100a.
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 *7.124 Show that the curve assumed by a cable that carries a distributed 
load w(x) is defined by the differential equation d2y/dx2 5 w(x)/T0, 
where T0 is the tension at the lowest point.

 *7.125 Using the property indicated in Prob. 7.124, determine the curve 
assumed by a cable of span L and sag h carrying a distributed load 
w 5 w0 cos (px/L), where x is measured from mid-span. Also 
determine the maximum and minimum values of the tension in 
the cable.

 *7.126 If the weight per unit length of the cable AB is w0/cos2 u, prove 
that the curve formed by the cable is a circular arc. (Hint: Use the 
property indicated in Prob. 7.124.)

A B

C D x

y

aa

q

Fig. P7.126

395

*7.10 CATENARY
Let us now consider a cable AB carrying a load uniformly distrib-
uted along the cable itself (Fig. 7.18a). Cables hanging under their 
own weight are loaded in this way. We denote by w the load per 
unit length (measured along the cable) and express it in N/m or in 
lb/ft. The magnitude W of the total load carried by a portion of 
cable of length s extending from the lowest point C to a point D is 
W 5 ws. Substituting this value for W in formula (7.6), we obtain 
the tension at D:

T 5 2T2
0 1 w2s2

In order to simplify the subsequent computations, we introduce the 
constant c 5 T0/w. We thus write

 T0 5 wc   W 5 ws   T 5 w2c2 1 s2 (7.11)

 The free-body diagram of the portion of cable CD is shown in 
Fig. 7.18b. This diagram, however, cannot be used to obtain directly 
the equation of the curve assumed by the cable, since we do not 
know the horizontal distance from D to the line of action of the 
resultant W of the load. To obtain this equation, we first write that 
the horizontal projection of a small element of cable of length ds is 

A

By

C

O c

x

D(x,y)

(a)

ds

dx

q

q

T

T

D

C
W = ws

W = ws

(b) (c)

T0
T0

s
s

dy

Fig. 7.18

7.10 Catenary

Photo 7.4 The forces on the supports and the 
internal forces in the cables of the power line 
shown are discussed in this section.
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396 Forces in Beams and Cables dx 5 ds cos u. Observing from Fig. 7.18c that cos u 5 T0/T and 
using (7.11), we write

dx 5 ds cos u 5
T0

T
 ds 5

wc ds

w2c2 1 s2
5

ds

21 1 s2/c2

Selecting the origin O of the coordinates at a distance c directly 
below C (Fig. 7.18a) and integrating from C(0, c) to D(x, y), we 
obtain†

x 5 #
s

0

 
ds

21 1 s2/c2
5 c c sinh21 

s
c
d s

0
5 c sinh21 

s
c

This equation, which relates the length s of the portion of cable CD 
and the horizontal distance x, can be written in the form

 
s 5 c sinh 

x
c 

(7.15)

 The relation between the coordinates x and y can now be 
obtained by writing dy 5 dx tan u. Observing from Fig. 7.18c that 
tan u 5 W/T0 and using (7.11) and (7.15), we write

dy 5 dx tan u 5
W
T0

  dx 5
s
c

  dx 5 sinh 
x
c

  dx

Integrating from C(0, c) to D(x, y) and using (7.12) and (7.13), we 
obtain

y 2 c 5 #
x

0

 sinh 
x
c

  dx 5 c c cosh 
x
c
d x

0
5 c acosh 

x
c

2 1b
y 2 c 5 c cosh 

x
c

2 c

†This integral can be found in all standard integral tables. The function

 z 5 sinh21 u

(read “arc hyperbolic sine u”) is the inverse of the function u 5 sinh z (read “hyperbolic 
sine z”). This function and the function v 5 cosh z (read “hyperbolic cosine z”) are 
defined as follows:

 u 5 sinh z 5 1
2 (ez 2 e2z)  v 5 cosh z 5 1

2 (ez 1 e2z)

Numerical values of the functions sinh z and cosh z are found in tables of hyperbolic 
functions. They may also be computed on most calculators either directly or from the 
above definitions. The student is referred to any calculus text for a complete description 
of the properties of these functions. In this section, we use only the following properties, 
which are easily derived from the above definitions:

 
d sinh z

dz
5 cosh z   d cosh z

dz
5 sinh z

 
(7.12)

 sinh 0 5 0  cosh 0 5 1 (7.13)
 cosh2 z 2 sinh2 z 5 1 (7.14)

A

By

C

O c

x

D(x,y)

(a)

q

T W = ws

(c)

T0

s

ds

dx

q

T

D

C
W = ws

(b)

T0

s

dy

Fig. 7.18 (continued )
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397which reduces to

 
y 5 c cosh 

x
c 

(7.16)

This is the equation of a catenary with vertical axis. The ordinate c 
of the lowest point C is called the parameter of the catenary. Squar-
ing both sides of Eqs. (7.15) and (7.16), subtracting, and taking (7.14) 
into account, we obtain the following relation between y and s:

 y2 2 s2 5 c2 (7.17)

Solving (7.17) for s2 and carrying into the last of the relations (7.11), 
we write these relations as follows:

 T0 5 wc  W 5 ws  T 5 wy (7.18)

The last relation indicates that the tension at any point D of the cable 
is proportional to the vertical distance from D to the horizontal line 
representing the x axis.
 When the supports A and B of the cable have the same eleva-
tion, the distance L between the supports is called the span of the 
cable and the vertical distance h from the supports to the lowest 
point C is called the sag of the cable. These definitions are the 
same as those given in the case of parabolic cables, but it should 
be noted that because of our choice of coordinate axes, the sag h 
is now

 h 5 yA 2 c (7.19)

It should also be observed that certain catenary problems involve 
transcendental equations which must be solved by successive approx-
imations (see Sample Prob. 7.10). When the cable is fairly taut, how-
ever, the load can be assumed uniformly distributed along the 
horizontal and the catenary can be replaced by a parabola. This 
greatly simplifies the solution of the problem, and the error intro-
duced is small.
 When the supports A and B have different elevations, the posi-
tion of the lowest point of the cable is not known. The problem can 
then be solved in a manner similar to that indicated for parabolic 
cables, by expressing that the cable must pass through the supports 
and that xB 2 xA 5 L and yB 2 yA 5 d, where L and d denote, 
respectively, the horizontal and vertical distances between the two 
supports.

7.10 Catenary
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SOLUTION

Equation of Cable. The origin of coordinates is placed at a distance c 
below the lowest point of the cable. The equation of the cable is given by 
Eq. (7.16),

y 5 c cosh 
x
c

The coordinates of point B are

xB 5 250 ft  yB 5 100 1 c

Substituting these coordinates into the equation of the cable, we obtain

 100 1 c 5 c cosh 
250

c

 
100

c
1 1 5 cosh 

250
c

The value of c is determined by assuming successive trial values, as shown 
in the following table:

SAMPLE PROBLEM 7.10

A uniform cable weighing 3 lb/ft is suspended between two points A and B 
as shown. Determine (a) the maximum and minimum values of the tension 
in the cable, (b) the length of the cable.

A B

100 ft

500 ft

xB

yB

y

xO

c

A

C

B

c
 

250
c  

100
c  

100
c

1 1
 

cosh 
250

c

300 0.833 0.333 1.333 1.367
350 0.714 0.286 1.286 1.266
330 0.758 0.303 1.303 1.301
328 0.762 0.305 1.305 1.305

Taking c 5 328, we have

yB 5 100 1 c 5 428 ft

a. Maximum and Minimum Values of the Tension. Using Eqs. (7.18), 
we obtain

 Tmin 5 T0 5 wc 5 (3 lb/ft)(328 ft) Tmin 5 984 lb ◀

 Tmax 5 TB 5 wyB 5 (3 lb/ft)(428 ft)  Tmax 5 1284 lb ◀

b. Length of Cable. One-half the length of the cable is found by solving 
Eq. (7.17):

y2
B 2 s2

CB 5 c2  s2
CB 5 y2

B 2 c2 5 (428)2 2 (328)2  sCB 5 275 ft

The total length of the cable is therefore

 sAB 5 2sCB 5 2(275 ft) sAB 5 550 ft ◀
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SOLVING PROBLEMS
ON YOUR OWN

In the last section of this chapter you learned to solve problems involving a cable 
carrying a load uniformly distributed along the cable. The shape assumed by 

the cable is a catenary and is defined by the equation:

y 5 c cosh 
x
c 

(7.16)

1. You should keep in mind that the origin of coordinates for a catenary is 
located at a distance c directly below the lowest point of the catenary. The 
length of the cable from the origin to any point is expressed as

s 5 c sinh 
x
c 

(7.15)

2. You should first identify all of the known and unknown quantities. Then 
consider each of the equations listed in the text (Eqs. 7.15 through 7.19), and solve 
an equation that contains only one unknown. Substitute the value found into 
another equation, and solve that equation for another unknown.

3. If the sag h is given, use Eq. (7.19) to replace y by h 1 c in Eq. (7.16) if x
is known [Sample Prob. 7.10], or in Eq. (7.17) if s is known, and solve the equa-
tion obtained for the constant c.

4. Many of the problems that you will encounter will involve the solution by 
trial and error of an equation involving a hyperbolic sine or cosine. You can make 
your work easier by keeping track of your calculations in a table, as in Sample 
Prob. 7.10, or by applying a numerical methods approach using a computer or 
calculator.
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PROBLEMS

400

7.127 A 30-m cable is strung as shown between two buildings. The 
maximum tension is found to be 500 N, and the lowest point of 
the cable is observed to be 4 m above the ground. Determine 
(a) the horizontal distance between the buildings, (b) the total 
mass of the cable.

A
B

C

P

h

L

Fig. P7.131, P7.132, and P7.133

A B

C10 m

L

4 m

Fig. P7.127

7.128 A 200-ft steel surveying tape weighs 4 lb. If the tape is stretched 
between two points at the same elevation and pulled until the ten-
sion at each end is 16 lb, determine the horizontal distance between 
the ends of the tape. Neglect the elongation of the tape due to the 
tension.

7.129 A 200-m-long aerial tramway cable having a mass per unit length 
of 3.5 kg/m is suspended between two points at the same elevation. 
Knowing that the sag is 50 m, find (a) the horizontal distance 
between the supports, (b) the maximum tension in the cable.

7.130 An electric transmission cable of length 400 ft weighing 2.5 lb/ft 
is suspended between two points at the same elevation. Knowing 
that the sag is 100 ft, determine the horizontal distance between 
the supports and the maximum tension.

7.131 A 20-m length of wire having a mass per unit length of 0.2 kg/m is 
attached to a fixed support at A and to a collar at B. Neglecting 
the effect of friction, determine (a) the force P for which h 5 8 m, 
(b) the corresponding span L.

 7.132 A 20-m length of wire having a mass per unit length of 0.2 kg/m 
is attached to a fixed support at A and to a collar at B. Knowing 
that the magnitude of the horizontal force applied to the collar is 
P 5 20 N, determine (a) the sag h, (b) the span L.

 7.133 A 20-m length of wire having a mass per unit length of 0.2 kg/m 
is attached to a fixed support at A and to a collar at B. Neglecting 
the effect of friction, determine (a) the sag h for which L 5 15 m, 
(b) the corresponding force P.

 7.134 Determine the sag of a 30-ft chain that is attached to two points 
at the same elevation that are 20 ft apart.
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401Problems 7.135 A 90-m wire is suspended between two points at the same eleva-
tion that are 60 m apart. Knowing that the maximum tension is 
300 N, determine (a) the sag of the wire, (b) the total mass of 
the wire.

 7.136 A counterweight D is attached to a cable that passes over a small 
pulley at A and is attached to a support at B. Knowing that L 5 
45 ft and h 5 15 ft, determine (a) the length of the cable from A 
to B, (b) the weight per unit length of the cable. Neglect the weight 
of the cable from A to D.

 7.137 A uniform cord 50 in. long passes over a pulley at B and is attached 
to a pin support at A. Knowing that L 5 20 in. and neglecting the 
effect of friction, determine the smaller of the two values of h for 
which the cord is in equilibrium.

 7.138 A cable weighing 2 lb/ft is suspended between two points at the 
same elevation that are 160 ft apart. Determine the smallest 
allowable sag of the cable if the maximum tension is not to exceed 
400 lb.

 7.139 A motor M is used to slowly reel in the cable shown. Knowing that 
the mass per unit length of the cable is 0.4 kg/m, determine the 
maximum tension in the cable when h 5 5 m.

 7.140 A motor M is used to slowly reel in the cable shown. Knowing that 
the mass per unit length of the cable is 0.4 kg/m, determine the 
maximum tension in the cable when h 5 3 m.

 7.141 A uniform cable weighing 3 lb/ft is held in the position shown by 
a horizontal force P applied at B. Knowing that P 5 180 lb and 
uA 5 60°, determine (a) the location of point B, (b) the length of 
the cable.

 7.142 A uniform cable weighing 3 lb/ft is held in the position shown by 
a horizontal force P applied at B. Knowing that P 5 150 lb and 
uA 5 60°, determine (a) the location of point B, (b) the length of 
the cable.

 7.143 To the left of point B the long cable ABDE rests on the rough 
horizontal surface shown. Knowing that the mass per unit length 
of the cable is 2 kg/m, determine the force F when a 5 3.6 m.

A B

C

M

h

10 m

Fig. P7.139 and P7.140

A B

h

L

Fig. P7.137

A B

C

D h

80 lb

L

Fig. P7.136

A

B P

qA

a

b

Fig. P7.141 and P7.142

D

A B

E F

h = 4 m

a

Fig. P7.143 and P7.144

 7.144 To the left of point B the long cable ABDE rests on the rough 
horizontal surface shown. Knowing that the mass per unit length 
of the cable is 2 kg/m, determine the force F when a 5 6 m.

bee29400_ch07_352-409.indd Page 401  12/2/08  1:15:28 AM user-s173bee29400_ch07_352-409.indd Page 401  12/2/08  1:15:28 AM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



402 Forces in Beams and Cables  7.145 The cable ACB has a mass per unit length of 0.45 kg/m. Knowing 
that the lowest point of the cable is located at a distance a 5 0.6 m 
below the support A, determine (a) the location of the lowest 
point C, (b) the maximum tension in the cable.

 *7.152 Determine the sag-to-span ratio for which the maximum tension 
in the cable is equal to the total weight of the entire cable AB.

 *7.153 A cable of weight w per unit length is suspended between two 
points at the same elevation that are a distance L apart. Determine 
(a) the sag-to-span ratio for which the maximum tension is as small 
as possible, (b) the corresponding values of uB and Tm.

A

B

a
q = 30°

Fig. P7.147

qA qBA B

h

L

Fig. P7.151, P7.152, and P7.153

 7.146 The cable ACB has a mass per unit length of 0.45 kg/m. Knowing 
that the lowest point of the cable is located at a distance a 5 2 m 
below the support A, determine (a) the location of the lowest point 
C, (b) the maximum tension in the cable.

 *7.147 The 10-ft cable AB is attached to two collars as shown. The collar 
at A can slide freely along the rod; a stop attached to the rod 
prevents the collar at B from moving on the rod. Neglecting the 
effect of friction and the weight of the collars, determine the 
distance a.

 *7.148 Solve Prob. 7.147 assuming that the angle u formed by the rod and 
the horizontal is 45°.

 7.149 Denoting by u the angle formed by a uniform cable and the hori-
zontal, show that at any point (a) s 5 c tan u, (b) y 5 c sec u.

 *7.150 (a) Determine the maximum allowable horizontal span for a uniform 
cable of weight w per unit length if the tension in the cable is not 
to exceed a given value Tm. (b) Using the result of part a, determine 
the maximum span of a steel wire for which w 5 0.25 lb/ft and 
Tm 5 8000 lb.

 *7.151 A cable has a mass per unit length of 3 kg/m and is supported as 
shown. Knowing that the span L is 6 m, determine the two values 
of the sag h for which the maximum tension is 350 N.

A

B

Ca

12 m

1.8 m

Fig. P7.145 and P7.146
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403

REVIEW AND SUMMARY

In this chapter you learned to determine the internal forces which 
hold together the various parts of a given member in a structure.

Considering first a straight two-force member AB [Sec. 7.2], we 
recall that such a member is subjected at A and B to equal and 
opposite forces F and 2F directed along AB (Fig. 7.19a). Cutting 
member AB at C and drawing the free-body diagram of portion AC, 
we conclude that the internal forces which existed at C in member 
AB are equivalent to an axial force 2F equal and opposite to F
(Fig. 7.19b). We note that in the case of a two-force member which 
is not straight, the internal forces reduce to a force-couple system 
and not to a single force.

Forces in straight two-force members

Fig. 7.20

FBE

Cx

Ay

Ax

Cy

T

A

B

C

D

J

(a)

V

M
F

T

D

J

(b)

Fig. 7.19

(a) (b)

C

A

B

F

– F

– F

C

A

F

Considering next a multiforce member AD (Fig. 7.20a), cutting it at 
J, and drawing the free-body diagram of portion JD, we conclude that 
the internal forces at J are equivalent to a force-couple system con-
sisting of the axial force F, the shearing force V, and a couple M 
(Fig. 7.20b). The magnitude of the shearing force measures the shear 
at point J, and the moment of the couple is referred to as the bending 
moment at J. Since an equal and opposite force-couple system would 
have been obtained by considering the free-body diagram of portion 
AJ, it is necessary to specify which portion of member AD was used 
when recording the answers [Sample Prob. 7.1].

Most of the chapter was devoted to the analysis of the internal forces 
in two important types of engineering structures: beams and cables. 
Beams are usually long, straight prismatic members designed to sup-
port loads applied at various points along the member. In general 
the loads are perpendicular to the axis of the beam and produce only 
shear and bending in the beam. The loads may be either  concentrated 

Forces in beams

Forces in multiforce members
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404 Forces in Beams and Cables at specific points, or distributed along the entire length or a portion 
of the beam. The beam itself may be supported in various ways; since 
only statically determinate beams are considered in this text, we lim-
ited our analysis to that of simply supported beams, overhanging 
beams, and cantilever beams [Sec. 7.3].

To obtain the shear V and bending moment M at a given point C of 
a beam, we first determine the reactions at the supports by consider-
ing the entire beam as a free body. We then cut the beam at C and 
use the free-body diagram of one of the two portions obtained in 
this fashion to determine V and M. In order to avoid any confusion 
regarding the sense of the shearing force V and couple M (which 
act in opposite directions on the two portions of the beam), the sign 
convention illustrated in Fig. 7.21 was adopted [Sec. 7.4]. Once the 
values of the shear and bending moment have been determined at 
a few selected points of the beam, it is usually possible to draw a 
shear diagram and a bending-moment diagram representing, respec-
tively, the shear and bending moment at any point of the beam 
[Sec. 7.5]. When a beam is subjected to concentrated loads only, the 
shear is of constant value between loads and the bending moment 
varies linearly between loads [Sample Prob. 7.2]. On the other hand, 
when a beam is subjected to distributed loads, the shear and bending 
moment vary quite differently [Sample Prob. 7.3].

The construction of the shear and bending-moment diagrams is 
facilitated if the following relations are taken into account. Denoting 
by w the distributed load per unit length (assumed positive if directed 
downward), we have [Sec. 7.5]:

 
 
dV
dx

5 2w
 

(7.1)

 
 
dM
dx

5 V
 

(7.3)

or, in integrated form,

 VD 2 VC 5 2(area under load curve between C and D) (7.29)
 MD 2 MC 5 area under shear curve between C and D (7.49)

Equation (7.29) makes it possible to draw the shear diagram of a 
beam from the curve representing the distributed load on that beam 
and the value of V at one end of the beam. Similarly, Eq. (7.49) 
makes it possible to draw the bending-moment diagram from the 
shear diagram and the value of M at one end of the beam. However, 
concentrated loads introduce discontinuities in the shear diagram 
and concentrated couples in the bending-moment diagram, none of 
which are accounted for in these equations [Sample Probs. 7.4 and 
7.7]. Finally, we note from Eq. (7.3) that the points of the beam 
where the bending moment is maximum or minimum are also the 
points where the shear is zero [Sample Prob. 7.5].

The second half of the chapter was devoted to the analysis of flexible 
cables. We first considered a cable of negligible weight supporting 
concentrated loads [Sec. 7.7]. Using the entire cable AB as a free 

Shear and bending moment 
in a beam

Relations among load, shear,
and bending moment

Cables with concentrated loads

Fig. 7.21

M

V
M'

V'

Internal forces at section
(positive shear and positive bending moment)
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405body (Fig. 7.22), we noted that the three available equilibrium equa-
tions were not sufficient to determine the four unknowns represent-
ing the reactions at the supports A and B. However, if the coordinates 
of a point D of the cable are known, an additional equation can be 
obtained by considering the free-body diagram of the portion AD or 
DB of the cable. Once the reactions at the supports have been deter-
mined, the elevation of any point of the cable and the tension in any 
portion of the cable can be found from the appropriate free-body 
diagram [Sample Prob. 7.8]. It was noted that the horizontal com-
ponent of the force T representing the tension is the same at any 
point of the cable.

We next considered cables carrying distributed loads [Sec. 7.8]. 
Using as a free body a portion of cable CD extending from the lowest 
point C to an arbitrary point D of the cable (Fig. 7.23), we observed 
that the horizontal component of the tension force T at D is constant 
and equal to the tension T0 at C, while its vertical component is equal 
to the weight W of the portion of cable CD. The magnitude and 
direction of T were obtained from the force triangle:

 
T 5 2T2

0 1 W2        tan u 5
W
T0 

(7.6)

In the case of a load uniformly distributed along the horizontal—as 
in a suspension bridge (Fig. 7.24)—the load supported by portion 
CD is W 5 wx, where w is the constant load per unit horizontal 
length [Sec. 7.9]. We also found that the curve formed by the cable 
is a parabola of equation

 
y 5

wx2

2T0  
(7.8)

and that the length of the cable can be found by using the expansion 
in series given in Eq. (7.10) [Sample Prob. 7.9].

In the case of a load uniformly distributed along the cable itself—
e.g., a cable hanging under its own weight (Fig. 7.25)—the load 
supported by portion CD is W 5 ws, where s is the length measured 
along the cable and w is the constant load per unit length [Sec. 7.10]. 
Choosing the origin O of the coordinate axes at a distance c 5 T0/w 
below C, we derived the relations

 
s 5 c sinh 

x
c 

(7.15)

 
y 5 c cosh 

x
c 

(7.16)

 y2 2 s2 5 c2 (7.17)

 T0 5 wc   W 5 ws   T 5 wy (7.18)

which can be used to solve problems involving cables hanging under 
their own weight [Sample Prob. 7.10]. Equation (7.16), which defines 
the shape of the cable, is the equation of a catenary.

Cables with distributed loads

Parabolic cable

Catenary

Fig. 7.22
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Ay
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P2 P3
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Fig. 7.23

D

C

T

T W

T0

q

q

W

T0

Fig. 7.24

A

B

C

y

D(x,y)

x

w

A

By

C

O c

x

D(x,y)

s

Fig. 7.25

Review and Summary
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406

REVIEW PROBLEMS

 7.154 It has been experimentally determined that the bending moment 
at point K of the frame shown is 300 N ? m. Determine (a) the 
tension in rods AE and FD, (b) the corresponding internal forces 
at point J.

 7.155 Knowing that the radius of each pulley is 200 mm and neglecting 
friction, determine the internal forces at point J of the frame 
shown.

A

B

C

(a) (b)

6 ft6 ft

9 ft

A

B

C

6 ft6 ft

9 ft

Fig. P7.156

A B
D E

PP

16 lb/in.

10 in.10 in.
30 in.

Fig. P7.157 and P7.158

120 mm

A

E

F

D

J

K

C

B

100 mm

100 mm

100 mm

280 mm

Fig. P7.154

0.6 m
0.2 m

0.2 m
0.8 m0.8 m

A

B
C

D

K

J

EF

360 N

1 m

1.8 m

Fig. P7.155

 7.156 A steel channel of weight per unit length w 5 20 lb/ft forms one 
side of a flight of stairs. Determine the internal forces at the center 
C of the channel due to its own weight for each of the support 
conditions shown.

 7.157 For the beam shown, determine (a) the magnitude P of the two 
concentrated loads for which the maximum absolute value of the 
bending moment is as small as possible, (b) the corresponding 
value of |M|max.

 7.158 Knowing that the magnitude of the concentrated loads P is 75 lb, 
(a) draw the shear and bending-moment diagrams for beam AB, 
(b) determine the maximum absolute values of the shear and bend-
ing moment.
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407Review Problems 7.159 For the beam and loading shown, (a) draw the shear and bending-
moment diagrams, (b) determine the maximum absolute values of 
the shear and bending moment.

 7.160 For the beam shown, draw the shear and bending-moment diagrams, 
and determine the magnitude and location of the maximum absolute 
value of the bending moment, knowing that (a) P 5 6 kips, (b) P 5 
3 kips.

 7.161 For the beam and loading shown, (a) write the equations of the 
shear and bending-moment curves, (b) determine the maximum 
bending moment.

A
B

w

L

x

w0 w = w0  1 – sin    L( )   xπ

Fig. P7.161

A

B
C

F

5 ft
d B

D

d Dd C

E

d E

5 @ 6 ft = 30 ft

Fig. P7.162

2 ft
6 ft

P

A B
C

2 kips/ft

Fig. P7.160

A

C B

2.25 m

60 kg/m

6 m9 m

a

Fig. P7.165

1.8 m
0.6 m 0.6 m 0.6 m

12 kN/m24 kN

A B
C D E

24 kN

Fig. P7.159

 7.162 An oil pipeline is supported at 6-ft intervals by vertical hangers 
attached to the cable shown. Due to the combined weight of the 
pipe and its contents the tension in each hanger is 400 lb. Knowing 
that dC 5 12 ft, determine (a) the maximum tension in the cable, 
(b) the distance dD.

 7.163 Solve Prob. 7.162 assuming that dC 5 9 ft.

 7.164 A transmission cable having a mass per unit length of 0.8 kg/m is 
strung between two insulators at the same elevation that are 75 m 
apart. Knowing that the sag of the cable is 2 m, determine (a) the 
maximum tension in the cable, (b) the length of the cable.

 7.165 Cable ACB supports a load uniformly distributed along the hori-
zontal as shown. The lowest point C is located 9 m to the right of 
A. Determine (a) the vertical distance a, (b) the length of the cable, 
(c) the components of the reaction at A.

bee29400_ch07_352-409.indd Page 407  12/2/08  1:15:37 AM user-s173bee29400_ch07_352-409.indd Page 407  12/2/08  1:15:37 AM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



408

COMPUTER PROBLEMS

 7.C1 An overhanging beam is to be designed to support several concen-
trated loads. One of the first steps in the design of the beam is to determine 
the values of the bending moment that can be expected at the supports A
and B and under each of the concentrated loads. Write a computer program 
that can be used to calculate those values for the arbitrary beam and loading 
shown. Use this program for the beam and loading of (a) Prob. 7.36, 
(b) Prob. 7.37, (c) Prob. 7.38.

 7.C2 Several concentrated loads and a uniformly distributed load are to 
be applied to a simply supported beam AB. As a first step in the design 
of the beam, write a computer program that can be used to calculate the 
shear and bending moment in the beam for the arbitrary loading shown 
using given increments Dx. Use this program for the beam of 
(a) Prob. 7.39, with Dx 5 0.25 m; (b) Prob. 7.41, with Dx 5 0.5 ft; 
(c) Prob. 7.42, with Dx 5 0.5 ft.

A B

P1 P2 PnPi

b
a

w

ci

L

Fig. P7.C2

PnPiP2P1

A B

b

ci

a L

Fig. P7.C1

A
BC

a

D

5 m 5 m
20 kN/m

Fig. P7.C3

 7.C3 A beam AB hinged at B and supported by a roller at D is to be 
designed to carry a load uniformly distributed from its end A to its mid-
point C with maximum efficiency. As part of the design process, write a 
computer program that can be used to determine the distance a from end 
A to the point D where the roller should be placed to minimize the abso-
lute value of the bending moment M in the beam. (Note: A short prelimi-
nary analysis will show that the roller should be placed under the load and 
that the largest negative value of M will occur at D, while its largest posi-
tive value will occur somewhere between D and C. Also see the hint for 
Prob. 7.55.)
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409Computer Problems 7.C4 The floor of a bridge will consist of narrow planks resting on two 
simply supported beams, one of which is shown in the figure. As part of the 
design of the bridge, it is desired to simulate the effect that driving a 3000-lb 
truck over the bridge will have on this beam. The distance between the 
truck’s axles is 6 ft, and it is assumed that the weight of the truck is equally 
distributed over its four wheels. (a) Write a computer program that can be 
used to calculate the magnitude and location of the maximum bending 
moment in the beam for values of x from 23 ft to 10 ft using 0.5-ft incre-
ments. (b) Using smaller increments if necessary, determine the largest 
value of the bending moment that occurs in the beam as the truck is driven 
over the bridge and determine the corresponding value of x.

P1 P2
Pk

Pk + 1

Ak + 1

A0

A1
A2

Ak

Pn – 1

A n – 1

A n

h0
hk

d2

d k

dn

d1

Fig. P7.C7

A B

3 ft 3 ft

750 lb750 lb
x

20 ft

Fig. P7.C4

A B

L

h

Fig. P7.C8

 *7.C5 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam of Prob. 7.C1. Using this program 
and a plotting increment Dx # L/100, plot the V and M diagrams for the 
beam and loading of (a) Prob. 7.36, (b) Prob. 7.37, (c) Prob. 7.38.

 *7.C6 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam of Prob. 7.C2. Using this program 
and a plotting increment Dx # L/100, plot the V and M diagrams for the 
beam and loading of (a) Prob. 7.39, (b) Prob. 7.41, (c) Prob. 7.42.

 7.C7 Write a computer program that can be used in the design of cable 
supports to calculate the horizontal and vertical components of the reaction 
at the support An from values of the loads P1, P2, . . ., Pn21, the horizontal 
distances d1, d2, . . ., dn, and the two vertical distances h0 and hk. Use this 
program to solve Probs. 7.95b, 7.96b, and 7.97b.

 7.C8 A typical transmission-line installation consists of a cable of length sAB 
and weight w per unit length suspended as shown between two points at 
the same elevation. Write a computer program and use it to develop a table 
that can be used in the design of future installations. The table should pre-
sent the dimensionless quantities h/L, sAB/L, T0 /wL, and Tmax /wL for values 
of c/L from 0.2 to 0.5 using 0.025 increments and from 0.5 to 4 using 
0.5 increments.

 7.C9 Write a computer program and use it to solve Prob. 7.132 for values 
of P from 0 to 50 N using 5-N increments.
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The tractive force that a railroad 

 locomotive can develop depends upon 

the frictional resistance between the 

drive wheels and the rails. When the 

 potential exists for wheel slip to occur, 

such as when a train travels upgrade 

over wet rails, sand is deposited on top 

of the railhead to increase this friction.
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8.1 INTRODUCTION
In the preceding chapters, it was assumed that surfaces in contact 
were either frictionless or rough. If they were frictionless, the force 
each surface exerted on the other was normal to the surfaces and 
the two surfaces could move freely with respect to each other. If they 
were rough, it was assumed that tangential forces could develop to 
prevent the motion of one surface with respect to the other.
 This view was a simplified one. Actually, no perfectly friction-
less surface exists. When two surfaces are in contact, tangential 
forces, called friction forces, will always develop if one attempts to 
move one surface with respect to the other. On the other hand, these 
friction forces are limited in magnitude and will not prevent motion 
if sufficiently large forces are applied. The distinction between fric-
tionless and rough surfaces is thus a matter of degree. This will be 
seen more clearly in the present chapter, which is devoted to the 
study of friction and of its applications to common engineering 
situations.
 There are two types of friction: dry friction, sometimes called 
Coulomb friction, and fluid friction. Fluid friction develops between 
layers of fluid moving at different velocities. Fluid friction is of 
great importance in problems involving the flow of fluids through 
pipes and orifices or dealing with bodies immersed in moving 
 fluids. It is also basic in the analysis of the motion of lubricated 
mechanisms. Such problems are considered in texts on fluid 
mechanics. The present study is limited to dry friction, i.e., to prob-
lems involving rigid bodies which are in contact along nonlubri-
cated surfaces.
 In the first part of this chapter, the equilibrium of various rigid 
bodies and structures, assuming dry friction at the surfaces of con-
tact, is analyzed. Later a number of specific engineering applications 
where dry friction plays an important role are considered: wedges, 
square-threaded screws, journal bearings, thrust bearings, rolling 
resistance, and belt friction.

8.2  THE LAWS OF DRY FRICTION. 
COEFFICIENTS OF FRICTION

The laws of dry friction are exemplified by the following experiment. 
A block of weight W is placed on a horizontal plane surface 
(Fig. 8.1a). The forces acting on the block are its weight W and the 
reaction of the surface. Since the weight has no horizontal component, 
the reaction of the surface also has no horizontal component; the 
reaction is therefore normal to the surface and is represented by N 
in Fig. 8.1a. Suppose, now, that a horizontal force P is applied to the 
block (Fig. 8.1b). If P is small, the block will not move; some other 
horizontal force must therefore exist, which balances P. This other 
force is the static-friction force F, which is actually the resultant of 
a great number of forces acting over the entire surface of contact 
between the block and the plane. The nature of these forces is not 
known exactly, but it is generally assumed that these forces are due 

 Chapter 8 Friction
 8.1 Introduction
 8.2 The Laws of Dry Friction. 

Coefficients of Friction
 8.3 Angles of Friction
 8.4 Problems Involving Dry Friction
 8.5 Wedges
 8.6 Square-Threaded Screws
 8.7 Journal Bearings. Axle Friction
 8.8 Thrust Bearings. Disk Friction
 8.9 Wheel Friction. Rolling Resistance
 8.10 Belt Friction
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413to the irregularities of the surfaces in contact and, to a certain extent, 
to molecular attraction.
 If the force P is increased, the friction force F also increases, 
continuing to oppose P, until its magnitude reaches a certain maxi-
mum value Fm (Fig. 8.1c). If P is further increased, the friction force 

W

N

P

(a)

F

P

Fm

Fk

Equilibrium Motion

A B

W

N

(b) (c)

A B

F

Fig. 8.1

cannot balance it any more and the block starts sliding.† As soon as 
the block has been set in motion, the magnitude of F drops from Fm 
to a lower value Fk. This is because there is less interpenetration 
between the irregularities of the surfaces in contact when these sur-
faces move with respect to each other. From then on, the block 
keeps sliding with increasing velocity while the friction force, denoted 
by Fk and called the kinetic-friction force, remains approximately 
constant.
 Experimental evidence shows that the maximum value Fm of 
the static-friction force is proportional to the normal component N 
of the reaction of the surface. We have

 Fm 5 msN (8.1)

where ms is a constant called the coefficient of static friction. Simi-
larly, the magnitude Fk of the kinetic-friction force may be put in 
the form

 Fk 5 mkN (8.2)

where mk is a constant called the coefficient of kinetic friction. The 
coefficients of friction ms and mk do not depend upon the area of 

†It should be noted that, as the magnitude F of the friction force increases from 0 to 
Fm, the point of application A of the resultant N of the normal forces of contact moves 
to the right, so that the couples formed, respectively, by P and F and by W and N 
remain balanced. If N reaches B before F reaches its maximum value Fm, the block 
will tip about B before it can start sliding (see Probs. 8.15 and 8.16).

8.2 The Laws of Dry Friction. 
Coeffi cients of Friction

bee29400_ch08_410-469.indd Page 413  11/25/08  8:51:04 PM user-s173bee29400_ch08_410-469.indd Page 413  11/25/08  8:51:04 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



414 Friction the surfaces in contact. Both coefficients, however, depend strongly on 
the nature of the surfaces in contact. Since they also depend upon the 
exact condition of the surfaces, their value is seldom known with an 
accuracy greater than 5 percent. Approximate values of coefficients of 
static friction for various dry surfaces are given in Table 8.1. The cor-
responding values of the coefficient of kinetic friction would be about 
25 percent smaller. Since coefficients of friction are dimensionless 
quantities, the values given in Table 8.1 can be used with both SI units 
and U.S. customary units.

TABLE 8.1 Approximate
Values of Coefficient of 
Static Friction for Dry 
Surfaces

Metal on metal 0.15–0.60
Metal on wood 0.20–0.60
Metal on stone 0.30–0.70
Metal on leather 0.30–0.60
Wood on wood 0.25–0.50
Wood on leather 0.25–0.50
Stone on stone 0.40–0.70
Earth on earth 0.20–1.00
Rubber on concrete 0.60–0.90

 From the description given above, it appears that four different 
situations can occur when a rigid body is in contact with a horizontal 
surface:

 1. The forces applied to the body do not tend to move it along 
the surface of contact; there is no friction force (Fig. 8.2a).

 2. The applied forces tend to move the body along the surface 
of contact but are not large enough to set it in motion. The 
friction force F which has developed can be found by solv-
ing the equations of equilibrium for the body. Since there is 
no evidence that F has reached its maximum value, the equa-
tion Fm 5 msN cannot be used to determine the friction force 
(Fig. 8.2b).

 3. The applied forces are such that the body is just about to slide. 
We say that motion is impending. The friction force F has 
reached its maximum value Fm and, together with the normal 
force N, balances the applied forces. Both the equations of 
equilibrium and the equation Fm 5 msN can be used. We also 
note that the friction force has a sense opposite to the sense of 
impending motion (Fig. 8.2c).

 4. The body is sliding under the action of the applied forces, 
and the equations of equilibrium do not apply any more. 
 However, F is now equal to Fk and the equation Fk 5 mkN may 
be used. The sense of Fk is opposite to the sense of motion 
(Fig. 8.2d).
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4158.3 ANGLES OF FRICTION
It is sometimes convenient to replace the normal force N and the 
friction force F by their resultant R. Let us consider again a block 
of weight W resting on a horizontal plane surface. If no horizontal 
force is applied to the block, the resultant R reduces to the normal 
force N (Fig. 8.3a). However, if the applied force P has a horizontal 
component Px which tends to move the block, the force R will have 
a horizontal component F and, thus, will form an angle f with the 
normal to the surface (Fig. 8.3b). If Px is increased until motion 
becomes impending, the angle between R and the vertical grows and 
reaches a maximum value (Fig. 8.3c). This value is called the angle 
of static friction and is denoted by fs. From the geometry of Fig. 8.3c, 
we note that

tan fs 5
Fm

N
5
msN
N

 tan fs 5 ms (8.3)

 If motion actually takes place, the magnitude of the friction 
force drops to Fk; similarly, the angle f between R and N drops to 
a lower value fk, called the angle of kinetic friction (Fig. 8.3d). From 
the geometry of Fig. 8.3d, we write

tan fk 5
Fk

N
5
mkN

N

 tan fk 5 mk (8.4)

 Another example will show how the angle of friction can be 
used to advantage in the analysis of certain types of problems. Con-
sider a block resting on a board and subjected to no other force than 
its weight W and the reaction R of the board. The board can be 
given any desired inclination. If the board is horizontal, the force R 
exerted by the board on the block is perpendicular to the board and 
balances the weight W (Fig. 8.4a). If the board is given a small angle 
of inclination u, the force R will deviate from the perpendicular to 
the board by the angle u and will keep balancing W (Fig. 8.4b); it 
will then have a normal component N of magnitude N 5 W cos u 
and a tangential component F of magnitude F 5 W sin u.
 If we keep increasing the angle of inclination, motion will soon 
become impending. At that time, the angle between R and the nor-
mal will have reached its maximum value fs (Fig. 8.4c). The value 
of the angle of inclination corresponding to impending motion is 
called the angle of repose. Clearly, the angle of repose is equal to 
the angle of static friction fs. If the angle of inclination u is further 
increased, motion starts and the angle between R and the normal 
drops to the lower value fk (Fig. 8.4d). The reaction R is not vertical 
any more, and the forces acting on the block are unbalanced.

8.3 Angles of Friction
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(b) No motion
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(d ) Motion
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416 Friction

8.4 PROBLEMS INVOLVING DRY FRICTION
Problems involving dry friction are found in many engineering appli-
cations. Some deal with simple situations such as the block sliding 
on a plane described in the preceding sections. Others involve more 
complicated situations as in Sample Prob. 8.3; many deal with the 
stability of rigid bodies in accelerated motion and will be studied in 
dynamics. Also, a number of common machines and mechanisms can 
be analyzed by applying the laws of dry friction. These include 
wedges, screws, journal and thrust bearings, and belt transmissions. 
They will be studied in the following sections.
 The methods which should be used to solve problems involving 
dry friction are the same that were used in the preceding chapters. 
If a problem involves only a motion of translation, with no possible 
rotation, the body under consideration can usually be treated as a 
particle, and the methods of Chap. 2 used. If the problem involves 
a possible rotation, the body must be considered as a rigid body, and 
the methods of Chap. 4 should be used. If the structure considered 
is made of several parts, the principle of action and reaction must 
be used as was done in Chap. 6.
 If the body considered is acted upon by more than three forces 
(including the reactions at the surfaces of contact), the reaction at 
each surface will be represented by its components N and F and the 
problem will be solved from the equations of equilibrium. If only 
three forces act on the body under consideration, it may be more 
convenient to represent each reaction by the single force R and to 
solve the problem by drawing a force triangle.
 Most problems involving friction fall into one of the following 
three groups: In the first group of problems, all applied forces are 
given and the coefficients of friction are known; we are to determine 
whether the body considered will remain at rest or slide. The friction 
force F required to maintain equilibrium is unknown (its magnitude 
is not equal to msN) and should be determined, together with the 
normal force N, by drawing a free-body diagram and solving the 
equations of equilibrium (Fig. 8.5a). The value found for the magni-
tude F of the friction force is then compared with the maximum 
value Fm 5 msN. If F is smaller than or equal to Fm, the body remains 
at rest. If the value found for F is larger than Fm, equilibrium cannot 

W
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W
W

(a) No friction (b) No motion

q = 0
q < fs R

R R

W

q

q

(c) Motion impending (d ) Motion

q = fs = angle of repose

W sin q

W cos q

F = W sin q

N = W cos q
N = W cos q

q

Fm = W sin q Fk < W sin qq > fs

N = W cos q

q

q = fs
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Fig. 8.4

Photo 8.1 The coefficient of static friction 
between a package and the inclined conveyer 
belt must be sufficiently large to enable the 
package to be transported without slipping.
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417be maintained and motion takes place; the actual magnitude of the 
friction force is then Fk 5 mkN.
 In problems of the second group, all applied forces are given 
and the motion is known to be impending; we are to determine the 
value of the coefficient of static friction. Here again, we determine 
the friction force and the normal force by drawing a free-body dia-
gram and solving the equations of equilibrium (Fig. 8.5b). Since we 
know that the value found for F is the maximum value Fm, the coef-
ficient of friction may be found by writing and solving the equation 
Fm 5 msN.
 In problems of the third group, the coefficient of static friction 
is given, and it is known that the motion is impending in a given 
direction; we are to determine the magnitude or the direction of one 
of the applied forces. The friction force should be shown in the free-
body diagram with a sense opposite to that of the impending motion 
and with a magnitude Fm 5 msN (Fig. 8.5c). The equations of equi-
librium can then be written, and the desired force determined.
 As noted above, when only three forces are involved it may be 
more convenient to represent the reaction of the surface by a single 
force R and to solve the problem by drawing a force triangle. Such 
a solution is used in Sample Prob. 8.2.
 When two bodies A and B are in contact (Fig. 8.6a), the 
forces of friction exerted, respectively, by A on B and by B on A 
are equal and opposite (Newton’s third law). In drawing the free-
body diagram of one of the bodies, it is important to include the 
appropriate friction force with its correct sense. The following rule 
should then be observed: The sense of the friction force acting on 
A is opposite to that of the motion (or impending motion) of A as 
observed from B (Fig. 8.6b).† The sense of the friction force acting 
on B is determined in a similar way (Fig. 8.6c). Note that the 
motion of A as observed from B is a relative motion. For example, 
if body A is fixed and body B moves, body A will have a relative 
motion with respect to B. Also, if both B and A are moving down 
but B is moving faster than A, body A will be observed, from B, 
to be moving up.

8.4 Problems Involving Dry Friction
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†It is therefore the same as that of the motion of B as observed from A.
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SAMPLE PROBLEM 8.1

A 100-lb force acts as shown on a 300-lb block placed on an inclined plane. 
The coefficients of friction between the block and the plane are ms 5 0.25 
and mk 5 0.20. Determine whether the block is in equilibrium, and find the 
value of the friction force.

100 lb

300 lb

3

4

5

100 lb

300 lb

3

4
5

F

N

x
y

Motio
n

F = 48 lb

N = 240 lb

100 lb

300 lb

SOLUTION

Force Required for Equilibrium. We first determine the value of the fric-
tion force required to maintain equilibrium. Assuming that F is directed 
down and to the left, we draw the free-body diagram of the block and write

1p  oFx 5 0:  100 lb 2 3
5(300 lb) 2 F 5 0

 F 5 280 lb  F 5 80 lb p

1r oFy 5 0:   N 2 45(300 lb) 5 0
 N 5 1240 lb  N 5 240 lbr

The force F required to maintain equilibrium is an 80-lb force directed up 
and to the right; the tendency of the block is thus to move down the plane.

Maximum Friction Force. The magnitude of the maximum friction force 
which may be developed is

Fm 5 msN    Fm 5 0.25(240 lb) 5 60 lb

Since the value of the force required to maintain equilibrium (80 lb) is 
larger than the maximum value which may be obtained (60 lb), equilibrium 
will not be maintained and the block will slide down the plane.

Actual Value of Friction Force. The magnitude of the actual friction force 
is obtained as follows:

 Factual 5 Fk 5 mkN
 5 0.20(240 lb) 5 48 lb

The sense of this force is opposite to the sense of motion; the force is thus 
directed up and to the right:

Factual 5 48 lbp ◀

It should be noted that the forces acting on the block are not balanced; the 
resultant is

3
5(300 lb) 2 100 lb 2 48 lb 5 32 lbo
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SAMPLE PROBLEM 8.2

A support block is acted upon by two forces as shown. Knowing that the 
coefficients of friction between the block and the incline are ms 5 0.35 and 
mk 5 0.25, determine the force P required (a) to start the block moving up 
the incline, (b) to keep it moving up, (c) to prevent it from sliding down.

800 N

25°
P

fs

tan fs = ms

25° + 19.29° = 44.29°
fs = 19.29°

= 0.35

800 N

800 N

25°

P

R

P

R

tan fk = mk

 fk
25° + 14.04° = 39.04°

fk = 14.04°
= 0.25

P

R

800 N

800 N

25°

P

R

25° – 19.29° = 5.71°
fs = 19.29°

P

R
fs

800 N

800 N

25°

P

R

SOLUTION

Free-Body Diagram. For each part of the problem we draw a free-body 
diagram of the block and a force triangle including the 800-N vertical force, 
the horizontal force P, and the force R exerted on the block by the incline. 
The direction of R must be determined in each separate case. We note that 
since P is perpendicular to the 800-N force, the force triangle is a right tri-
angle, which can easily be solved for P. In most other problems, however, 
the force triangle will be an oblique triangle and should be solved by apply-
ing the law of sines.

a. Force P to Start Block Moving Up

 P 5 (800 N) tan 44.29° P 5 780 Nz ◀

b. Force P to Keep Block Moving Up

 P 5 (800 N) tan 39.04° P 5 649 Nz ◀

c. Force P to Prevent Block from Sliding Down

 P 5 (800 N) tan 5.71° P 5 80.0 Nz ◀
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SAMPLE PROBLEM 8.3

The movable bracket shown may be placed at any height on the 3-in.-
 diameter pipe. If the coefficient of static friction between the pipe and 
bracket is 0.25, determine the minimum distance x at which the load W can 
be supported. Neglect the weight of the bracket.

SOLUTION

Free-Body Diagram. We draw the free-body diagram of the bracket. 
When W is placed at the minimum distance x from the axis of the pipe, the 
bracket is just about to slip, and the forces of friction at A and B have 
reached their maximum values:

FA 5 msNA 5 0.25 NA

FB 5 msNB 5 0.25 NB

Equilibrium Equations

n1 oFx 5 0: NB 2 NA 5 0
 NB 5 NA

 1hoFy 5 0: FA 1 FB 2 W 5 0
 0.25NA 1 0.25NB 5 W

And, since NB has been found equal to NA,

 0.50NA 5 W
 NA 5 2W

 1l oMB 5 0: NA(6 in.) 2 FA(3 in.) 2 W(x 2 1.5 in.) 5 0
 6NA 2 3(0.25NA) 2 Wx 1 1.5W 5 0
 6(2W) 2 0.75(2W) 2 Wx 1 1.5W 5 0

Dividing through by W and solving for x,

x 5 12 in. ◀

W

6 in.

3 in.

x

NA

NB

FA

FB

W

A

B
3 in.

x – 1.5 in.

x

6 in.
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you studied and applied the laws of dry friction. Previously you 
had encountered only (a) frictionless surfaces that could move freely with 

respect to each other, (b) rough surfaces that allowed no motion relative to each 
other.

A. In solving problems involving dry friction, you should keep the following 
in mind.

1. The reaction R exerted by a surface on a free body can be resolved into 
a component N and a tangential component F. The tangential component is known 
as the friction force. When a body is in contact with a fixed surface the direction 
of the friction force F is opposite to that of the actual or impending motion of the 
body.
 a. No motion will occur as long as F does not exceed the maximum value
Fm 5 msN, where ms is the coefficient of static friction.
 b. Motion will occur if a value of F larger than Fm is required to maintain 
equilibrium. As motion takes place, the actual value of F drops to Fk 5 mkN, where 
mk is the coefficient of kinetic friction [Sample Prob. 8.1].

2. When only three forces are involved an alternative approach to the analysis 
of friction may be preferred [Sample Prob. 8.2]. The reaction R is defined by its 
magnitude R and the angle f it forms with the normal to the surface. No motion 
will occur as long as f does not exceed the maximum value fs, where tan fs 5 ms. 
Motion will occur if a value of f larger than fs is required to maintain equilibrium, 
and the actual value of f will drop to fk, where tan fk 5 mk.

3. When two bodies are in contact the sense of the actual or impending rela-
tive motion at the point of contact must be determined. On each of the two bodies 
a friction force F should be shown in a direction opposite to that of the actual or 
impending motion of the body as seen from the other body.

(continued)
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B. Methods of solution. The first step in your solution is to draw a free-body 
diagram of the body under consideration, resolving the force exerted on each 
surface where friction exists into a normal component N and a friction force F. If 
several bodies are involved, draw a free-body diagram of each of them, labeling 
and directing the forces at each surface of contact as you learned to do when 
analyzing frames in Chap. 6.

The problem you have to solve may fall in one of the following three categories:

1. All the applied forces and the coefficients of friction are known, and you 
must determine whether equilibrium is maintained. Note that in this situation 
the friction force is unknown and cannot be assumed to be equal to msN.
 a. Write the equations of equilibrium to determine N and F.
 b. Calculate the maximum allowable friction force, Fm 5 MsN. If F # Fm, 
equilibrium is maintained. If F . Fm, motion occurs, and the magnitude of the 
friction force is Fk 5 mkN [Sample Prob. 8.1].

2. All the applied forces are known, and you must find the smallest allow-
able value of Ms for which equilibrium is maintained. You will assume that 
motion is impending and determine the corresponding value of ms.
 a. Write the equations of equilibrium to determine N and F.
 b. Since motion is impending, F 5 Fm. Substitute the values found for N 
and F into the equation Fm 5 msN and solve for ms.

3. The motion of the body is impending and s is known; you must find 
some unknown quantity, such as a distance, an angle, the magnitude of a force, 
or the direction of a force.
 a. Assume a possible motion of the body and, on the free-body diagram, 
draw the friction force in a direction opposite to that of the assumed motion.
 b. Since motion is impending, F 5 Fm 5 sN. Substituting for ms its known 
value, you can express F in terms of N on the free-body diagram, thus eliminating 
one unknown.
 c. Write and solve the equilibrium equations for the unknown you seek 
[Sample Prob. 8.3].
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PROBLEMS

423

8.1 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when u 5 25° and 
P 5 150 lb.

P

ms = 0.35
mk = 0.25

240 lb

q

Fig. P8.1 and P8.2

25°

ms = 0.20
mk = 0.15

800 N

P

q

Fig. P8.3, P8.4, and P8.5

8.7 Knowing that the coefficient of friction between the 15-kg block 
and the incline is ms 5 0.25, determine (a) the smallest value of 
P required to maintain the block in equilibrium, (b) the corre-
sponding value of b.

 8.8 Considering only values of u less than 90°, determine the smallest 
value of u required to start the block moving to the right when 
(a) W 5 75 lb, (b) W 5 100 lb.

8.2 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when u 5 30° and 
P 5 30 lb.

 8.3 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when u 5 40° and 
P 5 400 N.

 8.4 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when u 5 35° and 
P 5 200 N.

8.5 Knowing that u 5 45°, determine the range of values of P for 
which equilibrium is maintained.

8.6 Determine the range of values of P for which equilibrium of the 
block shown is maintained.

P

30°

mk = 0.20
ms = 0.25

500 N

Fig. P8.6

P 60°
b

15 kg

Fig. P8.7

m

q

mk = 0.20
ms = 0.25

30 lb

Fig. P8.8
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424 Friction  8.9  The coefficients of friction between the block and the rail are ms 5 
0.30 and mk 5 0.25. Knowing that u 5 65°, determine the smallest 
value of P required (a) to start the block moving up the rail, (b) to 
keep it from moving down.

 8.10 The 80-lb block is attached to link AB and rests on a moving belt. 
Knowing that ms 5 0.25 and mk 5 0.20, determine the magnitude 
of the horizontal force P that should be applied to the belt to 
maintain its motion (a) to the right, (b) to the left.

P

500 N

35°

q

Fig. P8.9
30°

80 lb

A

B

Fig. P8.10

 8.11 and 8.12 The coefficients of friction are ms 5 0.40 and mk 5 
0.30 between all surfaces of contact. Determine the smallest force 
P required to start the 30-kg block moving if cable AB (a) is attached 
as shown, (b) is removed.

 8.13 Three 4-kg packages A, B, and C are placed on a conveyor belt that 
is at rest. Between the belt and both packages A and C the coeffi-
cients of friction are ms 5 0.30 and mk 5 0.20; between package B 
and the belt the coefficients are ms 5 0.10 and mk 5 0.08. The pack-
ages are placed on the belt so that they are in contact with each 
other and at rest. Determine which, if any, of the packages will move 
and the friction force acting on each package.

P

A

B

20 kg

30 kg

Fig. P8.11

P

A B20 kg

30 kg

Fig. P8.12

A
B C

15°

4 kg
4 kg 4 kg

Fig. P8.13

C

A B

P

h

24 in.

Fig. P8.15 and P8.16

 8.14 Solve Prob. 8.13 assuming that package B is placed to the right of 
both packages A and C.

 8.15 A 120-lb cabinet is mounted on casters that can be locked to pre-
vent their rotation. The coefficient of static friction between the 
floor and each caster is 0.30. If h 5 32 in., determine the magni-
tude of the force P required to move the cabinet to the right (a) if 
all casters are locked, (b) if the casters at B are locked and the 
casters at A are free to rotate, (c) if the casters at A are locked and 
the casters at B are free to rotate.

 8.16 A 120-lb cabinet is mounted on casters that can be locked to pre-
vent their rotation. The coefficient of static friction between the 
floor and each caster is 0.30. Assuming that the casters at both 
A and B are locked, determine (a) the force P required to move 
the cabinet to the right, (b) the largest allowable value of h if the 
cabinet is not to tip over.
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425Problems 8.17 The cylinder shown is of weight W and radius r, and the coefficient 
of static friction ms is the same at A and B. Determine the magni-
tude of the largest couple M that can be applied to the cylinder if 
it is not to rotate.

A

B

M

Fig. P8.17 and P8.18

D

E

150 mm

300 mm

A

B

150 mm

300 mm

250 mm

ms = 0.40
mk = 0.30

M
C

150 mm 150 mm

Fig. P8.19 and P8.20

A

B

6 m

2.5 m

Fig. P8.21 and P8.22

L

L

B

C

A
q

Fig. P8.23

A

C
B

L

L
q

Fig. P8.24

 8.18 The cylinder shown is of weight W and radius r. Express in terms 
W and r the magnitude of the largest couple M that can be applied 
to the cylinder if it is not to rotate, assuming the coefficient of 
static friction to be (a) zero at A and 0.30 at B, (b) 0.25 at A and 
0.30 at B.

 8.19 The hydraulic cylinder shown exerts a force of 3 kN directed to 
the right on point B and to the left on point E. Determine the 
magnitude of the couple M required to rotate the drum clockwise 
at a constant speed.

 8.20 A couple M of magnitude 100 N ? m is applied to the drum as 
shown. Determine the smallest force that must be exerted by the 
hydraulic cylinder on joints B and E if the drum is not to rotate.

 8.21 A 6.5-m ladder AB leans against a wall as shown. Assuming that 
the coefficient of static friction ms is zero at B, determine the small-
est value of ms at A for which equilibrium is maintained.

 8.22 A 6.5-m ladder AB leans against a wall as shown. Assuming that the 
coefficient of static friction ms is the same at A and B, determine 
the smallest value of ms for which equilibrium is maintained.

 8.23 and 8.24 End A of a slender, uniform rod of length L and weight
  W bears on a surface as shown, while end B is supported by a cord 

BC. Knowing that the coefficients of friction are ms 5 0.40 and 
mk 5 0.30, determine (a) the largest value of u for which motion is 
impending, (b) the corresponding value of the tension in the cord.
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426 Friction  8.25 A window sash weighing 10 lb is normally supported by two 5-lb 
sash weights. Knowing that the window remains open after one 
sash cord has broken, determine the smallest possible value of the 
coefficient of static friction. (Assume that the sash is slightly smaller 
than the frame and will bind only at points A and D.)

 8.26 A 500-N concrete block is to be lifted by the pair of tongs shown. 
Determine the smallest allowable value of the coefficient of static 
friction between the block and the tongs at F and G.

A B

C D

27 in.

36 in.

Fig. P8.25

A B

C D

E

F G

90 mm90 mm
45 mm

500 N

45 mm

75 mm

105 mm

360 mm

500 N

315 mm

Fig. P8.26

 8.27 The press shown is used to emboss a small seal at E. Knowing that 
the coefficient of static friction between the vertical guide and the 
embossing die D is 0.30, determine the force exerted by the die 
on the seal.

 8.28 The 100-mm-radius cam shown is used to control the motion of 
the plate CD. Knowing that the coefficient of static friction between 
the cam and the plate is 0.45 and neglecting friction at the roller 
supports, determine (a) the force P required to maintain the 
motion of the plate, knowing that the plate is 20 mm thick, (b) the 
largest thickness of the plate for which the mechanism is self lock-
ing (i.e., for which the plate cannot be moved however large the 
force P may be).

A

B

C

D

E

20°

60°

15°

50 lb

16 in.

8 in.

Fig. P8.27

A

B
C D

100 mm

60 N

qP
100 mm

Fig. P8.28
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427Problems 8.29 A slender rod of length L is lodged between peg C and the vertical 
wall and supports a load P at end A. Knowing that the co efficient 
of static friction is 0.20 at both B and C, find the range of values of 
the ratio L/a for which equilibrium is maintained.

35°

A

B

C
L

a

P

Fig. P8.29

A

B

C

D

EG

P

50 lb

5 ft

2 ft

3 ft

Fig. P8.30

 8.30 The 50-lb plate ABCD is attached at A and D to collars that can slide 
on the vertical rod. Knowing that the coefficient of static friction is 
0.40 between both collars and the rod, determine whether the plate 
is in equilibrium in the position shown when the magnitude of the 
vertical force applied at E is (a) P 5 0, (b) P 5 20 lb.

 8.31 In Prob. 8.30, determine the range of values of the magnitude P 
of the vertical force applied at E for which the plate will move 
downward.

 8.32 A pipe of diameter 60 mm is gripped by the stillson wrench shown. 
Portions AB and DE of the wrench are rigidly attached to each 
other, and portion CF is connected by a pin at D. If the wrench is 
to grip the pipe and be self-locking, determine the required mini-
mum coefficients of friction at A and C.

 8.33 Solve Prob. 8.32 assuming that the diameter of the pipe is 30 mm.

 8.34 A 10-ft beam, weighing 1200 lb, is to be moved to the left onto 
the platform. A horizontal force P is applied to the dolly, which is 
mounted on frictionless wheels. The coefficients of friction between 
all surfaces are ms 5 0.30 and mk 5 0.25, and initially x 5 2 ft. 
Knowing that the top surface of the dolly is slightly higher than 
the platform, determine the force P required to start moving the 
beam. (Hint: The beam is supported at A and D.)

A

B C

D
E

60 mm

15 mm 50 mm

F
P

500 mm

Fig. P8.32

x
2 ft

C D
P

10 ft

A B

Fig. P8.34

 8.35 (a) Show that the beam of Prob. 8.34 cannot be moved if the top 
surface of the dolly is slightly lower than the platform. (b) Show that 
the beam can be moved if two 175-lb workers stand on the beam at 
B and determine how far to the left the beam can be moved.
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428 Friction  8.36 Knowing that the coefficient of static friction between the collar 
and the rod is 0.35, determine the range of values of P for which 
equilibrium is maintained when u 5 50° and M 5 20 N ? m.

Fig. P8.36 and P8.37

M

P

CA

B

100 mm

100 mm

q

q

A

a

B

C

P

Q

l

Fig. P8.38

 8.40 Two identical uniform boards, each of weight 40 lb, are temporarily 
leaned against each other as shown. Knowing that the coefficient 
of static friction between all surfaces is 0.40, determine (a) the 
largest magnitude of the force P for which equilibrium will be 
maintained, (b) the surface at which motion will impend.

A

B
W = 10 lb

W = 10 lb

P q

Fig. P8.39

4 ft
A C

D

B
P

6 ft 6 ft

8 ft

Fig. P8.40

 8.37 Knowing that the coefficient of static friction between the collar 
and the rod is 0.40, determine the range of values of M for which 
equilibrium is maintained when u 5 60° and P 5 200 N.

 8.38 The slender rod AB of length l 5 600 mm is attached to a collar 
at B and rests on a small wheel located at a horizontal distance 
a 5 80 mm from the vertical rod on which the collar slides. Know-
ing that the coefficient of static friction between the collar and the 
vertical rod is 0.25 and neglecting the radius of the wheel, deter-
mine the range of values of P for which equilibrium is maintained 
when Q 5 100 N and u 5 30°.

 8.39 Two 10-lb blocks A and B are connected by a slender rod of neg-
ligible weight. The coefficient of static friction is 0.30 between all 
surfaces of contact, and the rod forms an angle u 5 30° with the 
vertical. (a) Show that the system is in equilibrium when P 5 0. 
(b) Determine the largest value of P for which equilibrium is 
maintained.
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 8.41 Two identical 5-ft-long rods connected by a pin at B are placed 
between two walls and a horizontal surface as shown. Denoting by 
ms the coefficient of static friction at A, B, and C, determine the 
smallest value of ms for which equilibrium is maintained.

 8.42 Two 8-kg blocks A and B resting on shelves are connected by a rod 
of negligible mass. Knowing that the magnitude of a horizontal 
force P applied at C is slowly increased from zero, determine the 
value of P for which motion occurs, and what that motion is, when 
the coefficient of static friction between all surfaces is (a) ms 5 
0.40, (b) ms 5 0.50. 4 ft

4 ft

3 ft

3 ft

A

C

B

Fig. P8.41

100 mm

200 mm

25°

8 kg

8 kg

C

A

B

P

Fig. P8.42

 8.43 A slender steel rod of length 225 mm is placed inside a pipe as 
shown. Knowing that the coefficient of static friction between the 
rod and the pipe is 0.20, determine the largest value of u for which 
the rod will not fall into the pipe.

 8.44 In Prob. 8.43, determine the smallest value of u for which the rod 
will not fall out the pipe.

 8.45 Two slender rods of negligible weight are pin-connected at C and 
attached to blocks A and B, each of weight W. Knowing that u 5 
80° and that the coefficient of static friction between the blocks 
and the horizontal surface is 0.30, determine the largest value of 
P for which equilibrium is maintained.

A

B q

75 mm

Fig. P8.43

A

C

B

WW
30°

P

60°

q

Fig. P8.45

8.5 WEDGES
Wedges are simple machines used to raise large stone blocks and 
other heavy loads. These loads can be raised by applying to the 
wedge a force usually considerably smaller than the weight of the 

4298.5 Wedges
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430 Friction load. In addition, because of the friction between the surfaces in 
contact, a properly shaped wedge will remain in place after being 
forced under the load. Wedges can thus be used advantageously to 
make small adjustments in the position of heavy pieces of 
machinery.
 Consider the block A shown in Fig. 8.7a. This block rests 
against a vertical wall B and is to be raised slightly by forcing a wedge 
C between block A and a second wedge D. We want to find the 
minimum value of the force P which must be applied to the wedge 
C to move the block. It will be assumed that the weight W of the 
block is known, either given in pounds or determined in newtons 
from the mass of the block expressed in kilograms.
 The free-body diagrams of block A and of wedge C have been 
drawn in Fig. 8.7b and c. The forces acting on the block include its 
weight and the normal and friction forces at the surfaces of contact 
with wall B and wedge C. The magnitudes of the friction forces F1 
and F2 are equal, respectively, to msN1 and msN2 since the motion of 
the block must be started. It is important to show the friction forces 
with their correct sense. Since the block will move upward, the force 
F1 exerted by the wall on the block must be directed downward. On 
the other hand, since the wedge C moves to the right, the relative 
motion of A with respect to C is to the left and the force F2 exerted 
by C on A must be directed to the right.
 Considering now the free body C in Fig. 8.7c, we note that the 
forces acting on C include the applied force P and the normal and 
friction forces at the surfaces of contact with A and D. The weight 
of the wedge is small compared with the other forces involved and 
can be neglected. The forces exerted by A on C are equal and oppo-
site to the forces N2 and F2 exerted by C on A and are denoted, 
respectively, by 2N2 and 2F2; the friction force 2F2 must therefore 
be directed to the left. We check that the force F3 exerted by D is 
also directed to the left.
 The total number of unknowns involved in the two free-body 
diagrams can be reduced to four if the friction forces are expressed 
in terms of the normal forces. Expressing that block A and wedge C 
are in equilibrium will provide four equations which can be solved 
to obtain the magnitude of P. It should be noted that in the example 
considered here, it will be more convenient to replace each pair of 
normal and friction forces by their resultant. Each free body is then 
subjected to only three forces, and the problem can be solved by 
drawing the corresponding force triangles (see Sample Prob. 8.4).

8.6 SQUARE-THREADED SCREWS
Square-threaded screws are frequently used in jacks, presses, and 
other mechanisms. Their analysis is similar to the analysis of a block 
sliding along an inclined plane.
 Consider the jack shown in Fig. 8.8. The screw carries a load 
W and is supported by the base of the jack. Contact between screw 
and base takes place along a portion of their threads. By applying a 
force P on the handle, the screw can be made to turn and to raise 
the load W.

W

P

N2

(b)

(a)

(c)

A

A

B

C

P C

D

N1

N3

–N2

–F2

F1 = msN1

F2 = msN2

F3 = msN3

6°
6°

Fig. 8.7

Cap

Screw

Base

P

W

r

a

Fig. 8.8
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431 The thread of the base has been unwrapped and shown as a 
straight line in Fig. 8.9a. The correct slope was obtained by plotting 
horizontally the product 2pr, where r is the mean radius of the thread, 
and vertically the lead L of the screw, i.e., the distance through which 
the screw advances in one turn. The angle u this line forms with the 
horizontal is the lead angle. Since the force of friction between two 
surfaces in contact does not depend upon the area of contact, a much 
smaller than actual area of contact between the two threads can be 
assumed, and the screw can be represented by the block shown in 
Fig. 8.9a. It should be noted, however, that in this analysis of the jack, 
the friction between cap and screw is neglected.
 The free-body diagram of the block should include the load W, 
the reaction R of the base thread, and a horizontal force Q having 
the same effect as the force P exerted on the handle. The force Q 
should have the same moment as P about the axis of the screw and 
its magnitude should thus be Q 5 Pa/r. The force Q, and thus the 
force P required to raise the load W, can be obtained from the free-
body diagram shown in Fig. 8.9a. The friction angle is taken equal 
to fs since the load will presumably be raised through a succession 
of short strokes. In mechanisms providing for the continuous rotation 
of a screw, it may be desirable to distinguish between the force 
required to start motion (using fs) and that required to maintain 
motion (using fk).

8.6 Square-Threaded Screws

 If the friction angle fs is larger than the lead angle u, the screw 
is said to be self-locking; it will remain in place under the load. 
To lower the load, we must then apply the force shown in Fig. 8.9b. 
If fs is smaller than u, the screw will unwind under the load; it 
is then necessary to apply the force shown in Fig. 8.9c to maintain 
equilibrium.
 The lead of a screw should not be confused with its pitch. The 
lead was defined as the distance through which the screw advances 
in one turn; the pitch is the distance measured between two consecu-
tive threads. While lead and pitch are equal in the case of single-
threaded screws, they are different in the case of multiple-threaded 
screws, i.e., screws having several independent threads. It is easily 
verified that for double-threaded screws, the lead is twice as large 
as the pitch; for triple-threaded screws, it is three times as large as 
the pitch; etc.

(c) Impending motion downward with fs < q(b) Impending motion downward with fs > q(a) Impending motion upward

fs

Q

W

R

q

q

fs

Q

W

R

q

q

fs

Q

W

R

q

q

L

�2   r

Fig. 8.9 Block-and-incline analysis of a screw.

Photo 8.2 Wedges are used as shown to split 
tree trunks because the normal forces exerted by 
the wedges on the wood are much larger than 
the forces required to insert the wedges.
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SAMPLE PROBLEM 8.4

The position of the machine block B is adjusted by moving the wedge A. 
Knowing that the coefficient of static friction is 0.35 between all surfaces of 
contact, determine the force P required (a) to raise block B, (b) to lower 
block B.

400 lb

P

B

A8°

fs = 19.3°
fs = 19.3°

R2

R2R1

R1

400 lb

400 lb

8°

8° + 19.3° = 27.3°

27.3°

90° + 19.3°
= 109.3°

180° – 27.3° – 109.3°
= 43.4°

B

19.3°

19.3°

R3

R3

P

P
R1 = 549 lb

549 lb

27.3°

27.3°

90° – 19.3° = 70.7°

27.3° + 19.3°
= 46.6°

A

fs = 19.3°

fs = 19.3°

11.3°R2

R2

R1

R1

400 lb

400 lb

8°

90° – 19.3° = 70.7°

19.3° – 8°
= 11.3°

180° – 70.7° – 11.3°
= 98.0°B

19.3°
19.3°

11.3°

11.3°
P

P

R3 R3

R1 = 381 lb

381 lb

90° – 19.3° = 70.7°

19.3° + 11.3°
= 30.6°

A

SOLUTION

For each part, the free-body diagrams of block B and wedge A are drawn, 
together with the corresponding force triangles, and the law of sines is 
used to find the desired forces. We note that since ms 5 0.35, the angle of 
friction is

fs 5 tan21 0.35 5 19.3°

a. Force P to Raise Block

Free Body: Block B

 
R1

sin 109.3°
5

400 lb
sin 43.4°

 R1 5 549 lb

Free Body: Wedge A

 
 

P
sin 46.6°

5
549 lb

sin 70.7°
 P 5 423 lb   P 5 423 lb z ◀

b. Force P to Lower Block

Free Body: Block B

 
R1

sin 70.7°
5

400 lb
sin 98.0°

 R1 5 381 lb

Free Body: Wedge A

 
 

P
sin 30.6°

5
381 lb

sin 70.7°
 P 5 206 lb   P 5 206 lb y ◀

bee29400_ch08_410-469.indd Page 432  11/25/08  8:51:26 PM user-s173bee29400_ch08_410-469.indd Page 432  11/25/08  8:51:26 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



433

SOLUTION

a. Force Exerted by Clamp. The mean radius of the screw is r 5 5 mm. 
Since the screw is double-threaded, the lead L is equal to twice the pitch: 
L 5 2(2 mm) 5 4 mm. The lead angle u and the friction angle fs are 
obtained by writing

tan u 5
L

2pr
5

4 mm
10p  mm

5 0.1273   u 5 7.3°

 tan fs 5 ms 5 0.30 fs 5 16.7°

The force Q which should be applied to the block representing the screw 
is obtained by expressing that its moment Qr about the axis of the screw is 
equal to the applied couple.

 Q(5 mm) 5 40 N ? m

 Q 5
40 N ? m

5 mm
5

40 N ? m
5 3 1023 m

5 8000 N 5 8 kN

The free-body diagram and the corresponding force triangle can now be 
drawn for the block; the magnitude of the force W exerted on the pieces 
of wood is obtained by solving the triangle.

W 5
Q

tan(u 1 fs)
5

8 kN
tan 24.0°

W 5 17.97 kN ◀

b. Couple Required to Loosen Clamp. The force Q required to loosen 
the clamp and the corresponding couple are obtained from the free-body 
diagram and force triangle shown.

 Q 5 W tan (fs 2 u) 5 (17.97 kN) tan 9.4°
 5 2.975 kN
 Couple 5 Qr 5 (2.975 kN)(5 mm)
 5 (2.975 3 103 N)(5 3 1023 m) 5 14.87 N ? m

Couple 5 14.87 N ? m ◀ 

W = 17.97 kN
Q

fs = 16.7°

q = 7.3°

q = 7.3°

R

L = 4 mm

2   r = 10    mm��

fs – q = 9.4°

Q

R W = 17.97 kN

SAMPLE PROBLEM 8.5

A clamp is used to hold two pieces of wood together as shown. The clamp 
has a double square thread of mean diameter equal to 10 mm with a pitch 
of 2 mm. The coefficient of friction between threads is ms 5 0.30. If a 
maximum couple of 40 N ? m is applied in tightening the clamp, determine 
(a) the force exerted on the pieces of wood, (b) the couple required to 
loosen the clamp.

q + fs = 24.0°

Q = 8 kN

R
W

fs = 16.7°

Q = 8 kN

q = 7.3°

q = 7.3°

R

W

L = 4 mm

2   r = 10    mm��
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to apply the laws of friction to the solution of problems 
involving wedges and square-threaded screws.

1. Wedges. Keep the following in mind when solving a problem involving a 
wedge:
 a. First draw a free-body diagram of the wedge and of all the other 
bodies involved. Carefully note the sense of the relative motion of all surfaces of 
contact and show each friction force acting in a direction opposite to the direction 
of that relative motion.
 b. Show the maximum static friction force Fm at each surface if the wedge 
is to be inserted or removed, since motion will be impending in each of these 
cases.
 c. The reaction R and the angle of friction, rather than the normal force and 
the friction force, can be used in many applications. You can then draw one or 
more force triangles and determine the unknown quantities either graphically or 
by trigonometry [Sample Prob. 8.4].

2. Square-Threaded Screws. The analysis of a square-threaded screw is equiva-
lent to the analysis of a block sliding on an incline. To draw the appropriate incline, 
you should unwrap the thread of the screw and represent it by a straight line 
[Sample Prob. 8.5]. When solving a problem involving a square-threaded screw, 
keep the following in mind:
 a. Do not confuse the pitch of a screw with the lead of a screw. The pitch 
of a screw is the distance between two consecutive threads, while the lead of a 
screw is the distance the screw advances in one full turn. The lead and the pitch 
are equal only in single-threaded screws. In a double-threaded screw, the lead is 
twice the pitch.
 b. The couple required to tighten a screw is different from the couple 
required to loosen it. Also, screws used in jacks and clamps are usually self-
locking; that is, the screw will remain stationary as long as no couple is applied to 
it, and a couple must be applied to the screw to loosen it [Sample Prob. 8.5].
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PROBLEMS

435

 8.46 The machine part ABC is supported by a frictionless hinge at B
and a 10° wedge at C. Knowing that the coefficient of static  friction 
is 0.20 at both surfaces of the wedge, determine (a) the force P 
required to move the wedge to the left, (b) the components of the 
corresponding reaction at B.

 8.47 Solve Prob. 8.46 assuming that the wedge is to be moved to the 
right.

 8.48 and 8.49 Two 8° wedges of negligible weight are used to 
move and position the 800-kg block. Knowing that the coeffi-
cient of static friction is 0.30 at all surfaces of contact, determine 
the smallest force P that should be applied as shown to one of 
the wedges.

100 kN

Q

A

B
C

E F 10°P
D

Fig. P8.51

120 lb

P

8 in.

10 in. 10°

C

D

B

A

Fig. P8.46

 8.50 and 8.51 The elevation of the end of the steel beam supported 
by a concrete floor is adjusted by means of the steel wedges E and 
F. The base plate CD has been welded to the lower flange of the 
beam, and the end reaction of the beam is known to be 100 kN. 
The coefficient of static friction is 0.30 between two steel surfaces 
and 0.60 between steel and concrete. If the horizontal motion of 
the beam is prevented by the force Q, determine (a) the force P 
required to raise the beam, (b) the corresponding force Q.

8°

8°

800 kg

P

Fig. P8.48

8°

8°

800 kg

P

Fig. P8.49

100 kN

10°

Q

P

A

B
C

D

E F

Fig. P8.50
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436 Friction  8.52 A wedge A of negligible weight is to be driven between two 100-lb 
plates B and C. The coefficient of static friction between all sur-
faces of contact is 0.35. Determine the magnitude of the force P 
required to start moving the wedge (a) if the plates are equally 
free to move, (b) if plate C is securely bolted to the surface.

AB C100 lb 100 lb
75°75°

P

A

Fig. P8.52

3 kN

A

B

Pq

Fig. P8.53, P8.54, and P8.55

12°

P

Fig. P8.56

P

A

B

0.3 m

Fig. P8.57

 8.53 Block A supports a pipe column and rests as shown on wedge B. 
Knowing that the coefficient of static friction at all surfaces of 
contact is 0.25 and that u 5 45°, determine the smallest force P 
required to raise block A.

 8.54 Block A supports a pipe column and rests as shown on wedge B. 
Knowing that the coefficient of static friction at all surfaces of 
contact is 0.25 and that u 5 45°, determine the smallest force P 
for which equilibrium is maintained.

 8.55 Block A supports a pipe column and rests as shown on wedge B. 
The coefficient of static friction at all surfaces of contact is 0.25. 
If P 5 0, determine (a) the angle u for which sliding is impend-
ing, (b) the corresponding force exerted on the block by the verti-
cal wall.

 8.56 A 12° wedge is used to spread a split ring. The coefficient of static 
friction between the wedge and the ring is 0.30. Knowing that a 
force P of magnitude 25 lb was required to insert the wedge, deter-
mine the magnitude of the forces exerted on the ring by the wedge 
after insertion.

 8.57 A 10° wedge is to be forced under end B of the 5-kg rod AB. 
Knowing that the coefficient of static friction is 0.40 between the 
wedge and the rod and 0.20 between the wedge and the floor, 
determine the smallest force P required to raise end B of the rod.
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437Problems 8.58 A 10° wedge is used to split a section of a log. The coefficient of 
static friction between the wedge and the log is 0.35. Knowing that 
a force P of magnitude 600 lb was required to insert the wedge, 
determine the magnitude of the forces exerted on the wood by the 
wedge after insertion.

 8.59 A conical wedge is placed between two horizontal plates that are 
then slowly moved toward each other. Indicate what will happen 
to the wedge (a) if ms 5 0.20, (b) if ms 5 0.30.

P

10°

Fig. P8.5825°

q

Fig. P8.59

P

A

B

G

15°

Fig. P8.60 and P8.61

400 lb

P

200 lb

3 ft
1.5 ft 1.5 ft

A B

Fig. P8.62

P

200 N

15°

A

B

Fig. P8.64

 8.60 A 15° wedge is forced under a 50-kg pipe as shown. The coefficient 
of static friction at all surfaces is 0.20. (a) Show that  slipping will 
occur between the pipe and the vertical wall. (b) Determine the 
force P required to move the wedge.

 8.61 A 15° wedge is forced under a 50-kg pipe as shown. Knowing that 
the coefficient of static friction at both surfaces of the wedge is 0.20, 
determine the largest coefficient of static friction between the pipe 
and the vertical wall for which slipping will occur at A.

 8.62 An 8° wedge is to be forced under a machine base at B. Knowing 
that the coefficient of static friction at all surfaces of contact is 0.15, 
(a) determine the force P required to move the wedge, (b) indicate 
whether the machine base will slide on the floor.

 8.63 Solve Prob. 8.62 assuming that the wedge is to be forced under 
the machine base at A instead of B.

 *8.64 A 200-N block rests as shown on a wedge of negligible weight. The 
coefficient of static friction ms is the same at both surfaces of the 
wedge, and friction between the block and the vertical wall may 
be neglected. For P 5 100 N, determine the value of ms for which 
motion is impending. (Hint: Solve the equation obtained by trial 
and error.)
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438 Friction  *8.65 Solve Prob. 8.64 assuming that the rollers are removed and that ms 
is the coefficient of friction at all surfaces of contact.

 8.66 Derive the following formulas relating the load W and the force P 
exerted on the handle of the jack discussed in Sec. 8.6. (a) P 5 
(Wr/a) tan (u 1 fs), to raise the load; (b) P 5 (Wr/a) tan (fs 2 u), to 
lower the load if the screw is self-locking; (c) P 5 (Wr/a) tan (u 2 fs), 
to hold the load if the screw is not self-locking.

 8.67 The square-threaded worm gear shown has a mean radius of 
1.5 in. and a lead of 0.375 in. The large gear is subjected to a 
constant clockwise couple of 7.2 kip ? in. Knowing that the coef-
ficient of static friction between the two gears is 0.12, determine 
the couple that must be applied to shaft AB in order to rotate the 
large gear counterclockwise. Neglect friction in the bearings at A, 
B, and C.

A B

C

12 in.

7.2 kip⋅in.

Fig. P8.67

2 kN 2 kNA B

Fig. P8.70

Fig. P8.69

 8.68 In Prob. 8.67, determine the couple that must be applied to shaft 
AB in order to rotate the large gear clockwise.

 8.69 High-strength bolts are used in the construction of many steel 
structures. For a 24-mm-nominal-diameter bolt the required mini-
mum bolt tension is 210 kN. Assuming the coefficient of friction 
to be 0.40, determine the required couple that should be applied 
to the bolt and nut. The mean diameter of the thread is 22.6 mm, 
and the lead is 3 mm. Neglect friction between the nut and washer, 
and assume the bolt to be square-threaded.

 8.70 The ends of two fixed rods A and B are each made in the form of 
a single-threaded screw of mean radius 6 mm and pitch 2 mm. 
Rod A has a right-handed thread and rod B has a left-handed 
thread. The coefficient of static friction between the rods and 
the threaded sleeve is 0.12. Determine the magnitude of the cou-
ple that must be applied to the sleeve in order to draw the rods 
closer together.

P

200 N

15°

A

B

Fig. P8.64 (repeated )
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 8.71 Assuming that in Prob. 8.70 a right-handed thread is used on both 
rods A and B, determine the magnitude of the couple that must 
be applied to the sleeve in order to rotate it.

 8.72 In the machinist’s vise shown, the movable jaw D is rigidly attached 
to the tongue AB that fits loosely into the fixed body of the vise. 
The screw is single-threaded into the fixed base and has a mean 
diameter of 0.75 in. and a pitch of 0.25 in. The  coefficient of static 
friction is 0.25 between the threads and also between the tongue 
and the body. Neglecting bearing friction between the screw and 
the movable head, determine the couple that must be applied to 
the handle in order to produce a clamping force of 1 kip.

D

C

BA

3 in.

1.75 in.
0.75 in.
1.25 in.

Fig. P8.72

A

B

Fig. P8.74

 8.73 In Prob. 8.72, a clamping force of 1 kip was obtained by tightening 
the vise. Determine the couple that must be applied to the screw 
to loosen the vise.

 8.74 In the gear-pulling assembly shown the square-threaded screw AB 
has a mean radius of 15 mm and a lead of 4 mm. Knowing that 
the coefficient of static friction is 0.10, determine the couple that 
must be applied to the screw in order to produce a force of 3 kN 
on the gear. Neglect friction at end A of the screw.

439

*8.7 JOURNAL BEARINGS. AXLE FRICTION
Journal bearings are used to provide lateral support to rotating shafts 
and axles. Thrust bearings, which will be studied in the next section, 
are used to provide axial support to shafts and axles. If the journal 
bearing is fully lubricated, the frictional resistance depends upon 
the speed of rotation, the clearance between axle and bearing, and 
the viscosity of the lubricant. As indicated in Sec. 8.1, such problems 
are studied in fluid mechanics. The methods of this chapter, how-
ever, can be applied to the study of axle friction when the bearing 
is not lubricated or only partially lubricated. It can then be assumed 
that the axle and the bearing are in direct contact along a single 
straight line.
 Consider two wheels, each of weight W, rigidly mounted on an 
axle supported symmetrically by two journal bearings (Fig. 8.10a). If 
the wheels rotate, we find that to keep them rotating at constant speed, 
it is necessary to apply to each of them a couple M. The free-body 

8.7 Journal Bearings. Axle Friction
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(c) (d) (e)

N

F
B

R

r

B

OOO

NF

R

BA
O

M

W

M

k

φk

Fig. 8.10

diagram in Fig. 8.10c represents one of the wheels and the corre-
sponding half axle in projection on a plane perpendicular to the axle. 
The forces acting on the free body include the weight W of the 
wheel, the couple M required to maintain its motion, and a force R 
representing the reaction of the bearing. This force is vertical, equal, 
and opposite to W but does not pass through the center O of the 
axle; R is located to the right of O at a distance such that its moment 
about O balances the moment M of the couple. Therefore, contact 
between the axle and bearing does not take place at the lowest 
point A when the axle rotates. It takes place at point B (Fig. 8.10b) or, 
rather, along a straight line intersecting the plane of the figure at B. 
Physically, this is explained by the fact that when the wheels are set 
in motion, the axle “climbs” in the bearings until slippage occurs. 
After sliding back slightly, the axle settles more or less in the position 
shown. This position is such that the angle between the reaction R 
and the normal to the surface of the bearing is equal to the angle of 
kinetic friction fk. The distance from O to the line of action of R is 
thus r sin fk, where r is the radius of the axle. Writing that oMO 5 0 
for the forces acting on the free body considered, we obtain the 
magnitude of the couple M required to overcome the frictional resis-
tance of one of the bearings:

 M 5 Rr sin fk (8.5)

440 Friction
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441Observing that, for small values of the angle of friction, sin fk can be 
replaced by tan fk, that is, by mk, we write the approximate formula

 M < Rrmk (8.6)

In the solution of certain problems, it may be more convenient to let 
the line of action of R pass through O, as it does when the axle does 
not rotate. A couple 2M of the same magnitude as the couple M but 
of opposite sense must then be added to the reaction R (Fig. 8.10d). 
This couple represents the frictional resistance of the bearing.
 In case a graphical solution is preferred, the line of action of R 
can be readily drawn (Fig. 8.10e) if we note that it must be tangent 
to a circle centered at O and of radius

 rf 5 r sin fk < rmk (8.7)

This circle is called the circle of friction of the axle and bearing and 
is independent of the loading conditions of the axle.

*8.8 THRUST BEARINGS. DISK FRICTION
Two types of thrust bearings are used to provide axial support to 
rotating shafts and axles: (1) end bearings and (2) collar bearings 
(Fig. 8.11). In the case of collar bearings, friction forces develop 
between the two ring-shaped areas which are in contact. In the case 
of end bearings, friction takes place over full circular areas, or over 
ring-shaped areas when the end of the shaft is hollow. Friction 
between circular areas, called disk friction, also occurs in other 
mechanisms, such as disk clutches.

Fig. 8.11 Thrust bearings.

MM

PP

(a) End bearing (b) Collar bearing

 To obtain a formula which is valid in the most general case of 
disk friction, let us consider a rotating hollow shaft. A couple M keeps 
the shaft rotating at constant speed while a force P maintains it in 
contact with a fixed bearing (Fig. 8.12). Contact between the shaft and 

8.8 Thrust Bearings. Disk Friction

M

M

P R1

R2
ΔN

ΔF

ΔA

r
q

Fig. 8.12
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442 Friction the bearing takes place over a ring-shaped area of inner radius R1 and 
outer radius R2. Assuming that the pressure between the two surfaces 
in contact is uniform, we find that the magnitude of the normal force 
DN exerted on an element of area DA is DN 5 P DA/A, where A 5 
p(R2

2 2 R2
1), and that the magnitude of the friction force DF acting 

on DA is DF 5 mk DN. Denoting by r the distance from the axis of 
the shaft to the element of area DA, we express the magnitude DM 
of the moment of DF about the axis of the shaft as follows:

¢M 5 r ¢F 5
rmkP ¢A

p(R2
2 2 R2

1)

The equilibrium of the shaft requires that the moment M of the 
couple applied to the shaft be equal in magnitude to the sum of the 
moments of the friction forces DF. Replacing DA by the infinitesimal 
element dA 5 r du dr used with polar coordinates, and integrating 
over the area of contact, we thus obtain the following expression for 
the magnitude of the couple M required to overcome the frictional 
resistance of the bearing:

 M 5
mkP

p(R2
2 2 R2

1) #
2p

0
#

R2

R1

 
r2 dr du

 5
mkP

p(R2
2 2 R2

1) #
2p

0

 13(R3
2 2 R3

1)du

 
 M 5 2

3 
mkP 

R3
2 2 R3

1

R2
2 2 R2

1 
(8.8)

 When contact takes place over a full circle of radius R, formula 
(8.8) reduces to

 M 5 2
3mkPR (8.9)

The value of M is then the same as would be obtained if contact 
between shaft and bearing took place at a single point located at a 
distance 2R/3 from the axis of the shaft.
 The largest couple which can be transmitted by a disk clutch 
without causing slippage is given by a formula similar to (8.9), where 
mk has been replaced by the coefficient of static friction ms.

*8.9 WHEEL FRICTION. ROLLING RESISTANCE
The wheel is one of the most important inventions of our civilization. 
Its use makes it possible to move heavy loads with relatively little 
effort. Because the point of the wheel in contact with the ground at 
any given instant has no relative motion with respect to the ground, 
the wheel eliminates the large friction forces which would arise if 
the load were in direct contact with the ground. However, some 
resistance to the wheel’s motion exists. This resistance has two dis-
tinct causes. It is due (1) to a combined effect of axle friction and 
friction at the rim and (2) to the fact that the wheel and the ground 
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443deform, with the result that contact between wheel and ground takes 
place over a certain area, rather than at a single point.
 To understand better the first cause of resistance to the motion 
of a wheel, let us consider a railroad car supported by eight wheels 
mounted on axles and bearings. The car is assumed to be moving to 
the right at constant speed along a straight horizontal track. The free-
body diagram of one of the wheels is shown in Fig. 8.13a. The forces 
acting on the free body include the load W supported by the wheel 
and the normal reaction N of the track. Since W is drawn through 
the center O of the axle, the frictional resistance of the bearing should 
be represented by a counterclockwise couple M (see Sec. 8.7). To 
keep the free body in equilibrium, we must add two equal and oppo-
site forces P and F, forming a clockwise couple of moment 2M. The 
force F is the friction force exerted by the track on the wheel, and P 
represents the force which should be applied to the wheel to keep it 
rolling at constant speed. Note that the forces P and F would not 
exist if there were no friction between wheel and track. The couple M 
representing the axle friction would then be zero; the wheel would 
slide on the track without turning in its bearing.
 The couple M and the forces P and F also reduce to zero when 
there is no axle friction. For example, a wheel which is not held in 
bearings and rolls freely and at constant speed on horizontal ground 
(Fig. 8.13b) will be subjected to only two forces: its own weight W 
and the normal reaction N of the ground. Regardless of the value of 
the coefficient of friction between wheel and ground no friction 
force will act on the wheel. A wheel rolling freely on horizontal 
ground should thus keep rolling indefinitely.
 Experience, however, indicates that the wheel will slow down 
and eventually come to rest. This is due to the second type of resis-
tance mentioned at the beginning of this section, known as the roll-
ing resistance. Under the load W, both the wheel and the ground 
deform slightly, causing the contact between wheel and ground to 
take place over a certain area. Experimental evidence shows that the 
resultant of the forces exerted by the ground on the wheel over this 
area is a force R applied at a point B, which is not located directly 
under the center O of the wheel, but slightly in front of it (Fig. 8.13c). 
To balance the moment of W about B and to keep the wheel rolling 
at constant speed, it is necessary to apply a horizontal force P at the 
center of the wheel. Writing oMB 5 0, we obtain

 Pr 5 Wb (8.10)

where r 5 radius of wheel
 b 5 horizontal distance between O and B

The distance b is commonly called the coefficient of rolling resis-
tance. It should be noted that b is not a dimensionless coefficient 
since it represents a length; b is usually expressed in inches or in 
millimeters. The value of b depends upon several parameters in a 
manner which has not yet been clearly established. Values of the 
coefficient of rolling resistance vary from about 0.01 in. or 0.25 mm 
for a steel wheel on a steel rail to 5.0 in. or 125 mm for the same 
wheel on soft ground.

8.9 Wheel Friction. Rolling Resistance

Fig. 8.13

W

N

O

A

(b) Free wheel

P

W

O

B

b R

(c) Rolling resistance

r

M

P

W

F

N

O

A

(a) Effect of axle friction
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SOLUTION

a. Vertical Force P Required to Start Raising the Load. When the forces 
in both parts of the rope are equal, contact between the pulley and shaft 
takes place at A. When P is increased, the pulley rolls around the shaft 
slightly and contact takes place at B. The free-body diagram of the pulley 
when motion is impending is drawn. The perpendicular distance from the 
center O of the pulley to the line of action of R is

rf 5 r sin fs < rms  rf  < (1 in.)0.20 5 0.20 in.

Summing moments about B, we write

1l oMB 5 0:  (2.20 in.)(500 lb) 2 (1.80 in.)P 5 0
 P 5 611 lb P 5 611 lbw ◀

b. Vertical Force P to Hold the Load. As the force P is decreased, the 
pulley rolls around the shaft and contact takes place at C. Considering the 
pulley as a free body and summing moments about C, we write

1 l oMC 5 0:  (1.80 in.)(500 lb) 2 (2.20 in.)P 5 0
 P 5 409 lb P 5 409 lbw ◀

c. Horizontal Force P to Start Raising the Load. Since the three forces 
W, P, and R are not parallel, they must be concurrent. The direction of R 
is thus determined from the fact that its line of action must pass through 
the point of intersection D of W and P, and must be tangent to the circle 
of friction. Recalling that the radius of the circle of friction is rf 5 0.20 in., 
we write

sin u 5
OE
OD

5
0.20 in.
12 in.212

5 0.0707   u 5 4.1°

From the force triangle, we obtain

P 5 W cot (45° 2 u) 5 (500 lb) cot 40.9°
 5 577 lb P 5 577 lb y ◀

SAMPLE PROBLEM 8.6

A pulley of diameter 4 in. can rotate about a fixed shaft of diameter 2 in. 
The coefficient of static friction between the pulley and shaft is 0.20. Deter-
mine (a) the smallest vertical force P required to start raising a 500-lb load, 
(b) the smallest vertical force P required to hold the load, (c) the smallest 
horizontal force P required to start raising the same load.

W = 500 lb

C A

R
P

1.80 in. 2.20 in.

O

fs

45° – q
W = 500 lb

P

R

W = 500 lb

D

O

E

R

P

q

rf

W = 500 lb

A B

O

R
P

fs

2.20 in. 1.80 in.

444

bee29400_ch08_410-469.indd Page 444  11/25/08  8:51:36 PM user-s173bee29400_ch08_410-469.indd Page 444  11/25/08  8:51:36 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



445

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned about several additional engineering applications of 
the laws of friction.

1. Journal bearings and axle friction. In journal bearings, the reaction does not 
pass through the center of the shaft or axle which is being supported. The distance 
from the center of the shaft or axle to the line of action of the reaction (Fig. 8.10) 
is defined by the equation.

rf  5 r sin fk < rmk

if motion is actually taking place, and by the equation

rf  5 r sin fs < rms

if the motion is impending.

Once you have determined the line of action of the reaction, you can draw a free-
body diagram and use the corresponding equations of equilibrium to complete 
your solution [Sample Prob. 8.6]. In some problems, it is useful to observe that 
the line of action of the reaction must be tangent to a circle of radius rf ¯ rmk, 
or rf ¯ rms, known as the circle of friction [Sample Prob. 8.6, part c].

2. Thrust bearings and disk friction. In a thrust bearing the magnitude of the 
couple required to overcome frictional resistance is equal to the sum of the moments 
of the kinetic friction forces exerted on the elements of the end of the shaft 
[Eqs. (8.8) and (8.9)].

An example of disk friction is the disk clutch. It is analyzed in the same way as a 
thrust bearing, except that to determine the largest couple that can be transmitted, 
you must compute the sum of the moments of the maximum static friction forces
exerted on the disk.

3. Wheel friction and rolling resistance. You saw that the rolling resistance of 
a wheel is caused by deformations of both the wheel and the ground. The line of 
action of the reaction R of the ground on the wheel intersects the ground at a 
horizontal distance b from the center of the wheel. The distance b is known as 
the coefficient of rolling resistance and is expressed in inches or millimeters.

4. In problems involving both rolling resistance and axle friction, your free-
body diagram should show that the line of action of the reaction R of the ground 
on the wheel is tangent to the friction circle of the axle and intersects the ground 
at a horizontal distance from the center of the wheel equal to the coefficient of 
rolling resistance.
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PROBLEMS

446

 8.75 A 6-in.-radius pulley of weight 5 lb is attached to a 1.5-in.-radius 
shaft that fits loosely in a fixed bearing. It is observed that the 
pulley will just start rotating if a 0.5-lb weight is added to block A. 
Determine the coefficient of static friction between the shaft and 
the bearing.

 8.76 and 8.77 The double pulley shown is attached to a 10-mm-
radius shaft that fits loosely in a fixed bearing. Knowing that the 
coefficient of static friction between the shaft and the poorly lubri-
cated bearing is 0.40, determine the magnitude of the force P
required to start raising the load.

A B
O

DC

150 mm 100 mm

30 kg20 kg

75 mm

O

Fig. P8.80

A B

C

6 in.

1.5 in.

10 lb10 lb

Fig. P8.75

20 kg
P

90 mm
45 mm

Fig. P8.76 and P8.78

20 kg

P

90 mm
45 mm

Fig. P8.77 and P8.79

 8.78 and 8.79 The double pulley shown is attached to a 10-mm-
radius shaft that fits loosely in a fixed bearing. Knowing that the 
coefficient of static friction between the shaft and the poorly lubri-
cated bearing is 0.40, determine the magnitude of the  smallest 
force P required to maintain equilibrium.

 8.80 A lever of negligible weight is loosely fitted onto a 75-mm-diameter 
fixed shaft. It is observed that the lever will just start rotating if a 
3-kg mass is added at C. Determine the coefficient of static friction 
between the shaft and the lever.
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447Problems 8.81 The block and tackle shown are used to raise a 150-lb load. Each of 
the 3-in.-diameter pulleys rotates on a 0.5-in.-diameter axle. Know-
ing that the coefficient of static friction is 0.20, determine the ten-
sion in each portion of the rope as the load is slowly raised.

 8.82 The block and tackle shown are used to lower a 150-lb load. Each of 
the 3-in.-diameter pulleys rotates on a 0.5-in.-diameter axle. Knowing 
that the coefficient of static friction is 0.20, determine the tension in 
each portion of the rope as the load is slowly lowered.

 8.83 A loaded railroad car has a mass of 30 Mg and is supported by 
eight 800-mm-diameter wheels with 125-mm-diameter axles. 
Knowing that the coefficients of friction are ms 5 0.020 and mk 5 
0.015, determine the horizontal force required (a) to start the car 
moving, (b) to keep the car moving at a constant speed. Neglect 
rolling resistance between the wheels and the track.

 8.84 and 8.85 A lever AB of negligible weight is loosely fitted onto 
a 2.5-in.-diameter fixed shaft. Knowing that the coefficient of static 
friction between the fixed shaft and the lever is 0.15, determine 
the force P required to start the lever rotating counterclockwise.

A

B
C

D E

F

150 lb

TEF

Fig. P8.81 and P8.82

2.5 in.

2 in.

5 in.

50 lb

BB

AAP

Fig. P8.85 and P8.87

2.5 in.

5 in.

B

A

50 lb

P

2 in.

Fig. P8.84 and P8.86

500 mm
A

B
C

Fig. P8.88

 8.86 and 8.87 A lever AB of negligible weight is loosely fitted onto 
a 2.5-in.-diameter fixed shaft. Knowing that the coefficient of static 
friction between the fixed shaft and the lever is 0.15, determine 
the force P required to start the lever rotating clockwise.

 8.88 The link arrangement shown is frequently used in highway bridge 
construction to allow for expansion due to changes in temperature. 
At each of the 60-mm-diameter pins A and B the coefficient of 
static friction is 0.20. Knowing that the vertical component of the 
force exerted by BC on the link is 200 kN, determine (a) the hori-
zontal force that should be exerted on beam BC to just move the 
link, (b) the angle that the resulting force exerted by beam BC on 
the link will form with the vertical.

 8.89 A scooter is to be designed to roll down a 2 percent slope at a 
constant speed. Assuming that the coefficient of kinetic friction 
between the 25-mm-diameter axles and the bearings is 0.10, deter-
mine the required diameter of the wheels. Neglect the  rolling 
resistance between the wheels and the ground.
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448 Friction  8.90 A 50-lb electric floor polisher is operated on a surface for which 
the coefficient of kinetic friction is 0.25. Assuming that the normal 
force per unit area between the disk and the floor is uniformly 
distributed, determine the magnitude Q of the horizontal forces 
required to prevent motion of the machine.

20 in.

18 in.
Q

–Q

Fig. P8.90

M

4 kN

50 mm

120 mm

Fig. P8.91

 8.91 Knowing that a couple of magnitude 30 N ? m is required to start 
the vertical shaft rotating, determine the coefficient of static fric-
tion between the annular surfaces of contact.

 *8.92 The frictional resistance of a thrust bearing decreases as the shaft 
and bearing surfaces wear out. It is generally assumed that the 
wear is directly proportional to the distance traveled by any given 
point of the shaft and thus to the distance r from the point to the 
axis of the shaft. Assuming, then, that the normal force per unit 
area is inversely proportional to r, show that the magnitude M of 
the couple required to overcome the frictional resistance of a worn-
out end bearing (with contact over the full circular area) is equal 
to 75 percent of the value given by Eq. (8.9) for a new bearing.

 *8.93 Assuming that bearings wear out as indicated in Prob. 8.92, show 
that the magnitude M of the couple required to overcome the 
frictional resistance of a worn-out collar bearing is

  M 5 1
2mk P(R1 1 R2)

  where P 5 magnitude of the total axial force
     R1, R2 5 inner and outer radii of collar

 *8.94 Assuming that the pressure between the surfaces of contact is uni-
form, show that the magnitude M of the couple required to over-
come frictional resistance for the conical bearing shown is

M 5
2
3

 
mkP

sin u
 
R2

3 2 R1
3

R2
2 2 R1

2

 8.95 Solve Prob. 8.90 assuming that the normal force per unit area 
between the disk and the floor varies linearly from a maximum at 
the center to zero at the circumference of the disk.

 8.96 A 900-kg machine base is rolled along a concrete floor using a 
series of steel pipes with outside diameters of 100 mm. Knowing 
that the coefficient of rolling resistance is 0.5 mm between the 
pipes and the base and 1.25 mm between the pipes and the 
 concrete floor, determine the magnitude of the force P required 
to slowly move the base along the floor.

P

Fig. P8.96

P

θ θ

R1

R2

M

Fig. P8.94
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 8.97 Knowing that a 6-in.-diameter disk rolls at a constant velocity down 
a 2 percent incline, determine the coefficient of rolling resistance 
between the disk and the incline.

 8.98 Determine the horizontal force required to move a 2500-lb 
 automobile with 23-in.-diameter tires along a horizontal road at 
a constant speed. Neglect all forms of friction except rolling 
 resistance, and assume the coefficient of rolling resistance to 
be 0.05 in.

 8.99 Solve Prob. 8.83 including the effect of a coefficient of rolling 
resistance of 0.5 mm.

 8.100 Solve Prob. 8.89 including the effect of a coefficient of rolling 
resistance of 1.75 mm.

449

8.10 BELT FRICTION
Consider a flat belt passing over a fixed cylindrical drum (Fig. 8.14a). 
We propose to determine the relation existing between the values T1 
and T2 of the tension in the two parts of the belt when the belt is 
just about to slide toward the right.
 Let us detach from the belt a small element PP¿ subtending 
an angle Du. Denoting by T the tension at P and by T 1 DT the 
tension at P¿, we draw the free-body diagram of the element of the 
belt (Fig. 8.14b). Besides the two forces of tension, the forces acting 
on the free body are the normal component DN of the reaction of 
the drum and the friction force DF. Since motion is assumed to be 
impending, we have DF 5 ms DN. It should be noted that if Du is 
made to approach zero, the magnitudes DN and DF, and the differ-
ence DT between the tension at P and the tension at P¿, will also 
approach zero; the value T of the tension at P, however, will remain 
unchanged. This observation helps in understanding our choice of 
notations.
 Choosing the coordinate axes shown in Fig. 8.14b, we write the 
equations of equilibrium for the element PP¿:

oFx 5 0:   (T 1 ¢T) cos 
¢u
2

2 T cos 
¢u
2

2 ms¢N 5 0
 

(8.11)

oFy 5 0:   ¢N 2 (T 1 ¢T) sin 
¢u
2

2 T sin 
¢u
2

5 0
 

(8.12)

Solving Eq. (8.12) for DN and substituting into (8.11), we obtain after 
reductions

¢T cos 
¢u
2

2 ms(2T 1 ¢T) sin 
¢u
2

5 0

Both terms are now divided by Du. For the first term, this is done 
simply by dividing DT by Du. The division of the second term is 

P

O

P'

θ
βP1 P2

T1

T

T2

(a)

P

O

P'

(b)

x

y

ΔN ΔF =    sΔ N

T'= T + ΔT

2 2

θΔ

θΔ θΔ

θΔ

μ

Fig. 8.14

8.10 Belt Friction
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450 Friction carried out by dividing the terms in the parentheses by 2 and the 
sine by Du/2. We write

¢T
¢u

 cos 
¢u
2

2 ms 
aT 1

¢T
2
b sin(¢u/2)

¢u/2
5 0

If we now let Du approach 0, the cosine approaches 1 and DT/2 
approaches zero, as noted above. The quotient of sin (Du/2) over Du/2 
approaches 1, according to a lemma derived in all calculus textbooks. 
Since the limit of DT/Du is by definition equal to the derivative dT/du, 
we write

dT
du

2 msT 5 0     dT
T

5 msdu

Both members of the last equation (Fig. 8.14a) will now be inte-
grated from P1 to P2. At P1, we have u 5 0 and T 5 T1; at P2, we 
have u 5 b and T 5 T2. Integrating between these limits, we write

 #
T2

T1

 
dT
T

5 #
b

0
 
ms du

 ln T2 2 ln T1 5 msb

or, noting that the left-hand member is equal to the natural logarithm 
of the quotient of T2 and T1,

 
ln 

T2

T1
5 msb 

(8.13)

This relation can also be written in the form

 
T2

T1
5 emsb

 
(8.14)

The formulas we have derived apply equally well to problems involv-
ing flat belts passing over fixed cylindrical drums and to problems 
involving ropes wrapped around a post or capstan. They can also be 
used to solve problems involving band brakes. In such problems, it 
is the drum which is about to rotate, while the band remains fixed. 
The formulas can also be applied to problems involving belt drives. 
In these problems, both the pulley and the belt rotate; our concern 
is then to find whether the belt will slip, i.e., whether it will move 
with respect to the pulley.

P

O

P'

θ
βP1 P2

T1 T2

(a)

θΔ

Fig. 8.14a (repeated )

Photo 8.3 By wrapping the rope around the 
bollard, the force exerted by the worker to control 
the rope is much smaller than the tension in the taut 
portion of the rope.
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451 Formulas (8.13) and (8.14) should be used only if the belt, 
rope, or brake is about to slip. Formula (8.14) will be used if T1 or 
T2 is desired; formula (8.13) will be preferred if either ms or the 
angle of contact b is desired. We should note that T2 is always 
larger than T1; T2 therefore represents the tension in that part of 
the belt or rope which pulls, while T1 is the tension in the part 
which resists. We should also observe that the angle of contact b 
must be expressed in radians. The angle b may be larger than 2p; 
for example, if a rope is wrapped n times around a post, b is equal 
to 2pn.
 If the belt, rope, or brake is actually slipping, formulas similar 
to (8.13) and (8.14), but involving the coefficient of kinetic friction 
mk, should be used. If the belt, rope, or brake is not slipping and is 
not about to slip, none of these formulas can be used.
 The belts used in belt drives are often V-shaped. In the V belt 
shown in Fig. 8.15a contact between belt and pulley takes place 

(a) (b) (c)

x

y
y

z α
2

α
2

ΔN ΔN

2
T sin

2
 (T + ΔT) sin

2 2

T + ΔTT

2ΔF

α
2

2ΔN sin

α
Δ

α
θ

Δθ

ΔθΔθ

Δθ

Fig. 8.15

8.10 Belt Friction

along the sides of the groove. The relation existing between the val-
ues T1 and T2 of the tension in the two parts of the belt when the 
belt is just about to slip can again be obtained by drawing the free-
body diagram of an element of belt (Fig. 8.15b and c). Equations 
similar to (8.11) and (8.12) are derived, but the magnitude of the 
total friction force acting on the element is now 2 DF, and the sum 
of the y components of the normal forces is 2 DN sin (a/2). Proceed-
ing as above, we obtain

 
ln 

T2

T1
5

msb

sin (a/2)  
(8.15)

or,

 
T2

T1
5 emsb /sin (a/2)

 
(8.16)
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SOLUTION

a. Coefficient of Friction. Since slipping of the hawser is impending, we 
use Eq. (8.13):

ln 
T2

T1
5 msb

Since the hawser is wrapped two full turns around the bollard, we have

b 5 2(2p rad) 5 12.57 rad
T1 5 150 N T2 5 7500 N

Therefore,

msb 5 ln 
T2

T1

ms(12.57 rad) 5 ln 
7500 N
150 N

5 ln 50 5 3.91

 ms 5 0.311 ms 5 0.311 ◀

b. Hawser Wrapped Three Turns around Bollard. Using the value of ms 
obtained in part a, we now have

b 5 3(2p rad) 5 18.85 rad
 T1 5 150 N   ms 5 0.311

Substituting these values into Eq. (8.14), we obtain

T2

T1
5 emsb

T2

150 N
5 e(0.311)(18.85) 5 e5.862 5 351.5

T2 5 52 725 N
T2 5 52.7 kN ◀

SAMPLE PROBLEM 8.7

A hawser thrown from a ship to a pier is wrapped two full turns around a 
bollard. The tension in the hawser is 7500 N; by exerting a force of 150 N 
on its free end, a dockworker can just keep the hawser from slipping. 
(a) Determine the coefficient of friction between the hawser and the bol-
lard. (b) Determine the tension in the hawser that could be resisted by 
the 150-N force if the hawser were wrapped three full turns around 
the bollard.

150 N
7500 N

T1 = 150 N
T2
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SOLUTION

Since the resistance to slippage depends upon the angle of contact b 
between pulley and belt, as well as upon the coefficient of static friction ms, 
and since ms is the same for both pulleys, slippage will occur first on pulley 
B, for which b is smaller.

Pulley B. Using Eq. (8.14) with T2 5 600 lb, ms 5 0.25, and b 5 120° 5 
2p/3 rad, we write

T2

T1
5 emsb     600 lb

T1
5 e0.25(2p/3) 5 1.688

T1 5
600 lb
1.688

5 355.4 lb

Pulley A. We draw the free-body diagram of pulley A. The couple MA is 
applied to the pulley by the machine tool to which it is attached and is equal 
and opposite to the torque exerted by the belt. We write

1 l  oMA 5 0:  MA 2 (600 lb)(8 in.) 1 (355.4 lb)(8 in.) 5 0
 MA 5 1957 lb ? in. MA 5 163.1 lb ? ft ◀

Note. We may check that the belt does not slip on pulley A by computing 
the value of ms required to prevent slipping at A and verifying that it is 
smaller than the actual value of ms. From Eq. (8.13) we have

msb 5 ln 
T2

T1
5 ln 

600 lb
355.4 lb

5 0.524

and, since b 5 240° 5 4p/3 rad,

4p
3

 ms 5 0.524   ms 5 0.125 , 0.25

SAMPLE PROBLEM 8.8

A flat belt connects pulley A, which drives a machine tool, to pulley B, which 
is attached to the shaft of an electric motor. The coefficients of friction are 
ms 5 0.25 and mk 5 0.20 between both pulleys and the belt. Knowing that 
the maximum allowable tension in the belt is 600 lb, determine the largest 
torque which can be exerted by the belt on pulley A.

60°

30°

b = 240°

b = 120°

A

B

T2 = 600 lb

T1 b = 120°
B

60°

A

B

r = 1 in.
8 in.

T1 = 355.4 lb

A x
A y

MA

T2 = 600 lb
A

8 in.

453
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454

In the preceding section you learned about belt friction. The problems you will 
have to solve include belts passing over fixed drums, band brakes in which the 

drum rotates while the band remains fixed, and belt drives.

1. Problems involving belt friction fall into one of the following two categories:
 a. Problems in which slipping is impending. One of the following formulas, 
involving the coefficient of static friction ms, may then be used,

 
ln 

T2

T1
5 msb 

(8.13)

or

 
T2

T1
5 emsb

 (8.14)

 b. Problems in which slipping is occurring. The formulas to be used can be 
obtained from Eqs. (8.13) and (8.14) by replacing ms with the coefficient of kinetic 
friction mk.

2. As you start solving a belt-friction problem, be sure to remember the 
following:
 a. The angle B must be expressed in radians. In a belt-and-drum problem, 
this is the angle subtending the arc of the drum on which the belt is wrapped.
 b. The larger tension is always denoted by T2 and the smaller tension is 
denoted by T1.
 c. The larger tension occurs at the end of the belt which is in the direction 
of the motion, or impending motion, of the belt relative to the drum.

3. In each of the problems you will be asked to solve, three of the four 
quantities T1, T2, b, and ms (or mk) will either be given or readily found, and you 
will then solve the appropriate equation for the fourth quantity. Here are two kinds 
of problems that you will encounter:
 a. Find Ms between belt and drum, knowing that slipping is impending. 
From the given data, determine T1, T2, and b; substitute these values into Eq. (8.13) 
and solve for ms [Sample Prob. 8.7, part a]. Follow the same procedure to find 
the smallest value of ms for which slipping will not occur.
 b. Find the magnitude of a force or couple applied to the belt or drum, 
knowing that slipping is impending. The given data should include ms and b. 
If it also  includes T1 or T2, use Eq. (8.14) to find the other tension. If neither T1 
nor T2 is known but some other data is given, use the free-body diagram of the 
belt-drum system to write an equilibrium equation that you will solve simultane-
ously with Eq. (8.14) for T1 and T2. You will then be able to find the magnitude 
of the specified force or couple from the free-body diagram of the system. Follow 
the same procedure to determine the largest value of a force or couple which can 
be applied to the belt or drum if no slipping is to occur [Sample Prob. 8.8].

SOLVING PROBLEMS
ON YOUR OWN

bee29400_ch08_410-469.indd Page 454  11/25/08  8:51:46 PM user-s173bee29400_ch08_410-469.indd Page 454  11/25/08  8:51:46 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



PROBLEMS

455

 8.101 A hawser is wrapped two full turns around a bollard. By exerting 
an 80-lb force on the free end of the hawser, a dockworker can 
resist a force of 5000 lb on the other end of the hawser. Determine 
(a) the coefficient of static friction between the hawser and the 
bollard, (b) the number of times the hawser should be wrapped 
around the bollard if a 20,000-lb force is to be resisted by the same 
80-lb force.

8.102 A rope ABCD is looped over two pipes as shown. Knowing that 
the coefficient of static friction is 0.25, determine (a) the smallest 
value of the mass m for which equilibrium is possible, (b) the cor-
responding tension in portion BC of the rope.

8.103 A rope ABCD is looped over two pipes as shown. Knowing that 
the coefficient of static friction is 0.25, determine (a) the largest 
value of the mass m for which equilibrium is possible, (b) the cor-
responding tension in portion BC of the rope.

 8.104 A 300-lb block is supported by a rope that is wrapped 11
2 times 

around a horizontal rod. Knowing that the coefficient of static fric-
tion between the rope and the rod is 0.15, determine the range of 
values of P for which equilibrium is maintained.

 8.105 The coefficient of static friction between block B and the horizon-
tal surface and between the rope and support C is 0.40. Knowing 
that mA 5 12 kg, determine the smallest mass of block B for which 
equilibrium is maintained.

30°

C

DA

B

50 kg m

Fig. P8.102 and P8.103

P

300 lb

Fig. P8.104

mA

mB

A

BC

Fig. P8.105 and P8.106

8.106 The coefficient of static friction ms is the same between block B 
and the horizontal surface and between the rope and support C. 
Knowing that mA 5 mB, determine the smallest value of ms for 
which equilibrium is maintained.

8.107 A flat belt is used to transmit a couple from drum B to drum A. 
Knowing that the coefficient of static friction is 0.40 and that the 
allowable belt tension is 450 N, determine the largest couple that 
can be exerted on drum A.

B

A

15° 15°

rA = 120 mm

rB = 50 mm

Fig. P8.107
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456 Friction  8.108 A flat belt is used to transmit a couple from pulley A to pulley B. 
The radius of each pulley is 60 mm, and a force of magnitude 
P 5 900 N is applied as shown to the axle of pulley A. Knowing 
that the coefficient of static friction is 0.35, determine (a) the larg-
est couple that can be transmitted, (b) the corresponding maximum 
value of the tension in the belt.

A B
P

240 mm

Fig. P8.108

A
B

C D

W

10 in.

12 in.

6 in.

Fig. P8.110

360 mm

360 mm

120 mmP

A B C

D

Fig. P8.112

 8.109 Solve Prob. 8.108 assuming that the belt is looped around the pul-
leys in a figure eight.

 8.110 In the pivoted motor mount shown the weight W of the 175-lb 
motor is used to maintain tension in the drive belt. Knowing that 
the coefficient of static friction between the flat belt and drums A 
and B is 0.40, and neglecting the weight of platform CD, determine 
the largest couple that can be transmitted to drum B when the 
drive drum A is rotating clockwise.

 8.111 Solve Prob. 8.110 assuming that the drive drum A is rotating 
counterclockwise.

 8.112 A band brake is used to control the speed of a flywheel as shown. 
The coefficients of friction are ms 5 0.30 and mk 5 0.25. Determine 
the magnitude of the couple being applied to the flywheel, know-
ing that P 5 45 N and that the flywheel is rotating counterclock-
wise at a constant speed.
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457Problems 8.113 The speed of the brake drum shown is controlled by a belt attached 
to the control bar AD. A force P of magnitude 25 lb is applied to 
the control bar at A. Determine the magnitude of the couple being 
applied to the drum, knowing that the coefficient of kinetic friction 
between the belt and the drum is 0.25, that a 5 4 in., and that 
the drum is rotating at a constant speed (a) counterclockwise, 
(b) clockwise.

 8.114 Knowing that a 5 4 in., determine the maximum value of the 
coefficient of static friction for which the brake is not self-locking 
when the drum rotates counterclockwise.

A
B

C

D

a

P

24 in.

r � 8 in.
E

Fig. P8.113, P8.114, 
and P8.115

A

B
C

m

100 kg

30°

Fig. P8.116

 8.115 Knowing that the coefficient of static friction is 0.30 and that the 
brake drum is rotating counterclockwise, determine the  minimum 
value of a for which the brake is not self-locking.

 8.116 Bucket A and block C are connected by a cable that passes over 
drum B. Knowing that drum B rotates slowly counterclockwise 
and that the coefficients of friction at all surfaces are ms 5 0.35 
and mk 5 0.25, determine the smallest combined mass m of the 
bucket and its contents for which block C will (a) remain at rest, 
(b) start moving up the incline, (c) continue moving up the incline 
at a constant speed.

 8.117 Solve Prob. 8.116 assuming that drum B is frozen and cannot rotate.
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458 Friction  8.118 and 8.120 A cable is placed around three parallel pipes. Knowing 
that the coefficients of friction are ms 5 0.25 and mk 5 0.20, deter-
mine (a) the smallest weight W for which equilibrium is maintained, 
(b) the largest weight W that can be raised if pipe B is slowly rotated 
counterclockwise while pipes A and C remain fixed.

A

C

B

W50 lb

Fig. P8.118 and P8.119

50 lb

W

A

C

B

Fig. P8.120 and P8.121

A

B

C

D

P

TA

0.3 N⋅m

Fig. P8.122

 8.119 and 8.121 A cable is placed around three parallel pipes. Two 
of the pipes are fixed and do not rotate; the third pipe is slowly 
rotated. Knowing that the coefficients of friction are ms 5 0.25 
and mk 5 0.20, determine the largest weight W that can be raised 
(a) if only pipe A is rotated counterclockwise, (b) if only pipe C is 
rotated clockwise.

 8.122 A recording tape passes over the 20-mm-radius drive drum B and 
under the idler drum C. Knowing that the coefficients of friction 
between the tape and the drums are ms 5 0.40 and mk 5 0.30 and 
that drum C is free to rotate, determine the smallest allowable value 
of P if slipping of the tape on drum B is not to occur.

 8.123 Solve Prob. 8.122 assuming that the idler drum C is frozen and 
cannot rotate.

 8.124 The 10-lb bar AE is suspended by a cable that passes over a 
5-in.-radius drum. Vertical motion of end E of the bar is pre-
vented by the two stops shown. Knowing that ms 5 0.30 between 
the cable and the drum, determine (a) the largest counter-
clockwise couple M0 that can be applied to the drum if slipping 
is not to occur, (b) the corresponding force exerted on end E of 
the bar.

A C E

B D

5 in. 5 in. 3 in.

10 lb

M0

Fig. P8.124
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459Problems 8.125 Solve Prob. 8.124 assuming that a clockwise couple M0 is applied 
to the drum.

 8.126 The strap wrench shown is used to grip the pipe firmly without 
marring the external surface of the pipe. Knowing that the coeffi-
cient of static friction is the same for all surfaces of contact, deter-
mine the smallest value of ms for which the wrench will be self-locking 
when a 5 200 mm, r 5 30 mm, and u 5 65°.

 8.127 Solve Prob. 8.126 assuming that u 5 75°.

 8.128 Prove that Eqs. (8.13) and (8.14) are valid for any shape of surface 
provided that the coefficient of friction is the same at all points of 
contact.

 8.129 Complete the derivation of Eq. (8.15), which relates the tension in 
both parts of a V belt.

 8.130 Solve Prob. 8.107 assuming that the flat belt and drums are 
replaced by a V belt and V pulleys with a 5 36°. (The angle a is 
as shown in Fig. 8.15a.)

 8.131 Solve Prob. 8.108 assuming that the flat belt and pulleys are 
replaced by a V belt and V pulleys with a 5 36°. (The angle a is 
as shown in Fig. 8.15a.)

θ

r a

D

P

C

B

A

Fig. P8.126

T2T1

β

T2T1

β

Fig. P8.128
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460

REVIEW AND SUMMARY

This chapter was devoted to the study of dry friction, i.e., to prob-
lems involving rigid bodies which are in contact along nonlubricated 
surfaces.

N

F

W

P

P

F Equilibrium Motion

Fm

Fk

Fig. 8.16

Applying a horizontal force P to a block resting on a horizontal sur-
face [Sec. 8.2], we note that the block at first does not move. This 
shows that a friction force F must have developed to balance P
(Fig. 8.16). As the magnitude of P is increased, the magnitude of F
also increases until it reaches a maximum value Fm. If P is further 
increased, the block starts sliding and the magnitude of F drops from 
Fm to a lower value Fk. Experimental evidence shows that Fm and Fk 
are proportional to the normal component N of the reaction of the 
surface. We have

 Fm 5 msN  Fk 5 mkN (8.1, 8.2)

where ms and mk are called, respectively, the coefficient of static 
 friction and the coefficient of kinetic friction. These coefficients 
depend on the nature and the condition of the surfaces in contact. 
Approximate values of the coefficients of static friction were given 
in Table 8.1.

It is sometimes convenient to replace the normal force N and the 
friction force F by their resultant R (Fig. 8.17). As the friction force 
increases and reaches its maximum value Fm 5 msN, the angle f that 
R forms with the normal to the surface increases and reaches a 
maximum value fs, called the angle of static friction. If motion actu-
ally takes place, the magnitude of F drops to Fk; similarly the angle f 
drops to a lower value fk, called the angle of kinetic friction. As 
shown in Sec. 8.3, we have

 tan fs 5 ms  tan fk 5 mk (8.3, 8.4)

Static and kinetic friction

Angles of friction

R

W

P

φ
N

F

Fig. 8.17
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461When solving equilibrium problems involving friction, we should keep 
in mind that the magnitude F of the friction force is equal to 
Fm 5 msN only if the body is about to slide [Sec. 8.4]. If motion is not 
impending, F and N should be considered as independent unknowns 
to be determined from the equilibrium equations (Fig. 8.18a). We 

Problems involving friction

W P

N

W P

N

Frequired

Fm  = ms N

(a) (b)

Fig. 8.18

should also check that the value of F required to maintain equilib-
rium is not larger than Fm; if it were, the body would move and the 
magnitude of the friction force would be Fk 5 mkN [Sample Prob. 8.1]. 
On the other hand, if motion is known to be impending, F has 
reached its maximum value Fm 5 msN (Fig. 8.18b), and this expres-
sion may be substituted for F in the equilibrium equations [Sample 
Prob. 8.3]. When only three forces are involved in a free-body dia-
gram, including the reaction R of the surface in contact with the 
body, it is usually more convenient to solve the problem by drawing 
a force triangle [Sample Prob. 8.2].
 When a problem involves the analysis of the forces exerted on 
each other by two bodies A and B, it is important to show the friction 
forces with their correct sense. The correct sense for the friction force 
exerted by B on A, for instance, is opposite to that of the relative 
motion (or impending motion) of A with respect to B [Fig. 8.6].

In the second part of the chapter we considered a number of specific 
engineering applications where dry friction plays an important role. 
In the case of wedges, which are simple machines used to raise heavy 
loads [Sec. 8.5], two or more free-body diagrams were drawn and 
care was taken to show each friction force with its correct sense 
[Sample Prob. 8.4]. The analysis of square-threaded screws, which 
are frequently used in jacks, presses, and other mechanisms, was 
reduced to the analysis of a block sliding on an incline by unwrapping 
the thread of the screw and showing it as a straight line [Sec. 8.6]. 
This is done again in Fig. 8.19, where r denotes the mean radius 
of the thread, L is the lead of the screw, i.e., the distance through 
which the screw advances in one turn, W is the load, and Qr is equal 
to the couple exerted on the screw. It was noted that in the case of 
multiple-threaded screws the lead L of the screw is not equal to its 
pitch, which is the distance measured between two consecutive 
threads.

Wedges and screws

fs

Q

W

R

q

q

L

2   r�

Fig. 8.19

Review and Summary
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462 Friction  Other engineering applications considered in this chapter were 
journal bearings and axle friction [Sec. 8.7], thrust bearings and disk 
friction [Sec. 8.8], wheel friction and rolling resistance [Sec. 8.9], and 
belt friction [Sec. 8.10].

In solving a problem involving a flat belt passing over a fixed cylinder, 
it is important to first determine the direction in which the belt slips 
or is about to slip. If the drum is rotating, the motion or impending 
motion of the belt should be determined relative to the rotating 
drum. For instance, if the belt shown in Fig. 8.20 is about to slip to 

Belt friction

P

O

P'

q
b

Δq
P1 P2

T1 T2

Fig. 8.20

the right relative to the drum, the friction forces exerted by the drum 
on the belt will be directed to the left and the tension will be larger 
in the right-hand portion of the belt than in the left-hand portion. 
Denoting the larger tension by T2, the smaller tension by T1, the 
coefficient of static friction by ms, and the angle (in radians) sub-
tended by the belt by b, we derived in Sec. 8.10 the formulas

 
 ln 

T2

T1
5 msb 

(8.13)

 
 
T2

T1
5 emsb

 
(8.14)

which were used in solving Sample Probs. 8.7 and 8.8. If the belt 
actually slips on the drum, the coefficient of static friction ms should 
be replaced by the coefficient of kinetic friction mk in both of these 
formulas.
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463

REVIEW PROBLEMS

P

30°

b

25 kg

Fig. P8.132

B

q

A

Fig. P8.133

 8.132 Knowing that the coefficient of friction between the 25-kg block 
and the incline is ms 5 0.25, determine (a) the smallest value of 
P required to start the block moving up the incline, (b) the corre-
sponding value of b.

 8.133 The 20-lb block A and the 30-lb block B are supported by an 
incline that is held in the position shown. Knowing that the coef-
ficient of static friction is 0.15 between all surfaces of contact, 
determine the value of u for which motion is impending.

 8.134 A worker slowly moves a 50-kg crate to the left along a loading 
dock by applying a force P at corner B as shown. Knowing that 
the crate starts to tip about the edge E of the loading dock when 
a 5 200 mm, determine (a) the coefficient of kinetic friction 
between the crate and the loading dock, (b) the corresponding 
magnitude P of the force.

P

A

C

B

D

1.2 m

0.9 m

15°

a
E

Fig. P8.134

bee29400_ch08_410-469.indd Page 463  11/25/08  8:51:54 PM user-s173bee29400_ch08_410-469.indd Page 463  11/25/08  8:51:54 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



464 Friction  8.135 A slender rod of length L is lodged between peg C and the vertical 
wall and supports a load P at end A. Knowing that the coefficient 
of static friction between the peg and the rod is 0.15 and neglect-
ing friction at the roller, determine the range of values of the ratio 
L/a for which equilibrium is maintained.

A

B

C

L

a

30°

P

Fig. P8.135

P

0.8 in.

B

D

C
A

E

4 in.

3 in.

4 in.

6 in.

Fig. P8.136

 8.136 A safety device used by workers climbing ladders fixed to high 
structures consists of a rail attached to the ladder and a sleeve that 
can slide on the flange of the rail. A chain connects the worker’s 
belt to the end of an eccentric cam that can be rotated about an 
axle attached to the sleeve at C. Determine the smallest allowable 
common value of the coefficient of static friction between the 
flange of the rail, the pins at A and B, and the eccentric cam if 
the sleeve is not to slide down when the chain is pulled vertically 
downward.

 8.137 To be of practical use, the safety sleeve described in the preceding 
problem must be free to slide along the rail when pulled upward. 
Determine the largest allowable value of the coefficient of static 
friction between the flange of the rail and the pins at A and B if 
the sleeve is to be free to slide when pulled as shown in the figure, 
assuming (a) u 5 60°, (b) u 5 50°, (c) u 5 40°.

P

B

D

A

E

4 in.

3 in.

4 in.

C θ

Fig. P8.137
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465Review Problems 8.138 Bar AB is attached to collars that can slide on the inclined rods 
shown. A force P is applied at point D located at a distance a 
from end A. Knowing that the coefficient of static friction ms 
between each collar and the rod upon which it slides is 0.30 and 
neglecting the weights of the bar and of the collars, determine 
the smallest value of the ratio a/L for which equilibrium is 
maintained.

4 in.

P
0.75 in.0.75 in.

B C

A

Fig. P8.140

 8.139 The machine part ABC is supported by a frictionless hinge at B 
and a 10° wedge at C. Knowing that the coefficient of static  friction 
at both surfaces of the wedge is 0.20, determine (a) the force P 
required to move the wedge, (b) the components of the corre-
sponding reaction at B.

45° 45°

A
D

B

P
a

L

Fig. P8.138

1800 N

P

400 mm

350 mm

600 mm

A

B
C

Fig. P8.139

 8.140 A wedge A of negligible weight is to be driven between two 100-lb 
blocks B and C resting on a horizontal surface. Knowing that the 
coefficient of static friction at all surfaces of contact is 0.35, deter-
mine the smallest force P required to start moving the wedge (a) if 
the blocks are equally free to move, (b) if block C is securely bolted 
to the horizontal surface.
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466 Friction

A
B

C

D

E

M25°

25°

800 lb

Fig. P8.141

100 mm 160 mm

P

30 mm

40 kg

A
B

C

Fig. P8.142

15 kg

75 mm75 mm BA

MB

Fig. P8.143

 8.141 The position of the automobile jack shown is controlled by a screw 
ABC that is single-threaded at each end (right-handed thread at 
A, left-handed thread at C). Each thread has a pitch of 0.1 in. and 
a mean diameter of 0.375 in. If the coefficient of static friction is 
0.15, determine the magnitude of the couple M that must be 
applied to raise the automobile.

 8.142 A lever of negligible weight is loosely fitted onto a 30-mm-radius 
fixed shaft as shown. Knowing that a force P of magnitude 
275 N will just start the lever rotating clockwise, determine 
(a) the coefficient of static friction between the shaft and the lever, 
(b) the smallest force P for which the lever does not start rotating 
counterclockwise.

 8.143 A couple MB is applied to the drive drum B to maintain a constant 
speed in the polishing belt shown. Knowing that mk 5 0.45 between 
the belt and the 15-kg block being polished and ms 5 0.30 between 
the belt and the drive drum B, determine (a) the couple MB, 
(b) the minimum tension in the lower portion of the belt if no 
slipping is to occur between the belt and the drive drum.
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COMPUTER PROBLEMS

 8.C1 The position of the 10-kg rod AB is controlled by the 2-kg block 
shown, which is slowly moved to the left by the force P. Knowing that the 
coefficient of kinetic friction between all surfaces of contact is 0.25, write a 
computer program and use it to calculate the magnitude P of the force for 
values of x from 900 to 100 mm, using 50-mm decrements. Using appropri-
ate smaller decrements, determine the maximum value of P and the corre-
sponding value of x.

A

B

D
P

400 mm

x

1000 mm

Fig. P8.C1

 8.C2 Blocks A and B are supported by an incline that is held in the posi-
tion shown. Knowing that block A weighs 20 lb and that the coefficient of 
static friction between all surfaces of contact is 0.15, write a computer pro-
gram and use it to calculate the value of u for which motion is impending 
for weights of block B from 0 to 100 lb, using 10-lb increments.

A

B

θ

Fig. P8.C2

 8.C3 A 300-g cylinder C rests on cylinder D as shown. Knowing that the 
coefficient of static friction ms is the same at A and B, write a computer 
program and use it to determine, for values of ms from 0 to 0.40 and using 
0.05 increments, the largest counterclockwise couple M that can be applied 
to cylinder D if it is not to rotate.

A

B

C

D M

75 mm

150 mm

150 mm

Fig. P8.C3
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 8.C4 Two rods are connected by a slider block D and are held in equilib-
rium by the couple MA as shown. Knowing that the coefficient of static 
friction between rod AC and the slider block is 0.40, write a computer 
program and use it to determine, for values of u from 0 to 120° and using 
10° increments, the range of values of MA for which equilibrium is 
maintained.

q

P

A

B

R

Fig. P8.C5

2.5 N⋅m
BA

qMA

C

D

150 mm

250 mm

Fig. P8.C4

 8.C5 The 10-lb block A is slowly moved up the circular cylindrical surface 
by a cable that passes over a small fixed cylindrical drum at B. The coeffi-
cient of kinetic friction is known to be 0.30 between the block and the 
 surface and between the cable and the drum. Write a computer program 
and use it to calculate the force P required to maintain the motion for values 
of u from 0 to 90°, using 10° increments. For the same values of u calculate 
the magnitude of the reaction between the block and the surface. 
[Note that the angle of contact between the cable and the fixed drum is 
b 5 p 2 (u/2).]

 8.C6 A flat belt is used to transmit a couple from drum A to drum B. The 
radius of each drum is 80 mm, and the system is fitted with an idler wheel 
C that is used to increase the contact between the belt and the drums. The 
allowable belt tension is 200 N, and the coefficient of static friction between 
the belt and the drums is 0.30. Write a computer program and use it to 
calculate the largest couple that can be transmitted for values of u from 
0 to 30°, using 5° increments.

CA B
P

θ θ

Q

Fig. P8.C6

468 Friction
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469Computer Problems 8.C7 Two collars A and B that slide on vertical rods with negligible fric-
tion are connected by a 30-in. cord that passes over a fixed shaft at C. 
The coefficient of static friction between the cord and the fixed shaft is 
0.30. Knowing that the weight of collar B is 8 lb, write a computer program 
and use it to determine, for values of u from 0 to 60° and using 10° incre-
ments, the largest and smallest weight of collar A for which equilibrium is 
maintained.

Computer Problems

 8.C8 The end B of a uniform beam of length L is being pulled by a sta-
tionary crane. Initially the beam lies on the ground with end A directly 
below pulley C. As the cable is slowly pulled in, the beam first slides to the 
left with u 5 0 until it has moved through a distance x0. In a second phase, 
end B is raised, while end A keeps sliding to the left until x reaches its 
maximum value xm and u the corresponding value u1. The beam then rotates 
about A¿ while u keeps increasing. As u reaches the value u2, end A starts 
sliding to the right and keeps sliding in an irregular manner until B reaches 
C. Knowing that the coefficients of friction between the beam and the 
ground are ms 5 0.50 and mk 5 0.40, (a) write a program to compute x for 
any value of u while the beam is sliding to the left and use this program to 
determine x0, xm, and u1, (b) modify the program to compute for any u the 
value of x for which sliding would be impending to the right and use this 
new program to determine the value u2 of u corresponding to x 5 xm.

10 in. 10 in.

A

B

C q

Fig. P8.C7

L

L

C

B�

Bθ
θ

xm

x
A� A

Fig. P8.C8
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The strength of structural members used 

in the construction of buildings depends 

to a large extent on the properties of 

their cross sections. This includes the 

second moments of area, or moments 

of inertia, of these cross sections.
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Distributed Forces: 
Moments of Inertia
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9.1 INTRODUCTION
In Chap. 5, we analyzed various systems of forces distributed over 
an area or volume. The three main types of forces considered were 
(1) weights of homogeneous plates of uniform thickness (Secs. 5.3 
through 5.6), (2) distributed loads on beams (Sec. 5.8) and hydrostatic 
forces (Sec. 5.9), and (3) weights of homogeneous three-dimensional 
bodies (Secs. 5.10 and 5.11). In the case of homogeneous plates, the 
magnitude DW of the weight of an element of a plate was propor-
tional to the area DA of the element. For distributed loads on beams, 
the magnitude DW of each elemental weight was represented by an 
element of area DA 5 DW under the load curve; in the case of 
hydrostatic forces on submerged rectangular surfaces, a similar pro-
cedure was followed. In the case of homogeneous three-dimensional 
bodies, the magnitude DW of the weight of an element of the body 
was proportional to the volume DV of the element. Thus, in all cases 
considered in Chap. 5, the distributed forces were proportional to 
the elemental areas or volumes associated with them. The resultant 
of these forces, therefore, could be obtained by summing the corre-
sponding areas or volumes, and the moment of the resultant about 
any given axis could be determined by computing the first moments 
of the areas or volumes about that axis.
 In the first part of this chapter, we consider distributed forces 
DF whose magnitudes depend not only upon the elements of area 
DA on which these forces act but also upon the distance from DA to 
some given axis. More precisely, the magnitude of the force per unit 
area DF/DA is assumed to vary linearly with the distance to the axis. 
As indicated in the next section, forces of this type are found in the 
study of the bending of beams and in problems involving submerged 
non-rectangular surfaces. Assuming that the elemental forces involved 
are distributed over an area A and vary linearly with the distance y 
to the x axis, it will be shown that while the magnitude of their resul-
tant R depends upon the first moment Qx 5 e y dA of the area A, 
the location of the point where R is applied depends upon the second 
moment, or moment of inertia, Ix 5 e y2 dA of the same area with 
respect to the x axis. You will learn to compute the moments of inertia 
of various areas with respect to given x and y axes. Also introduced 
in the first part of this chapter is the polar moment of inertia JO 5 
e r2 dA of an area, where r is the distance from the element of area 
dA to the point O. To facilitate your computations, a relation will be 
established between the moment of inertia Ix of an area A with respect 
to a given x axis and the moment of inertia Ix9 of the same area with 
respect to the parallel centroidal x9 axis (parallel-axis theorem). You 
will also study the transformation of the moments of inertia of a given 
area when the coordinate axes are rotated (Secs. 9.9 and 9.10).
 In the second part of the chapter, you will learn how to deter-
mine the moments of inertia of various masses with respect to a given 
axis. As you will see in Sec. 9.11, the moment of inertia of a given 
mass about an axis AA9 is defined as I 5 e r2 dm, where r is the 
distance from the axis AA9 to the element of mass dm. Moments of 
inertia of masses are encountered in dynamics in problems involving 
the rotation of a rigid body about an axis. To facilitate the computation 
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473of mass moments of inertia, the parallel-axis theorem will be intro-
duced (Sec. 9.12). Finally, you will learn to analyze the transforma-
tion of moments of inertia of masses when the coordinate axes are 
rotated (Secs. 9.16 through 9.18).

MOMENTS OF INERTIA OF AREAS

9.2  SECOND MOMENT, OR MOMENT OF INERTIA, 
OF AN AREA

In the first part of this chapter, we consider distributed forces DF 
whose magnitudes DF are proportional to the elements of area DA 
on which the forces act and at the same time vary linearly with the 
distance from DA to a given axis.
 Consider, for example, a beam of uniform cross section which 
is subjected to two equal and opposite couples applied at each end 
of the beam. Such a beam is said to be in pure bending, and it is 
shown in mechanics of materials that the internal forces in any sec-
tion of the beam are distributed forces whose magnitudes DF 5 
ky DA vary linearly with the distance y between the element of area 
DA and an axis passing through the centroid of the section. This axis, 
represented by the x axis in Fig. 9.1, is known as the neutral axis of 
the section. The forces on one side of the neutral axis are forces 
of compression, while those on the other side are forces of tension; 
on the neutral axis itself the forces are zero.
 The magnitude of the resultant R of the elemental forces DF 
which act over the entire section is

R 5#  ky dA 5 k #  y dA

The last integral obtained is recognized as the first moment Qx of 
the section about the x axis; it is equal to y A and is thus equal to 
zero, since the centroid of the section is located on the x axis. The 
system of the forces DF thus reduces to a couple. The magnitude M 
of this couple (bending moment) must be equal to the sum of the 
moments DMx 5 y DF 5 ky2 DA of the elemental forces. Integrating 
over the entire section, we obtain

M 5 #  ky2 dA 5 k #  y2 dA

The last integral is known as the second moment, or moment of iner-
tia,† of the beam section with respect to the x axis and is denoted by 
Ix. It is obtained by multiplying each element of area dA by the square 
of its distance from the x axis and integrating over the beam section. 
Since each product y2 dA is positive, regardless of the sign of y, or 
zero (if y is zero), the integral Ix will always be positive.
 Another example of a second moment, or moment of inertia, 
of an area is provided by the following problem from hydrostatics: A 

y

x
y

ΔF = ky Δ A

Δ A

Fig. 9.1

†The term second moment is more proper than the term moment of inertia, since, logically, 
the latter should be used only to denote integrals of mass (see Sec. 9.11). In engineering 
practice, however, moment of inertia is used in connection with areas as well as masses.

9.2 Second Moment, or Moment of Inertia, 
of an Area
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474  Distributed Forces: Moments of Inertia vertical circular gate used to close the outlet of a large reservoir is 
submerged under water as shown in Fig. 9.2. What is the resultant 
of the forces exerted by the water on the gate, and what is the 
moment of the resultant about the line of intersection of the plane 
of the gate and the water surface (x axis)?
 If the gate were rectangular, the resultant of the forces of  pressure 
could be determined from the pressure curve, as was done in Sec. 5.9. 
Since the gate is circular, however, a more general method must be 
used. Denoting by y the depth of an element of area DA and by g the 
specific weight of water, the pressure at the element is p 5 gy, and the 
magnitude of the elemental force exerted on DA is DF 5 p DA 5 
gy DA. The magnitude of the resultant of the elemental forces is thus

R 5 #  gy dA 5 g #  y dA

and can be obtained by computing the first moment Qx 5 e y dA 
of the area of the gate with respect to the x axis. The moment Mx 
of the resultant must be equal to the sum of the moments DMx 5 
y DF 5 gy2 DA of the elemental forces. Integrating over the area 
of the gate, we have

Mx 5 #  gy2 dA 5 g #  y2 dA

Here again, the integral obtained represents the second moment, or 
moment of inertia, Ix of the area with respect to the x axis.

9.3  DETERMINATION OF THE MOMENT OF INERTIA 
OF AN AREA BY INTEGRATION

We defined in the preceding section the second moment, or moment 
of inertia, of an area A with respect to the x axis. Defining in a similar 
way the moment of inertia Iy of the area A with respect to the y axis, 
we write (Fig. 9.3a)

 Ix 5 #  y
2 dA   Iy 5 #  x

2 dA (9.1)

y

x

y

C

Δ A ΔF = gy ΔA

Fig. 9.2

x

y

y

x

(a)

dA = dx dy

dx
dy

dIx = y2 dA dIy = x2 dA

x

y

y

x

(b)

a

dA = ( a – x ) dy

dy

dIx = y2 dA

y
x

y

x

(c)

dA = y dx

dx
dIy = x2 dA

Fig. 9.3
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475These integrals, known as the rectangular moments of inertia of the 
area A, can be more easily evaluated if we choose dA to be a thin strip 
parallel to one of the coordinate axes. To compute Ix, the strip is cho-
sen parallel to the x axis, so that all of the points of the strip are at 
the same distance y from the x axis (Fig. 9.3b); the moment of inertia 
dIx of the strip is then obtained by multiplying the area dA of the strip 
by y2. To compute Iy, the strip is chosen parallel to the y axis so that 
all of the points of the strip are at the same distance x from the y axis 
(Fig. 9.3c); the moment of inertia dIy of the strip is x2 dA.

Moment of Inertia of a Rectangular Area. As an example, let 
us determine the moment of inertia of a rectangle with respect to its 
base (Fig. 9.4). Dividing the rectangle into strips parallel to the x axis, 
we obtain

dA 5 b dy  dIx 5 y2b dy

 
Ix 5 #

h

0
 
by2 dy 5 1

3 
bh3

 
(9.2)

Computing lx and ly Using the Same Elemental Strips. The 
formula just derived can be used to determine the moment of inertia 
dIx with respect to the x axis of a rectangular strip which is parallel 
to the y axis, such as the strip shown in Fig. 9.3c. Setting b 5 dx and 
h 5 y in formula (9.2), we write

dIx 5 1
3 
y3 dx

On the other hand, we have

dIy 5 x2 dA 5 x2y dx

The same element can thus be used to compute the moments of 
inertia Ix and Iy of a given area (Fig. 9.5).

9.4 POLAR MOMENT OF INERTIA
An integral of great importance in problems concerning the torsion of 
cylindrical shafts and in problems dealing with the rotation of slabs is

 JO 5 #  r  

2 dA (9.3)

where r is the distance from O to the element of area dA (Fig. 9.6). 
This integral is the polar moment of inertia of the area A with respect 
to the “pole” O.
 The polar moment of inertia of a given area can be computed 
from the rectangular moments of inertia Ix and Iy of the area if these 
quantities are already known. Indeed, noting that r2 5 x2 1 y2, we 
write

JO 5 #  r
2 dA 5 #  (x2 1 y2) dA 5 #  y2 dA 1 #  x2 dA

h

y

y

b

dy

x

dA = b dy

Fig. 9.4

y

x

y

xdx

dIx =     y3 dx1
3

dIy = x2 y  dx

Fig. 9.5

y

y

x

dA

A

x
r

O

Fig. 9.6

9.4 Polar Moment of Inertia
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476  Distributed Forces: Moments of Inertia that is,

 JO 5 Ix 1 Iy (9.4)

9.5 RADIUS OF GYRATION OF AN AREA
Consider an area A which has a moment of inertia Ix with respect 
to the x axis (Fig. 9.7a). Let us imagine that we concentrate this area 
into a thin strip parallel to the x axis (Fig. 9.7b). If the area A, thus 
concentrated, is to have the same moment of inertia with respect to 
the x axis, the strip should be placed at a distance kx from the x axis, 
where kx is defined by the relation

Ix 5 kx
2A

Solving for kx, we write

 
kx 5

B
Ix

A  
(9.5)

The distance kx is referred to as the radius of gyration of the area 
with respect to the x axis. In a similar way, we can define the radii 
of gyration ky and kO (Fig. 9.7c and d); we write

 
 Iy 5 k2

y 
A    ky 5

B

Iy

A  
(9.6)

 
  JO 5 k2

OA    kO 5
B

JO

A  
(9.7)

If we rewrite Eq. (9.4) in terms of the radii of gyration, we find that

 k2
O 5 k2

x 1 k2
y (9.8)

EXAMPLE For the rectangle shown in Fig. 9.8, let us compute the radius 
of gyration kx with respect to its base. Using formulas (9.5) and (9.2), 
we write

k2
x 5

Ix

A
5

1
3bh3

bh
5

h2

3
    kx 5

h

13

The radius of gyration kx of the rectangle is shown in Fig. 9.8. It should not 
be confused with the ordinate y 5 h/2 of the centroid of the area. While 
kx depends upon the second moment, or moment of inertia, of the area, the 
ordinate y is related to the first moment of the area. ◾

kx

y

x

A

O

(a)

y

x

A

O

(b)

ky

y

x

A

O

(c)

kO

y

x

A

O

(d)

Fig. 9.7

h

b

kx   y

C

Fig. 9.8
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477

SAMPLE PROBLEM 9.1

Determine the moment of inertia of a triangle with respect to its base.

SAMPLE PROBLEM 9.2

(a) Determine the centroidal polar moment of inertia of a circular area by 
direct integration. (b) Using the result of part a, determine the moment of 
inertia of a circular area with respect to a diameter.

x

y

r
du

u
O

SOLUTION

a. Polar Moment of Inertia. An annular differential element of area is 
chosen to be dA. Since all portions of the differential area are at the same 
distance from the origin, we write

dJO 5 u2 dA   dA 5 2pu du

JO 5 #  dJO 5 #
r

0
 
u2(2pu du) 5 2p #

r

0
 

u3 du

JO 5
p

2
 r4

 
◀

b. Moment of Inertia with Respect to a Diameter. Because of the sym-
metry of the circular area, we have Ix 5 Iy. We then write

JO 5 Ix 1 Iy 5 2Ix   p
2

 r4 5 2Ix   Idiameter 5 Ix 5
p

4
 r4

 
◀

SOLUTION

A triangle of base b and height h is drawn; the x axis is chosen to coincide 
with the base. A differential strip parallel to the x axis is chosen to be dA. Since 
all portions of the strip are at the same distance from the x axis, we write

dIx 5 y2 dA  dA 5 l dy

Using similar triangles, we have

l
b

5
h 2 y

h
    l 5 b 

h 2 y

h
    dA 5 b 

h 2 y

h
 dy

Integrating dIx from y 5 0 to y 5 h, we obtain

Ix 5 #  y
2 dA 5 #

h

0
 
y2b 

h 2 y

h
 dy 5

b
h #

h

0

(hy2 2 y3)  dy

 
5

b
h

 c h 

y3

3
2

y4

4
d h

0 
Ix 5

bh3

12  
◀

x

y

y

dy

b

h

h – y

l

bee29400_ch09_470-555.indd Page 477  11/26/08  7:12:50 PM user-s173bee29400_ch09_470-555.indd Page 477  11/26/08  7:12:50 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



SOLUTION

Referring to Sample Prob. 5.4, we obtain the following expressions for the 
equation of the curve and the total area:

y 5
b

a2  x2   A 5 1
3ab

Moment of Inertia Ix. A vertical differential element of area is chosen to 
be dA. Since all portions of this element are not at the same distance from 
the x axis, we must treat the element as a thin rectangle. The moment of 
inertia of the element with respect to the x axis is then

 dIx 5 1
3 
y3 dx 5

1
3

 a b

a2  x2b3

 dx 5
1
3

  
b3

a6  x6 dx

 
 Ix 5 #  dIx 5 #

a

0

 
1
3

  
b3

a6  x6 dx 5 c 1
3

  
b3

a6   
x7

7
d a

0

Ix 5
ab3

21  
◀

Moment of Inertia Iy. The same vertical differential element of area is 
used. Since all portions of the element are at the same distance from the 
y axis, we write

dIy 5 x2 dA 5 x2(y dx) 5 x2 a b

a2  x2b 

dx 5
b

a2  x4 dx

Iy 5 #  dIy 5 #
a

0

 
b

a2  x4 dx 5 c b

a2  
x5

5
d a

0

Iy 5
a3b
5  

◀

Radii of Gyration kx and ky. We have, by definition,

 
k2

x 5
Ix

A
5

ab3/21
ab/3

5
b2

7  kx 5 21
7 b 

◀

and

 
k2

y 5
Iy

A
5

a3b/5
ab/3

5 3
5a2

 ky 5 23
5a 

◀

dxx
x

y

a

y

SAMPLE PROBLEM 9.3

(a) Determine the moment of inertia of the shaded area shown with respect 
to each of the coordinate axes. (Properties of this area were considered in 
Sample Prob. 5.4.) (b) Using the results of part a, determine the radius of 
gyration of the shaded area with respect to each of the coordinate axes.

x

y

b
y = kx2

a
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479

SOLVING PROBLEMS
ON YOUR OWN

The purpose of this lesson was to introduce the rectangular and polar moments of 
inertia of areas and the corresponding radii of gyration. Although the problems 

you are about to solve may appear to be more appropriate for a calculus class than for 
one in mechanics, we hope that our introductory comments have convinced you of the 
relevance of the moments of inertia to your study of a variety of engineering topics.

1. Calculating the rectangular moments of inertia Ix and Iy. We defined these 
quantities as

Ix 5 #  y
2 dA   Iy 5 #  x

2 dA (9.1)

where dA is a differential element of area dx dy. The moments of inertia are the 
second moments of the area; it is for that reason that Ix, for example, depends on 
the perpendicular distance y to the area dA. As you study Sec. 9.3, you should 
recognize the importance of carefully defining the shape and the orientation of 
dA. Further, you should note the following points.

a. The moments of inertia of most areas can be obtained by means of a 
single integration. The expressions given in Figs. 9.3b and c and Fig. 9.5 can be 
used to calculate Ix and Iy. Regardless of whether you use a single or a double inte-
gration, be sure to show on your sketch the element dA that you have chosen.
 b. The moment of inertia of an area is always positive, regardless of the location 
of the area with respect to the coordinate axes. This is because it is obtained by integrat-
ing the product of dA and the square of distance. (Note how this differs from the results 
for the first moment of the area.) Only when an area is removed (as in the case for a 
hole) will its moment of inertia be entered in your computations with a minus sign.
 c. As a partial check of your work, observe that the moments of inertia are 
equal to an area times the square of a length. Thus, every term in an expression 
for a moment of inertia must be a length to the fourth power.

2. Computing the polar moment of inertia JO. We defined JO as

 JO 5 #  r
2 dA (9.3)

where r2 5 x2 1 y2. If the given area has circular symmetry (as in Sample Prob. 9.2), 
it is possible to express dA as a function of r and to compute JO with a single 
integration. When the area lacks circular symmetry, it is usually easier first to cal-
culate Ix and Iy and then to determine JO from
 JO 5 Ix 1 Iy (9.4)
Lastly, if the equation of the curve that bounds the given area is expressed in polar 
coordinates, then dA 5 r dr du and a double integration is required to compute 
the integral for JO [see Prob. 9.27].

3. Determining the radii of gyration kx and ky and the polar radius of gyra-
tion kO. These quantities were defined in Sec. 9.5, and you should realize that 
they can be determined only after the area and the appropriate moments of inertia 
have been computed. It is important to remember that kx is measured in the y 
direction, while ky is measured in the x direction; you should carefully study 
Sec. 9.5 until you understand this point.
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PROBLEMS

480

 9.1 through 9.4 Determine by direct integration the moment of 
inertia of the shaded area with respect to the y axis.

 9.5 through 9.8 Determine by direct integration the moment of 
inertia of the shaded area with respect to the x axis.

 9.9 through 9.11 Determine by direct integration the moment of 
inertia of the shaded area with respect to the x axis.

 9.12 through 9.14 Determine by direct integration the moment of 
inertia of the shaded area with respect to the y axis.

h

b

y

x

Fig. P9.1 and P9.5

a

a

a

y

x

y = kx

Fig. P9.2 and P9.6

b

y

x

a

y = kx2

Fig. P9.3 and P9.7

h

y

x
a

y = 4h(          )x
a

x2

a2
−

Fig. P9.4 and P9.8

b

b

y

x

a

y = c(1 − kx1/2)

y = − c(1 − kx1/2)

Fig. P9.9 and P9.12

b

y

x
a

y = kex/a

Fig. P9.10 and P9.13

b

y

x
a 2a

y = k(x − a)3

Fig. P9.11 and P9.14
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481Problems 9.15 and 9.16 Determine the moment of inertia and the radius of 
gyration of the shaded area shown with respect to the x axis.

b

b

y

x

a a

y = kx3

y = mx

Fig. P9.15 and P9.17

b

y

x
a

y2 = k2x1/2

y1 = k1x2

Fig. P9.16 and P9.18

h

h

y

x
a a

y = mx + b

y = c sin kx

Fig. P9.19 and P9.20

 9.17 and 9.18 Determine the moment of inertia and the radius of 
gyration of the shaded area shown with respect to the y axis.

 9.19 Determine the moment of inertia and the radius of gyration of the 
shaded area shown with respect to the x axis.

 9.20 Determine the moment of inertia and the radius of gyration of the 
shaded area shown with respect to the y axis.

 9.21 and 9.22 Determine the polar moment of inertia and the 
polar radius of gyration of the shaded area shown with respect 
to point P.

a a a a

a

a

P

Fig. P9.21

a

a a

P
a
2

a
2

a
2

a
2

Fig. P9.22
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482 Distributed Forces: Moments of Inertia  9.23 (a) Determine by direct integration the polar moment of inertia of 
the annular area shown with respect to point O. (b) Using the 
result of part a, determine the moment of inertia of the given area 
with respect to the x axis.

 9.24 (a) Show that the polar radius of gyration kO of the annular area 
shown is approximately equal to the mean radius Rm 5 (R1 1 R2)/2 
for small values of the thickness t 5 R2 2 R1. (b) Determine the 
percentage error introduced by using Rm in place of kO for the 
following values of t/Rm: 1, 1

2, and 1
10.

 9.25 and 9.26 Determine the polar moment of inertia and the 
polar radius of gyration of the shaded area shown with respect to 
point P.

R1

R2

y

xO

Fig. P9.23 and P9.24

a

a

2a2a

P

y

x

y = c + k2x2

y = k1x2

Fig. P9.25

P
r

r
2

Fig. P9.26

 9.27 Determine the polar moment of inertia and the polar radius of 
gyration of the shaded area shown with respect to point O.

 9.28 Determine the polar moment of inertia and the polar radius of 
gyration of the isosceles triangle shown with respect to point O.

 *9.29 Using the polar moment of inertia of the isosceles triangle of Prob. 
9.28, show that the centroidal polar moment of inertia of a circular 
area of radius r is pr4/2. (Hint: As a circular area is divided into 
an increasing number of equal circular sectors, what is the approxi-
mate shape of each circular sector?)

 *9.30 Prove that the centroidal polar moment of inertia of a given area 
A cannot be smaller than A2/2p. (Hint: Compare the moment of 
inertia of the given area with the moment of inertia of a circle that 
has the same area and the same centroid.)

O

y

x
a2a

q
R = a + kq

Fig. P9.27

y

xO

b
2

b
2

h

Fig. P9.28
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4839.6 PARALLEL-AXIS THEOREM
Consider the moment of inertia I of an area A with respect to an axis 
AA9 (Fig. 9.9). Denoting by y the distance from an element of area 
dA to AA9, we write

I 5 #  y2 dA

Let us now draw through the centroid C of the area an axis BB9 
parallel to AA9; this axis is called a centroidal axis. Denoting by y9 

A'A

B'B
C

y

y'

d

dA

Fig. 9.9

the distance from the element dA to BB9, we write y 5 y9 1 d, 
where d is the distance between the axes AA9 and BB9. Substituting 
for y in the above integral, we write

 I 5 #  y2 dA 5 #  (y ¿ 1 d)2 dA

 5 #  y ¿2 dA 1 2d # y ¿ dA 1 d2 # dA

The first integral represents the moment of inertia I of the area with 
respect to the centroidal axis BB9. The second integral represents 
the first moment of the area with respect to BB9; since the centroid C 
of the area is located on that axis, the second integral must be zero. 
Finally, we observe that the last integral is equal to the total area A. 
Therefore, we have

 I 5 I 1 Ad2 (9.9)

 This formula expresses that the moment of inertia I of an area 
with respect to any given axis AA9 is equal to the moment of inertia I 
of the area with respect to a centroidal axis BB9 parallel to AA9 
plus the product of the area A and the square of the distance d 
between the two axes. This theorem is known as the parallel-axis 
theorem. Substituting k2A for I and k2 A for I, the theorem can also 
be expressed as
 k2 5 k2 1 d2 (9.10)

 A similar theorem can be used to relate the polar moment 
of inertia JO of an area about a point O to the polar moment of 
inertia JC of the same area about its centroid C. Denoting by d the 
distance between O and C, we write

 JO 5 JC 1 Ad2   or   k2
O 5 k2

C 1 d2 (9.11)

9.6 Parallel-Axis Theorem
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484  Distributed Forces: Moments of Inertia EXAMPLE 1 As an application of the parallel-axis theorem, let us deter-
mine the moment of inertia IT of a circular area with respect to a line tan-
gent to the circle (Fig. 9.10). We found in Sample Prob. 9.2 that the moment 
of inertia of a circular area about a centroidal axis is I 5 1

4pr4. We can write, 
therefore,

IT 5 II 1 Ad2 5 1
4pr4 1 (pr2)r2 5 5

4pr4 ◾

EXAMPLE 2 The parallel-axis theorem can also be used to determine 
the centroidal moment of inertia of an area when the moment of inertia of 
the area with respect to a parallel axis is known. Consider, for instance, a 
triangular area (Fig. 9.11). We found in Sample Prob. 9.1 that the moment 
of inertia of a triangle with respect to its base AA9 is equal to 1

12 
bh3. Using 

the parallel-axis theorem, we write

 IAA¿ 5 IBB¿ 1 Ad2

 IBB¿ 5 IAA¿ 2 Ad2 5 1
12bh3 2 1

2bh(1
3h)2 5 1

36bh3

It should be observed that the product Ad2 was subtracted from the given 
moment of inertia in order to obtain the centroidal moment of inertia of 
the triangle. Note that this product is added when transferring from a cen-
troidal axis to a parallel axis, but it should be subtracted when transferring 
to a centroidal axis. In other words, the moment of inertia of an area is 
always smaller with respect to a centroidal axis than with respect to any 
parallel axis.
 Returning to Fig. 9.11, we observe that the moment of inertia of the 
triangle with respect to the line DD9 (which is drawn through a vertex) can 
be obtained by writing

IDD¿ 5 IBB¿ 1 Ad ¿2 5 1
36bh3 1 1

2bh(2
3h)2 5 1

4bh3

Note that IDD9 could not have been obtained directly from IAA9. The parallel-
axis theorem can be applied only if one of the two parallel axes passes 
through the centroid of the area. ◾

9.7 MOMENTS OF INERTIA OF COMPOSITE AREAS
Consider a composite area A made of several component areas A1, A2, 
A3, . . . Since the integral representing the moment of inertia of A can 
be subdivided into integrals evaluated over A1, A2, A3, . . . , the moment 
of inertia of A with respect to a given axis is obtained by adding the 
moments of inertia of the areas A1, A2, A3, . . . , with respect to the 
same axis. The moment of inertia of an area consisting of several of 
the common shapes shown in Fig. 9.12 can thus be obtained by using 
the formulas given in that figure. Before adding the moments of inertia 
of the component areas, however, the parallel-axis theorem may have 
to be used to transfer each moment of inertia to the desired axis. This 
is shown in Sample Probs. 9.4 and 9.5.
 The properties of the cross sections of various structural shapes 
are given in Fig. 9.13. As noted in Sec. 9.2, the moment of inertia 
of a beam section about its neutral axis is closely related to the com-
putation of the bending moment in that section of the beam. The 

Fig. 9.10

r

T

C

d = r

Fig. 9.11

b
A'A

C
B'B

D'D

h

d' =    h2
3

d =    h1
3

Photo 9.1 Figure 9.13 tabulates data for a small 
sample of the rolled-steel shapes that are readily 
available. Shown above are two examples of 
wide-flange shapes that are commonly used in the 
construction of buildings.
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Quarter circle

C
Rectangle

Triangle

Circle

Semicircle

Ellipse

b

y y'

x'

x

1
12

⎯Ix' =     bh3

1
12

⎯Iy' =     b3h

1
8

Ix = Iy =       r4

1
4

J
O

 =       r4

1
4

⎯Ix =⎯Iy =       r 4

1
2

J
O

 =       r4

1
36

⎯Ix' =     bh3

1
12

Ix =     bh3

1
3

Iy =    b3h

1
12

J
C

 =    bh(b2 + h2)

1
3

Ix =     bh3
h

b

x'

x

x

r

O

y

h C
h
3

xO

C

y

r

xO

C

y

r

x

b

y

a

1
16

Ix = Iy =        r4

1
8

J
O

 =       r4

1
4

⎯Ix =      ab3

1
4

⎯Iy =      a3b
1
4

J
O

 =      ab(a2 + b2)

O

�

�

�

�

�

�

�

�

�

Fig. 9.12 Moments of inertia of common geometric shapes.

determination of moments of inertia is thus a prerequisite to the 
analysis and design of structural members.
 It should be noted that the radius of gyration of a composite area 
is not equal to the sum of the radii of gyration of the component areas. 
In order to determine the radius of gyration of a composite area, it is 
first necessary to compute the moment of inertia of the area.

9.7 Moments of Inertia of Composite Areas
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⎯x

Designation
Area
in2

Depth
in.

Width
in.

Axis X-X

X X

X X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Y

Axis Y-Y

W Shapes
(Wide-Flange
Shapes)

S Shapes
(American Standard
Shapes)

C Shapes
(American Standard
Channels)

Angles

W18 × 76†
W16 × 57
W14 × 38
W8 × 31

22.3 
16.8
11.2
  9.12

18.2
16.4
14.1
  8.00

11.0
  7.12
  6.77
  8.00

1330
  758
  385
  110

7.73
6.72
5.87
3.47

  152
    43.1
    26.7
    37.1

2.61
1.60
1.55
2.02

S18 × 54.7†
S12 × 31.8
S10 × 25.4
S6 × 12.5

16.0
  9.31
  7.45
  3.66

18.0
12.0
10.0
  6.00

801
217
123
  22.0

6.00
5.00
4.66
3.33

7.07
4.83
4.07
2.45

4.61 
3.87 
3.11 
2.34

20.7
  9.33
  6.73
  1.80

1.14
1.00
0.950
0.702

C12 × 20.7†
C10 × 15.3
C8 × 11.5
C6 × 8.2

6.08 
4.48 
3.37
2.39

12.0
10.0 
  8.00 
  6.00

2.94
2.60
2.26
1.92

129
  67.3
  32.5
  13.1

35.4
  5.52
  1.23
17.3
  9.43 
  1.09

3.86
2.27
1.31
0.687

0.797
0.711
0.623
0.536

0.698
0.634
0.572
0.512

11.0
  3.75
  1.44
  4.75
  3.75 
  1.19

1.79
1.21
0.926
1.91
1.58
0.953

1.86  
1.18
0.836
1.98
1.74
0.980

35.4
  5.52
  1.23
  6.22
  2.55
  0.390

1.79
1.21
0.926
1.14
0.824
0.569

1.86
1.18
0.836
0.981
0.746
0.487

L6 × 6 × 1‡
L4 × 4 ×
L3 × 3 × 
L6 × 4 × 
L5 × 3 × 
L3 × 2 × 

⎯Ix, in4 ⎯kx, in. ⎯y, in. ⎯Iy, in4 ⎯ky, in. ⎯x, in.

4
1
2
1

2
1

2
1

4
1

  y

  x

Fig. 9.13A Properties of rolled-steel shapes (U.S. customary units).*
*Courtesy of the American Institute of Steel Construction, Chicago, Illinois
†Nominal depth in inches and weight in pounds per foot
‡Depth, width, and thickness in inches
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⎯Ix
106 mm4

⎯Iy
106 mm4

⎯y
mm

⎯x
mm

⎯x

Designation
Area
mm2

Depth
mm

Width
mm

Axis X-X

X X

X X

X X

Y

Y

Y

Y

Y

Y

⎯kx
mm

⎯ky
mm

Axis Y-Y

W Shapes
(Wide-Flange
Shapes)

S Shapes
(American Standard
Shapes)

C Shapes
(American Standard
Channels)

W460 × 113†
W410 × 85
W360 × 57.8
W200 × 46.1

14400
10800 
  7230
  5880

462
417 
358
203

279
181
172
203

554
316 
160
  45.8

196
171 
149 
  88.1

63.3 
17.9 
11.1 
15.4

66.3 
40.6 
39.4 
51.3

S460 × 81.4†
S310 × 47.3
S250 × 37.8
S150 × 18.6

10300 
  6010
  4810
  2360

457
305
254
152

333
  90.3
  51.2
    9.16

152
127
118
  84.6

180
123
103
  62.2

8.62 
3.88 
2.80
0.749

29.0 
25.4 
24.1 
17.8

C310 × 30.8†
C250 × 22.8
C200 × 17.1 
C150 × 12.2

3920
2890
2170
1540

305 
254 
203 
152

74.7
66.0
57.4 
48.8

53.7
28.0
13.5
  5.45

117
  98.3 
  79.0
  59.4

1.61
0.945 
0.545 
0.286

20.2
18.1 
15.8
13.6

17.7
16.1 
14.5 
13.0

7100
2420 
  929
3060 
2420 
  768

14.7
  2.30 
  0.512
  7.20
  3.93
  0.454

45.5
30.7
23.5
48.5
40.1
24.2

47.2 
30.0
21.2
50.3
44.2
24.9

14.7
  2.30
  0.512
  2.59
  1.06
  0.162

45.5
30.7
23.5
29.0
20.9
14.5

47.2
30.0
21.2
24.9
18.9
12.4

L152 × 152 × 25.4‡
L102 × 102 × 12.7
L76 × 76 × 6.4
L152 × 102 × 12.7
L127 × 76 × 12.7
L76 × 51 × 6.4

X X

Y

Y

Angles

  y

  x

Fig. 9.13B Properties of rolled-steel shapes (SI units).
†Nominal depth in millimeters and mass in kilograms per meter
‡Depth, width, and thickness in millimeters
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488

SAMPLE PROBLEM 9.4

The strength of a W14 3 38 rolled-steel beam is increased by attaching a 
9 3 3

4-in. plate to its upper flange as shown. Determine the moment of 
inertia and the radius of gyration of the composite section with respect to 
an axis which is parallel to the plate and passes through the centroid C of 
the section.

SOLUTION

The origin O of the coordinates is placed at the centroid of the wide-flange 
shape, and the distance Y to the centroid of the composite section is com-
puted using the methods of Chap. 5. The area of the wide-flange shape is 
found by referring to Fig. 9.13A. The area and the y coordinate of the 
centroid of the plate are

 A 5 (9 in.)(0.75 in.) 5 6.75 in2

 yy 5 1
2(14.1 in.) 1 1

2 (0.75 in.) 5 7.425 in.

Moment of Inertia. The parallel-axis theorem is used to determine the 
moments of inertia of the wide-flange shape and the plate with respect to 
the x9 axis. This axis is a centroidal axis for the composite section but not 
for either of the elements considered separately. The value of Ix for the 
wide-flange shape is obtained from Fig. 9.13A.

 For the wide-flange shape,

Ix9 5 Ix 1 AY2 5 385 1 (11.2)(2.792)2 5 472.3 in4

 For the plate,

 Ix9 5 Ix 1 Ad2 5 ( 1
12)(9)(3

4)3 1 (6.75)(7.425 2 2.792)2 5 145.2 in4

 For the composite area,

 Ix9 5 472.3 1 145.2 5 617.5 in4 Ix9 5 618 in4 ◀

Radius of Gyration. We have

 
k2

x¿ 5
Ix¿

A
5

617.5 in4

17.95 in2 kx¿ 5 5.87 in. 
◀

Section Area, in2 y, in. yA, in3

Plate 6.75 7.425 50.12
Wide-fl ange shape 11.2  0 0

 oA 5 17.95  oyyA 5 50.12

YoA 5 oyA    YY(17.95) 5 50.12     Y 5 2.792 in.

x

y

d

C

O

7.425 in.
x'

⎯Y

9 in.

14.1 in.

6.77 in.

C

3
4

in.
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489

SAMPLE PROBLEM 9.5

Determine the moment of inertia of the shaded area with respect to the 
x axis.

SOLUTION

The given area can be obtained by subtracting a half circle from a rectangle. 
The moments of inertia of the rectangle and the half circle will be computed 
separately.

A

C
a

240 mm

120 mm

y y y

x
x

x

A'

x'

=b
−

Moment of Inertia of Rectangle. Referring to Fig. 9.12, we obtain

Ix 5 1
3 
bh3 5 1

3 
(240 mm)(120 mm)3 5 138.2 3 106 mm4

Moment of Inertia of Half Circle. Referring to Fig. 5.8, we determine the 
location of the centroid C of the half circle with respect to diameter AA9.

a 5
4r
3p

5
(4)(90 mm)

3p
5 38.2 mm

The distance b from the centroid C to the x axis is

b 5 120 mm 2 a 5 120 mm 2 38.2 mm 5 81.8 mm

Referring now to Fig. 9.12, we compute the moment of inertia of the half circle 
with respect to diameter AA9; we also compute the area of the half circle.

 IAA¿ 5 1
8 
pr4 5 1

8 
p(90 mm)4 5 25.76 3 106 mm4

 A 5 1
2 
pr2 5 1

2 
p(90 mm)2 5 12.72 3 103 mm2

Using the parallel-axis theorem, we obtain the value of Ix¿:

 IAA¿ 5 Ix¿ 1 Aa2

 25.76 3 106 mm4 5 Ix¿ 1 (12.72 3 103 mm2) (38.2 mm)2

 Ix¿ 5 7.20 3 106 mm4

Again using the parallel-axis theorem, we obtain the value of Ix:

 Ix 5 Ix¿ 1 Ab2 5 7.20 3 106 mm4 1 (12.72 3 103 mm2)(81.8 mm)2

 5 92.3 3 106
 mm4

Moment of Inertia of Given Area. Subtracting the moment of inertia of 
the half circle from that of the rectangle, we obtain

 Ix 5 138.2 3 106 mm4 2 92.3 3 106 mm4

Ix 5 45.9 3 106 mm4 ◀

A'A

C
a = 38.2 mm

x'
120 mm

y

x

b = 81.8 mm

240 mm

120 mm

y

x

r = 90 mm
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we introduced the parallel-axis theorem and illustrated how it can 
be used to simplify the computation of moments and polar moments of inertia 

of composite areas. The areas that you will consider in the following problems will 
consist of common shapes and rolled-steel shapes. You will also use the parallel-
axis theorem to locate the point of application (the center of pressure) of the 
resultant of the hydrostatic forces acting on a submerged plane area.

1. Applying the parallel-axis theorem. In Sec. 9.6 we derived the parallel-axis 
theorem

 I 5 I 1 Ad2 (9.9)

which states that the moment of inertia I of an area A with respect to a given axis 
is equal to the sum of the moment of inertia I of that area with respect to a paral-
lel centroidal axis and the product Ad2, where d is the distance between the two 
axes. It is important that you remember the following points as you use the parallel-
axis theorem.
 a. The centroidal moment of inertia I  of an area A can be obtained by 
subtracting the product Ad 2 from the moment of inertia I of the area with 
respect to a parallel axis. It follows that the moment of inertia I is smaller than 
the moment of inertia I of the same area with respect to any parallel axis.
 b. The parallel-axis theorem can be applied only if one of the two axes 
involved is a centroidal axis. Therefore, as we noted in Example 2, to compute 
the moment of inertia of an area with respect to a noncentroidal axis when the 
moment of inertia of the area is known with respect to another noncentroidal axis, 
it is necessary to first compute the moment of inertia of the area with respect to 
a centroidal axis parallel to the two given axes.

2. Computing the moments and polar moments of inertia of composite 
areas. Sample Probs. 9.4 and 9.5 illustrate the steps you should follow to solve 
problems of this type. As with all composite-area problems, you should show on 
your sketch the common shapes or rolled-steel shapes that constitute the various 
elements of the given area, as well as the distances between the centroidal axes 
of the elements and the axes about which the moments of inertia are to be com-
puted. In addition, it is important that the following points be noted.
 a. The moment of inertia of an area is always positive, regardless of 
the location of the axis with respect to which it is computed. As pointed out in the 
comments for the preceding lesson, it is only when an area is removed (as in the 
case of a hole) that its moment of inertia should be entered in your computations 
with a minus sign.
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 b. The moments of inertia of a semiellipse and a quarter ellipse can be 
determined by dividing the moment of inertia of an ellipse by 2 and 4, respectively. 
It should be noted, however, that the moments of inertia obtained in this manner are 
with respect to the axes of symmetry of the ellipse. To obtain the centroidal moments 
of inertia of these shapes, the parallel-axis theorem should be used. Note that this 
remark also applies to a semicircle and to a quarter circle and that the expressions 
given for these shapes in Fig. 9.12 are not centroidal moments of inertia.
 c. To calculate the polar moment of inertia of a composite area, you can 
use either the expressions given in Fig. 9.12 for JO or the relationship

 JO 5 Ix 1 Iy (9.4)

depending on the shape of the given area.
 d. Before computing the centroidal moments of inertia of a given area, you 
may find it necessary to first locate the centroid of the area using the methods of 
Chapter 5.

3. Locating the point of application of the resultant of a system of hydrostatic 
forces. In Sec. 9.2 we found that

 R 5 g #  y dA 5 gy A

 Mx 5 g #  y
2 dA 5 gIx

where y is the distance from the x axis to the centroid of the submerged plane 
area. Since R is equivalent to the system of elemental hydrostatic forces, it fol-
lows that

oMx:  yPR 5 Mx

where yP is the depth of the point of application of R. Then

yP(gy A) 5 gIx   or   yP 5
Ix

yA

In closing, we encourage you to carefully study the notation used in Fig. 9.13 for 
the rolled-steel shapes, as you will likely encounter it again in subsequent engi-
neering courses.
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PROBLEMS
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 9.31 and 9.32 Determine the moment of inertia and the radius of 
gyration of the shaded area with respect to the x axis.y

xO

12 mm12 mm

8 mm

24 mm 24 mm

24 mm

6 mm

24 mm

6 mm

 Fig. P9.31   and   P9.33  

y

xO

2 in.

in.

2 in.

2 in.

1 in.

1 in.

1 in.

1 in.

1
2

in.1
2 in.1

2

in.1
2

 Fig. P9.32   and   P9.34  

 9.33 and 9.34 Determine the moment of inertia and the radius of 
gyration of the shaded area with respect to the y axis.

 9.35 and 9.36 Determine the moments of inertia of the shaded area 
shown with respect to the x and y axes when a 5 20 mm.

y

x
a

a

C

a

a

 Fig. P9.35

3a

a

y

xa

O

1.5a

1.5a

 Fig. P9.36

 9.37 For the 4000-mm2 shaded area shown, determine the distance d2
and the moment of inertia with respect to the centroidal axis paral-
lel to AA9 knowing that the moments of inertia with respect to AA9 
and BB9 are 12 3 106 mm4 and 23.9 3 106 mm4, respectively, and 
that d1 5 25 mm.

 9.38 Determine for the shaded region the area and the moment of 
inertia with respect to the centroidal axis parallel to BB9, knowing 
that d1 5 25 mm and d2 5 15 mm and that the moments of inertia 
with respect to AA9 and BB9 are 7.84 3 106 mm4 and 5.20 3 106

mm4, respectively.

d1

d2

A

B

A'

B'

C

 Fig. P9.37 and P9.38
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493Problems 9.39 The shaded area is equal to 50 in2. Determine its centroidal moments 
of inertia Ix and Iy, knowing that Iy 5 2Ix and that the polar moment 
of inertia of the area about point A is JA 5 2250 in4.

y

x
C D

BA

d

6 in.

 Fig. P9.39   and   P9.40  
12 mm

18 mm

18 mm

12 mm

22 mm 72 mm 14 mm

A B

 Fig. P9.41  

18 mm

22 mm

12 mm

12 mm

12 mm

A B

6 mm6 mm

 Fig. P9.42  

1.2 in.

A B

1.8 in.

5.0 in.

0.9 in.
2.0 in. 2.1 in.

 Fig. P9.43  

A B

1.3 in.

1.0 in.

0.5 in.

3.8 in.
0.5 in.

3.6 in.

 Fig. P9.44  

 9.40 The polar moments of inertia of the shaded area with respect to 
points A, B, and D are, respectively, JA 5 2880 in4, JB 5 6720 in4, 
and JD 5 4560 in4. Determine the shaded area, its centroidal 
moment of inertia JC, and the distance d from C to D.

 9.41 through 9.44 Determine the moments of inertia Ix and Iy of 
the area shown with respect to centroidal axes respectively parallel 
and perpendicular to side AB.

 9.45 and 9.46 Determine the polar moment of inertia of the area 
shown with respect to (a) point O, (b) the centroid of the area.

O

84 mm
54 mm

27 mm

42 mm

Semiellipses

 Fig. P9.46  

O

100 mm

100 mm

50 mm

50 mm

 Fig. P9.45  
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494 Distributed Forces: Moments of Inertia  9.47 and 9.48 Determine the polar moment of inertia of the area 
shown with respect to (a) point O, (b) the centroid of the area.

3 in.
4.5 in.

O

 Fig. P9.47  

O

6 in. 6 in.

4.5 in.

Semicircle

 Fig. P9.48  

 9.49 Two 20-mm steel plates are welded to a rolled S section as shown. 
Determine the moments of inertia and the radii of gyration of the 
combined section with respect to the centroidal x and y axes.

 9.50 Two channels are welded to a rolled W section as shown. Deter-
mine the moments of inertia and the radii of gyration of the com-
bined section with respect to the centroidal x and y axes.

S310 × 47.3

C x

80 mm80 mm

20 mm

y

 Fig. P9.49  

 9.51 To form a reinforced box section, two rolled W sections and two 
plates are welded together. Determine the moments of inertia and 
the radii of gyration of the combined section with respect to the 
centroidal axes shown.

 9.52 Two channels are welded to a d 3 12-in. steel plate as shown. 
Determine the width d for which the ratio Ix /Iy of the centroidal 
moments of inertia of the section is 16.

W8 × 31

C8 × 11.5 C

y

x

 Fig. P9.50  

W200 × 46.1

6 mm

C

y

x

203 mm

 Fig. P9.51  

C

y

x

d

6 in.

6 in.

C10 × 15.3

 Fig. P9.52  
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495Problems 9.53 Two L76 3 76 3 6.4-mm angles are welded to a C250 3 22.8 
channel. Determine the moments of inertia of the combined sec-
tion with respect to centroidal axes respectively parallel and per-
pendicular to the web of the channel.

C250 × 22.8

L76 × 76 × 6.4

 Fig. P9.53  

L4 × 4 × 1
2

in.1
2

10 in.

 Fig. P9.54  

 9.54 Two L4 3 4 3 1
2-in. angles are welded to a steel plate as shown. 

Determine the moments of inertia of the combined section with 
respect to centroidal axes respectively parallel and perpendicular 
to the plate.

 9.55 The strength of the rolled W section shown is increased by welding 
a channel to its upper flange. Determine the moments of inertia of 
the combined section with respect to its centroidal x and y axes.

 9.56 Two L5 3 3 3 1
2-in. angles are welded to a 1

2-in. steel plate. Deter-
mine the distance b and the centroidal moments of inertia Ix and 
Iy of the combined section, knowing that Iy 5 4Ix. C

W460 × 113

C250 × 22.8

y

x

 Fig. P9.55  

xC

y

5 in.

0.5 in.

5 in.

b b

L5 × 3 × 12

 Fig. P9.56  

 9.57 and 9.58 The panel shown forms the end of a trough that is 
filled with water to the line AA9. Referring to Sec. 9.2, determine 
the depth of the point of application of the resultant of the hydro-
static forces acting on the panel (the center of pressure).

 9.59 and *9.60 The panel shown forms the end of a trough that is 
filled with water to the line AA9. Referring to Sec. 9.2, determine 
the depth of the point of application of the resultant of the hydro-
static forces acting on the panel (the center of pressure).

A A'

r

 Fig. P9.57  

A

Quarter ellipse

b

a
A'

 Fig. P9.58  
A A'

h

h

bb

 Fig. P9.59  

a

h

a
A'A

Parabola

 Fig. P9.60  
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496 Distributed Forces: Moments of Inertia  9.61 The cover for a 0.5-m-diameter access hole in a water storage tank 
is attached to the tank with four equally spaced bolts as shown. 
Determine the additional force on each bolt due to the water pres-
sure when the center of the cover is located 1.4 m below the water 
surface.

0.25 m

0.32 m
C D

A B

0.25 m

0.32 m
C D

A B

 Fig. P9.61  

 9.62 A vertical trapezoidal gate that is used as an automatic valve is 
held shut by two springs attached to hinges located along edge AB. 
Knowing that each spring exerts a couple of magnitude 
1470 N ? m, determine the depth d of water for which the gate 
will open.

1.2 m

0.84 m

0.51 m

0.28 m

d
A

B

D

E

 Fig. P9.62  
z

a

b

h

2b

y

x

 Fig. P9.63  

x

y

z
64 mm 64 mm

39 mm

39 mm

 Fig. P9.64  

 *9.63 Determine the x coordinate of the centroid of the volume shown. 
(Hint: The height y of the volume is proportional to the x coordi-
nate; consider an analogy between this height and the water pres-
sure on a submerged surface.)

 *9.64 Determine the x coordinate of the centroid of the volume shown; 
this volume was obtained by intersecting an elliptic  cylinder with 
an oblique plane. (See hint of Prob. 9.63.)
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 *9.65 Show that the system of hydrostatic forces acting on a submerged 
plane area A can be reduced to a force P at the centroid C of the 
area and two couples. The force P is perpendicular to the area and 
is of magnitude P 5 gAy sin u, where g is the specific weight 
of the liquid, and the couples are Mx9 5 (gIx¿ sin u)i and My9 5 
(gIx¿y¿ sin u)j, where Ix¿y¿ 5 e x9y9 dA (see Sec. 9.8). Note that the 
couples are independent of the depth at which the area is 
submerged.

x

x'

y
y'

C

A

q
⎯y

Mx'

My'

⎯x

P

 Fig. P9.65
P

x

y

x'

y'

AC

CP

q ⎯y

⎯x

yP

xP

 Fig. P9.66  

*9.8 PRODUCT OF INERTIA
The integral

 Ixy 5 #  xy dA (9.12)

which is obtained by multiplying each element dA of an area A by 
its coordinates x and y and integrating over the area (Fig. 9.14), is 
known as the product of inertia of the area A with respect to the 
x and y axes. Unlike the moments of inertia Ix and Iy, the product 
of inertia Ixy can be positive, negative, or zero.
 When one or both of the x and y axes are axes of symmetry 
for the area A, the product of inertia Ixy is zero. Consider, for 
example, the channel section shown in Fig. 9.15. Since this section 
is symmetrical with respect to the x axis, we can associate with 
each element dA of coordinates x and y an element dA9 of coor-
dinates x and 2y. Clearly, the contributions to Ixy of any pair of 
elements chosen in this way cancel out, and the integral (9.12) 
reduces to zero.
 A parallel-axis theorem similar to the one established in Sec. 9.6 
for moments of inertia can be derived for products of inertia. 
 Consider an area A and a system of rectangular coordinates x and y 

dA

x

y

A
O

x

y

Fig. 9.14

9.8 Product of Inertia 497

 *9.66 Show that the resultant of the hydrostatic forces acting on a sub-
merged plane area A is a force P perpendicular to the area and of 
magnitude P 5 gAy sin u 5 pA, where g is the specific weight of 
the liquid and p is the pressure at the centroid C of the area. Show 
that P is applied at a point CP, called the center of pressure, whose 
coordinates are xP 5 Ixy/Ay and yP 5 Ix/Ay, where Ixy 5 e xy dA 
(see Sec. 9.8). Show also that the difference of ordinates yP 2 y is 
equal to k2

x¿/  y and thus depends upon the depth at which the area 
is submerged.

dA'

dA

x

y

O

–y

y

x

Fig. 9.15
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498  Distributed Forces: Moments of Inertia (Fig. 9.16). Through the centroid C of the area, of coordinates x and 
y, we draw two centroidal axes x¿ and y¿ which are parallel, respec-
tively, to the x and y axes. Denoting by x and y the coordinates of an 
element of area dA with respect to the original axes, and by x¿ and y¿ 
the coordinates of the same element with respect to the centroidal 
axes, we write x 5 x¿ 1 x and y 5 y ¿ 1 y. Substituting into (9.12), 
we obtain the following expression for the product of inertia Ixy:

 Ixy 5 #  xy dA 5 #  (x¿ 1 x)(y ¿ 1 y) dA

 5 #  x¿y ¿ dA 1 y #  x¿ dA 1 x #  y ¿ dA 1 x y #  dA

The first integral represents the product of inertia Ix¿y¿ of the area A 
with respect to the centroidal axes x¿ and y¿. The next two integrals 
represent first moments of the area with respect to the centroidal 
axes; they reduce to zero, since the centroid C is located on these 
axes. Finally, we observe that the last integral is equal to the total 
area A. Therefore, we have

 Ixy 5 Ix¿y¿ 1 x y A (9.13)

*9.9  PRINCIPAL AXES AND PRINCIPAL 
MOMENTS OF INERTIA

Consider the area A and the coordinate axes x and y (Fig. 9.17). 
Assuming that the moments and product of inertia

 Ix 5 #  y
2 dA   Iy 5 #  x

2 dA   Ixy 5 #  xy dA (9.14)

of the area A are known, we propose to determine the moments and 
product of inertia Ix¿, Iy¿, and Ix¿y¿ of A with respect to new axes x¿ 
and y¿ which are obtained by rotating the original axes about the 
origin through an angle u.
 We first note the following relations between the coordinates 
x¿, y¿ and x, y of an element of area dA:

x¿ 5 x cos u 1 y sin u  y¿ 5 y cos u 2 x sin u

x

y

O

C

⎯y

⎯x

dA

x

y

y'

y'

x'

x'

Fig. 9.16

dA

x
x

y

y

O

y'

y'

x'

x'

q

x cos q

y sin q

Fig. 9.17
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499Substituting for y¿ in the expression for Ix¿, we write

 Ix¿ 5 #  (y ¿ )2 dA 5 #  (y cos u 2 x sin u)2 dA

 5 cos2 u #  y2 dA 2 2 sin u cos u #  xy dA 1 sin2 u #  x2 dA

Using the relations (9.14), we write

 Ix¿ 5 Ix cos2 u 2 2Ixy sin u cos u 1 Iy sin
2 u (9.15)

Similarly, we obtain for Iy¿ and Ix¿y¿ the expressions

 Iy¿ 5 Ix sin
2 u 1 2Ixy sin u cos u 1 Iy cos2 u (9.16)

 Ix¿y¿ 5 (Ix 2 Iy) sin u cos u 1 Ixy(cos2 u 2 sin2 u) (9.17)

Recalling the trigonometric relations

sin 2u 5 2 sin u cos u  cos 2u 5 cos2 u 2 sin2 u

and

cos2 u 5
1 1 cos 2u

2
  sin2 u 5

1 2 cos 2u
2

we can write (9.15), (9.16), and (9.17) as follows:

 
 Ix¿ 5

Ix 1 Iy

2
1

Ix 2 Iy

2
 cos 2u 2 Ixy sin 2u

 
(9.18)

 
 Iy¿ 5

Ix 1 Iy

2
2

Ix 2 Iy

2
 cos 2u 1 Ixy sin 2u

 
(9.19)

 
 Ix¿y¿ 5

Ix 2 Iy

2
 sin 2u 1 Ixy cos 2u

 
(9.20)

Adding (9.18) and (9.19) we observe that

 Ix¿ 1 Iy¿ 5 Ix 1 Iy (9.21)

This result could have been anticipated, since both members of 
(9.21) are equal to the polar moment of inertia JO.
 Equations (9.18) and (9.20) are the parametric equations of a 
circle. This means that if we choose a set of rectangular axes and 
plot a point M of abscissa Ix¿ and ordinate Ix¿y¿ for any given value of 
the parameter u, all of the points thus obtained will lie on a circle. 
To establish this property, we eliminate u from Eqs. (9.18) and (9.20); 
this is done by transposing (Ix 1 Iy)/2 in Eq. (9.18), squaring both 
members of Eqs. (9.18) and (9.20), and adding. We write

 
aIx¿ 2

Ix 1 Iy

2
b2

1 I2
x¿y¿ 5 a Ix 2 Iy

2
b2

1 I2
xy 

(9.22)

Setting

 
Iave 5

Ix 1 Iy

2
  and   R 5

B
a Ix 2 Iy

2
b2

1 I2
xy 

(9.23)

we write the identity (9.22) in the form

 (Ix9 2 Iave)
2 1 I2

x9y9 5 R2 (9.24)

9.9 Principal Axes and Principal 
Moments of Inertia
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500  Distributed Forces: Moments of Inertia which is the equation of a circle of radius R centered at the point C 
whose x and y coordinates are Iave and 0, respectively (Fig. 9.18a). We 
observe that Eqs. (9.19) and (9.20) are the parametric equations of the 
same circle. Furthermore, because of the symmetry of the circle about 
the horizontal axis, the same result would have been obtained if instead 
of plotting M, we had plotted a point N of coordinates Iy9 and 2Ix9y9 

(Fig. 9.18b). This property will be used in Sec. 9.10.
 The two points A and B where the above circle intersects the 
horizontal axis (Fig. 9.18a) are of special interest: Point A corre-
sponds to the maximum value of the moment of inertia Ix9, while 
point B corresponds to its minimum value. In addition, both points 
correspond to a zero value of the product of inertia Ix9y9. Thus, the 
values um of the parameter u which correspond to the points A and 
B can be obtained by setting Ix9y9 5 0 in Eq. (9.20). We obtain†

 
tan 2um 5 2

2Ixy

Ix 2 Iy 
(9.25)

This equation defines two values 2um which are 180° apart and thus two 
values um which are 90° apart. One of these values corresponds to point 
A in Fig. 9.18a and to an axis through O in Fig. 9.17 with respect to 
which the moment of inertia of the given area is maximum; the other 
value corresponds to point B and to an axis through O with respect to 
which the moment of inertia of the area is minimum. The two axes thus 
defined, which are perpendicular to each other, are called the principal 
axes of the area about O, and the corresponding values Imax and Imin of 
the moment of inertia are called the principal moments of inertia of the 
area about O. Since the two values um defined by Eq. (9.25) were 
obtained by setting Ix9y9 5 0 in Eq. (9.20), it is clear that the product of 
inertia of the given area with respect to its principal axes is zero.
 We observe from Fig. 9.18a that
 Imax 5 Iave 1 R     Imin 5 Iave 2 R (9.26)
Using the values for Iave and R from formulas (9.23), we write

 
Imax,min 5

Ix 1 Iy

2
6
B
a Ix 2 Iy

2
b2

1 I2
xy 

(9.27)

Unless it is possible to tell by inspection which of the two principal 
axes corresponds to Imax and which corresponds to Imin, it is necessary 
to substitute one of the values of um into Eq. (9.18) in order to 
determine which of the two corresponds to the maximum value of 
the moment of inertia of the area about O.
 Referring to Sec. 9.8, we note that if an area possesses an axis of 
symmetry through a point O, this axis must be a principal axis of the 
area about O. On the other hand, a principal axis does not need to be 
an axis of symmetry; whether or not an area possesses any axes of sym-
metry, it will have two principal axes of inertia about any point O.
 The properties we have established hold for any point O located 
inside or outside the given area. If the point O is chosen to coincide 
with the centroid of the area, any axis through O is a centroidal axis; 
the two principal axes of the area about its centroid are referred to 
as the principal centroidal axes of the area.

†This relation can also be obtained by differentiating Ix9 in Eq. (9.18) and setting 
dIx9/du 5 0.

O

M

C A

R

B

Ix'y'

Ix'

Ix'

Ix'y'

Imin

Iave

Imax

(a)

Iy'

O C

N R

Ix'y'

(b)

Iave

Iy'

–Ix'y'

Fig. 9.18
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SAMPLE PROBLEM 9.6

Determine the product of inertia of the right triangle shown (a) with respect 
to the x and y axes and (b) with respect to centroidal axes parallel to the x 
and y axes.

SOLUTION

a. Product of Inertia Ixy. A vertical rectangular strip is chosen as the dif-
ferential element of area. Using the parallel-axis theorem, we write

dIxy 5 dIx¿y¿ 1 xel yel dA

Since the element is symmetrical with respect to the x9 and y9 axes, we note 
that dIx9y9 5 0. From the geometry of the triangle, we obtain

 y 5 h a1 2
x
b
b      dA 5 y dx 5 h a1 2

x
b
b dx

 xel 5 x      yel 5 1
2y 5 1

2h a1 2
x
b
b

Integrating dIxy from x 5 0 to x 5 b, we obtain

 Ixy 5 #  dIxy 5 #  xel yel  dA 5 #
b

0
 
x(1

2)h2 a1 2
x
b
b2

 dx

 5 h2 #
b

0

a x
2

2
x2

b
1

x3

2b2b dx 5 h2 c x2

4
2

x3

3b
1

x4

8b2 d
b

0

Ixy 5 1
24 b2h2 ◀

b. Product of Inertia I x 99y 99. The coordinates of the centroid of the triangle 
relative to the x and y axes are

x 5 1
3b   y 5 1

3h

Using the expression for Ixy obtained in part a, we apply the parallel-axis 
theorem and write

 Ixy 5 Ix–y– 1 x   yA
 124b2h2 5 Ix–y– 1 (1

3b)(1
3h)(1

2bh)
 Ix–y– 5 1

24 b2h2 2 1
18 b2h2

Ix–y– 5 2 1
72b2h2 ◀

y y�

x

x�
C

b

⎯y

⎯xh

y y'

x

x'y

h

x dx

b

⎯xel

⎯yel

y

x

h

b
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SAMPLE PROBLEM 9.7

For the section shown, the moments of inertia with respect to the x and y 
axes have been computed and are known to be

Ix 5 10.38 in4  Iy 5 6.97 in4

Determine (a) the orientation of the principal axes of the section about O, 
(b) the values of the principal moments of inertia of the section about O.

SOLUTION

We first compute the product of inertia with respect to the x and y axes. The 
area is divided into three rectangles as shown. We note that the product of 
inertia Ix¿y¿ with respect to centroidal axes parallel to the x and y axes is zero 
for each rectangle. Using the parallel-axis theorem Ixy 5 Ix¿y¿ 1 x  yA, we 
find that Ixy reduces to x  yA for each rectangle.

b

a

qm = 127.7°

qm = 37.7°
O

y

x

1.25 in.

1.25 in.

1.75 in.

1.75 in.

I

II

III

O

y

x

O

3 in.

3 in.

in.1
2

4 in.

y

x
in.1

2
in.1

2

Rectangle Area, in2 x, in. y, in. xyA, in4

I 1.5 21.25 11.75 23.28
II 1.5 0 0 0

III 1.5 11.25 21.75 23.28

    o x yA 5 26.56

Ixy 5 ox  yA 5 26.56 in4

a. Principal Axes. Since the magnitudes of Ix, Iy, and Ixy are known, 
Eq. (9.25) is used to determine the values of um:

 tan 2um 5 2
2Ixy

Ix 2 Iy
5 2

2(26.56)
10.38 2 6.97

5 13.85

 2um 5 75.4° and 255.4°
um 5 37.7°   and   um 5 127.7° ◀

b. Principal Moments of Inertia. Using Eq. (9.27), we write

 Imax,min 5
Ix 1 Iy

2
6
Ba

Ix 2 Iy

2
b2

1 I2
xy

 5
10.38 1 6.97

2
6
B
a10.38 2 6.97

2
b2

1 126.56 22
Imax 5 15.45 in4   Imin 5 1.897 in4 ◀

Noting that the elements of the area of the section are more closely distrib-
uted about the b axis than about the a axis, we conclude that Ia 5 Imax 5 
15.45 in4 and Ib 5 Imin 5 1.897 in4. This conclusion can be verified by 
substituting u 5 37.7° into Eqs. (9.18) and (9.19).
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SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will continue your work with moments of inertia
and will utilize various techniques for computing products of inertia. Although the 

problems are generally straightforward, several items are worth noting.

1. Calculating the product of inertia Ixy by integration. We defined this quantity as

 Ixy 5 #  xy dA (9.12)

and stated that its value can be positive, negative, or zero. The product of inertia can 
be computed directly from the above equation using double integration, or it can be 
determined using single integration as shown in Sample Prob. 9.6. When applying the 
latter technique and using the parallel-axis theorem, it is important to remember that 
xel and yel in the equation

dIxy 5 dIx¿y¿ 1 xel yel dA

are the coordinates of the centroid of the element of area dA. Thus, if dA is not 
in the first quadrant, one or both of these coordinates will be negative.

2. Calculating the products of inertia of composite areas. They can easily be 
computed from the products of inertia of their component parts by using the 
parallel-axis theorem
 Ixy 5 Ix¿y¿ 1 x  yA (9.13)

The proper technique to use for problems of this type is illustrated in Sample 
Probs. 9.6 and 9.7. In addition to the usual rules for composite-area problems, it 
is essential that you remember the following points.
 a. If either of the centroidal axes of a component area is an axis of sym-
metry for that area, the product of inertia Ix ¿y ¿ for that area is zero. Thus, 
Ix¿y¿ is zero for component areas such as circles, semicircles, rectangles, and isosceles 
triangles which possess an axis of symmetry parallel to one of the coordinate axes.
 b. Pay careful attention to the signs of the coordinates x  and y  of each 
component area when you use the parallel-axis theorem [Sample Prob. 9.7].

3. Determining the moments of inertia and the product of inertia for rotated 
coordinate axes. In Sec. 9.9 we derived Eqs. (9.18), (9.19), and (9.20), from 
which the moments of inertia and the product of inertia can be computed for 
coordinate axes which have been rotated about the origin O. To apply these equa-
tions, you must know a set of values Ix, Iy, and Ixy for a given orientation of the 
axes, and you must remember that u is positive for counterclockwise rotations of 
the axes and negative for clockwise rotations of the axes.

4. Computing the principal moments of inertia. We showed in Sec. 9.9 that 
there is a particular orientation of the coordinate axes for which the moments of 
inertia attain their maximum and minimum values, Imax and Imin, and for which 
the product of inertia is zero. Equation (9.27) can be used to compute these values, 
known as the principal moments of inertia of the area about O. The corresponding 
axes are referred to as the principal axes of the area about O, and their orientation 
is defined by Eq. (9.25). To determine which of the principal axes corresponds to 
Imax and which corresponds to Imin, you can either follow the procedure outlined 
in the text after Eq. (9.27) or observe about which of the two principal axes the 
area is more closely distributed; that axis corresponds to Imin [Sample Prob. 9.7].
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PROBLEMS
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 9.67 through 9.70 Determine by direct integration the product of 
inertia of the given area with respect to the x and y axes.

x

y

O

x2

4a2

y2

a2
+ = 1

a

2a

 Fig. P9.67

x

y

b

a

x = ky2

 Fig. P9.68

x

y

b

h

 Fig. P9.69

x

y

a

h2

h1

 Fig. P9.70

 9.71 through 9.74 Using the parallel-axis theorem, determine the 
product of inertia of the area shown with respect to the centroidal 
x and y axes.

20 mm

20 mm

60 mm
10 mm

10 mm 10 mm100 mm

60 mm

y

x

C

 Fig. P9.71

y

x
C

20 mm

60 mm

120 mm 120 mm

80 mm60 mm

 Fig. P9.72

6 in.

6 in.

y

xC

 Fig. P9.73

0.25 in.
3 in.

2 in.

0.25 in.

0.487 in.

0.980 in.
y

xC

L3 × 2 × 1
4

 Fig. P9.74
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505Problems 9.75 through 9.78 Using the parallel-axis theorem, determine the 
product of inertia of the area shown with respect to the centroidal 
x and y axes.

 9.79 Determine for the quarter ellipse of Prob. 9.67 the moments of 
inertia and the product of inertia with respect to new axes obtained 
by rotating the x and y axes about O (a) through 458 counterclock-
wise, (b) through 308 clockwise.

 9.80 Determine the moments of inertia and the product of inertia of 
the area of Prob. 9.72 with respect to new centroidal axes obtained 
by rotating the x and y axes 308 counterclockwise.

 9.81 Determine the moments of inertia and the product of inertia of 
the area of Prob. 9.73 with respect to new centroidal axes obtained 
by rotating the x and y axes 608 counterclockwise.

 9.82 Determine the moments of inertia and the product of inertia of 
the area of Prob. 9.75 with respect to new centroidal axes obtained 
by rotating the x and y axes 458 clockwise.

 9.83 Determine the moments of inertia and the product of inertia of 
the L3 3 2 3 1

4-in. angle cross section of Prob. 9.74 with respect 
to new centroidal axes obtained by rotating the x and y axes 308 
clockwise.

40 mm

8 mm

100 mm

8 mm

8 mm

40 mm

y

xC

 Fig. P9.75

19 in.

15 in.

9 in. 3 in.

9 in.3 in.

2 in.
2 in.

y

xC

 Fig. P9.76

1.3 in.

5.3 in.

1.0 in.

0.412 in.

0.5 in.

0.5 in.

2.25 in.

3.6 in.

y

C
x

 Fig. P9.77

44.2 mm

76 mm

18.9 mm
12.7 mm

12.7 mm

127 mm

y

xC
L127 × 76 × 12.7 

 Fig. P9.78
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 9.84 Determine the moments of inertia and the product of inertia of 
the L127 3 76 3 12.7-mm angle cross section of Prob. 9.78 with 
respect to new centroidal axes obtained by rotating the x and y 
axes 458 counterclockwise.

 9.85 For the quarter ellipse of Prob. 9.67, determine the orientation of 
the principal axes at the origin and the corresponding values of the 
moments of inertia.

 9.86 through 9.88 For the area indicated, determine the  orientation 
of the principal axes at the origin and the corresponding values of 
the moments of inertia.

9.86 Area of Prob. 9.72
9.87 Area of Prob. 9.73
9.88 Area of Prob. 9.75

 9.89 and 9.90 For the angle cross section indicated, determine the 
orientation of the principal axes at the origin and the  corresponding 
values of the moments of inertia.

9.89 The L3 3 2 3 1
4-in. angle cross section of Prob. 9.74

9.90  The L127 3 76 3 12.7-mm angle cross section of 
Prob. 9.78

*9.10  MOHR’S CIRCLE FOR MOMENTS 
AND PRODUCTS OF INERTIA

The circle used in the preceding section to illustrate the relations exist-
ing between the moments and products of inertia of a given area with 
respect to axes passing through a fixed point O was first introduced by 
the German engineer Otto Mohr (1835–1918) and is known as Mohr’s 
circle. It will be shown that if the moments and product of inertia of 
an area A are known with respect to two rectangular x and y axes which 
pass through a point O, Mohr’s circle can be used to graphically deter-
mine (a) the principal axes and principal moments of inertia of the area 
about O and (b) the moments and product of inertia of the area with 
respect to any other pair of rectangular axes x9 and y9 through O.
 Consider a given area A and two rectangular coordinate axes x 
and y (Fig. 9.19a). Assuming that the moments of inertia Ix and Iy 
and the product of inertia Ixy are known, we will represent them on 
a diagram by plotting a point X of coordinates Ix and Ixy and a point Y 
of coordinates Iy and 2Ixy (Fig. 9.19b). If Ixy is positive, as assumed 
in Fig. 9.19a, point X is located above the horizontal axis and point Y 
is located below, as shown in Fig. 9.19b. If Ixy is negative, X is located 
below the horizontal axis and Y is located above. Joining X and Y 
with a straight line, we denote by C the point of intersection of line 
XY with the horizontal axis and draw the circle of center C and 
diameter XY. Noting that the abscissa of C and the radius of the 
circle are respectively equal to the quantities Iave and R defined by 
the formula (9.23), we conclude that the circle obtained is Mohr’s 
circle for the given area about point O. Thus, the abscissas of the 
points A and B where the circle intersects the horizontal axis represent 
respectively the principal moments of inertia Imax and Imin of the area.
 We also note that, since tan (XCA) 5 2Ixy/(Ix 2 Iy), the angle XCA 
is equal in magnitude to one of the angles 2um which satisfy Eq. (9.25); 

506 Distributed Forces: Moments of Inertia
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thus, the angle um, which defines in Fig. 9.19a the principal axis Oa 
corresponding to point A in Fig. 9.19b, is equal to half of the angle 
XCA of Mohr’s circle. We further observe that if Ix . Iy and Ixy . 0, 
as in the case considered here, the rotation which brings CX into CA 
is clockwise. Also, under these conditions, the angle um obtained 
from Eq. (9.25), which defines the principal axis Oa in Fig. 9.19a, is 
negative; thus, the rotation which brings Ox into Oa is also clockwise. 
We conclude that the senses of rotation in both parts of Fig. 9.19 
are the same. If a clockwise rotation through 2um is required to bring 
CX into CA on Mohr’s circle, a clockwise rotation through um will 
bring Ox into the corresponding principal axis Oa in Fig. 9.19a.
 Since Mohr’s circle is uniquely defined, the same circle can be 
obtained by considering the moments and product of inertia of the 
area A with respect to the rectangular axes x9 and y9 (Fig. 9.19a). 
The point X9 of coordinates Ix9 and Ix9y9 and the point Y9 of coordi-
nates Iy9 and 2Ix9y9 are thus located on Mohr’s circle, and the angle 
X9CA in Fig. 9.19b must be equal to twice the angle x9Oa in Fig. 9.19a. 
Since, as noted above, the angle XCA is twice the angle xOa, it 
 follows that the angle XCX9 in Fig. 9.19b is twice the angle xOx9 in 
Fig. 9.19a. The diameter X9Y9, which defines the moments and prod-
uct of inertia Ix9, Iy9, and Ix9y9 of the given area with respect to rect-
angular axes x9 and y9 forming an angle u with the x and y axes can 
be obtained by rotating through an angle 2u the diameter XY which 
corresponds to the moments and product of inertia Ix, Iy, and Ixy. 
We note that the rotation which brings the diameter XY into the 
diameter X9Y9 in Fig. 9.19b has the same sense as the rotation which 
brings the x and y axes into the x9 and y9 axes in Fig. 9.19a.
 It should be noted that the use of Mohr’s circle is not limited 
to graphical solutions, i.e., to solutions based on the careful drawing 
and measuring of the various parameters involved. By merely sketch-
ing Mohr’s circle and using trigonometry, one can easily derive the 
various relations required for a numerical solution of a given problem 
(see Sample Prob. 9.8).
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Fig. 9.19

9.10 Mohr’s Circle for Moments and 
Products of Inertia
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SAMPLE PROBLEM 9.8

For the section shown, the moments and product of inertia with respect to 
the x and y axes are known to be
Ix 5 7.20 3 106 mm4  Iy 5 2.59 3 106 mm4  Ixy 5 22.54 3 106 mm4

Using Mohr’s circle, determine (a) the principal axes of the section about O, 
(b) the values of the principal moments of inertia of the section about O, 
(c) the moments and product of inertia of the section with respect to the 
x9 and y9 axes which form an angle of 60° with the x and y axes.

y

x

y�

x�

O

q = 60°
L152 × 102 × 12.7

508

y

x

b

a

O

qm = 23.9°

SOLUTION

Drawing Mohr’s Circle. We first plot point X of coordinates Ix 5 7.20, Ixy 5 
22.54, and point Y of coordinates Iy 5 2.59, 2Ixy 5 12.54. Joining X and 
Y with a straight line, we define the center C of Mohr’s circle. The abscissa 
of C, which represents Iave, and the radius R of the circle can be measured 
directly or calculated as follows:

Iave 5 OC 5 1
2(Ix 1 Iy) 5 1

2(7.20 3 106 1 2.59 3 106) 5 4.895 3 106 mm4

CD 5 1
2(Ix 2 Iy) 5 1

2(7.20 3 106 2 2.59 3 106) 5 2.305 3 106 mm4

 R 5 2 (CD)2 1 (DX)2 5 2 (2.305 3 106)2 1 (2.54 3 106)2

 5 3.430 3 106 mm4

a. Principal Axes. The principal axes of the section correspond to points 
A and B on Mohr’s circle, and the angle through which we should rotate 
CX to bring it into CA defines 2um. We have

tan 2um 5
DX
CD

5
2.54

2.305
5 1.102   2um 5 47.8° l   um 5 23.9° l ◀

Thus, the principal axis Oa corresponding to the maximum value of the moment 
of inertia is obtained by rotating the x axis through 23.9° counterclockwise; the 
principal axis Ob corresponding to the minimum value of the moment of inertia 
can be obtained by rotating the y axis through the same angle.
b. Principal Moments of Inertia. The principal moments of inertia are 
represented by the abscissas of A and B. We have

Imax 5 OA 5 OC 1 CA 5 Iave 1 R 5 (4.895 1 3.430)106 mm4

Imax 5 8.33 3 106 mm4 ◀

Imin 5 OB 5 OC 2 BC 5 Iave 2 R 5 (4.895 2 3.430)106 mm4

Imin 5 1.47 3 106 mm4 ◀

c. Moments and Product of Inertia with Respect to the x9 and y9 Axes.
On Mohr’s circle, the points X9 and Y9, which correspond to the x9 and y9 
axes, are obtained by rotating CX and CY through an angle 2u 5 2(60°) 5 
120° counterclockwise. The coordinates of X9 and Y9 yield the desired 
moments and product of inertia. Noting that the angle that CX9 forms with 
the horizontal axis is f 5 120° 2 47.8° 5 72.2°, we write

Ix9 5 OF 5 OC 1 CF 5 4.895 3 106 mm4 1 (3.430 3 106 mm4) cos 72.2°
Ix¿ 5 5.94 3 106 mm4 ◀

Iy9 5 OG 5 OC 2 GC 5 4.895 3 106 mm4 2 (3.430 3 106 mm4) cos 72.2°
Iy¿ 5 3.85 3 106 mm4 ◀

Ix9y9 5 FX9 5 (3.430 3 106 mm4) sin 72.2°
Ix¿y¿ 5 3.27 3 106 mm4 ◀2qm = 47.8°

2q = 120°

4.895 × 106 mm4

3.430 × 106 

mm4

Ixy

X

Y

FG

X'

Y'

f

O C Ix, Iy 

O
B E

C D A

Ixy (106 mm4)

Y(2.59, +2.54)

X(7.20, –2.54)

2qm Ix, Iy
(106 mm4) 
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In the problems for this lesson, you will use Mohr’s circle to determine the 
moments and products of inertia of a given area for different orientations of 

the coordinate axes. Although in some cases using Mohr’s circle may not be as 
direct as substituting into the appropriate equations [Eqs. (9.18) through (9.20)], 
this method of solution has the advantage of providing a visual representation of 
the relationships among the various variables. Further, Mohr’s circle shows all of 
the values of the moments and products of inertia which are possible for a given 
problem.

Using Mohr’s circle. The underlying theory was presented in Sec. 9.9, and we 
discussed the application of this method in Sec. 9.10 and in Sample Prob. 9.8. In 
the same problem, we presented the steps you should follow to determine the 
principal axes, the principal moments of inertia, and the moments and product of 
inertia with respect to a specified orientation of the coordinates axes. When you 
use Mohr’s circle to solve problems, it is important that you remember the follow-
ing points.
a. Mohr’s circle is completely defined by the quantities R and Iave, which 
represent, respectively, the radius of the circle and the distance from the origin O
to the center C of the circle. These quantities can be obtained from Eqs. (9.23) 
if the moments and product of inertia are known for a given orientation of the 
axes. However, Mohr’s circle can be defined by other combinations of known val-
ues [Probs. 9.103, 9.106, and 9.107]. For these cases, it may be necessary to first 
make one or more assumptions, such as choosing an arbitrary location for the 
center when Iave is unknown, assigning relative magnitudes to the moments of 
inertia (for example, Ix . Iy), or selecting the sign of the product of inertia.
b. Point X of coordinates (Ix, Ixy) and point Y of coordinates (Iy, 2Ixy) are both 
located on Mohr’s circle and are diametrically opposite.
c. Since moments of inertia must be positive, the entire Mohr’s circle must lie 
to the right of the Ixy axis; it follows that Iave . R for all cases.
d. As the coordinate axes are rotated through an angle U, the associated 
rotation of the diameter of Mohr’s circle is equal to 2u and is in the same sense 
(clockwise or counterclockwise). We strongly suggest that the known points on the 
circumference of the circle be labeled with the appropriate capital letter, as was 
done in Fig. 9.19b and for the Mohr circles of Sample Prob. 9.8. This will enable 
you to determine, for each value of u, the sign of the corresponding product of 
inertia and to determine which moment of inertia is associated with each of the 
coordinate axes [Sample Prob. 9.8, parts a and c].

Although we have introduced Mohr’s circle within the specific context of the study 
of moments and products of inertia, the Mohr circle technique is also applicable 
to the solution of analogous but physically different problems in mechanics of 
materials. This multiple use of a specific technique is not unique, and as you pur-
sue your engineering studies, you will encounter several methods of solution which 
can be applied to a variety of problems.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

510

 9.91 Using Mohr’s circle, determine for the quarter ellipse of Prob. 9.67 
the moments of inertia and the product of inertia with respect to 
new axes obtained by rotating the x and y axes about O (a) through 
458 counterclockwise, (b) through 308 clockwise.

 9.92 Using Mohr’s circle, determine the moments of inertia and the 
product of inertia of the area of Prob. 9.72 with respect to new 
centroidal axes obtained by rotating the x and y axes 30° 
counterclockwise.

 9.93 Using Mohr’s circle, determine the moments of inertia and the 
product of inertia of the area of Prob. 9.73 with respect to new 
centroidal axes obtained by rotating the x and y axes 608

counterclockwise.

9.94 Using Mohr’s circle, determine the moments of inertia and the prod-
uct of inertia of the area of Prob. 9.75 with respect to new centroidal 
axes obtained by rotating the x and y axes 458 clockwise.

 9.95 Using Mohr’s circle, determine the moments of inertia and the 
product of inertia of the L3 3 2 3 1

4-in. angle cross section of 
Prob. 9.74 with respect to new centroidal axes obtained by rotating 
the x and y axes 308 clockwise.

9.96 Using Mohr’s circle, determine the moments of inertia and the 
product of inertia of the L127 3 76 3 12.7-mm angle cross section 
of Prob. 9.78 with respect to new centroidal axes obtained by rotat-
ing the x and y axes 458 counterclockwise.

 9.97 For the quarter ellipse of Prob. 9.67, use Mohr’s circle to deter-
mine the orientation of the principal axes at the origin and the 
corresponding values of the moments of inertia.

 9.98 through 9.102 Using Mohr’s circle, determine for the area 
indicated the orientation of the principal centroidal axes and the 
corresponding values of the moments of inertia.

9.98 Area of Prob. 9.72
9.99 Area of Prob. 9.76
9.100 Area of Prob. 9.73
9.101 Area of Prob. 9.74
9.102 Area of Prob. 9.77

  (The moments of inertia Ix and Iy of the area of Prob. 9.102 were 
determined in Prob. 9.44.)

 9.103 The moments and product of inertia of an L4 3 3 3 1
4-in. angle 

cross section with respect to two rectangular axes x and y through 
C are, respectively, Ix 5 1.33 in4, Iy 5 2.75 in4, and Ixy , 0, with 
the minimum value of the moment of inertia of the area with respect 
to any axis through C being Imin 5 0.692 in4. Using Mohr’s circle, 
determine (a) the product of inertia Ixy of the area, (b) the orienta-
tion of the principal axes, (c) the value of Imax.
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511Problems 9.104 and 9.105 Using Mohr’s circle, determine for the cross section 
of the rolled-steel angle shown the orientation of the principal 
centroidal axes and the corresponding values of the moments of 
inertia. (Properties of the cross sections are given in Fig. 9.13.)

C
x

y

18.9 mm

L127 × 76 × 12.7

12.7 mm

12.7 mm

127 mm

44.2 mm

76 mm

 Fig. P9.105  

6.4 mm
76 mm

51 mm

6.4 mm

12.4 mm

24.9 mm
y

xC

L76 × 51 × 6.4

 Fig. P9.104  

 *9.106 For a given area the moments of inertia with respect to two rect-
angular centroidal x and y axes are Ix 5 1200 in4 and Iy 5 300 in4, 
respectively. Knowing that after rotating the x and y axes about the 
centroid 308 counterclockwise, the moment of inertia relative to 
the rotated x axis is 1450 in4, use Mohr’s circle to determine 
(a) the orientation of the principal axes, (b) the principal centroidal 
moments of inertia.

 9.107 It is known that for a given area Iy 5 48 3 106 mm4 and Ixy 5 
220 3 106 mm4, where the x and y axes are rectangular centroidal 
axes. If the axis corresponding to the maximum product of inertia 
is obtained by rotating the x axis 67.58 counterclockwise about C, 
use Mohr’s circle to determine (a) the moment of inertia Ix of the 
area, (b) the principal centroidal moments of inertia.

 9.108 Using Mohr’s circle, show that for any regular polygon (such as a 
pentagon) (a) the moment of inertia with respect to every axis 
through the centroid is the same, (b) the product of inertia with 
respect to every pair of rectangular axes through the centroid is 
zero.

 9.109 Using Mohr’s circle, prove that the expression Ix9Iy9 2 I2
x9y9 is inde-

pendent of the orientation of the x9 and y9 axes, where Ix9, Iy9, and 
Ix9y9 represent the moments and product of inertia, respectively, of 
a given area with respect to a pair of rectangular axes x9 and y9 
through a given point O. Also show that the given expression is 
equal to the square of the length of the tangent drawn from the 
origin of the coordinate system to Mohr’s circle.

 9.110 Using the invariance property established in the preceding prob-
lem, express the product of inertia Ixy of an area A with respect to 
a pair of rectangular axes through O in terms of the moments of 
inertia Ix and Iy of A and the principal moments of inertia Imin and 
Imax of A about O. Use the formula obtained to calculate the prod-
uct of inertia Ixy of the L3 3 2 3 1

4-in. angle cross section shown 
in Fig. 9.13A, knowing that its maximum moment of inertia is 
1.257 in4.
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512  Distributed Forces: Moments of Inertia
MOMENTS OF INERTIA OF MASSES

9.11 MOMENT OF INERTIA OF A MASS
Consider a small mass Dm mounted on a rod of negligible mass 
which can rotate freely about an axis AA9 (Fig. 9.20a). If a couple 
is applied to the system, the rod and mass, assumed to be initially 
at rest, will start rotating about AA9. The details of this motion will 
be studied later in dynamics. At present, we wish only to indicate 
that the time required for the system to reach a given speed of 
rotation is proportional to the mass Dm and to the square of the 
distance r. The product r2 Dm provides, therefore, a measure of 
the inertia of the system, i.e., a measure of the resistance the sys-
tem offers when we try to set it in motion. For this reason, the 
product r2 Dm is called the moment of inertia of the mass Dm with 
respect to the axis AA9.

A'

A

r1

r2 r3

Δm1

Δm2
Δm

Δm3

A'

A

m

A'

A

r k

(a) (b) (c)

Fig. 9.20

 Consider now a body of mass m which is to be rotated about 
an axis AA9 (Fig. 9.20b). Dividing the body into elements of mass 
Dm1, Dm2, etc., we find that the body’s resistance to being rotated is 
measured by the sum r2

1 Dm1 1 r2
2 Dm2 1 . . .. This sum defines, 

therefore, the moment of inertia of the body with respect to the axis 
AA9. Increasing the number of elements, we find that the moment 
of inertia is equal, in the limit, to the integral

 I 5 #  r2 dm (9.28)
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513 The radius of gyration k of the body with respect to the axis 
AA9 is defined by the relation

 
I 5 k2m   or   k 5

B
I
m  

(9.29)

The radius of gyration k represents, therefore, the distance at which 
the entire mass of the body should be concentrated if its moment of 
inertia with respect to AA9 is to remain unchanged (Fig. 9.20c). 
Whether it is kept in its original shape (Fig. 9.20b) or whether it is 
concentrated as shown in Fig. 9.20c, the mass m will react in the 
same way to a rotation, or gyration, about AA9.
 If SI units are used, the radius of gyration k is expressed in 
meters and the mass m in kilograms, and thus the unit used for the 
moment of inertia of a mass is kg ? m2. If U.S. customary units are 
used, the radius of gyration is expressed in feet and the mass in slugs 
(i.e., in lb · s2/ft), and thus the derived unit used for the moment of 
inertia of a mass is lb ? ft ? s2.†
 The moment of inertia of a body with respect to a coordinate 
axis can easily be expressed in terms of the coordinates x, y, z 
of the element of mass dm (Fig. 9.21). Noting, for example, that 
the square of the distance r from the element dm to the y axis is 
z2 1 x2, we express the moment of inertia of the body with respect 
to the y axis as

Iy 5 #  r
2 dm 5 #  (z2 1 x2) dm

Similar expressions can be obtained for the moments of inertia with 
respect to the x and z axes. We write

 Ix 5 #  (y2 1 z2) dm

  Iy 5 #  (z2 1 x2) dm (9.30)

 Iz 5 #  (x2 1 y2) dm

†It should be kept in mind when converting the moment of inertia of a mass from 
U.S. customary units to SI units that the base unit pound used in the derived unit 
lb ? ft ? s2 is a unit of force (not of mass) and should therefore be converted into 
 newtons. We have

1 lb ? ft ? s2 5 (4.45 N)(0.3048 m)(1 s)2 5 1.356 N ? m ? s2

or, since 1 N 5 1 kg ? m/s2,

1 lb ? ft ? s2 5 1.356 kg ? m2

dm

x

y

y

O

z

r z
x

Fig. 9.21

9.11 Moment of Inertia of a Mass

Photo 9.2 As you will discuss in your dynamics 
course, the rotational behavior of the camshaft 
shown is dependent upon the mass moment of 
inertia of the camshaft with respect to its axis of 
rotation.
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514  Distributed Forces: Moments of Inertia 9.12 PARALLEL-AXIS THEOREM
Consider a body of mass m. Let Oxyz be a system of rectangular coor-
dinates whose origin is at the arbitrary point O, and Gx9y9z9 a system 
of parallel centroidal axes, i.e., a system whose origin is at the center of 
gravity G of the body† and whose axes x9, y9, z9 are parallel to the x, y, 
and z axes, respectively (Fig. 9.22). Denoting by x, y, z the coordinates 
of G with respect to Oxyz, we write the following relations between 
the coordinates x, y, z of the element dm with respect to Oxyz and its 
coordinates x9, y9, z9 with respect to the centroidal axes Gx9y9z9:

 x 5 x9 1 x  y 5 y9 1 y  z 5 z9 1 z (9.31)

Referring to Eqs. (9.30), we can express the moment of inertia of 
the body with respect to the x axis as follows:

 Ix 5 #  (y2 1 z2) dm 5 #  [(y ¿ 1 y )2 1 (z¿ 1 z )2] dm

 5 #  (y ¿2 1 z¿2) dm 1 2 y #  y ¿ dm 1 2z #  z¿  dm 1 (y 
2 1 z 

2) #  dm

The first integral in this expression represents the moment of inertia 
Ix¿ of the body with respect to the centroidal axis x9; the second and 
third integrals represent the first moment of the body with respect 
to the z9x9 and x9y9 planes, respectively, and, since both planes con-
tain G, the two integrals are zero; the last integral is equal to the 
total mass m of the body. We write, therefore,

 Ix 5 Ix¿ 1 m(y 
2 1 z 

2) (9.32)

and, similarly,

 Iy 5 Iy¿ 1 m(z 
2 1 x 

2)   Iz 5 Iz¿ 1 m(x 
2 1 y 

2) (9.329)

 We easily verify from Fig. 9.22 that the sum z 
2 1 x 

2 represents 
the square of the distance OB between the y and y9 axes. Similarly, 
y 

2 1 z 
2 and x 

2 1 y 
2 represent the squares of the distance between 

the x and x9 axes and the z and z9 axes, respectively. Denoting by d 
the distance between an arbitrary axis AA9 and a parallel centroidal 
axis BB9 (Fig. 9.23), we can, therefore, write the following general 
relation between the moment of inertia I of the body with respect 
to AA9 and its moment of inertia I with respect to BB9:

 I 5 I 1 md2 (9.33)

Expressing the moments of inertia in terms of the corresponding 
radii of gyration, we can also write

 k2 5 k2 1 d2 (9.34)

where k and k represent the radii of gyration of the body about AA9 
and BB9, respectively.

†Note that the term centroidal is used here to define an axis passing through the center 
of gravity G of the body, whether or not G coincides with the centroid of the volume of 
the body.

dm

y

O

G

B

z

x

y'

x'

z'

⎯ z⎯ y

⎯ x

Fig. 9.22

A'

B'

A

B

G

d

Fig. 9.23
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5159.13 MOMENTS OF INERTIA OF THIN PLATES
Consider a thin plate of uniform thickness t, which is made of a 
homogeneous material of density r (density 5 mass per unit vol-
ume). The mass moment of inertia of the plate with respect to an 
axis AA9 contained in the plane of the plate (Fig. 9.24a) is

IAA¿, mass 5 #  r
2 dm

Since dm 5 rt dA, we write

IAA¿, mass 5 rt  #  r2 dA

But r represents the distance of the element of area dA to the axis

9.13 Moments of Inertia of Thin Plates

AA9; the integral is therefore equal to the moment of inertia of the 
area of the plate with respect to AA9. We have

 IAA9,mass 5 rtIAA9,area (9.35)

Similarly, for an axis BB9 which is contained in the plane of the plate 
and is perpendicular to AA9 (Fig. 9.24b), we have

 IBB9,mass 5 rtIBB9,area (9.36)

 Considering now the axis CC9 which is perpendicular to the 
plate and passes through the point of intersection C of AA9 and BB9 
(Fig. 9.24c), we write

 ICC9,mass 5 rtJC,area (9.37)

where JC is the polar moment of inertia of the area of the plate with 
respect to point C.
 Recalling the relation JC 5 IAA9 1 IBB9 which exists between 
polar and rectangular moments of inertia of an area, we write the 
following relation between the mass moments of inertia of a thin 
plate:

 ICC9 5 IAA9 1 IBB9 (9.38)

t

B'

C'

rr

A'

A

dA

C

(a) (b) (c)

A'

A

B

B'

B

dAdA

rr

t t

Fig. 9.24
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516  Distributed Forces: Moments of Inertia Rectangular Plate. In the case of a rectangular plate of sides a 
and b (Fig. 9.25), we obtain the following mass moments of inertia 
with respect to axes through the center of gravity of the plate:

 IAA¿,mass 5 rtIAA¿,area 5 rt( 1
12 

a3b)
 IBB¿,mass 5 rtIBB¿,area 5 rt( 1

12 
ab3)

Observing that the product rabt is equal to the mass m of the plate, 
we write the mass moments of inertia of a thin rectangular plate as 
follows:
  IAA¿ 5 1

12 
ma2   IBB¿ 5 1

12 
mb2  (9.39)

  ICC¿ 5 IAA¿ 1 IBB¿ 5 1
12 m(a2 1 b2) (9.40)

Circular Plate. In the case of a circular plate, or disk, of radius r 
(Fig. 9.26), we write

IAA¿,mass 5 rtIAA¿,area 5 rt(1
4 
pr4)

Observing that the product rpr2t is equal to the mass m of the plate 
and that IAA9 5 IBB9, we write the mass moments of inertia of a circular 
plate as follows:
  IAA¿ 5 IBB¿ 5 1

4 
mr2  (9.41)

  ICC¿ 5 IAA¿ 1 IBB¿ 5 1
2 
mr2 (9.42)

9.14  DETERMINATION OF THE MOMENT OF INERTIA 
OF A THREE-DIMENSIONAL BODY 
BY INTEGRATION

The moment of inertia of a three-dimensional body is obtained by 
evaluating the integral I 5 e r2 dm. If the body is made of a homo-
geneous material of density r, the element of mass dm is equal to 
r dV and we can write I 5 re r2 dV. This integral depends only upon 
the shape of the body. Thus, in order to compute the moment of 
inertia of a three-dimensional body, it will generally be necessary to 
perform a triple, or at least a double, integration.
 However, if the body possesses two planes of symmetry, it is 
usually possible to determine the body’s moment of inertia with a 
single integration by choosing as the element of mass dm a thin slab 
which is perpendicular to the planes of symmetry. In the case of 
bodies of revolution, for example, the element of mass would be a 
thin disk (Fig. 9.27). Using formula (9.42), the moment of inertia of 
the disk with respect to the axis of revolution can be expressed as 
indicated in Fig. 9.27. Its moment of inertia with respect to each of 
the other two coordinate axes is obtained by using formula (9.41) 
and the parallel-axis theorem. Integration of the expression obtained 
yields the desired moment of inertia of the body.

9.15 MOMENTS OF INERTIA OF COMPOSITE BODIES
The moments of inertia of a few common shapes are shown in 
Fig. 9.28. For a body consisting of several of these simple shapes, the 
moment of inertia of the body with respect to a given axis can be 
obtained by first computing the moments of inertia of its component 
parts about the desired axis and then adding them together. As was 
the case for areas, the radius of gyration of a composite body cannot 
be obtained by adding the radii of gyration of its componet parts.

t
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B'

A

B
b

a
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C

Fig. 9.25
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A
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Fig. 9.26

O

y'

y

z
dx r

z'

x

x

dm = r   r2 dx

dIx =    r2 dm1
2

dIy = dIy' + x2 dm = (   r2 + x2)dm

dIz = dIz' + x2 dm = (  r2 + x2)dm

1
4
1
4

�

Fig. 9.27 Determination of the moment of 
inertia of a body of revolution.
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517

Slender rod

Thin rectangular plate

Rectangular prism

Thin disk

Circular cylinder

Circular cone

Sphere

G

L
Iy = Iz =     mL21

12

Iy = Iz =     mr21
4

Ix =     m(b2 + c2)1
12

Ix =     m(b2 + c2)1
12

Ix =    mr21
2

Ix =    ma23
10

Iy =     m(c2 + a2)1
12

Iy = Iz =    m(  a2 + h2)3
5

1
4

Ix =    ma21
2

Iy = Iz =     m(3a2 + L2)1
12

Ix = Iy = Iz =    ma22
5

Iz =     m(a2 + b2)1
12

Iy =     mc21
12

Iz =     mb21
12
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Fig. 9.28 Mass moments of inertia of common geometric shapes.

9.15 Moments of Inertia of
Composite Bodies
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518

SAMPLE PROBLEM 9.9

Determine the moment of inertia of a slender rod of length L and mass m 
with respect to an axis which is perpendicular to the rod and passes through 
one end of the rod.

SOLUTION

Choosing the differential element of mass shown, we write

dm 5
m
L

 dx

Iy 5 #
 
x2 dm 5 #

L

0
 x

2
 

m
L

 dx 5 cm
L

 
x3

3
d L

0
  Iy 5 1

3 mL2
 ◀

SAMPLE PROBLEM 9.10

For the homogeneous rectangular prism shown, determine the moment of 
inertia with respect to the z axis.

SOLUTION

We choose as the differential element of mass the thin slab shown; thus

dm 5 rbc dx

Referring to Sec. 9.13, we find that the moment of inertia of the element 
with respect to the z9 axis is

dIz¿ 5 1
12 

b2 dm

Applying the parallel-axis theorem, we obtain the mass moment of inertia 
of the slab with respect to the z axis.

dIz 5 dIz¿ 1 x2 dm 5 1
12 

b2 dm 1 x2 dm 5 ( 1
12 

b2 1 x2)rbc dx

Integrating from x 5 0 to x 5 a, we obtain

Iz 5 #  dIz 5 #
a

0
 
( 1

12 
b2 1 x2)rbc dx 5 rabc( 1

12 
b2 1 1

3a2)

Since the total mass of the prism is m 5 rabc, we can write

 Iz 5 m( 1
12 

b2 1 1
3 
a2)

 
 Iz 5 1

12 
m(4a2 1 b2) ◀

We note that if the prism is thin, b is small compared to a, and the expression 
for Iz reduces to 1

3 ma2, which is the result obtained in Sample Prob. 9.9 
when L 5 a.

dx
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519

SAMPLE PROBLEM 9.11

Determine the moment of inertia of a right circular cone with respect to 
(a) its longitudinal axis, (b) an axis through the apex of the cone and per-
pendicular to its longitudinal axis, (c) an axis through the centroid of the 
cone and perpendicular to its longitudinal axis.

z

y

x

h

a

z

y

x dx

y'

x

h

r a

z

y

x

h

y"

⎯x  =    h3
4

SOLUTION

We choose the differential element of mass shown.

r 5 a 

x
h

  dm 5 rpr2 dx 5 rp  

a2

h2  x2 dx

a. Moment of Inertia Ix. Using the expression derived in Sec. 9.13 for a 
thin disk, we compute the mass moment of inertia of the differential ele-
ment with respect to the x axis.

dIx 5 1
2 
r2 dm 5 1

2 
aa 

x
h
b2arp  

a2

h2  x2 dxb 5 1
2 
rp  

a4

h4  x4 dx

Integrating from x 5 0 to x 5 h, we obtain

Ix 5 #  dIx 5 #
h

0

 12 
rp  

a4

h4  x4 dx 5 1
2 
rp  

a4

h4 
h5

5
5 1

10 
rpa4h

Since the total mass of the cone is m 5 1
3rpa2h, we can write

Ix 5 1
10 
rpa4h 5 3

10 
a2(1

3 
rpa2h) 5 3

10 
ma2   Ix 5 3

10 
ma2 ◀

b. Moment of Inertia Iy. The same differential element is used. Applying 
the parallel-axis theorem and using the expression derived in Sec. 9.13 for 
a thin disk, we write

dIy 5 dIy¿ 1 x2 dm 5 1
4 
r2 dm 1 x2 dm 5 (1

4  
r2 1 x2) dm

Substituting the expressions for r and dm into the equation, we obtain

dIy 5 a1
4

 
a2

h2  x2 1 x2b arp  

a2

h2  x2 dxb 5 rp  

a2

h2 a a2

4h2 1 1b x4 dx

Iy 5 #  dIy 5 #
h

0
 
rp

a2

h2 a a2

4h2 1 1b x4 dx 5 rp
a2

h2 a a2

4h2 1 1b 
h5

5

Introducing the total mass of the cone m, we rewrite Iy as follows:

Iy 5 3
5(1

4 
a2 1 h2)1

3rpa2h   Iy 5 3
5 
m(1

4 
a2 1 h2) ◀

c. Moment of Inertia  I y 0.  We apply the parallel-axis theorem and write

Iy 5 Iy– 1 mx 
2

Solving for Iy– and recalling that x 5 3
4h, we have

Iy– 5 Iy 2 mx 
2 5 3

5 
m(1

4 
a2 1 h2) 2 m(3

4 
h)2

Iy– 5 3
20 

m(a2 1 1
4 
h2) ◀
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SAMPLE PROBLEM 9.12

A steel forging consists of a 6 3 2 3 2-in. rectangular prism and two cylin-
ders of diameter 2 in. and length 3 in. as shown. Determine the moments 
of inertia of the forging with respect to the coordinate axes, knowing that 
the specific weight of steel is 490 lb/ft3.

SOLUTION

Computation of Masses

Prism

 V 5 (2 in.)(2 in.)(6 in.) 5 24 in3

 W 5
(24 in3)(490 lb/ft3)

1728 in3/ft3 5 6.81 lb

 m 5
6.81 lb

32.2 ft/s2 5 0.211 lb ? s2/ft

Each Cylinder

 V 5 p(1 in.)2(3 in.) 5 9.42 in3

 W 5
(9.42 in3)(490 lb/ft3)

1728 in3/ft3 5 2.67 lb

 m 5
2.67 lb

32.2 ft/s2 5 0.0829 lb ? s2/ft

Moments of Inertia. The moments of inertia of each component are com-
puted from Fig. 9.28, using the parallel-axis theorem when necessary. Note 
that all lengths should be expressed in feet.

Prism

Ix 5 Iz 5 1
12 

(0.211 lb ? s2/ft)[( 6
12 ft)2 1 ( 2

12 ft)2] 5 4.88 3 1023 lb ? ft ? s2

Iy 5 1
12 

(0.211 lb ? s2/ft) [ ( 2
12 ft)2 1 ( 2

12 ft)2] 5 0.977 3 1023 lb ? ft ? s2

Each Cylinder

Ix 5 1
2 
ma2 1 my 

2 5 1
2(0.0829 lb ? s2/ft) ( 1

12 ft)2

1 (0.0829 lb ? s2/ft)( 2
12 ft)2 5 2.59 3 1023 lb ? ft ? s2

Iy 5 1
12 

m(3a2 1 L2) 5 mx 
2 5 1

12(0.0829 lb ? s2/ft)[3( 1
12 ft)2 1 ( 3

12 ft)2]
1 (0.0829 lb ? s2/ft)(2.5

12  ft)2 5 4.17 3 1023 lb ? ft ? s2

Iz 5 1
12 

m(3a2 1 L2) 1 m(x 
2 1 y 

2) 5 1
12(0.0829 lb ? s2/ft)[3( 1

12 ft)2 1 ( 3
12 ft)2]

 1 (0.0829 lb ? s2/ft) [(2.5
12  ft)2 1 ( 2

12 ft)2] 5 6.48 3 1023 lb ? ft ? s2

Entire Body. Adding the values obtained,

 Ix 5 4.88 3 1023 1 2(2.59 3 1023) Ix 5 10.06 3 1023 lb ? ft ? s2 ◀

Iy 5 0.977 3 1023 1 2(4.17 3 1023) Iy 5 9.32 3 1023 lb ? ft ? s2 ◀

 Iz 5 4.88 3 1023 1 2(6.48 3 1023) Iz 5 17.84 3 1023 lb ? ft ? s2 ◀

2 in.
6 in.

1 in.
A

B

y

z

x

3 in.

2.5 in.

2 in.

2 in.2 in.

2 in.

2 in.

1 in.
A

B

y

x

3 in.

2 in.

2 in.

z
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SAMPLE PROBLEM 9.13

A thin steel plate which is 4 mm thick is cut and bent to form the machine 
part shown. Knowing that the density of steel is 7850 kg/m3, determine the 
moments of inertia of the machine part with respect to the coordinate axes.

SOLUTION

We observe that the machine part consists of a semicircular plate and a 
rectangular plate from which a circular plate has been removed.

Computation of Masses. Semicircular Plate

V1 5 1
2pr2t 5 1

2p(0.08 m)2(0.004 m) 5 40.21 3 1026 m3

 m1 5 rV1 5 (7.85 3 103 kg/m3)(40.21 3 1026 m3) 5 0.3156 kg

Rectangular Plate

 V2 5 (0.200 m)(0.160 m)(0.004 m) 5 128 3 1026 m3

 m2 5 rV2 5 (7.85 3 103 kg/m3)(128 3 1026 m3) 5 1.005 kg

Circular Plate

 V3 5 pa2t 5 p (0.050 m)2(0.004 m) 5 31.42 3 1026 m3

 m3 5 rV3 5 (7.85 3 103 kg/m3)(31.42 3 1026 m3) 5 0.2466 kg

Moments of Inertia. Using the method presented in Sec. 9.13, we com-
pute the moments of inertia of each component.

Semicircular Plate. From Fig. 9.28, we observe that for a circular plate 
of mass m and radius r

Ix 5 1
2 
mr2   Iy 5 Iz 5 1

4 
mr2

Because of symmetry, we note that for a semicircular plate

Ix 5 1
2(1

2 
mr2)   Iy 5 Iz 5 1

2(1
4 
mr2)

Since the mass of the semicircular plate is m1 5 1
2 m, we have

 Ix 5 1
2 
m1r

2 5 1
2(0.3156 kg)(0.08 m)2 5 1.010 3 1023 kg ? m2

 Iy 5 Iz 5 1
4(1

2 
mr2)5 1

4 
m1r

2 5 1
4(0.3156 kg)(0.08 m)2 5 0.505 3 1023 kg ? m2

Rectangular Plate
 Ix 5 1

12 
m2c

2 5 1
12(1.005 kg)(0.16 m)2 5 2.144 3 1023 kg ? m2

 Iz 5 1
3 
m2b

2 5 1
3(1.005 kg)(0.2 m)2 5 13.400 3 1023 kg ? m2

 Iy 5 Ix 1 Iz 5 (2.144 1 13.400) (1023) 5 15.544 3 1023 kg ? m2

Circular Plate

 Ix 5 1
4 
m3a

2 5 1
4(0.2466 kg)(0.05 m)2 5 0.154 3 1023 kg ? m2

 Iy 5 1
2 
m3a

2 1 m3d
2

 5 1
2(0.2466 kg)(0.05 m)2 1 (0.2466 kg)(0.1 m)2 5 2.774 3 1023 kg ? m2

 Iz 5 1
4 
m3a

2 1 m3d
2 5 1

4(0.2466 kg)(0.05 m)2 1 (0.2466 kg)(0.1 m)2

 5 2.620 3 1023 kg ? m2

Entire Machine Part

Ix 5 (1.010 1 2.144 2 0.154)(1023) kg ? m2 Ix 5 3.00 3 1023 kg ? m2 ◀

 Iy 5 (0.505 1 15.544 2 2.774)(1023) kg ? m2 Iy 5 13.28 3 1023 kg ? m2 ◀

 Iz 5 (0.505 1 13.400 2 2.620)(1023) kg ? m2 Iz 5 11.29 3 1023 kg ? m2 ◀

z

z
x

x

r = 0.08 m

d = 0.1 m

c = 0.16 m

a = 0.05 m

++

__

y

y

y

z
xb = 0.2 m
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we introduced the mass moment of inertia and the radius of gyra-
tion of a three-dimensional body with respect to a given axis [Eqs. (9.28) and 

(9.29)]. We also derived a parallel-axis theorem for use with mass moments of 
inertia and discussed the computation of the mass moments of inertia of thin plates 
and three-dimensional bodies.

1. Computing mass moments of inertia. The mass moment of inertia I of a body 
with respect to a given axis can be calculated directly from the definition given in 
Eq. (9.28) for simple shapes [Sample Prob. 9.9]. In most cases, however, it is 
necessary to divide the body into thin slabs, compute the moment of inertia of a 
typical slab with respect to the given axis—using the parallel-axis theorem if neces-
sary—and integrate the expression obtained.

2. Applying the parallel-axis theorem. In Sec. 9.12 we derived the parallel-axis 
theorem for mass moments of inertia

 I 5 I 1 md2 (9.33)

which states that the moment of inertia I of a body of mass m with respect to a 
given axis is equal to the sum of the moment of inertia I of that body with respect 
to a parallel centroidal axis and the product md2, where d is the distance between 
the two axes. When the moment of inertia of a three-dimensional body is calcu-
lated with respect to one of the coordinate axes, d2 can be replaced by the sum of 
the squares of distances measured along the other two coordinate axes [Eqs. (9.32) 
and (9.32¿)].

3. Avoiding unit-related errors. To avoid errors, it is essential that you be con-
sistent in your use of units. Thus, all lengths should be expressed in meters or 
feet, as appropriate, and for problems using U.S. customary units, masses should 
be given in lb ? s2/ft. In addition, we strongly recommend that you include units 
as you perform your calculations [Sample Probs. 9.12 and 9.13].

4. Calculating the mass moment of inertia of thin plates. We showed in 
Sec. 9.13 that the mass moment of inertia of a thin plate with respect to a given 
axis can be obtained by multiplying the corresponding moment of inertia of the 
area of the plate by the density r and the thickness t of the plate [Eqs. (9.35) 
through (9.37)]. Note that since the axis CC¿ in Fig. 9.24c is perpendicular to the 
plate, ICC¿,mass is associated with the polar moment of inertia JC,area.
  Instead of calculating directly the moment of inertia of a thin plate with 
respect to a specified axis, you may sometimes find it convenient to first compute 
its moment of inertia with respect to an axis parallel to the specified axis and then 
apply the parallel-axis theorem. Further, to determine the moment of inertia of a 
thin plate with respect to an axis perpendicular to the plate, you may wish to first 
determine its moments of inertia with respect to two perpendicular in-plane axes 
and then use Eq. (9.38). Finally, remember that the mass of a plate of area A, 
thickness t, and density r is m 5 rtA.
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5. Determining the moment of inertia of a body by direct single integration. We 
discussed in Sec. 9.14 and illustrated in Sample Probs. 9.10 and 9.11 how single 
integration can be used to compute the moment of inertia of a body that can be 
divided into a series of thin, parallel slabs. For such cases, you will often need to 
express the mass of the body in terms of the body’s density and dimensions. Assum-
ing that the body has been divided, as in the sample problems, into thin slabs 
perpendicular to the x axis, you will need to express the dimensions of each slab 
as functions of the variable x.
 a. In the special case of a body of revolution, the elemental slab is a thin 
disk, and the equations given in Fig. 9.27 should be used to determine the moments 
of inertia of the body [Sample Prob. 9.11].
 b. In the general case, when the body is not of revolution, the differential 
element is not a disk, but a thin slab of a different shape, and the equations of 
Fig. 9.27 cannot be used. See, for example, Sample Prob. 9.10, where the element 
was a thin, rectangular slab. For more complex configurations, you may want to 
use one or more of the following equations, which are based on Eqs. (9.32) and 
(9.32¿) of Sec. 9.12.

 dIx 5 dIx¿ 1 (y 
2
el 1 z 

2
el) dm

 dIy 5 dIy¿ 1 (z 
2
el 1 x 

2
el) dm

 dIz 5 dIz¿ 1 (x 
2
el 1 y 

2
el) dm

where the primes denote the centroidal axes of each elemental slab, and where 
xel, yel, and zel represent the coordinates of its centroid. The centroidal moments 
of inertia of the slab are determined in the manner described earlier for a thin 
plate: Referring to Fig. 9.12 on page 485, calculate the corresponding moments of 
inertia of the area of the slab and multiply the result by the density r and the 
thickness t of the slab. Also, assuming that the body has been divided into thin slabs 
perpendicular to the x axis, remember that you can obtain dIx9 by adding dIy9 and 
dIz9 instead of computing it directly. Finally, using the geometry of the body, express 
the result obtained in terms of the single variable x and integrate in x.

6. Computing the moment of inertia of a composite body. As stated in Sec. 9.15, 
the moment of inertia of a composite body with respect to a specified axis is equal 
to the sum of the moments of its components with respect to that axis. Sample 
Probs. 9.12 and 9.13 illustrate the appropriate method of solution. You must also 
remember that the moment of inertia of a component will be negative only if the 
component is removed (as in the case of a hole).

Although the composite-body problems in this lesson are relatively straightforward, 
you will have to work carefully to avoid computational errors. In addition, if some 
of the moments of inertia that you need are not given in Fig. 9.28, you will have 
to derive your own formulas, using the techniques of this lesson.
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PROBLEMS

524

 9.111 Determine the mass moment of inertia of a ring of mass m, cut 
from a thin uniform plate, with respect to (a) the axis AA9, 
(b) the centroidal axis CC9 that is perpendicular to the plane of 
the ring.

 9.112 A thin semicircular plate has a radius a and a mass m. Determine 
the mass moment of inertia of the plate with respect to (a) the 
centroidal axis BB9, (b) the centroidal axis CC9 that is  perpendicular 
to the plate.

A

B

A�

C�

B�

C

r1

r2

Fig. P9.111

C
a

A

B

A'

B'

C'

Fig. P9.112

 9.113 The quarter ring shown has a mass m and was cut from a thin, 
uniform plate. Knowing that r1 5 34  r2, determine the mass moment 
of inertia of the quarter ring with respect to (a) the axis AA9, 
(b) the centroidal axis CC9 that is perpendicular to the plane of 
the quarter ring.

 9.114 The parabolic spandrel shown was cut from a thin, uniform 
plate. Denoting the mass of the spandrel by m, determine its 
mass moment of inertia with respect to (a) the axis BB9, (b) the 
axis DD9 that is perpendicular to the spandrel. (Hint: See  Sample 
Prob. 9.3.)

A
B

C

O

r1

r2

A'

B'

C'

Fig. P9.113

A

A'

B

B'

D'

D

a
b

y = kx2

Fig. P9.114
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525Problems 9.115 A thin plate of mass m was cut in the shape of a parallelogram as 
shown. Determine the mass moment of inertia of the plate with 
respect to (a) the x axis, (b) the axis BB9, which is perpendicular 
to the plate.

 9.116 A thin plate of mass m was cut in the shape of a parallelogram as 
shown. Determine the mass moment of inertia of the plate with 
respect to (a) the y axis, (b) the axis AA9, which is perpendicular 
to the plate.

 9.117 A thin plate of mass m has the trapezoidal shape shown.  Determine 
the mass moment of inertia of the plate with respect to (a) the x axis, 
(b) the y axis.

 9.118 A thin plate of mass m has the trapezoidal shape shown. Determine 
the mass moment of inertia of the plate with respect to (a) the 
centroidal axis CC9 that is perpendicular to the plate, (b) the axis 
AA9 that is parallel to the x axis and is located at a distance 1.5a 
from the plate.

 9.119 The area shown is revolved about the x axis to form a homogeneous 
solid of revolution of mass m. Using direct integration, express the 
mass moment of inertia of the solid with respect to the x axis in 
terms of m and h.

B

B'

y

A

A'
xz

a
a

a

Fig. P9.115 and P9.116

C'

C

xy

z

a

1.5a

2a

2a

A'

A

Fig. P9.117 and P9.118

h

2h

a
x

y

Fig. P9.119

 9.120 Determine by direct integration the mass moment of inertia with 
respect to the y axis of the right circular cylinder shown, assuming 
that it has a uniform density and a mass m.

 9.121 The area shown is revolved about the x axis to form a homogeneous 
solid of revolution of mass m. Determine by direct integration the 
mass moment of inertia of the solid with respect to (a) the x axis, 
(b) the y axis. Express your answers in terms of m and the dimen-
sions of the solid.

x

a

y

z

2
L

2
L

Fig. P9.120

a

h

2a

y

x

y = kx

Fig. P9.121
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526 Distributed Forces: Moments of Inertia  9.122 Determine by direct integration the mass moment of inertia with 
respect to the x axis of the tetrahedron shown, assuming that it 
has a uniform density and a mass m.

 9.123 Determine by direct integration the mass moment of inertia with 
respect to the y axis of the tetrahedron shown, assuming that it 
has a uniform density and a mass m.

 *9.124 Determine by direct integration the mass moment of inertia with 
respect to the z axis of the semiellipsoid shown, assuming that it 
has a uniform density and a mass m.

y

z

x
b

a

h

Fig. P9.122 and P9.123

z

x

y

b

c

a

x2

a2

y2

b2
+ z2

c2
+ = 1

Fig. P9.124

 *9.125 A thin steel wire is bent into the shape shown. Denoting the mass 
per unit length of the wire by m9, determine by direct integration 
the mass moment of inertia of the wire with respect to each of the 
coordinate axes.

a

a
z

x

y

y = (a2/3 – x2/3)3/2

Fig. P9.125

x

y

z

A

a
2 a

2

B

C

h

q

Fig. P9.126

 9.126 A thin triangular plate of mass m is welded along its base AB to 
a block as shown. Knowing that the plate forms an angle u with 
the y axis, determine by direct integration the mass moment of 
inertia of the plate with respect to (a) the x axis, (b) the y axis, 
(c) the z axis.
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527Problems 9.127 Shown is the cross section of a molded flat-belt pulley. Determine 
its mass moment of inertia and its radius of gyration with respect 
to the axis AA9. (The density of brass is 8650 kg/m3 and the density 
of the fiber-reinforced polycarbonate used is 1250 kg/m3.)

 9.128 Shown is the cross section of an idler roller. Determine its mass 
moment of inertia and its radius of gyration with respect to the 
axis AA9. (The specific weight of bronze is 0.310 lb/in3; of  aluminum, 
0.100 lb/in3; and of neoprene, 0.0452 lb/in3.)

 9.129 Knowing that the thin cylindrical shell shown is of mass m, thick-
ness t, and height h, determine the mass moment of inertia of the 
shell with respect to the x axis. (Hint: Consider the shell as formed 
by removing a cylinder of radius a and height h from a cylinder of 
radius a 1 t and height h; then neglect terms containing t2 and t3 
and keep those terms containing t.)

 9.130 The machine part shown is formed by machining a conical surface 
into a circular cylinder. For b 5 1

2h, determine the mass moment 
of inertia and the radius of gyration of the machine part with 
respect to the y axis.

Brass

Polycarbonate
2 mm

A'A
11 mm

22 mm

9.5 mm

17.5 mm

5 mm
17 mm

28 mm

Fig. P9.127 A A'

Neoprene

Aluminum

Bronze

in.11
16

in.13
16

in.1 1
8

in.3
8

in.1
2

in.1
4

Fig. P9.128

y

a

xz

h

Fig. P9.129

x

z

a
a

h
b

y

Fig. P9.130
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528 Distributed Forces: Moments of Inertia  9.131 After a period of use, one of the blades of a shredder has been 
worn to the shape shown and is of mass 0.18 kg. Knowing that the 
mass moments of inertia of the blade with respect to the AA9 and 
BB9 axes are 0.320 g ? m2 and 0.680 g ? m2, respectively, determine 
(a) the location of the centroidal axis GG9, (b) the radius of  gyration 
with respect to axis GG9.

 9.132 Determine the mass moment of inertia of the 0.9-lb machine com-
ponent shown with respect to the axis AA9.

 9.133 A square hole is centered in and extends through the aluminum 
machine component shown. Determine (a) the value of a for which 
the mass moment of inertia of the component with respect to the 
axis AA9, which bisects the top surface of the hole, is maximum, 
(b) the corresponding values of the mass moment of inertia and 
the radius of gyration with respect to the axis AA9. (The specific 
weight of aluminum is 0.100 lb/in3.)

A

A' B

B'

80 mm
G'

G

Fig. P9.131

A

A'

0.4 in.

1.2 in.
1.6 in.

2.4 in.

Fig. P9.132

A

A'

4.2 in.

a

a

a
2

4.2 in.

15 in.

Fig. P9.133

 9.134 The cups and the arms of an anemometer are fabricated from a 
material of density r. Knowing that the mass moment of inertia of 
a thin, hemispherical shell of mass m and thickness t with respect 
to its centroidal axis GG9 is 5ma2/12, determine (a) the mass 
moment of inertia of the anemometer with respect to the axis AA9, 
(b) the ratio of a to l for which the centroidal moment of inertia 
of the cups is equal to 1 percent of the moment of inertia of the 
cups with respect to the axis AA9.

l

d

a

A

A'

G

G'

a
2

Fig. P9.134
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529Problems 9.135 and 9.136 A 2-mm thick piece of sheet steel is cut and bent 
into the machine component shown. Knowing that the density of 
steel is 7850 kg/m3, determine the mass moment of inertia of the 
component with respect to each of the coordinate axes.

y

x

z

120 mm

120 mm

150 mm150 mm

150 mm

150 mm

Fig. P9.135

z
x

y

350 mm 150 mm

195 mm

Fig. P9.136

 9.137 The cover for an electronic device is formed from sheet aluminum 
that is 0.05 in. thick. Determine the mass moment of inertia of 
the cover with respect to each of the coordinate axes. (The specific 
weight of aluminum is 0.100 lb/in3.)

x

y

z

3 in.

2.4 in.

6.2 in.

Fig. P9.137

 9.138 A framing anchor is formed of 0.05-in.-thick galvanized steel. 
Determine the mass moment of inertia of the anchor with respect 
to each of the coordinate axes. (The specific weight of galvanized 
steel is 470 lb/ft3.)

 9.139 A subassembly for a model airplane is fabricated from three pieces 
of 1.5-mm plywood. Neglecting the mass of the adhesive used to 
assemble the three pieces, determine the mass moment of inertia 
of the subassembly with respect to each of the coordinate axes. 
(The density of the plywood is 780 kg/m3.)

x

y

z

1 in.

1.25 in. 2 in.

2.25 in.

3.5 in.

Fig. P9.138

y

x

z 300 mm

120 mm

Fig. P9.139
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530 Distributed Forces: Moments of Inertia  *9.140 A farmer constructs a trough by welding a rectangular piece of 
2-mm-thick sheet steel to half of a steel drum. Knowing that the 
density of steel is 7850 kg/m3 and that the thickness of the walls 
of the drum is 1.8 mm, determine the mass moment of inertia of 
the trough with respect to each of the coordinate axes. Neglect 
the mass of the welds.

 9.141 The machine element shown is fabricated from steel. Determine 
the mass moment of inertia of the assembly with respect to 
(a) the x axis, (b) the y axis, (c) the z axis. (The density of steel is 
7850 kg/m3.)

y

x

z

285 mm

840 mm

210 mm

Fig. P9.140

 9.142 Determine the mass moment of inertia of the steel machine ele-
ment shown with respect to the y axis. (The specific weight of steel 
is 490 lb/ft3.)

40 mm

40 mm

40 mm

20 mm

60 mm

20 mm

80 mm

x

y

z

Fig. P9.141

x

y

z

3.7 in.

0.9 in.

1.35 in.

1.2 in.

1.4 in.

0.6 in.

0.6 in.

0.9 in.
0.9 in.

3.1 in.

9 in.

Fig. P9.142 and P9.143

 9.143 Determine the mass moment of inertia of the steel machine ele-
ment shown with respect to the z axis. (The specific weight of steel 
is 490 lb/ft3.)
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531Problems 9.144 Determine the mass moment of inertia and the radius of gyration 
of the steel machine element shown with respect to the x axis. 
(The density of steel is 7850 kg/m3.)

60 mm

45 mm

15 mm
15 mm

45 mm

50 mm

40 mm

45 mm

38 mm

y

x
z

Fig. P9.144

50 mm

70 mm

40 mm

16 mm

80 mm

y

x

z

50 mm

38 mm

24 mm

Fig. P9.145

 9.145 Determine the mass moment of inertia of the steel fixture shown 
with respect to (a) the x axis, (b) the y axis, (c) the z axis. (The 
density of steel is 7850 kg/m3.)

xz

8 in.

8 in. 8 in.

y

16 in.
8 in.

Fig. P9.146

 9.146 Aluminum wire with a weight per unit length of 0.033 lb/ft is used 
to form the circle and the straight members of the figure shown. 
Determine the mass moment of inertia of the assembly with 
respect to each of the coordinate axes.
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 9.148 A homogeneous wire with a mass per unit length of 0.056 kg/m is 
used to form the figure shown. Determine the mass moment of 
inertia of the wire with respect to each of the coordinate axes.

*9.16  MOMENT OF INERTIA OF A BODY WITH 
RESPECT TO AN ARBITRARY AXIS THROUGH O. 
MASS PRODUCTS OF INERTIA

In this section you will see how the moment of inertia of a body can 
be determined with respect to an arbitrary axis OL through the ori-
gin (Fig. 9.29) if its moments of inertia with respect to the three 
coordinate axes, as well as certain other quantities to be defined 
below, have already been determined.
 The moment of inertia IOL of the body with respect to OL is 
equal to e p2dm, where p denotes the perpendicular distance from 
the element of mass dm to the axis OL. If we denote by l the unit 
vector along OL and by r the position vector of the element dm, we 
observe that the perpendicular distance p is equal to r sin u, which 
is the magnitude of the vector product L 3 r. We therefore write

 IOL 5 #  p
2 dm 5 #  ZL 3 rZ2 dm (9.43)

Expressing |L 3 r|2 in terms of the rectangular components of the 
vector product, we have

IOL 5 #  [(lxy 2 lyx)2 1 (lyz 2 lzy)2 1 (lzx 2 lxz)2] dm

where the components lx, ly, lz of the unit vector L represent the 
direction cosines of the axis OL and the components x, y, z of r 
represent the coordinates of the element of mass dm. Expanding the 
squares and rearranging the terms, we write

IOL 5 l2
x #  (y2 1 z2) dm 1 l2

y #  (z2 1 x2) dm 1 l2
z #  (x2 1 y2) dm

 2 2lxly #  xy dm 2 2lylz #  yz dm 2 2lzlx #  zx dm (9.44)

 9.147 The figure shown is formed of 1
8-in.-diameter steel wire. Knowing 

that the specific weight of the steel is 490 lb/ft3, determine the 
mass moment of inertia of the wire with respect to each of the 
coordinate axes.

x

y

z

18 in.
18 in.

18 in.

Fig. P9.147

y

dm

z

x

p

L

O

q

�

r

Fig. 9.29

532 Distributed Forces: Moments of Inertia

1.2 m

1.2 m

1.2 mz x

y

Fig. P9.148
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533 Referring to Eqs. (9.30), we note that the first three integrals 
in (9.44) represent, respectively, the moments of inertia Ix, Iy, and 
Iz of the body with respect to the coordinate axes. The last three 
integrals in (9.44), which involve products of coordinates, are called 
the products of inertia of the body with respect to the x and y axes, 
the y and z axes, and the z and x axes, respectively. We write

Ixy 5 #  xy dm   Iyz 5 #  yz dm   Izx 5 #  zx dm (9.45)

Rewriting Eq. (9.44) in terms of the integrals defined in Eqs. (9.30) 
and (9.45), we have

IOL 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx (9.46)

 We note that the definition of the products of inertia of a mass 
given in Eqs. (9.45) is an extension of the definition of the product 
of inertia of an area (Sec. 9.8). Mass products of inertia reduce to 
zero under the same conditions of symmetry as do products of inertia 
of areas, and the parallel-axis theorem for mass products of inertia 
is expressed by relations similar to the formula derived for the prod-
uct of inertia of an area. Substituting the expressions for x, y, and z 
given in Eqs. (9.31) into Eqs. (9.45), we find that

 Ixy 5 Ix¿y¿ 1 mx y
  Iyz 5 Iy¿z¿ 1 my z (9.47)

 Izx 5 Iz¿x¿ 1 mz x

where x, y, z are the coordinates of the center of gravity G of the 
body and Ix¿y¿, Iy¿z¿, Iz¿x¿ denote the products of inertia of the body 
with respect to the centroidal axes x9, y9, z9 (Fig. 9.22).

*9.17  ELLIPSOID OF INERTIA. PRINCIPAL AXES 
OF INERTIA

Let us assume that the moment of inertia of the body considered in the 
preceding section has been determined with respect to a large number 
of axes OL through the fixed point O and that a point Q has been plotted 
on each axis OL at a distance OQ 5 1/1IOL from O. The locus of the 
points Q thus obtained forms a surface (Fig. 9.30). The equation of that 
surface can be obtained by substituting 1/(OQ)2 for IOL in (9.46) and 
then multiplying both sides of the equation by (OQ)2. Observing that

(OQ)lx 5 x  (OQ)ly 5 y  (OQ)lz 5 z

where x, y, z denote the rectangular coordinates of Q, we write

 Ixx
2 1 Iyy2 1 Izz

2 2 2Ixyxy 2 2Iyzyz 2 2Izxzx 5 1 (9.48)

The equation obtained is the equation of a quadric surface. Since 
the moment of inertia IOL is different from zero for every axis OL, 
no point Q can be at an infinite distance from O. Thus, the quadric 
surface obtained is an ellipsoid. This ellipsoid, which defines the 

x

L

y

z

O
1/√IOL

Q(x, y, z)

Fig. 9.30

9.17 Ellipsoid of Inertia. Principal 
Axes of Inertia
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534  Distributed Forces: Moments of Inertia moment of inertia of the body with respect to any axis through O, 
is known as the ellipsoid of inertia of the body at O.
 We observe that if the axes in Fig. 9.30 are rotated, the coeffi-
cients of the equation defining the ellipsoid change, since they are 
equal to the moments and products of inertia of the body with 
respect to the rotated coordinate axes. However, the ellipsoid itself 
remains unaffected, since its shape depends only upon the distribu-
tion of mass in the given body. Suppose that we choose as coordinate 
axes the principal axes x¿, y¿, z¿ of the ellipsoid of inertia (Fig. 9.31). 
The equation of the ellipsoid with respect to these coordinate axes 
is known to be of the form

 Ix9x92 1 Iy9y92 1 Iz9z92 5 1 (9.49)

which does not contain any products of the coordinates. Comparing 
Eqs. (9.48) and (9.49), we observe that the products of inertia of the 
body with respect to the x¿, y¿, z¿ axes must be zero. The x¿, y¿, z¿ 
axes are known as the principal axes of inertia of the body at O, and 
the coefficients Ix¿, Iy¿, Iz¿ are referred to as the principal moments 
of inertia of the body at O. Note that, given a body of arbitrary shape 
and a point O, it is always possible to find axes which are the prin-
cipal axes of inertia of the body at O, that is, axes with respect to 
which the products of inertia of the body are zero. Indeed, whatever 
the shape of the body, the moments and products of inertia of the 
body with respect to x, y, and z axes through O will define an ellip-
soid, and this ellipsoid will have principal axes which, by definition, 
are the principal axes of inertia of the body at O.
 If the principal axes of inertia x¿, y¿, z¿ are used as coordinate 
axes, the expression obtained in Eq. (9.46) for the moment of inertia 
of a body with respect to an arbitrary axis through O reduces to

 IOL 5 Ix¿l
2
x¿ 1 Iy¿l

2
y¿ 1 Iz¿l

2
z¿ (9.50)

 The determination of the principal axes of inertia of a body of 
arbitrary shape is somewhat involved and will be discussed in the 
next section. There are many cases, however, where these axes can 
be spotted immediately. Consider, for instance, the homogeneous 
cone of elliptical base shown in Fig. 9.32; this cone possesses two 
mutually perpendicular planes of symmetry OAA¿ and OBB¿. From 
the definition (9.45), we observe that if the x¿y¿ and y¿z¿ planes are 
chosen to coincide with the two planes of symmetry, all of the prod-
ucts of inertia are zero. The x¿, y¿, and z¿ axes thus selected are 
therefore the principal axes of inertia of the cone at O. In the case 
of the homogeneous regular tetrahedron OABC shown in Fig. 9.33, 
the line joining the corner O to the center D of the opposite face is 
a principal axis of inertia at O, and any line through O perpendicular 
to OD is also a principal axis of inertia at O. This property is appar-
ent if we observe that rotating the tetrahedron through 120° about 
OD leaves its shape and mass distribution unchanged. It follows that 
the ellipsoid of inertia at O also remains unchanged under this rota-
tion. The ellipsoid, therefore, is a body of revolution whose axis of 
revolution is OD, and the line OD, as well as any perpendicular line 
through O, must be a principal axis of the ellipsoid.

x

z'

y'
x'y

z

O

Fig. 9.31

z'

A'

B'

A

B

O

x'

y'

Fig. 9.32

B

D

A

C

O

Fig. 9.33
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535*9.18  DETERMINATION OF THE PRINCIPAL AXES 
AND PRINCIPAL MOMENTS OF INERTIA 
OF A BODY OF ARBITRARY SHAPE

The method of analysis described in this section should be used 
when the body under consideration has no obvious property of 
symmetry.
 Consider the ellipsoid of inertia of the body at a given point O 
(Fig. 9.34); let r be the radius vector of a point P on the surface of 
the ellipsoid and let n be the unit vector along the normal to that 
surface at P. We observe that the only points where r and n are col-
linear are the points P1, P2, and P3, where the principal axes intersect 
the visible portion of the surface of the ellipsoid, and the correspond-
ing points on the other side of the ellipsoid.

x

P1

P

P3

P2
r

n

z'

y'
x'y

z

O

Fig. 9.34

 We now recall from calculus that the direction of the normal 
to a surface of equation f (x, y, z) 5 0 at a point P(x, y, z) is defined 
by the gradient =f of the function f at that point. To obtain the points 
where the principal axes intersect the surface of the ellipsoid of iner-
tia, we must therefore write that r and =f are collinear,

 =f 5 (2K)r (9.51)

where K is a constant, r 5 xi 1 yj 1 zk, and

§ f 5
0f

0x
 i 1

0f

0y
 j 1

0f

0x
 k

Recalling Eq. (9.48), we note that the function f(x, y, z) correspond-
ing to the ellipsoid of inertia is

f (x, y, z) 5 Ixx
2 1 Iyy2 1 Izz

2 2 2Ixyxy 2 2Iyzyz 2 2Izxzx 2 1

Substituting for r and =f into Eq. (9.51) and equating the coefficients 
of the unit vectors, we write

 Ixx  2 Ixyy 2 Izxz 5 Kx
 2Ixyx  1 Iyy  2 Iyzz 5 Ky (9.52)
 2Izxx  2 Iyzy 1 Izz  5 Kz

9.18 Determination of the Principal Axes and 
Principal Moments of Inertia of a 

Body of Arbitrary Shape
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536  Distributed Forces: Moments of Inertia Dividing each term by the distance r from O to P, we obtain similar 
equations involving the direction cosines lx, ly, and lz:

 Ixlx    2 Ixyly 2 Izxlz 5 Klx
 2Ixylx 1 Iyly  2 Iyzlz 5 Kly (9.53)
 2Izxlx  2 Iyzly 1 Izlz  5 Klz

Transposing the right-hand members leads to the following homoge-
neous linear equations:

 (Ix 2 K)lx 2 Ixyly 2 Izxlz 5 0
 2Ixylx 1 (Iy 2 K)ly 2 Iyzlz 5 0 (9.54)
 2Izxlx 2 Iyzly 1 (Iz 2 K)lz 5 0

For this system of equations to have a solution different from lx 5 
ly 5 lz 5 0, its discriminant must be zero:

 
† Ix 2 K 2Ixy 2Izx

2Ixy 
Iy 2 K 2Iyz

2Izx 2Iyz Iz 2 K
† 5 0

 
(9.55)

Expanding this determinant and changing signs, we write

K3 2 (Ix 1 Iy 1 Iz)K
2 1 (IxIy 1 IyIz 1 IzIx 2 I2

xy 2 I2
yz 2 I2

zx)K
 2 (IxIyIz 2 IxI

2
yz 2 IyI

2
zx 2 IzI

2
xy 2 2IxyIyzIzx) 5 0 (9.56)

This is a cubic equation in K, which yields three real, positive roots 
K1, K2, and K3.
 To obtain the direction cosines of the principal axis correspond-
ing to the root K1 we substitute K1 for K in Eqs. (9.54). Since these 
equations are now linearly dependent, only two of them may be used 
to determine lx, ly, and lz. An additional equation may be obtained, 
however, by recalling from Sec. 2.12 that the direction cosines must 
satisfy the relation
 lx

2 1 l2
y 1 lz

2 5 1 (9.57)

Repeating this procedure with K2 and K3, we obtain the direction 
cosines of the other two principal axes.
 We will now show that the roots K1, K2, and K3 of Eq. (9.56) 
are the principal moments of inertia of the given body. Let us sub-
stitute for K in Eqs. (9.53) the root K1, and for lx, ly, and lz the 
corresponding values (lx)1, (ly)1, and (lz)1 of the direction cosines; 
the three equations will be satisfied. We now multiply by (lx)1, (ly)1, 
and (lz)1, respectively, each term in the first, second, and third equa-
tion and add the equations obtained in this way. We write

Ix
2(lx)

2
1 1 I2

y(ly)
2
1 1 Iz

2(lz)
2
1 2 2Ixy(lx)1(ly)1

2 2Iyz(ly)1(lz)1 2 2Izx(lz)1(lx)1 5 K1[(lx)
2
1 1 (ly)

2
1 1 (lz)

2
1]

Recalling Eq. (9.46), we observe that the left-hand member of this 
equation represents the moment of inertia of the body with respect 
to the principal axis corresponding to K1; it is thus the principal 
moment of inertia corresponding to that root. On the other hand, 
recalling Eq. (9.57), we note that the right-hand member reduces to 
K1. Thus K1 itself is the principal moment of inertia. We can show 
in the same fashion that K2 and K3 are the other two principal 
moments of inertia of the body.
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537

SAMPLE PROBLEM 9.14

Consider a rectangular prism of mass m and sides a, b, c. Determine (a) the 
moments and products of inertia of the prism with respect to the coordinate 
axes shown, (b) its moment of inertia with respect to the diagonal OB.

SOLUTION

a. Moments and Products of Inertia with Respect to the Coordinate 
Axes. Moments of Inertia. Introducing the centroidal axes x¿, y¿, z¿, 
with respect to which the moments of inertia are given in Fig. 9.28, we 
apply the parallel-axis theorem:

Ix 5 Ix¿ 1 m(y 2 1 z2) 5 1
12m(b2 1 c2) 1 m(1

4b2 1 1
4c2)

Ix 5 1
3  m(b2 1 c2) ◀

Similarly, Iy 5 1
3 m(c2 1 a2)  Iz 5 1

3 m(a2 1 b2) ◀

Products of Inertia. Because of symmetry, the products of inertia with 
respect to the centroidal axes x¿, y¿, z¿ are zero, and these axes are principal 
axes of inertia. Using the parallel-axis theorem, we have

 Ixy 5 Ix9y9 1 mx y  5 0 1 m(1
2 a)(1

2 b)  Ixy 5 1
4 mab ◀

Similarly, Iyz 5 1
4 mbc  Izx 5 1

4 mca ◀

b. Moment of Inertia with Respect to OB. We recall Eq. (9.46):

IOB 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx

where the direction cosines of OB are

lx 5 cos ux 5
OH
OB

5
a

(a2 1 b2 1 c2)1/2

ly 5
b

(a2 1 b2 1 c2)1/2   lz 5
c

(a2 1 b2 1 c2)1/2

Substituting the values obtained for the moments and products of inertia 
and for the direction cosines into the equation for IOB, we have

IOB 5
1

a2 1 b2 1 c2 
[1

3 m(b2 1 c2)a2 1 1
3 m(c2 1 a2)b2 1 1

3 m(a2 1 b2)c2

21
2 ma2b2 2 1

2 mb2c2 2 1
2 mc2a2]

IOB 5
m
6

 
a2b2 1 b2c2 1 c2a2

a2 1 b2 1 c2  
◀

Alternative Solution. The moment of inertia IOB can be obtained directly 
from the principal moments of inertia Ix¿, Iy¿, Iz¿, since the line OB passes 
through the centroid O¿. Since the x¿, y¿, z¿ axes are principal axes of inertia, 
we use Eq. (9.50) to write

 IOB 5 Ix¿l
2
x 1 Iy¿l

2
y 1 Iz¿l

2
z

 5
1

a2 1 b2 1 c2  c m
12

(b2 1 c2)a2 1
m
12

 (c2 1 a2)b2 1
m
12

 (a2 1 b2)c2 d
IOB 5

m
6

 
a2b2 1 b2c2 1 c2a2

a2 1 b2 1 c2  
◀
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538

SAMPLE PROBLEM 9.15

If a 5 3c and b 5 2c for the rectangular prism of Sample Prob. 9.14, 
determine (a) the principal moments of inertia at the origin O, (b) the 
principal axes of inertia at O.

SOLUTION

a. Principal Moments of Inertia at the Origin O. Substituting a 5 3c 
and b 5 2c into the solution to Sample Prob. 9.14, we have

Ix 5 5
3 mc2  Iy 5 10

3 mc2  Iz 5 13
3 mc2

 Ixy 5 3
2 mc2  Iyz 5 1

2 mc2  Izx 5 3
4 mc2

Substituting the values of the moments and products of inertia into Eq. 
(9.56) and collecting terms yields

K3 2 (28
3  mc2)K2 1 (3479

144  m2c4)K 2 589
54  m3c6 5 0

We then solve for the roots of this equation; from the discussion in Sec. 9.18, 
it follows that these roots are the principal moments of inertia of the body 
at the origin.

K1 5 0.568867mc2  K2 5 4.20885mc2  K3 5 4.55562mc2

K1 5 0.569mc2   K2 5 4.21mc2   K3 5 4.56mc2   ◀

b. Principal Axes of Inertia at O. To determine the direction of a prin-
cipal axis of inertia, we first substitute the corresponding value of K into 
two of the equations (9.54); the resulting equations together with Eq. (9.57) 
constitute a system of three equations from which the direction cosines of 
the corresponding principal axis can be determined. Thus, we have for the 
first principal moment of inertia K1:

(5
3  2 0.568867)mc2(lx)1 2 3

2 mc2(ly)1 2 3
4 mc2(lz)1 5 0

23
2 mc2(lx)1 1 (10

3  2 0.568867) mc2(ly)1 2 12 mc2(lz)1 5 0

(lx)
2
1 1 (ly)

2
1 1 (lz)

2
1 5 1

Solving yields

(lx)1 5 0.836600  (ly)1 5 0.496001  (lz)1 5 0.232557

The angles that the first principal axis of inertia forms with the coordinate 
axes are then

 (ux)1 5 33.2°  (uy)1 5 60.3°  (uz)1 5 76.6° ◀

Using the same set of equations successively with K2 and K3, we find that 
the angles associated with the second and third principal moments of inertia 
at the origin are, respectively,

 (ux)2 5 57.8°  (uy)2 5 146.6°  (uz)2 5 98.0° ◀

and

 (ux)3 5 82.8°  (uy)3 5 76.1°  (uz)3 5 164.3° ◀

bee29400_ch09_470-555.indd Page 538  11/26/08  7:14:02 PM user-s173bee29400_ch09_470-555.indd Page 538  11/26/08  7:14:02 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



539

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we defined the mass products of inertia Ixy, Iyz, and Izx of a body 
and showed you how to determine the moments of inertia of that body with 

respect to an arbitrary axis passing through the origin O. You also learned how to 
determine at the origin O the principal axes of inertia of a body and the corre-
sponding principal moments of inertia.

1. Determining the mass products of inertia of a composite body. The mass 
products of inertia of a composite body with respect to the coordinate axes can be 
expressed as the sums of the products of inertia of its component parts with respect 
to those axes. For each component part, we can use the parallel-axis theorem and 
write Eqs. (9.47)

Ixy 5 Ix¿y¿ 1 mx y   Iyz 5 Iy¿z¿ 1 my z   Izx 5 Iz¿x¿ 1 mz x

where the primes denote the centroidal axes of each component part and where 
x, y, and z represent the coordinates of its center of gravity. Keep in mind that 
the mass products of inertia can be positive, negative, or zero, and be sure to take 
into account the signs of x, y, and z.
 a. From the properties of symmetry of a component part, you can deduce 
that two or all three of its centroidal mass products of inertia are zero. For instance, 
you can verify that for a thin plate parallel to the xy plane; a wire lying in a plane 
parallel to the xy plane; a body with a plane of symmetry parallel to the xy plane; 
and a body with an axis of symmetry parallel to the z axis, the products of inertia 
Iy¿z¿ and Iz¿x¿ are zero.
 For rectangular, circular, or semicircular plates with axes of symmetry parallel 
to the coordinate axes; straight wires parallel to a coordinate axis; circular and 
semicircular wires with axes of symmetry parallel to the coordinate axes; and rect-
angular prisms with axes of symmetry parallel to the coordinate axes, the products 
of inertia Ix¿y¿,Iy¿z¿, and Iz¿x¿ are all zero.
 b. Mass products of inertia which are different from zero can be computed 
from Eqs. (9.45). Although, in general, a triple integration is required to determine 
a mass product of inertia, a single integration can be used if the given body can 
be divided into a series of thin, parallel slabs. The computations are then similar 
to those discussed in the previous lesson for moments of inertia.

(continued)
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2. Computing the moment of inertia of a body with respect to an arbitrary 
axis OL. An expression for the moment of inertia IOL was derived in Sec. 9.16 
and is given in Eq. (9.46). Before computing IOL, you must first determine the 
mass moments and products of inertia of the body with respect to the given coor-
dinate axes as well as the direction cosines of the unit vector L along OL.

3. Calculating the principal moments of inertia of a body and determining 
its principal axes of inertia. You saw in Sec. 9.17 that it is always possible to 
find an orientation of the coordinate axes for which the mass products of inertia 
are zero. These axes are referred to as the principal axes of inertia and the corre-
sponding moments of inertia are known as the principal moments of inertia of the 
body. In many cases, the principal axes of inertia of a body can be determined 
from its properties of symmetry. The procedure required to determine the prin-
cipal moments and principal axes of inertia of a body with no obvious property of 
symmetry was discussed in Sec. 9.18 and was illustrated in Sample Prob. 9.15. It 
consists of the following steps.
 a. Expand the determinant in Eq. (9.55) and solve the resulting cubic 
equation. The solution can be obtained by trial and error or, preferably, with an 
advanced scientific calculator or with the appropriate computer software. The 
roots K1, K2, and K3 of this equation are the principal moments of inertia of the 
body.
 b. To determine the direction of the principal axis corresponding to K1, 
substitute this value for K in two of the equations (9.54) and solve these equations 
together with Eq. (9.57) for the direction cosines of the principal axis correspond-
ing to K1.
 c. Repeat this procedure with K2 and K3 to determine the directions of the 
other two principal axes. As a check of your computations, you may wish to verify 
that the scalar product of any two of the unit vectors along the three axes you have 
obtained is zero and, thus, that these axes are perpendicular to each other.
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PROBLEMS

541

 9.149 Determine the mass products of inertia Ixy, Iyz, and Izx of the steel 
fixture shown. (The density of steel is 7850 kg/m3.)

50 mm

70 mm

40 mm

16 mm

80 mm

y

x

z

50 mm

38 mm

24 mm

Fig. P9.149

x

y

z

18 mm

16 mm

100 mm 20 mm

20 mm

25 mm
25 mm

10 mm

60 mm
24 mm

r = 12 mm

Fig. P9.150

r = 0.55 in. 0.6 in.

5.4 in.

2.4 in.

3.6 in.

0.8 in.

r = 0.8 in. y

xz

Fig. P9.151

x

y

z

1.4 in.

1.1 in.

1.1 in.

1.2 in.
0.3 in.

1.8 in.

0.7 in.

4.5 in.

Fig. P9.152

 9.150 Determine the mass products of inertia Ixy, Iyz, and Izx of the steel 
machine element shown. (The density of steel is 7850 kg/m3.)

 9.151 and 9.152 Determine the mass products of inertia Ixy, Iyz, and 
Izx of the cast aluminum machine component shown. (The specific 
weight of aluminum is 0.100 lb/in.3)
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542 Distributed Forces: Moments of Inertia  9.153 through 9.156 A section of sheet steel 2 mm thick is cut and 
bent into the machine component shown. Knowing that the  density 
of steel is 7850 kg/m3, determine the mass products of inertia Ixy, 
Iyz, and Izx of the component.

 9.157 and 9.158 Brass wire with a weight per unit length w is used to 
form the figure shown. Determine the mass products of inertia Ixy, 
Iyz, and Izx of the wire figure.

200 mm

300 mm

400 mm

z

x

y

Fig. P9.153

225 mm
z

x

y

225 mm

400 mm

180 mm

Fig. P9.154

z
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y

350 mm 150 mm
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Fig. P9.155
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z x
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Fig. P9.156
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a

a

a3
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Fig. P9.157

x

y

z

2a

a
a

a3
2

Fig. P9.158

bee29400_ch09_470-555.indd Page 542  11/26/08  7:14:08 PM user-s173bee29400_ch09_470-555.indd Page 542  11/26/08  7:14:08 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



543Problems 9.159 The figure shown is formed of 1.5-mm-diameter aluminum wire. 
Knowing that the density of aluminum is 2800 kg/m3, determine 
the mass products of inertia Ixy, Iyz, and Izx of the wire figure.

180 mm

250 mm

300 mm
z

x

y

Fig. P9.159

z

x

R1

R2

y

Fig. P9.160

a

b

c
x

y

z

Fig. P9.162

h

a

O

y

xz

A

Fig. P9.163

 9.160 Thin aluminum wire of uniform diameter is used to form the 
 figure shown. Denoting by m9 the mass per unit length of the wire, 
determine the mass products of inertia Ixy, Iyz, and Izx of the wire 
figure.

 9.161 Complete the derivation of Eqs. (9.47), which express the parallel-
axis theorem for mass products of inertia.

 9.162 For the homogeneous tetrahedron of mass m shown, (a) determine 
by direct integration the mass product of inertia Izx, (b) deduce Iyz 
and Ixy from the result obtained in part a.

 9.163 The homogeneous circular cylinder shown has a mass m. Deter-
mine the mass moment of inertia of the cylinder with respect to 
the line joining the origin O and point A that is located on the 
perimeter of the top surface of the cylinder.
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544 Distributed Forces: Moments of Inertia  9.164 The homogeneous circular cone shown has a mass m. Determine 
the mass moment of inertia of the cone with respect to the line 
joining the origin O and point A.
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3aa

O
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x

y

z
a3

2

Fig. P9.164
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Fig. P9.165
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A
a

a
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Fig. P9.167

 9.165 Shown is the machine element of Prob. 9.141. Determine its mass 
moment of inertia with respect to the line joining the  origin O and 
point A.

 9.166 Determine the mass moment of inertia of the steel fixture of 
Probs. 9.145 and 9.149 with respect to the axis through the origin 
that forms equal angles with the x, y, and z axes.

 9.167 The thin bent plate shown is of uniform density and weight W. 
Determine its mass moment of inertia with respect to the line 
joining the origin O and point A.
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545Problems
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a
A

O

Fig. P9.168

 9.168 A piece of sheet steel of thickness t and specific weight g is cut 
and bent into the machine component shown. Determine the mass 
moment of inertia of the component with respect to the line join-
ing the origin O and point A.

 9.169 Determine the mass moment of inertia of the machine component 
of Probs. 9.136 and 9.155 with respect to the axis through the origin 
characterized by the unit vector L 5 (24i 1 8j 1 k)/9.

 9.170 through 9.172 For the wire figure of the problem indicated, 
determine the mass moment of inertia of the figure with respect 
to the axis through the origin characterized by the unit vector 
L 5 (23i 2 6j 1 2k)/7.

 9.170 Prob. 9.148
 9.171 Prob. 9.147
 9.172 Prob. 9.146

 9.173 For the rectangular prism shown, determine the values of the 
ratios b/a and c/a so that the ellipsoid of inertia of the prism is a 
sphere when computed (a) at point A, (b) at point B.

x

y

z

b
2

b
2

A
B
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2c

2
a
2

a
2

Fig. P9.173
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a

L
2

L
4 L

4

Fig. P9.175

 9.174 For the right circular cone of Sample Prob. 9.11, determine the 
value of the ratio a/h for which the ellipsoid of inertia of the cone 
is a sphere when computed (a) at the apex of the cone, (b) at the 
center of the base of the cone.

 9.175 For the homogeneous circular cylinder shown, of radius a and 
length L, determine the value of the ratio a/L for which the ellip-
soid of inertia of the cylinder is a sphere when computed (a) at the 
centroid of the cylinder, (b) at point A.

 9.176 Given an arbitrary body and three rectangular axes x, y, and z, 
prove that the mass moment of inertia of the body with respect to 
any one of the three axes cannot be larger than the sum of the 
mass moments of inertia of the body with respect to the other two 
axes. That is, prove that the inequality Ix # Iy 1 Iz and the two 
similar inequalities are satisfied. Further, prove that Iy $ 1

2 Ix if the 
body is a homogeneous solid of revolution, where x is the axis of 
revolution and y is a transverse axis.
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546 Distributed Forces: Moments of Inertia
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Fig. P9.179

 9.177 Consider a cube of mass m and side a. (a) Show that the ellipsoid 
of inertia at the center of the cube is a sphere, and use this prop-
erty to determine the moment of inertia of the cube with respect 
to one of its diagonals. (b) Show that the ellipsoid of inertia at one 
of the corners of the cube is an ellipsoid of revolution, and deter-
mine the principal moments of inertia of the cube at that point.

 9.178 Given a homogeneous body of mass m and of arbitrary shape and 
three rectangular axes x, y, and z with origin at O, prove that the 
sum Ix 1 Iy 1 Iz of the mass moments of inertia of the body can-
not be smaller than the similar sum computed for a sphere of the 
same mass and the same material centered at O. Further, using 
the result of Prob. 9.176, prove that if the body is a solid of revolu-
tion, where x is the axis of revolution, its mass moment of inertia 
Iy about a transverse axis y cannot be smaller than 3ma2/10, where 
a is the radius of the sphere of the same mass and the same 
material.

 *9.179 The homogeneous circular cylinder shown has a mass m, and the 
diameter OB of its top surface forms 45° angles with the x and z 
axes. (a) Determine the principal mass moments of inertia of the 
cylinder at the origin O. (b) Compute the angles that the principal 
axes of inertia at O form with the coordinate axes. (c) Sketch the 
cylinder, and show the orientation of the principal axes of inertia 
relative to the x, y, and z axes.

 9.180 through 9.184 For the component described in the problem 
indicated, determine (a) the principal mass moments of inertia at 
the origin, (b) the principal axes of inertia at the origin. Sketch the 
body and show the orientation of the principal axes of inertia rela-
tive to the x, y, and z axes.

*9.180 Prob. 9.165
*9.181 Probs. 9.145 and 9.149
*9.182 Prob. 9.167
*9.183 Prob. 9.168
*9.184 Probs. 9.148 and 9.170
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REVIEW AND SUMMARY

In the first half of this chapter, we discussed the determination of 
the resultant R of forces DF distributed over a plane area A when 
the magnitudes of these forces are proportional to both the areas DA
of the elements on which they act and the distances y from these 
elements to a given x axis; we thus had DF 5 ky DA. We found 
that the magnitude of the resultant R is proportional to the first 
moment Qx 5 ey dA of the area A, while the moment of R about 
the x axis is proportional to the second moment, or moment of inertia, 
Ix 5 ey2 dA of A with respect to the same axis [Sec. 9.2].

The rectangular moments of inertia Ix and Iy of an area [Sec. 9.3] 
were obtained by evaluating the integrals

 Ix 5 #  y
2 dA   Iy 5 #  x

2 dA (9.1)

These computations can be reduced to single integrations by choos-
ing dA to be a thin strip parallel to one of the coordinate axes. We 
also recall that it is possible to compute Ix and Iy from the same 
elemental strip (Fig. 9.35) using the formula for the moment of iner-
tia of a rectangular area [Sample Prob. 9.3].

Rectangular moments of inertia

The polar moment of inertia of an area A with respect to the pole 
O [Sec. 9.4] was defined as

JO 5 #  r
2 dA (9.3)

where r is the distance from O to the element of area dA (Fig. 9.36). 
Observing that r2 5 x2 1 y2, we established the relation

 JO 5 Ix 1 Iy (9.4)

y
x

y

xdx

dIx =    y3 dx
3
1

dIy = x2 y dx

Fig. 9.35

y

y

x

dA

A

x
r

O

Fig. 9.36

Polar moment of inertia
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548  Distributed Forces: Moments of Inertia The radius of gyration of an area A with respect to the x axis 
[Sec. 9.5] was defined as the distance kx, where Ix 5 K2

x A. With 
similar definitions for the radii of gyration of A with respect to the 
y axis and with respect to O, we had

 
kx 5

B
Ix

A
  ky 5

B

Iy

A
  kO 5

B

JO

A  
(9.5–9.7)

The parallel-axis theorem was presented in Sec. 9.6. It states that the 
moment of inertia I of an area with respect to any given axis AA9 
(Fig. 9.37) is equal to the moment of inertia I of the area with 
respect to the centroidal axis BB9 that is parallel to AA9 plus the 
product of the area A and the square of the distance d between the 
two axes:

 I 5 I 1 Ad2 (9.9)

This formula can also be used to determine the moment of inertia 
I of an area with respect to a centroidal axis BB9 when its moment 
of inertia I with respect to a parallel axis AA9 is known. In this case, 
however, the product Ad2 should be subtracted from the known 
moment of inertia I.
 A similar relation holds between the polar moment of inertia 
JO of an area about a point O and the polar moment of inertia JC of 
the same area about its centroid C. Letting d be the distance between 
O and C, we have

 JO 5 JC 1 Ad2 (9.11)

The parallel-axis theorem can be used very effectively to compute 
the moment of inertia of a composite area with respect to a given 
axis [Sec. 9.7]. Considering each component area separately, we first 
compute the moment of inertia of each area with respect to its cen-
troidal axis, using the data provided in Figs. 9.12 and 9.13 whenever 
possible. The parallel-axis theorem is then applied to determine the 
moment of inertia of each component area with respect to the desired 
axis, and the various values obtained are added [Sample Probs. 9.4 
and 9.5].

Sections 9.8 through 9.10 were devoted to the transformation of the 
moments of inertia of an area under a rotation of the coordinate axes. 
First, we defined the product of inertia of an area A as

 Ixy 5 #  xy dA (9.12)

and showed that Ixy 5 0 if the area A is symmetrical with respect to 
either or both of the coordinate axes. We also derived the parallel-
axis theorem for products of inertia. We had

 Ixy 5 Ix¿y¿ 1 x  y A (9.13)

where Ix¿y¿ is the product of inertia of the area with respect to the cen-
troidal axes x9 and y9 which are parallel to the x and y axis and x and 
y are the coordinates of the centroid of the area [Sec. 9.8].

Radius of gyration

Parallel-axis theorem

Composite areas

Product of inertia

Fig. 9.37

A'

B'B

A

C

d

bee29400_ch09_470-555.indd Page 548  11/26/08  7:14:12 PM user-s173bee29400_ch09_470-555.indd Page 548  11/26/08  7:14:12 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



549

In Sec. 9.9 we determined the moments and product of inertia Ix9, 
Iy9, and Ix9y9 of an area with respect to x9 and y9 axes obtained by 
rotating the original x and y coordinate axes through an angle u 
counterclockwise (Fig. 9.38). We expressed Ix9, Iy9, and Ix9y9 in terms of 
the moments and product of inertia Ix, Iy, and Ixy computed with 
respect to the original x and y axes. We had

 
 Ix¿ 5

Ix 1 Iy

2
1

Ix 2 Iy

2
 cos 2u 2 Ixy sin 2u

 
(9.18)

 
 Iy¿ 5

Ix 1 Iy

2
2

Ix 2 Iy

2
 cos 2u 1 Ixy sin 2u

 
(9.19)

 
 Ix¿y¿ 5

Ix 2 Iy

2
 sin 2u 1 Ixy cos 2u

 
(9.20)

The principal axes of the area about O were defined as the two axes 
perpendicular to each other, with respect to which the moments of 
inertia of the area are maximum and minimum. The corresponding 
values of u, denoted by um, were obtained from the formula

 
tan 2um 5 2

2Ixy

Ix 2 Iy 
(9.25)

The corresponding maximum and minimum values of I are called 
the principal moments of inertia of the area about O; we had

 
Imax,min 5

Ix 1 Iy

2
 ; 
B
a Ix 2 Iy

2
b2

1 I2
xy 

(9.27)

We also noted that the corresponding value of the product of inertia 
is zero.

The transformation of the moments and product of inertia of an area 
under a rotation of axes can be represented graphically by drawing 
Mohr’s circle [Sec. 9.10]. Given the moments and product of inertia Ix, 
Iy, and Ixy of the area with respect to the x and y coordinate axes, we 

Principal axes

Principal moments of inertia

Mohr’s circle

y
y'

x'

xO

q

Fig. 9.38

Review and Summary

Rotation of axes
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550  Distributed Forces: Moments of Inertia

plot points X (Ix, Ixy) and Y (Iy, 2 Ixy) and draw the line joining 
these two points (Fig. 9.39). This line is a diameter of Mohr’s circle 
and thus defines this circle. As the coordinate axes are rotated 
through u, the diameter rotates through twice that angle, and the 
coordinates of X9 and Y9 yield the new values Ix9, Iy9, and Ix9y9 of the 
moments and product of inertia of the area. Also, the angle um and 
the coordinates of points A and B define the principal axes a and b 
and the principal moments of inertia of the area [Sample Prob. 9.8].

The second half of the chapter was devoted to the determination of 
moments of inertia of masses, which are encountered in dynamics 
in problems involving the rotation of a rigid body about an axis. 
The mass moment of inertia of a body with respect to an axis AA9 
(Fig. 9.40) was defined as

 I 5 #  r2 dm (9.28)

where r is the distance from AA9 to the element of mass [Sec. 9.11]. 
The radius of gyration of the body was defined as

 
k 5
B

I
m  

(9.29)

The moments of inertia of a body with respect to the coordinates 
axes were expressed as

Ix 5 #  
(y2 1 z2) dm

 Iy 5 #  
(z2 1 x2) dm (9.30)

Iz 5 #  
(x2 1 y2) dm

Moments of inertia of masses
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551 We saw that the parallel-axis theorem also applies to mass 
moments of inertia [Sec. 9.12]. Thus, the moment of inertia I of a body 
with respect to an arbitrary axis AA9 (Fig. 9.41) can be expressed as

 I 5 I 1 md2 (9.33)

where I is the moment of inertia of the body with respect to the 
centroidal axis BB9 which is parallel to the axis AA9, m is the mass 
of the body, and d is the distance between the two axes.

Parallel-axis theorem

Fig. 9.43
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B
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t r
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d

Fig. 9.41

t

C'

B'

A

Bb

a

A'

C

Fig. 9.42

The moments of inertia of thin plates can be readily obtained from 
the moments of inertia of their areas [Sec. 9.13]. We found that for 
a rectangular plate the moments of inertia with respect to the axes 
shown (Fig. 9.42) are

 IAA9 5 1
12ma2  IBB9 5 1

12 mb2 (9.39)
 ICC9 5 IAA9 1 IBB9 5 1

12 m(a2 1 b2) (9.40)

while for a circular plate (Fig. 9.43) they are

 IAA9 5 IBB9 5 1
4 mr 2 (9.41)

 ICC9 5 IAA9 1 IBB9 5 1
2 mr 2 (9.42)

When a body possesses two planes of symmetry, it is usually possible 
to use a single integration to determine its moment of inertia with 
respect to a given axis by selecting the element of mass dm to be a 
thin plate [Sample Probs. 9.10 and 9.11]. On the other hand, when 
a body consists of several common geometric shapes, its moment of 
inertia with respect to a given axis can be obtained by using the for-
mulas given in Fig. 9.28 together with the parallel-axis theorem 
[Sample Probs. 9.12 and 9.13].

In the last portion of the chapter, we learned to determine the 
moment of inertia of a body with respect to an arbitrary axis OL 
which is drawn through the origin O [Sec. 9.16]. Denoting by lx, ly, 

Moments of inertia of thin plates

Composite bodies

Moment of inertia with respect 
to an arbitrary axis

Review and Summary
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552  Distributed Forces: Moments of Inertia lz the components of the unit vector L along OL (Fig. 9.44) and 
introducing the products of inertia

 Ixy 5 #  xy dm   Iyz 5 #  yz dm   Izx 5 #  zx dm (9.45)

we found that the moment of inertia of the body with respect to OL 
could be expressed as

IOL 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx (9.46)

Fig. 9.44

y

dm

z

x

p

L

O

q
�

r

Fig. 9.45

x

z'

y' x'y

z

O

By plotting a point Q along each axis OL at a distance OQ 5 11IOL 
from O [Sec. 9.17], we obtained the surface of an ellipsoid, known 
as the ellipsoid of inertia of the body at point O. The principal axes 
x9, y9, z9 of this ellipsoid (Fig. 9.45) are the principal axes of inertia 
of the body; that is, the products of inertia Ix9y9, Iy9z9, Iz9x9 of the body 
with respect to these axes are all zero. There are many situations 
when the principal axes of inertia of a body can be deduced from 
properties of symmetry of the body. Choosing these axes to be the 
coordinate axes, we can then express IOL as

 IOL 5 Ix9lx
2

9 1 Iy9l
2
y9 1 Iz9lz

2
9 (9.50)

where Ix9, Iy9, Iz9 are the principal moments of inertia of the body at O.

 When the principal axes of inertia cannot be obtained by obser-
vation [Sec. 9.17], it is necessary to solve the cubic equation

K3 2 (Ix 1 Iy 1 Iz)K
2 1 (IxIy 1 IyIz 1 IzIx 2 I2

xy 2 I2
yz 2 I2

zx)K
 2 (IxIyIz 2 IxI

2
yz 2 IyI

2
zx 2 IzI

2
xy 2 2IxyIyzIzx) 5 0 (9.56)

We found [Sec. 9.18] that the roots K1, K2, and K3 of this equation 
are the principal moments of inertia of the given body. The direction 
cosines (lx)1, (ly)1, and (lz)1 of the principal axis corresponding to 
the principal moment of inertia K1 are then determined by substitut-
ing K1 into Eqs. (9.54) and solving two of these equations and 
Eq. (9.57) simultaneously. The same procedure is then repeated 
using K2 and K3 to determine the direction cosines of the other two 
principal axes [Sample Prob. 9.15].

Ellipsoid of inertia

Principal axes of inertia
Principal moments of inertia
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553

REVIEW PROBLEMS

 9.185 Determine by direct integration the moments of inertia of the 
shaded area with respect to the x and y axes.

 9.186 Determine the moments of inertia and the radii of gyration of the 
shaded area shown with respect to the x and y axes.

b

y

x
a

y1 = kx2

y2 = mx

Fig. P9.185

y

b

x
a

y = b�1 − �x
a�1/2�

Fig. P9.186

 9.187 Determine the moment of inertia and the radius of gyration of the 
shaded area shown with respect to the y axis.

 9.188 Determine the moments of inertia of the shaded area shown with 
respect to the x and y axes.

 9.189 Determine the polar moment of inertia of the area shown with 
respect to (a) point O, (b) the centroid of the area.

 9.190 To form an unsymmetrical girder, two L76 3 76 3 6.4-mm angles 
and two L152 3 102 3 12.7-mm angles are welded to a 16-mm steel 
plate as shown. Determine the moments of inertia of the combined 
section with respect to its centroidal x and y axes.

2b

b

a

y

x
y = kx2

y = 2b − cx2

Fig. P9.187

x

y

O

a

aa

a

Fig. P9.188

54 mm 54 mm Semiellipse

36 mm

18 mmO

Fig. P9.189
C

y

x

540 mm

16 mm

L76 × 76 × 6.4

L152 × 102 × 12.7

Fig. P9.190
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554 Distributed Forces: Moments of Inertia  9.191 Using the parallel-axis theorem, determine the product of inertia 
of the L5 3 3 3 1

2-in. angle cross section shown with respect to 
the centroidal x and y axes.

 9.192 For the L5 3 3 3 12-in. angle cross section shown, use Mohr’s circle 
to determine (a) the moments of inertia and the product of inertia 
with respect to new centroidal axes obtained by rotating the x and 
y axes 30° clockwise, (b) the orientation of the principal axes 
through the centroid and the corresponding values of the moments 
of inertia.

 9.193 A piece of thin, uniform sheet metal is cut to form the machine 
component shown. Denoting the mass of the component by m, 
determine its mass moment of inertia with respect to (a) the x axis, 
(b) the y axis.

L5 × 3 ×

0.746 in.

1.74 in.

5 in.

3 in.

y

xC

1
2

 in.1
2

 in.1
2

Fig. P9.191 and P9.192

 9.194 A piece of thin, uniform sheet metal is cut to form the machine 
component shown. Denoting the mass of the component by m, 
determine its mass moment of inertia with respect to (a) the axis 
AA9, (b) the axis BB9, where the AA9 and BB9 axes are parallel to 
the x axis and lie in a plane parallel to and at a distance a above 
the xz plane.

 9.195 A 2-mm thick piece of sheet steel is cut and bent into the machine 
component shown. Knowing that the density of steel is 7850 kg/m3, 
determine the mass moment of inertia of the component with 
respect to each of the coordinate axes.

 9.196 Determine the mass moments of inertia and the radii of gyration 
of the steel machine element shown with respect to the x and y axes. 
(The density of steel is 7850 kg/m3.)

A

B

A'

B'

x

y

z

a
2

a

a

a

a

Fig. P9.193 and P9.194 

x

y

z

0.48 m

0.76 m

Fig. P9.195
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44

20

20

y

z x

120
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Dimensions in mm

Fig. P9.196
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555

COMPUTER PROBLEMS

 9.C1 Write a computer program that, for an area with known moments and 
product of inertia Ix, Iy, and Ixy, can be used to calculate the moments 
and product of inertia Ix9, Iy9, and Ix9y9 of the area with respect to axes x9 and 
y9 obtained by rotating the original axes counterclockwise through an angle 
u. Use this program to compute Ix9, Iy9, and Ix9y9 for the section of Sample 
Prob. 9.7 for values of u from 0 to 90° using 5° increments.

 9.C2 Write a computer program that, for an area with known moments 
and product of inertia Ix, Iy, and Ixy, can be used to calculate the orientation 
of the principal axes of the area and the corresponding values of the princi-
pal moments of inertia. Use this program to solve (a) Prob. 9.89, (b) Sample 
Prob. 9.7.

 9.C3 Many cross sections can be approximated by a series of rectangles as 
shown. Write a computer program that can be used to calculate the moments 
of inertia and the radii of gyration of cross sections of this type with respect 
to horizontal and vertical centroidal axes. Apply this program to the cross 
sections shown in (a) Figs. P9.31 and P9.33, (b) Figs. P9.32 and P9.34, 
(c) Fig. P9.43, (d) Fig. P9.44.

 9.C4 Many cross sections can be approximated by a series of rectangles as 
shown. Write a computer program that can be used to calculate the products 
of inertia of cross sections of this type with respect to horizontal and vertical 
centroidal axes. Use this program to solve (a) Prob. P9.71, (b) Prob. P9.75, 
(c) Prob. 9.77.

 9.C5 The area shown is revolved about the x axis to form a homogeneous 
solid of mass m. Approximate the area using a series of 400 rectangles of 
the form bcc9b9, each of width Dl, and then write a computer program that 
can be used to determine the mass moment of inertia of the solid with 
respect to the x axis. Use this program to solve part a of (a) Sample Prob. 9.11, 
(b) Prob. 9.121, assuming that in these problems m 5 2 kg, a 5 100 mm, 
and h 5 400 mm.

 9.C6 A homogeneous wire with a weight per unit length of 0.04 lb/ft is used 
to form the figure shown. Approximate the figure using 10 straight line seg-
ments, and then write a computer program that can be used to determine 
the mass moment of inertia Ix of the wire with respect to the x axis. Use this 
program to determine Ix when (a) a 5 1 in., L 5 11 in., h 5 4 in., (b) a 5 
2 in., L 5 17 in., h 5 10 in., (c) a 5 5 in., L 5 25 in., h 5 6 in.

 *9.C7 Write a computer program that, for a body with known mass 
moments and products of inertia Ix, Iy, Iz, Ixy, Iyz, and Izx, can be used to 
calculate the principal mass moments of inertia K1, K2, and K3 of the 
body at the origin. Use this program to solve part a of (a) Prob. 9.180, 
(b) Prob. 9.181, (c) Prob. 9.184.

 *9.C8 Extend the computer program of Prob. 9.C7 to include the compu-
tation of the angles that the principal axes of inertia at the origin form with 
the coordinate axes. Use this program to solve (a) Prob. 9.180, (b) Prob. 
9.181, (c) Prob. 9.184.

c

y

x

y = kxn

b
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b'Δl
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l1

Fig. P9.C5
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The method of virtual work is particularly 

effective when a simple relation can be 

found among the displacements of the 

points of application of the various forces 

involved. This is the case for the scissor 

lift platform being used by workers to 

gain access to a highway bridge under 

construction.
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558

*10.1 INTRODUCTION
In the preceding chapters, problems involving the equilibrium of 
rigid bodies were solved by expressing that the external forces acting 
on the bodies were balanced. The equations of equilibrium oFx 5 0, 
oFy 5 0, oMA 5 0 were written and solved for the desired unknowns. 
A different method, which will prove more effective for solving cer-
tain types of equilibrium problems, will now be considered. This 
method is based on the principle of virtual work and was first 
 formally used by the Swiss mathematician Jean Bernoulli in the 
 eighteenth century.
 As you will see in Sec. 10.3, the principle of virtual work states 
that if a particle or rigid body, or, more generally, a system of con-
nected rigid bodies, which is in equilibrium under various external 
forces, is given an arbitrary displacement from that position of equi-
librium, the total work done by the external forces during the dis-
placement is zero. This principle is particularly effective when applied 
to the solution of problems involving the equilibrium of machines or 
mechanisms consisting of several connected members.
 In the second part of the chapter, the method of virtual work 
will be applied in an alternative form based on the concept of poten-
tial energy. It will be shown in Sec. 10.8 that if a particle, rigid body, 
or system of rigid bodies is in equilibrium, then the derivative of its 
potential energy with respect to a variable defining its position must 
be zero.
 In this chapter, you will also learn to evaluate the mechanical 
efficiency of a machine (Sec. 10.5) and to determine whether a given 
position of equilibrium is stable, unstable, or neutral (Sec. 10.9).

*10.2 WORK OF A FORCE
Let us first define the terms displacement and work as they are used 
in mechanics. Consider a particle which moves from a point A to a 
neighboring point A¿ (Fig. 10.1). If r denotes the position vector 
corresponding to point A, the small vector joining A and A¿ may be 
denoted by the differential dr; the vector dr is called the displace-
ment of the particle. Now let us assume that a force F is acting on 
the particle. The work of the force F corresponding to the displace-
ment dr is defined as the quantity

 dU 5 F ? dr (10.1)

obtained by forming the scalar product of the force F and the dis-
placement dr. Denoting respectively by F and ds the magnitudes of 
the force and of the displacement, and by a the angle formed by F 
and dr, and recalling the definition of the scalar product of two vec-
tors (Sec. 3.9), we write

 dU 5 F ds cos a (10.19)

Being a scalar quantity, work has a magnitude and a sign, but no 
direction. We also note that work should be expressed in units obtained 

 Chapter 10 Method of 
Virtual Work

 10.1 Introduction
 10.2 Work of a Force
 10.3 Principle of Virtual Work
 10.4 Applications of the Principle of 

Virtual Work
 10.5 Real Machines. Mechanical 

Efficiency
 10.6  Work of a Force during a Finite 

Displacement
 10.7 Potential Energy
 10.8 Potential Energy and Equilibrium
 10.9 Stability of Equilibrium
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Fig. 10.1
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559by multiplying units of length by units of force. Thus, if U.S. custom-
ary units are used, work should be expressed in ft ? lb or in ? lb. If 
SI units are used, work should be expressed in N ? m. The unit of 
work N ? m is called a joule (J).†
 It follows from (10.1¿) that the work dU is positive if the angle 
a is acute and negative if a is obtuse. Three particular cases are of 
special interest. If the force F has the same direction as dr, the work 
dU reduces to F ds. If F has a direction opposite to that of dr, the 
work is dU 5 2F ds. Finally, if F is perpendicular to dr, the work 
dU is zero.
 The work dU of a force F during a displacement dr can also 
be considered as the product of F and the component ds cos a of 
the displacement dr along F (Fig. 10.2a). This view is particularly 

†The joule is the SI unit of energy, whether in mechanical form (work, potential 
energy, kinetic energy) or in chemical, electrical, or thermal form. We should note that 
even though N ? m 5 J, the moment of a force must be expressed in N ? m, and not in 
joules, since the moment of a force is not a form of energy.

ds cos a

a

a

dr

dr

A

dy G

W

F

(a) (b)

A'

G'

Fig. 10.2

useful in the computation of the work done by the weight W of a 
body (Fig. 10.2b). The work of W is equal to the product of W and 
the vertical displacement dy of the center of gravity G of the body. 
If the displacement is downward, the work is positive; if it is upward, 
the work is negative.
 A number of forces frequently encountered in statics do no 
work: forces applied to fixed points (ds 5 0) or acting in a direction 
perpendicular to the displacement (cos a 5 0). Among these forces 
are the reaction at a frictionless pin when the body supported 
rotates about the pin; the reaction at a frictionless surface when 
the body in contact moves along the surface; the reaction at a roller 
moving along its track; the weight of a body when its center of 
gravity moves horizontally; and the friction force acting on a wheel 
rolling without slipping (since at any instant the point of contact 
does not move). Examples of forces which do work are the weight 
of a body (except in the case considered above), the friction force 
acting on a body sliding on a rough surface, and most forces applied 
on a moving body.

10.2 Work of a Force

Photo 10.1 The forces exerted by the 
hydraulic cylinders to position the bucket lift 
shown can be effectively determined using the 
method of virtual work since a simple relation 
exists among the displacements of the points of 
application of the forces acting on the members 
of the lift.
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560 Method of Virtual Work  In certain cases, the sum of the work done by several forces is 
zero. Consider, for example, two rigid bodies AC and BC connected 
at C by a frictionless pin (Fig. 10.3a). Among the forces acting on 
AC is the force F exerted at C by BC. In general, the work of this 

Fig. 10.3

A

C

B B

–F

F

(a) (b)

T'

T
A

Fig. 10.4

B

B'

A'

–F

F

dr
A

dr'

force will not be zero, but it will be equal in magnitude and opposite 
in sign to the work of the force 2F exerted by AC on BC, since 
these forces are equal and opposite and are applied to the same 
particle. Thus, when the total work done by all the forces acting on 
AB and BC is considered, the work of the two internal forces at C 
cancels out. A similar result is obtained if we consider a system 
 consisting of two blocks connected by an inextensible cord AB 
(Fig. 10.3b). The work of the tension force T at A is equal in magni-
tude to the work of the tension force T¿ at B, since these forces have 
the same magnitude and the points A and B move through the same 
distance; but in one case the work is positive, and in the other it is 
negative. Thus, the work of the internal forces again cancels out.
 It can be shown that the total work of the internal forces hold-
ing together the particles of a rigid body is zero. Consider two par-
ticles A and B of a rigid body and the two equal and opposite forces 
F and 2F they exert on each other (Fig. 10.4). While, in general, 

small displacements dr and dr¿ of the two particles are different, the 
components of these displacements along AB must be equal; other-
wise, the particles would not remain at the same distance from each 
other, and the body would not be rigid. Therefore, the work of F is 
equal in magnitude and opposite in sign to the work of 2F, and their 
sum is zero.
 In computing the work of the external forces acting on a rigid 
body, it is often convenient to determine the work of a couple with-
out considering separately the work of each of the two forces forming 
the couple. Consider the two forces F and 2F forming a couple of 
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561moment M and acting on a rigid body (Fig. 10.5). Any small displace-
ment of the rigid body bringing A and B, respectively, into A¿ and B– 
can be divided into two parts, one in which points A and B undergo 
equal displacements dr1, the other in which A¿ remains fixed while 
B¿ moves into B– through a displacement dr2 of magnitude ds2 5 r du. 
In the first part of the motion, the work of F is equal in magnitude 
and opposite in sign to the work of 2F, and their sum is zero. In 
the second part of the motion, only force F works, and its work is 
dU 5 F ds2 5 Fr du. But the product Fr is equal to the magnitude 
M of the moment of the couple. Thus, the work of a couple of 
moment M acting on a rigid body is

 dU 5 M du (10.2)

where du is the small angle expressed in radians through which the 
body rotates. We again note that work should be expressed in units 
obtained by multiplying units of force by units of length.

*10.3 PRINCIPLE OF VIRTUAL WORK
Consider a particle acted upon by several forces F1, F2, . . . , Fn 
(Fig. 10.6). We can imagine that the particle undergoes a small dis-
placement from A to A¿. This displacement is possible, but it will not 
necessarily take place. The forces may be balanced and the particle 
at rest, or the particle may move under the action of the given forces 
in a direction different from that of AA¿. Since the displacement 
considered does not actually occur, it is called a virtual displacement 
and is denoted by dr. The symbol dr represents a differential of the 
first order; it is used to distinguish the virtual displacement from the 
displacement dr which would take place under actual motion. As you 
will see, virtual displacements can be used to determine whether the 
conditions of equilibrium of a particle are satisfied.
 The work of each of the forces F1, F2, . . . , Fn during the virtual 
displacement dr is called virtual work. The virtual work of all the 
forces acting on the particle of Fig. 10.6 is

 dU 5 F1 ? dr 1 F2 ? dr 1 . . . 1 Fn ? dr
 5 (F1 1 F2 1 . . . 1 Fn) ? dr

or
 dU 5 R ? dr (10.3)

where R is the resultant of the given forces. Thus, the total virtual 
work of the forces F1, F2, . . . , Fn is equal to the virtual work of 
their resultant R.
 The principle of virtual work for a particle states that if a parti-
cle is in equilibrium, the total virtual work of the forces acting on the 
particle is zero for any virtual displacement of the particle. This con-
dition is necessary: if the particle is in equilibrium, the resultant R of 
the forces is zero, and it follows from (10.3) that the total virtual work 
dU is zero. The condition is also sufficient: if the total virtual work 
dU is zero for any virtual displacement, the scalar product R ? dr is 
zero for any dr, and the resultant R must be zero.

Fig. 10.5
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Fig. 10.6

F2

F1

Fn

A

A'

dr

10.3 Principle of Virtual Work
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562 Method of Virtual Work  In the case of a rigid body, the principle of virtual work states 
that if a rigid body is in equilibrium, the total virtual work of the 
external forces acting on the rigid body is zero for any virtual displace-
ment of the body. The condition is necessary: if the body is in equi-
librium, all the particles forming the body are in equilibrium and the 
total virtual work of the forces acting on all the particles must be zero; 
but we have seen in the preceding section that the total work of the 
internal forces is zero; the total work of the external forces must there-
fore also be zero. The condition can also be proved to be sufficient.
 The principle of virtual work can be extended to the case of a 
system of connected rigid bodies. If the system remains connected 
during the virtual displacement, only the work of the forces external 
to the system need be considered, since the total work of the internal 
forces at the various connections is zero.

*10.4  APPLICATIONS OF THE PRINCIPLE 
OF VIRTUAL WORK

The principle of virtual work is particularly effective when applied 
to the solution of problems involving machines or mechanisms con-
sisting of several connected rigid bodies. Consider, for instance, the 
toggle vise ACB of Fig. 10.7a, used to compress a wooden block. We 

l l
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C

B'

A x

Ay

Fig. 10.7

wish to determine the force exerted by the vise on the block when 
a given force P is applied at C, assuming that there is no friction. 
Denoting by Q the reaction of the block on the vise, we draw the 
free-body diagram of the vise and consider the virtual displacement 
obtained by giving a positive increment du to the angle u (Fig. 10.7b). 
Choosing a system of coordinate axes with origin at A, we note that 
xB increases while yC decreases. This is indicated in the figure, where 
a positive increment dxB and a negative increment 2dyC are shown. 
The reactions Ax, Ay, and N will do no work during the virtual dis-
placement considered, and we need only compute the work of P and 
Q. Since Q and dxB have opposite senses, the virtual work of Q is 
dUQ 5 2Q dxB. Since P and the increment shown (2dyC) have the 
same sense, the virtual work of P is dUP 5 1P(2dyC) 5 2P dyC. 
The minus signs obtained could have been predicted by simply not-
ing that the forces Q and P are directed opposite to the positive 
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563x and y axes, respectively. Expressing the coordinates xB and yC in 
terms of the angle u and differentiating, we obtain

 xB 5 2l sin u yC 5 l cos u
 dxB 5 2l cos u du  dyC 5 2l sin u du (10.4)

The total virtual work of the forces Q and P is thus

 dU 5 dUQ 1 dUP 5 2Q dxB 2 P dyC

 5 22Ql cos u du 1 Pl sin u du

Making dU 5 0, we obtain

 2Ql cos u du 5 Pl sin u du (10.5)
 Q 5 1

2 P tan u (10.6)

 The superiority of the method of virtual work over the conven-
tional equilibrium equations in the problem considered here is clear: 
by using the method of virtual work, we were able to eliminate all 
unknown reactions, while the equation oMA 5 0 would have elimi-
nated only two of the unknown reactions. This property of the 
method of virtual work can be used in solving many problems involv-
ing machines and mechanisms. If the virtual displacement considered 
is consistent with the constraints imposed by the supports and con-
nections, all reactions and internal forces are eliminated and only the 
work of the loads, applied forces, and friction forces need be 
considered.
 The method of virtual work can also be used to solve problems 
involving completely constrained structures, although the virtual dis-
placements considered will never actually take place. Consider, for 
example, the frame ACB shown in Fig. 10.8a. If point A is kept fixed, 
while B is given a horizontal virtual displacement (Fig. 10.8b), we 
need consider only the work of P and Bx. We can thus determine 

q q
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q
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C

A B

P P

B'

C'
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xB
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A B

By

A x

l l
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dq
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–dyC

(a) (b)

Fig. 10.8

10.4 Applications of the Principle of
Virtual Work

Photo 10.2 The clamping force of the toggle 
clamp shown can be expressed as a function 
of the force applied to the handle by first 
establishing the geometric relations among the 
members of the clamp and then applying the 
method of virtual work.
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564 Method of Virtual Work the reaction component Bx in the same way as the force Q of the 
preceding example (Fig. 10.7b); we have

Bx 5 21
2 P tan u

Keeping B fixed and giving to A a horizontal virtual displacement, 
we can similarly determine the reaction component Ax. The compo-
nents Ay and By can be determined by rotating the frame ACB as a 
rigid body about B and A, respectively.
 The method of virtual work can also be used to determine the 
configuration of a system in equilibrium under given forces. For 
example, the value of the angle u for which the linkage of Fig. 10.7 
is in equilibrium under two given forces P and Q can be obtained by 
solving Eq. (10.6) for tan u.
 It should be noted, however, that the attractiveness of the 
method of virtual work depends to a large extent upon the existence 
of simple geometric relations between the various virtual displace-
ments involved in the solution of a given problem. When no such 
simple relations exist, it is usually advisable to revert to the conven-
tional method of Chap. 6.

*10.5 REAL MACHINES. MECHANICAL EFFICIENCY
In analyzing the toggle vise in the preceding section, we assumed that 
no friction forces were involved. Thus, the virtual work consisted only 
of the work of the applied force P and of the reaction Q. But the work 
of the reaction Q is equal in magnitude and opposite in sign to the 
work of the force exerted by the vise on the block. Equation (10.5), 
therefore, expresses that the output work 2Ql cos u du is equal to the 
input work Pl sin u du. A machine in which input and output work 
are equal is said to be an “ideal” machine. In a “real” machine, friction 
forces will always do some work, and the output work will be smaller 
than the input work.
 Consider, for example, the toggle vise of Fig. 10.7a, and assume 
now that a friction force F develops between the sliding block B and 
the horizontal plane (Fig. 10.9). Using the conventional methods of 
statics and summing moments about A, we find N 5 P/2. Denoting 
by m the coefficient of friction between block B and the horizontal 

Fig. 10.9
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565plane, we have F 5 mN 5 mP/2. Recalling formulas (10.4), we find 
that the total virtual work of the forces Q, P, and F during the virtual 
displacement shown in Fig. 10.9 is

 dU 5 2Q dxB 2 P dyC 2 F dxB
 5 22Ql cos u du 1 Pl sin u du 2 mPl cos u du

Making dU 5 0, we obtain

 2Ql cos u du 5 Pl sin u du 2 mPl cos u du (10.7)

which expresses that the output work is equal to the input work 
minus the work of the friction force. Solving for Q, we have

 Q 5 1
2 P(tan u 2 m) (10.8)

We note that Q 5 0 when tan u 5 m, that is, when u is equal to the 
angle of friction f, and that Q , 0 when u , f. The toggle vise may 
thus be used only for values of u larger than the angle of friction.
 The mechanical efficiency of a machine is defined as the ratio

 
h 5

output work

input work  
(10.9)

Clearly, the mechanical efficiency of an ideal machine is h 5 1, since 
input and output work are then equal, while the mechanical effi-
ciency of a real machine will always be less than 1.
 In the case of the toggle vise we have just analyzed, we write

h 5
output work

input work
5

2Ql cos u du

Pl sin u du

Substituting from (10.8) for Q, we obtain

 
h 5

P( tan u 2 m) l cos u du
Pl sin u du

5 1 2 m cot u
 

(10.10)

We check that in the absence of friction forces, we would have m 5 0 
and h 5 1. In the general case, when m is different from zero, the 
efficiency h becomes zero for m cot u 5 1, that is, for tan u 5 m, or 
u 5 tan21 m 5 f. We note again that the toggle vise can be used 
only for values of u larger than the angle of friction f.

10.5 Real Machines. Mechanical Effi ciency
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566

SAMPLE PROBLEM 10.1

Using the method of virtual work, determine the magnitude of the couple 
M required to maintain the equilibrium of the mechanism shown.

SAMPLE PROBLEM 10.2

Determine the expressions for u and for the tension in the spring which 
correspond to the equilibrium position of the mechanism. The unstretched 
length of the spring is h, and the constant of the spring is k. Neglect the 
weight of the mechanism.
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l
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q

q P

SOLUTION

Choosing a coordinate system with origin at E, we write

xD 5 3l cos u    dxD 5 23l sin u du

Principle of Virtual Work. Since the reactions A, Ex, and Ey will do no 
work during the virtual displacement, the total virtual work done by M and 
P must be zero. Noting that P acts in the positive x direction and M acts 
in the positive u direction, we write

dU 5 0: 1M du 1 P dxD 5 0
 1M du 1 P(23l sin u du) 5 0

M 5 3Pl sin u ◀

SOLUTION

With the coordinate system shown

 yB 5 l sin u yC 5 2l sin u
 dyB 5 l cos u du  dyC 5 2l cos u du

The elongation of the spring is s 5 yC 2 h 5 2l sin u 2 h

The magnitude of the force exerted at C by the spring is

 F 5 ks 5 k(2l sin u 2 h) (1)

Principle of Virtual Work. Since the reactions Ax, Ay, and C do no work, 
the total virtual work done by P and F must be zero.

dU 5 0:   P dyB 2 F dyC 5 0
 P(l cos u du) 2 k(2l sin u 2 h)(2l cos u du) 5 0

 sin u 5
P 1 2kh

4kl
 ◀

Substituting this expression into (1), we obtain F 5 1
2P ◀
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567

SAMPLE PROBLEM 10.3

A hydraulic-lift table is used to raise a 1000-kg crate. It consists 
of a platform and of two identical linkages on which hydraulic 
cylinders exert equal forces. (Only one linkage and one cylinder 
are shown.) Members EDB and CG are each of length 2a, and 
member AD is pinned to the midpoint of EDB. If the crate is 
placed on the table, so that half of its weight is supported by the 
system shown, determine the force exerted by each cylinder in 
raising the crate for u 5 60°, a 5 0.70 m, and L 5 3.20 m. This 
mechanism has been previously considered in Sample Prob. 6.7.

FDH

FCGEy

Ex
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q
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A B C
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2

θ

L
2

L
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SOLUTION

The machine considered consists of the platform and of the 
linkage, with an input force FDH exerted by the cylinder and an 
output force equal and opposite to 1

2W.

Principle of Virtual Work. We first observe that the reactions 
at E and G do no work. Denoting by y the elevation of the 
platform above the base, and by s the length DH of the cylinder-
and-piston assembly, we write

dU 5 0: 21
2W dy 1 FDH ds 5 0 (1)

The vertical displacement dy of the platform is expressed in 
terms of the angular displacement du of EDB as follows:

 y 5 (EB) sin u 5 2a sin u
 dy 5 2a cos u du

To express ds similarly in terms of du, we first note that by the 
law of cosines,

s2 5 a2 1 L2 2 2aL cos u
Differentiating,

2s ds 5 22aL(2sin u) du

  
ds 5

aL sin u
s

 du

Substituting for dy and ds into (1), we write

(21
2 
W)2a cos u du 1 FDH 

aL sin u
s

 du 5 0

FDH 5 W  

s
L

  cot u

With the given numerical data, we have

 W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN
 s2 5 a2 1 L2 2 2aL cos u
 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 60° 5 8.49
 s 5 2.91 m

FDH 5 W
s
L

 cot u 5 (9.81 kN)
2.91 m
3.20 m

 cot 60°

FDH 5 5.15 kN ◀
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568

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to use the method of virtual work, which is a different 
way of solving problems involving the equilibrium of rigid bodies.

The work done by a force during a displacement of its point of application or by 
a couple during a rotation is found by using Eqs. (10.1) and (10.2), respectively:

 dU 5 F ds cos a (10.1)
 dU 5 M du (10.2)

Principle of virtual work. In its more general and more useful form, this principle 
can be stated as follows: If a system of connected rigid bodies is in equilibrium, 
the total virtual work of the external forces applied to the system is zero for any 
virtual displacement of the system.

As you apply the principle of virtual work, keep in mind the following:

1. Virtual displacement. A machine or mechanism in equilibrium has no ten-
dency to move. However, we can cause, or imagine, a small displacement. Since 
it does not actually occur, such a displacement is called a virtual displacement.

2. Virtual work. The work done by a force or couple during a virtual displace-
ment is called virtual work.

3. You need consider only the forces which do work during the virtual 
displacement.

4. Forces which do no work during a virtual displacement that is consistent with 
the constraints imposed on the system are:
 a. Reactions at supports
 b. Internal forces at connections
 c. Forces exerted by inextensible cords and cables
None of these forces need be considered when you use the method of virtual work.

5. Be sure to express the various virtual displacements involved in your com-
putations in terms of a single virtual displacement. This is done in each of the 
three preceding sample problems, where the virtual displacements are all expressed 
in terms of du.

6. Remember that the method of virtual work is effective only in those cases 
where the geometry of the system makes it relatively easy to relate the displace-
ments involved.
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PROBLEMS

569

 10.1 Determine the vertical force P that must be applied at C to main-
tain the equilibrium of the linkage.

 10.2 Determine the horizontal force P that must be applied at A to 
maintain the equilibrium of the linkage.
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4 in. 6 in.
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Fig. P10.2 and P10.4
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Fig. P10.1 and P10.3

P

Fig. P10.5

100 lb

A B C

D

E

F

P

8 in. 8 in. 8 in.

9 in.

150 lb

Fig. P10.6

 10.3 and 10.4 Determine the couple M that must be applied to 
member ABC to maintain the equilibrium of the linkage.

 10.5 Knowing that the maximum friction force exerted by the bottle on 
the cork is 60 lb, determine (a) the force P that must be applied 
to the corkscrew to open the bottle, (b) the maximum force exerted 
by the base of the corkscrew on the top of the bottle.

 10.6 The two-bar linkage shown is supported by a pin and bracket at 
B and a collar at D that slides freely on a vertical rod. Determine 
the force P required to maintain the equilibrium of the linkage.
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570 Method of Virtual Work  10.7 A spring of constant 15 kN/m connects points C and F of the link-
age shown. Neglecting the weight of the spring and linkage, deter-
mine the force in the spring and the vertical motion of point G 
when a vertical downward 120-N force is applied (a) at point C, 
(b) at points C and H.

 10.8 A spring of constant 15 kN/m connects points C and F of the link-
age shown. Neglecting the weight of the spring and linkage, deter-
mine the force in the spring and the vertical motion of point G 
when a vertical downward 120-N force is applied (a) at point E, 
(b) at points E and F.

 10.9 Knowing that the line of action of the force Q passes through point 
C, derive an expression for the magnitude of Q required to main-
tain equilibrium.
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 10.10 Solve Prob. 10.9 assuming that the force P applied at point A acts 
horizontally to the left.

 10.11 The mechanism shown is acted upon by the force P; derive an 
expression for the magnitude of the force Q required to maintain 
equilibrium.

 10.12 and 10.13 The slender rod AB is attached to a collar A and 
rests on a small wheel at C. Neglecting the radius of the wheel 
and the effect of friction, derive an expression for the magnitude 
of the force Q required to maintain the equilibrium of the rod.
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571Problems 10.14 Derive an expression for the magnitude of the force Q required 
to maintain the equilibrium of the mechanism shown.

 10.15 A uniform rod AB of length l and weight W is suspended from 
two cords AC and BC of equal length. Derive an expression for 
the magnitude of the couple M required to maintain equilibrium 
of the rod in the position shown. 90°
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 10.16 and 10.17 Derive an expression for the magnitude of the couple 
M required to maintain the equilibrium of the linkage shown.

 10.18 The pin at C is attached to member BCD and can slide along a slot 
cut in the fixed plate shown. Neglecting the effect of friction, derive 
an expression for the magnitude of the couple M required to main-
tain equilibrium when the force P that acts at D is directed (a) as 
shown, (b) vertically downward, (c) horizontally to the right.
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572 Method of Virtual Work  10.19 A 4-kN force P is applied as shown to the piston of the engine 
system. Knowing that AB 5 50 mm and BC 5 200 mm, determine 
the couple M required to maintain the equilibrium of the system 
when (a) u 5 30°, (b) u 5 150°.

 10.20 A couple M of magnitude 100 N ? m is applied as shown to the 
crank of the engine system. Knowing that AB 5 50 mm and 
BC 5 200 mm, determine the force P required to maintain the 
equilibrium of the system when (a) u 5 60°, (b) u 5 120°.

 10.21 For the linkage shown, determine the couple M required for equi-
librium when l 5 1.8 ft, Q 5 40 lb, and u 5 65°.

 10.22 For the linkage shown, determine the force Q required for equi-
librium when l 5 18 in., M 5 600 lb ? in., and u 5 70°.

 10.23 Determine the value of u corresponding to the equilibrium position 
of the mechanism of Prob. 10.11 when P 5 45 lb and Q 5 160 lb.

 10.24 Determine the value of u corresponding to the equilibrium position 
of the mechanism of Prob. 10.9 when P 5 80 N and Q 5 100 N.

 10.25 Rod AB is attached to a block at A that can slide freely in the 
vertical slot shown. Neglecting the effect of friction and the 
weights of the rods, determine the value of u corresponding to 
equilibrium.

qP
M

A

B

C

Fig. P10.19 and P10.20

Q

q

A

B

C

l

l

1
2

M

Fig. P10.21 and P10.22

800 N

160 N

q

D

B

C

A

200 mm

200 mm

100 mm

Fig. P10.25

bee29400_ch10_556-599.indd Page 572  11/28/08  3:16:11 PM user-s172bee29400_ch10_556-599.indd Page 572  11/28/08  3:16:11 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



573Problems 10.26 Solve Prob. 10.25 assuming that the 800-N force is replaced by a 
24-N ? m clockwise couple applied at D.

 10.27 Determine the value of u corresponding to the equilibrium  position 
of the rod of Prob. 10.12 when l 5 30 in., a 5 5 in., P 5 25 lb, 
and Q 5 40 lb.

 10.28 Determine the values of u corresponding to the equilibrium posi-
tion of the rod of Prob. 10.13 when l 5 600 mm, a 5 100 mm, 
P 5 50 N, and Q 5 90 N.

 10.29 Two rods AC and CE are connected by a pin at C and by a spring 
AE. The constant of the spring is k, and the spring is unstretched 
when u 5 30°. For the loading shown, derive an equation in P, u, 
l, and k that must be satisfied when the system is in equilibrium.

 10.30 Two rods AC and CE are connected by a pin at C and by a spring 
AE. The constant of the spring is 1.5 lb/in., and the spring is 
unstretched when u 5 30°. Knowing that l 5 10 in. and neglecting 
the weight of the rods, determine the value of u corresponding to 
equilibrium when P 5 40 lb.

 10.31 Solve Prob. 10.30 assuming that force P is moved to C and acts 
vertically downward.

 10.32 Rod ABC is attached to blocks A and B that can move freely in 
the guides shown. The constant of the spring attached at A is 
k 5 3 kN/m, and the spring is unstretched when the rod is  vertical. 
For the loading shown, determine the value of u corresponding to 
equilibrium.
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574 Method of Virtual Work  10.33 A load W of magnitude 600 N is applied to the linkage at B. The 
constant of the spring is k 5 2.5 kN/m, and the spring is unstretched 
when AB and BC are horizontal. Neglecting the weight of the 
linkage and knowing that l 5 300 mm, determine the value of 
u corresponding to equilibrium.

 10.34 A vertical load W is applied to the linkage at B. The constant of 
the spring is k, and the spring is unstretched when AB and BC 
are horizontal. Neglecting the weight of the linkage, derive an 
equation in u, W, l, and k that must be satisfied when the linkage 
is in equilibrium.

 10.35 and 10.36 Knowing that the constant of spring CD is k and 
that the spring is unstretched when rod ABC is horizontal, deter-
mine the value of u corresponding to equilibrium for the data 
indicated.
 10.35 P 5 300 N, l 5 400 mm, k 5 5 kN/m.
 10.36 P 5 75 lb, l 5 15 in., k 5 20 lb/in.

 10.37 A load W of magnitude 72 lb is applied to the mechanism at C. 
Neglecting the weight of the mechanism, determine the value of 
u corresponding to equilibrium. The constant of the spring is 
k 5 20 lb/in., and the spring is unstretched when u 5 0.

 10.38 A force P of magnitude 240 N is applied to end E of cable CDE, 
which passes under pulley D and is attached to the mechanism at 
C. Neglecting the weight of the mechanism and the radius of the 
pulley, determine the value of u corresponding to equilibrium. The 
constant of the spring is k 5 4 kN/m, and the spring is unstretched 
when u 5 90°.
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575Problems 10.39 The lever AB is attached to the horizontal shaft BC that passes 
through a bearing and is welded to a fixed support at C. The tor-
sional spring constant of the shaft BC is K; that is, a couple of mag-
nitude K is required to rotate end B through 1 rad. Knowing that 
the shaft is untwisted when AB is horizontal, determine the value 
of u corresponding to the position of equilibrium when P 5 100 N, 
l 5 250 mm, and K 5 12.5 N ? m/rad.

 10.40 Solve Prob. 10.39 assuming that P 5 350 N, l 5 250 mm, and 
K 5 12.5 N ? m/rad. Obtain answers in each of the following 
quadrants: 0 , u , 90°, 270° , u , 360°, 360° , u , 450°.

 10.41 The position of boom ABC is controlled by the hydraulic cylinder 
BD. For the loading shown, determine the force exerted by the 
hydraulic cylinder on pin B when u 5 65°.
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 10.42 The position of boom ABC is controlled by the hydraulic cylin-
der  BD. For the loading shown, (a) express the force exerted by 
the hydraulic cylinder on pin B as a function of the length BD, 
(b) determine the smallest possible value of the angle u if the 
maximum force that the cylinder can exert on pin B is 2.5 kips.

 10.43 The position of member ABC is controlled by the hydraulic cylin-
der CD. For the loading shown, determine the force exerted by 
the hydraulic cylinder on pin C when u 5 55°.

 10.44 The position of member ABC is controlled by the hydraulic cylin-
der CD. Determine the angle u knowing that the hydraulic cylinder 
exerts a 15-kN force on pin C.
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576 Method of Virtual Work  10.45 The telescoping arm ABC is used to provide an elevated platform 
for construction workers. The workers and the platform together 
weigh 500 lb and their combined center of gravity is located directly 
above C. For the position when u 5 20°,  determine the force 
exerted on pin B by the single hydraulic  cylinder BD.

AB

C

D

15 ft

7.2 ft

2.7 ft

1.5 ft

q

Fig. P10.45

Q

E

F

l

l

l

P

D

C

B

q q

A

Fig. P10.48 and P10.49

 10.46 Solve Prob. 10.45 assuming that the workers are lowered to a point 
near the ground so that u 5 220°.

 10.47 A block of weight W is pulled up a plane forming an angle a with 
the horizontal by a force P directed along the plane. If m is the 
coefficient of friction between the block and the plane, derive an 
expression for the mechanical efficiency of the system. Show that 
the mechanical efficiency cannot exceed 1

2 if the block is to remain 
in place when the force P is removed.

 10.48 Denoting by ms the coefficient of static friction between the block 
attached to rod ACE and the horizontal surface, derive expressions 
in terms of P, ms, and u for the largest and smallest magnitude of 
the force Q for which equilibrium is maintained.

 10.49 Knowing that the coefficient of static friction between the block 
attached to rod ACE and the horizontal surface is 0.15, determine 
the magnitude of the largest and smallest force Q for which equi-
librium is maintained when u 5 30°, l 5 0.2 m, and P 5 40 N.
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577Problems 10.50 Denoting by ms the coefficient of static friction between collar C 
and the vertical rod, derive an expression for the magnitude of the 
largest couple M for which equilibrium is maintained in the posi-
tion shown. Explain what happens if ms $ tan u.

 10.51 Knowing that the coefficient of static friction between collar C 
and the vertical rod is 0.40, determine the magnitude of the 
largest and smallest couple M for which equilibrium is main-
tained in the position shown, when u 5 35°, l 5 600 mm, and 
P 5 300 N.

 10.52 Derive an expression for the mechanical efficiency of the jack dis-
cussed in Sec. 8.6. Show that if the jack is to be self-locking, the 
mechanical efficiency cannot exceed 1

2.

 10.53 Using the method of virtual work, determine the reaction at E. P

q

A

B

C

ll
1
2

M

Fig. P10.50 and P10.512 kN 3 kN 5 kN

0.9 m

A
B

C D E F G H

0.5 m 0.9 m 1.2 m

1.5 m
1.2 m

1.8 m

Fig. P10.53 and P10.54

 10.54 Using the method of virtual work, determine separately the force 
and couple representing the reaction at H.

 10.55 Referring to Prob. 10.43 and using the value found for the force 
exerted by the hydraulic cylinder CD, determine the change in the 
length of CD required to raise the 10-kN load by 15 mm.

 10.56 Referring to Prob. 10.45 and using the value found for the force 
exerted by the hydraulic cylinder BD, determine the change in 
the length of BD required to raise the platform attached at C 
by 2.5 in.

 10.57 Determine the vertical movement of joint D if the length of member 
BF is increased by 1.5 in. (Hint: Apply a vertical load at joint D, and, 
using the methods of Chap. 6, compute the force exerted by mem-
ber BF on joints B and F. Then apply the method of virtual work 
for a virtual displacement resulting in the specified increase in 
length of member BF. This method should be used only for small 
changes in the lengths of members.)

A B C D

E
F G H

30 ft

40 ft 40 ft 40 ft 40 ft

Fig. P10.57 and P10.58

 10.58 Determine the horizontal movement of joint D if the length of 
member BF is increased by 1.5 in. (See the hint for Prob. 10.57.)
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*10.6  WORK OF A FORCE DURING A FINITE 
DISPLACEMENT

Consider a force F acting on a particle. The work of F corresponding 
to an infinitesimal displacement dr of the particle was defined in 
Sec. 10.2 as
 dU 5 F ? dr (10.1)

The work of F corresponding to a finite displacement of the particle 
from A1 to A2 (Fig. 10.10a) is denoted by U1y2 and is obtained by 
integrating (10.1) along the curve described by the particle:

 
U1y2 5 #

A2

A1

 
F ? dr

 
(10.11)

Using the alternative expression

 dU 5 F ds cos a (10.19)

given in Sec. 10.2 for the elementary work dU, we can also express 
the work U1y2 as

 
U1y2 5 #

s2

s1

 
(F cos a) ds

 
(10.119)

578 Method of Virtual Work

where the variable of integration s measures the distance along the path 
traveled by the particle. The work U1y2 is represented by the area 
under the curve obtained by plotting F cos a against s (Fig. 10.10b). 
In the case of a force F of constant magnitude acting in the direction 
of motion, formula (10.119) yields U1y2 5 F(s2 2 s1).
 Recalling from Sec. 10.2 that the work of a couple of moment 
M during an infinitesimal rotation du of a rigid body is

 dU 5 M du (10.2)

we express as follows the work of the couple during a finite rotation 
of the body:

 
U1y2 5 #

u2

u1

 
M  du

 
(10.12)

In the case of a constant couple, formula (10.12) yields

U1y2 5 M(u2 2 u1)

s

(b)

O s1 s2

F cos a

(a)O

ds

A

A1

s1

s2

A2

a

Fs

Fig. 10.10
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579Work of a Weight. It was stated in Sec. 10.2 that the work of 
the weight W of a body during an infinitesimal displacement of the 
body is equal to the product of W and the vertical displacement of 
the center of gravity of the body. With the y axis pointing upward, 
the work of W during a finite displacement of the body (Fig. 10.11) 
is obtained by writing

dU 5 2W dy

Integrating from A1 to A2, we have

 
U1y2 5 2#

y2

y1

 
W dy 5 Wy1 2 Wy2 

(10.13)

or
 U1y2 5 2W(y2 2 y1) 5 2W ¢y (10.139)

where Dy is the vertical displacement from A1 to A2. The work of 
the weight W is thus equal to the product of W and the vertical dis-
placement of the center of gravity of the body. The work is positive 
when Dy , 0, that is, when the body moves down.

Work of the Force Exerted by a Spring. Consider a body A 
attached to a fixed point B by a spring; it is assumed that the spring 
is undeformed when the body is at A0 (Fig. 10.12a). Experimental 
evidence shows that the magnitude of the force F exerted by the 
spring on a body A is proportional to the deflection x of the spring 
measured from the position A0. We have

 F 5 kx (10.14)

where k is the spring constant, expressed in N/m if SI units are used 
and expressed in lb/ft or lb/in. if U.S. customary units are used. The 
work of the force F exerted by the spring during a finite displacement 
of the body from A1(x 5 x1) to A2(x 5 x2) is obtained by writing

dU 5 2F dx 5 2kx dx

 
U1y2 5 2#

x2

x1

 
kx dx 5 1

2kx2
1 2 1

2kx2
2 

(10.15)

Care should be taken to express k and x in consistent units. For  example, 
if U.S. customary units are used, k should be expressed in lb/ft and x 
expressed in feet, or k in lb/in. and x in inches; in the first case, the work 
is obtained in ft ? lb; in the second case, in in ? lb. We note that the work of 
the force F exerted by the spring on the body is positive when x2 , x1, 
that is, when the spring is returning to its undeformed position.
 Since Eq. (10.14) is the equation of a straight line of slope k 
passing through the origin, the work U1y2 of F during the displace-
ment from A1 to A2 can be obtained by evaluating the area of the 
trapezoid shown in Fig. 10.12b. This is done by computing the values 
F1 and F2 and multiplying the base Dx of the trapezoid by its mean 
height 1

2(F1 1 F2). Since the work of the force F exerted by the spring 
is positive for a negative value of Dx, we write

 U1y2 5 21
2(F1 1 F2) Dx (10.16)

Formula (10.16) is usually more convenient to use than (10.15) and 
affords fewer chances of confusing the units involved.

Fig. 10.11

A

A1

A2

y1

y2

dy

y

W

10.6 Work of a Force during a 
Finite Displacement

Spring undeformed

A0

A

B

B

x1

x1 x2

x2

x

F

(a)

(b)

F = kx

Δ x

F

F1

F2

A2

B

A1

x

Fig. 10.12
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580 Method of Virtual Work *10.7 POTENTIAL ENERGY
Considering again the body of Fig. 10.11, we note from Eq. (10.13) 
that the work of the weight W during a finite displacement is obtained 
by subtracting the value of the function Wy corresponding to the 
second position of the body from its value corresponding to the first 
position. The work of W is thus independent of the actual path fol-
lowed; it depends only upon the initial and final values of the func-
tion Wy. This function is called the potential energy of the body with 
respect to the force of gravity W and is denoted by Vg. We write

 U1y2 5 (Vg)1 2 (Vg)2  with Vg 5 Wy (10.17)

We note that if (Vg)2 . (Vg)1, that is, if the potential energy increases 
during the displacement (as in the case considered here), the work 
U1y2 is negative. If, on the other hand, the work of W is positive, the 
potential energy decreases. Therefore, the potential energy Vg of the 
body provides a measure of the work which can be done by its weight W. 
Since only the change in potential energy, and not the actual value of 
Vg, is involved in formula (10.17), an arbitrary constant can be added 
to the expression obtained for Vg. In other words, the level from which 
the elevation y is measured can be chosen arbitrarily. Note that  potential 
energy is expressed in the same units as work, i.e., in joules (J) if SI units 
are used† and in ft ? lb or in ? lb if U.S. customary units are used.
 Considering now the body of Fig. 10.12a, we note from Eq. 
(10.15) that the work of the elastic force F is obtained by subtracting 
the value of the function 1

2kx2 corresponding to the second position 
of the body from its value corresponding to the first position. This 
function is denoted by Ve and is called the potential energy of the 
body with respect to the elastic force F. We write

 U1y2 5 (Ve)1 2 (Ve)2  with Ve 5 1
2kx2 (10.18)

and observe that during the displacement considered, the work of 
the force F exerted by the spring on the body is negative and the 
potential energy Ve increases. We should note that the expression 
obtained for Ve is valid only if the deflection of the spring is mea-
sured from its undeformed position.
 The concept of potential energy can be used when forces other 
than gravity forces and elastic forces are involved. It remains valid 
as long as the elementary work dU of the force considered is an exact 
differential. It is then possible to find a function V, called potential 
energy, such that

 dU 5 2dV (10.19)

Integrating (10.19) over a finite displacement, we obtain the general 
formula
 U1y2 5 V1 2 V2 (10.20)

which expresses that the work of the force is independent of the path 
followed and is equal to minus the change in potential energy. A force 
which satisfies Eq. (10.20) is said to be a conservative force.‡

Fig. 10.11 (repeated )

A

A1

A2

y1

y2

dy

y

W

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

Fig. 10.12a (repeated )

†See footnote, page 559.

‡A detailed discussion of conservative forces is given in Sec. 13.7 of Dynamics.
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581*10.8 POTENTIAL ENERGY AND EQUILIBRIUM
The application of the principle of virtual work is considerably simpli-
fied when the potential energy of a system is known. In the case of a 
virtual displacement, formula (10.19) becomes dU 5 2dV. Moreover, 
if the position of the system is defined by a single independent variable 
u, we can write dV 5 (dV/du) du. Since du must be different from zero, 
the condition dU 5 0 for the equilibrium of the system becomes

 
dV
du

5 0
 

(10.21)

In terms of potential energy, therefore, the principle of virtual work 
states that if a system is in equilibrium, the derivative of its total 
potential energy is zero. If the position of the system depends upon 
several independent variables (the system is then said to possess 
several degrees of freedom), the partial derivatives of V with respect 
to each of the independent variables must be zero.
 Consider, for example, a structure made of two members AC 
and CB and carrying a load W at C. The structure is supported by a 
pin at A and a roller at B, and a spring BD connects B to a fixed point 
D (Fig. 10.13a). The constant of the spring is k, and it is assumed 
that the natural length of the spring is equal to AD and thus that the 
spring is undeformed when B coincides with A. Neglecting the  friction 
forces and the weight of the members, we find that the only forces 
which work during a displacement of the structure are the weight W 
and the force F exerted by the spring at point B (Fig. 10.13b). The 
total potential energy of the system will thus be obtained by adding 
the potential energy Vg corresponding to the gravity force W and the 
potential energy Ve corresponding to the elastic force F.
 Choosing a coordinate system with origin at A and noting that 
the deflection of the spring, measured from its undeformed position, 
is AB 5 xB, we write

Ve 5 1
2kx2

B  Vg 5 WyC

Expressing the coordinates xB and yC in terms of the angle u, we have

 xB 5 2l sin u    yC 5 l cos u
 Ve 5 1

2k(2l sin u)2  Vg 5 W(l cos u)
 V 5 Ve 1 Vg 5 2kl2 sin2 u 1 Wl cos u (10.22)

The positions of equilibrium of the system are obtained by equating 
to zero the derivative of the potential energy V. We write

dV
du

5 4kl2 sin u cos u 2 Wl sin u 5 0

or, factoring l sin u,

dV
du

5 l sin u(4kl cos u 2 W) 5 0

There are therefore two positions of equilibrium, corresponding to 
the values u 5 0 and u 5 cos21 (W/4kl), respectively.†

10.8 Potential Energy and Equilibrium

†The second position does not exist if W . 4kl.

Fig. 10.13

q

q

C

A B

C

W

AD B

xBAy B

A x

l l

yC
W

(a)

(b)
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582 Method of Virtual Work *10.9 STABILITY OF EQUILIBRIUM
Consider the three uniform rods of length 2a and weight W shown 
in Fig. 10.14. While each rod is in equilibrium, there is an important 
difference between the three cases considered. Suppose that each 
rod is slightly disturbed from its position of equilibrium and then 
released: rod a will move back toward its original position, rod b will 
keep moving away from its original position, and rod c will remain 
in its new position. In case a, the equilibrium of the rod is said to 
be stable; in case b, it is said to be unstable; and, in case c, it is said 
to be neutral.

q

(a) Stable equilibrium

A

B

W

2a

y

q

q

(b) Unstable equilibrium

A
W

2a

a

y

(c) Neutral equilibrium

AB

B

C

y = a

Fig. 10.14

 Recalling from Sec. 10.7 that the potential energy Vg with 
respect to gravity is equal to Wy, where y is the elevation of the 
point of application of W measured from an arbitrary level, we 
observe that the potential energy of rod a is minimum in the posi-
tion of equilibrium considered, that the potential energy of rod b 
is maximum, and that the potential energy of rod c is constant. 
Equilibrium is thus stable, unstable, or neutral according to 
whether the potential energy is minimum, maximum, or constant 
(Fig. 10.15).
 That the result obtained is quite general can be seen as fol-
lows: We first observe that a force always tends to do positive work 
and thus to decrease the potential energy of the system on which 
it is applied. Therefore, when a system is disturbed from its posi-
tion of equilibrium, the forces acting on the system will tend to 
bring it back to its original position if V is minimum (Fig. 10.15a) 
and to move it farther away if V is maximum (Fig. 10.15b). If V is 
constant (Fig. 10.15c), the forces will not tend to move the system 
either way.
 Recalling from calculus that a function is minimum or maxi-
mum according to whether its second derivative is positive or nega-
tive, we can summarize the conditions for the equilibrium of a system 
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583with one degree of freedom (i.e., a system the position of which is 
defined by a single independent variable u) as follows:

 
dV
du

5 0   d2V

du2 . 0: stable equilibrium

 
 
dV
du

5 0   d2V

du2 , 0: unstable equilibrium
 

(10.23)

10.9  Stability of Equilibrium

If both the first and the second derivatives of V are zero, it is neces-
sary to examine derivatives of a higher order to determine whether 
the equilibrium is stable, unstable, or neutral. The equilibrium will 
be neutral if all derivatives are zero, since the potential energy V is 
then a constant. The equilibrium will be stable if the first derivative 
found to be different from zero is of even order and positive. In all 
other cases the equilibrium will be unstable.
 If the system considered possesses several degrees of freedom, 
the potential energy V depends upon several variables, and it is thus 
necessary to apply the theory of functions of several variables to 
determine whether V is minimum. It can be verified that a system 
with 2 degrees of freedom will be stable, and the corresponding 
potential energy V(u1, u2) will be minimum, if the following relations 
are satisfied simultaneously:

0V
0u1

5
0V
0u2

5 0

 
a 02V

0u1 0u2
b2

2
02V

0u2
1

 
02V

0u2
2

, 0
 

(10.24)

02V

0u2
1

. 0   or   02V

0u2
2

. 0

(a) Stable equilibrium
q

(b) Unstable equilibrium

V

(c) Neutral equilibrium
q

V

q

V

Fig. 10.15
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584

SAMPLE PROBLEM 10.4

A 10-kg block is attached to the rim of a 300-mm-radius disk as shown. 
Knowing that spring BC is unstretched when u 5 0, determine the position 
or positions of equilibrium, and state in each case whether the equilibrium 
is stable, unstable, or neutral.

s

q

A

O

y

y

x

b

a

Undeformed
position

W = mg

F = ks

SOLUTION

Potential Energy. Denoting by s the deflection of the spring from its unde-
formed position and placing the origin of coordinates at O, we obtain

Ve 5 1
2 
ks2   Vg 5 Wy 5 mgy

Measuring u in radians, we have

s 5 au  y 5 b cos u

Substituting for s and y in the expressions for Ve and Vg, we write

Ve 5 1
2ka2u2   Vg 5 mgb cos u

V 5 Ve 1 Vg 5 1
2ka2u2 1 mgb cos u

Positions of Equilibrium. Setting dV/du 5 0, we write

dV
du

5 ka2u 2 mgb sin u 5 0

 sin u 5
ka2

mgb
 u

Substituting a 5 0.08 m, b 5 0.3 m, k 5 4 kN/m, and m 5 10 kg, we obtain

  sin u 5
(4 kN/m)(0.08 m)2

(10 kg)(9.81 m/s2)(0.3 m)
 u

 sin u 5 0.8699 u

where u is expressed in radians. Solving by trial and error for u, we find

 u 5 0 and u 5 0.902 rad
u 5 0  and  u 5 51.7° ◀

Stability of Equilibrium. The second derivative of the potential energy V 
with respect to u is

 
d2V

du2 5 ka2 2 mgb cos u

 5 (4 kN/m)(0.08 m)2 2 (10 kg)(9.81 m/s2)(0.3 m) cos u
 5 25.6 2 29.43 cos u

For u 5 0:  
d2V

du2 5 25.6 2 29.43 cos 0° 5 23.83 , 0

The equilibrium is unstable for u 5 0 ◀

For u 5 51.7°:  d2V

du2 5 25.6 2 29.43 cos 51.7° 5 17.36 . 0

The equilibrium is stable for u 5 51.7° ◀

q

10 kg
A

B O

C

a = 80 mm

b = 300 mm

k = 4 kN/m
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585

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we defined the work of a force during a finite displacement and 
the potential energy of a rigid body or a system of rigid bodies. You learned to 

use the concept of potential energy to determine the equilibrium position of a 
rigid body or a system of rigid bodies.

1. The potential energy V of a system is the sum of the potential energies 
associated with the various forces acting on the system that do work as the system 
moves. In the problems of this lesson you will determine the following:
 a. Potential energy of a weight. This is the potential energy due to gravity, 
Vg 5 Wy, where y is the elevation of the weight W measured from some arbitrary 
reference level. Note that the potential energy Vg may be used with any vertical 
force P of constant magnitude directed downward; we write Vg 5 Py.
 b. Potential energy of a spring. This is the potential energy due to the elastic 
force exerted by a spring, Ve 5 1

2kx2, where k is the constant of the spring and x
is the deformation of the spring measured from its unstretched position.

Reactions at fixed supports, internal forces at connections, forces exerted by inex-
tensible cords and cables, and other forces which do no work do not contribute 
to the potential energy of the system.

2. Express all distances and angles in terms of a single variable, such as an 
angle u, when computing the potential energy V of a system. This is necessary, 
since the determination of the equilibrium position of the system requires the 
computation of the derivative dV/du.

3. When a system is in equilibrium, the first derivative of its potential energy 
is zero. Therefore:
 a. To determine a position of equilibrium of a system, once its potential 
energy V has been expressed in terms of the single variable u, compute its deriva-
tive and solve the equation dV/du 5 0 for u.
 b. To determine the force or couple required to maintain a system in a 
given position of equilibrium, substitute the known value of u in the equation 
dV/du 5 0 and solve this equation for the desired force or couple.

4. Stability of equilibrium. The following rules generally apply:
 a. Stable equilibrium occurs when the potential energy of the system is mini-
mum, that is, when dV/du 5 0 and d2V/du2 . 0 (Figs. 10.14a and 10.15a).
 b. Unstable equilibrium occurs when the potential energy of the system is maxi-
mum, that is, when dV/du 5 0 and d2V/du2 , 0 (Figs. 10.14b and 10.15b).
 c. Neutral equilibrium occurs when the potential energy of the system is con-
stant; dV/du, dV2/du2, and all the successive derivatives of V are then equal to zero 
(Figs. 10.14c and 10.15c).

See page 583 for a discussion of the case when dV/du, dV2/du2 but not all of the 
successive derivatives of V are equal to zero.
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PROBLEMS

586

10.59 Using the method of Sec. 10.8, solve Prob. 10.29.

10.60 Using the method of Sec. 10.8, solve Prob. 10.30.

10.61 Using the method of Sec. 10.8, solve Prob. 10.33.

10.62 Using the method of Sec. 10.8, solve Prob. 10.34.

10.63 Using the method of Sec. 10.8, solve Prob. 10.35.

10.64 Using the method of Sec. 10.8, solve Prob. 10.36.

10.65 Using the method of Sec. 10.8, solve Prob. 10.31.

10.66 Using the method of Sec. 10.8, solve Prob. 10.38.

10.67 Show that the equilibrium is neutral in Prob. 10.1.

10.68 Show that the equilibrium is neutral in Prob. 10.6.

10.69 Two uniform rods, each of mass m and length l, are attached to 
drums that are connected by a belt as shown. Assuming that no 
slipping occurs between the belt and the drums, determine the 
positions of equilibrium of the system and state in each case 
whether the equilibrium is stable, unstable, or neutral.

D

A

B

C

a

2a

2q

q

Fig. P10.69

A C

D

B

2a
a

q

2q

Fig. P10.70

10.70 Two uniform rods AB and CD, of the same length l, are attached 
to gears as shown. Knowing that rod AB weighs 3 lb and that rod 
CD weighs 2 lb, determine the positions of equilibrium of the 
system and state in each case whether the equilibrium is stable, 
unstable, or neutral.
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587Problems 10.71 Two uniform rods, each of mass m, are attached to gears of equal 
radii as shown. Determine the positions of equilibrium of the sys-
tem and state in each case whether the equilibrium is stable, 
unstable, or neutral.

q

q

A

B

D

C

l

l

Fig. P10.71 and P10.72

 10.72 Two uniform rods, AB and CD, are attached to gears of equal radii 
as shown. Knowing that WAB 5 8 lb and WCD 5 4 lb, determine 
the positions of equilibrium of the system and state in each case 
whether the equilibrium is stable, unstable, or neutral.

 10.73 Using the method of Sec. 10.8, solve Prob. 10.39. Determine 
whether the equilibrium is stable, unstable, or neutral. (Hint: The 
potential energy corresponding to the couple exerted by a torsion 
spring is 1

2Ku2, where K is the torsional spring constant and u is 
the angle of twist.)

 10.74 In Prob. 10.40, determine whether each of the positions of equi-
librium is stable, unstable, or neutral. (See hint for Prob. 10.73.)

 10.75 A load W of magnitude 100 lb is applied to the mechanism at C. 
Knowing that the spring is unstretched when u 5 15°, determine 
that value of u corresponding to equilibrium and check that the 
equilibrium is stable.

 10.76 A load W of magnitude 100 lb is applied to the mechanism at C. 
Knowing that the spring is unstretched when u 5 30°, determine 
that value of u corresponding to equilibrium and check that the 
equilibrium is stable.

W

q

A
B

C

l = 20 in.

r = 5 in.

k = 50 lb/in.

Fig. P10.75 and P10.76
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588 Method of Virtual Work  10.77 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. The constant of the 
spring is k, and the spring is unstretched when AB is horizontal. 
Neglecting the weight of the blocks, derive an equation in u, W, l, 
and k that must be satisfied when the rod is in equilibrium.

 10.78 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. Knowing that the spring 
is unstretched when AB is horizontal, determine three values of u 
corresponding to equilibrium when W 5 300 lb, l 5 16 in., and 
k 5 75 lb/in. State in each case whether the equilibrium is stable, 
unstable, or neutral.

 10.79 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. Knowing that the spring 
is unstretched when y 5 0, determine the value of y corresponding 
to equilibrium when W 5 80 N, l 5 500 mm, and k 5 600 N/m.

y

l

C

B
W

l

A

Fig. P10.79

C

B

A

l

l

W

y

Fig. P10.80

 10.80 Knowing that both springs are unstretched when y 5 0, deter-
mine the value of y corresponding to equilibrium when W 5 80 N, 
l 5 500 mm, and k 5 600 N/m.

A

qq

B
aa

brrb

P

Fig. P10.81 and P10.82

C

A

B

q

l
W

Fig. P10.77 and P10.78

 10.81 A spring AB of constant k is attached to two identical gears as shown. 
Knowing that the spring is undeformed when u 5 0, determine two 
values of the angle u corresponding to equilibrium when P 5 30 lb, 
a 5 4 in., b 5 3 in., r 5 6 in., and k 5 5 lb/in. State in each case 
whether the equilibrium is stable, unstable, or neutral.

 10.82 A spring AB of constant k is attached to two identical gears as 
shown. Knowing that the spring is undeformed when u 5 0, and 
given that a 5 60 mm, b 5 45 mm, r 5 90 mm, and k 5 6 kN/m, 
determine (a) the range of values of P for which a position of 
equilibrium exists, (b) two values of u corresponding to equilibrium 
if the value of P is equal to half the upper limit of the range found 
in part a.
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589Problems 10.83 A slender rod AB is attached to two collars A and B that can move 
freely along the guide rods shown. Knowing that b 5 30° and 
P 5 Q 5 400 N, determine the value of the angle u corresponding 
to equilibrium.

 10.84 A slender rod AB is attached to two collars A and B that can 
move freely along the guide rods shown. Knowing that b 5 30°, 
P 5 100 N, and Q 5 25 N, determine the value of the angle u 
corresponding to equilibrium.

  10.85 and 10.86 Collar A can slide freely on the semicircular rod 
shown. Knowing that the constant of the spring is k and that the 
unstretched length of the spring is equal to the radius r, determine 
the value of u corresponding to equilibrium when W 5 50 lb, 
r 5 9 in., and k 5 15 lb/in.

  10.87 and 10.88 Cart B, which weighs 75 kN, rolls along a sloping 
track that forms an angle b with the horizontal. The spring con-
stant is 5 kN/m, and the spring is unstretched when x 5 0. Deter-
mine the distance x corresponding to equilibrium for the angle b 
indicated.

 10.87 Angle b 5 30°
 10.88 Angle b 5 60°

P

A

B

L
q

b

Q

Fig. P10.83 and P10.84

A

B
C

qr

W

Fig. P10.85

B

A

C

q

r

W

Fig. P10.86

4 m

x

A

B

b

Fig. P10.87 and P10.88
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590 Method of Virtual Work  10.89 A vertical bar AD is attached to two springs of constant k and 
is in equilibrium in the position shown. Determine the range of 
values of the magnitude P of two equal and opposite vertical 
forces P and 2P for which the equilibrium position is stable if 
(a) AB 5 CD, (b) AB 5 2CD.

 10.90 Rod AB is attached to a hinge at A and to two springs, each of 
constant k. If h 5 25 in., d 5 12 in., and W 5 80 lb, determine 
the range of values of k for which the equilibrium of the rod is 
stable in the position shown. Each spring can act in either tension 
or compression.

A

D

C

B

la

P

–P

Fig. P10.89

A

B

W

d

h

Fig. P10.90 and P10.91

 10.91 Rod AB is attached to a hinge at A and to two springs, each of 
constant k. If h 5 45 in., k 5 6 lb/in., and W 5 60 lb, determine 
the smallest distance d for which the equilibrium of the rod is 
stable in the position shown. Each spring can act in either tension 
or compression.

  10.92 and 10.93 Two bars are attached to a single spring of constant 
k that is unstretched when the bars are vertical. Determine the 
range of values of P for which the equilibrium of the system is 
stable in the position shown.

P

A

B

D

P

A

B

C

D

L
3

L
3

L
3

Fig. P10.92 and P10.93
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591Problems 10.94 Two bars AB and BC are attached to a single spring of constant k 
that is unstretched when the bars are vertical. Determine the 
range of values of P for which the equilibrium of the system is 
stable in the position shown.

 10.95 The horizontal bar BEH is connected to three vertical bars. 
The collar at E can slide freely on bar DF. Determine the 
range of values of Q for which the equilibrium of the system is 
stable in the position shown when a 5 24 in., b 5 20 in., and 
P 5 150 lb.

P

A

D

E

B

C

a

l

l

a

Fig. P10.94

 10.96 The horizontal bar BEH is connected to three vertical bars. 
The collar at E can slide freely on bar DF. Determine the range 
of values of P for which the equilibrium of the system is stable 
in the position shown when a 5 150 mm, b 5 200 mm, and 
Q 5 45 N.

 *10.97 Bars AB and BC, each of length l and of negligible weight, are 
attached to two springs, each of constant k. The springs are unde-
formed, and the system is in equilibrium when u1 5 u2 5 0. Deter-
mine the range of values of P for which the equilibrium position is 
stable.

 *10.98 Solve Prob. 10.97 knowing that l 5 800 mm and k 5 2.5 kN/m.

 *10.99 Two rods of negligible weight are attached to drums of radius r 
that are connected by a belt and spring of constant k. Knowing 
that the spring is undeformed when the rods are vertical, deter-
mine the range of values of P for which the equilibrium position 
u1 5 u2 5 0 is stable.

  *10.100 Solve Prob. 10.99 knowing that k 5 20 lb/in., r 5 3 in., l 5 6 in., 
and (a) W 5 15 lb, (b) W 5 60 lb.

P

QQ

D
A

B

C F I

H

G

E

a

b

Fig. P10.95 and P10.96

P

A

B

C

q1

q2

Fig. P10.97

W

2q

1q

A

B

D

C
r r

l

l

P

Fig. P10.99
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592

REVIEW AND SUMMARY

The first part of this chapter was devoted to the principle of virtual 
work and to its direct application to the solution of equilibrium prob-
lems. We first defined the work of a force F corresponding to the 
small displacement dr [Sec. 10.2] as the quantity

 dU 5 F ? dr (10.1)

obtained by forming the scalar product of the force F and the dis-
placement dr (Fig. 10.16). Denoting respectively by F and ds the 
magnitudes of the force and of the displacement, and by a the angle 
formed by F and dr, we wrote

 dU 5 F ds cos a (10.19)

The work dU is positive if a , 90°, zero if a 5 90°, and negative if 
a . 90°. We also found that the work of a couple of moment M
acting on a rigid body is

dU 5 M du (10.2)

where du is the small angle expressed in radians through which the 
body rotates.

Considering a particle located at A and acted upon by several forces 
F1, F2, . . . , Fn [Sec. 10.3], we imagined that the particle moved to 
a new position A9 (Fig. 10.17). Since this displacement did not actu-
ally take place, it was referred to as a virtual displacement and 
denoted by dr, while the corresponding work of the forces was called 
virtual work and denoted by dU. We had

dU 5 F1 ? dr 1 F2 ? dr 1 . . . 1 Fn ? dr

The principle of virtual work states that if a particle is in equilib-
rium, the total virtual work dU of the forces acting on the particle is 
zero for any virtual displacement of the particle.
 The principle of virtual work can be extended to the case of 
rigid bodies and systems of rigid bodies. Since it involves only forces 
which do work, its application provides a useful alternative to the 
use of the equilibrium equations in the solution of many engineering 
problems. It is particularly effective in the case of machines and 
mechanisms consisting of connected rigid bodies, since the work of 
the reactions at the supports is zero and the work of the internal forces 
at the pin connections cancels out [Sec. 10.4; Sample Probs. 10.1, 10.2, 
and 10.3].

Work of a forceWork of a force

Virtual displacementVirtual displacement

Principle of virtual workPrinciple of virtual work

a

dr

A

A'

F

Fig. 10.16

F2

F1

Fn

A

A'

dr

Fig. 10.17
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593In the case of real machines, however [Sec. 10.5], the work of the 
friction forces should be taken into account, with the result that the 
output work will be less than the input work. Defining the mechanical 
efficiency of a machine as the ratio

 
h 5

output work

input work  
(10.9)

we also noted that for an ideal machine (no friction) h 5 1, while 
for a real machine h , 1.

In the second part of the chapter we considered the work of forces 
corresponding to finite displacements of their points of application. 
The work U1y2 of the force F corresponding to a displacement of 
the particle A from A1 to A2 (Fig. 10.18) was obtained by integrating 
the right-hand member of Eq. (10.1) or (10.19) along the curve 
described by the particle [Sec. 10.6]:

 U1y2 5 #
A2

A1

 
F ? dr  (10.11)

or

 
U1y2 5 #

s2

s1

 
(F  cos a) ds

 
(10.119)

Similarly, the work of a couple of moment M corresponding to a 
finite rotation from u1 to u2 of a rigid body was expressed as

 
U1y2 5 #

u2

u1

 
M du

 
(10.12)

The work of the weight W of a body as its center of gravity moves 
from the elevation y1 to y2 (Fig. 10.19) can be obtained by making 
F 5 W and a 5 180° in Eq. (10.119):

 
U1y2 5 2 #

y2

y1

W  dy 5 Wy1 2 Wy2 
(10.13)

The work of W is therefore positive when the elevation y decreases.

Mechanical efficiencyMechanical efficiency

Work of a force over a finite 
displacement
Work of a force over a finite 
displacement

Work of a weightWork of a weight

O

ds

A

A1

s1

s2

A2

a

Fs

Fig. 10.18

A

A1

A2

y1

y2

dy

y

W

Fig. 10.19

Review and Summary
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594 Method of Virtual Work The work of the force F exerted by a spring on a body A as the 
spring is stretched from x1 to x2 (Fig. 10.20) can be obtained by 
making F 5 kx, where k is the constant of the spring, and a 5 180° 
in Eq. (10.119):

 
U1y2 5 2 #

x2

x1

 
kx dx 5 1

2 
kx2

1 2 1
2 
kx2

2 
(10.15)

The work of F is therefore positive when the spring is returning to 
its undeformed position.

 When the work of a force F is independent of the path actually 
followed between A1 and A2, the force is said to be a conservative 
force, and its work can be expressed as

 U1y2 5 V1 2 V2 (10.20)

where V is the potential energy associated with F, and V1 and V2 
represent the values of V at A1 and A2, respectively [Sec. 10.7]. The 
potential energies associated, respectively, with the force of gravity 
W and the elastic force F exerted by a spring were found to be

 Vg 5 Wy   and   Ve 5 1
2 
kx2 (10.17, 10.18)

When the position of a mechanical system depends upon a single 
independent variable u, the potential energy of the system is a func-
tion V(u) of that variable, and it follows from Eq. (10.20) that dU 5 
2dV 5 2(dV/du) du. The condition dU 5 0 required by the princi-
ple of virtual work for the equilibrium of the system can thus be 
replaced by the condition

 
dV
du

5 0
 

(10.21)

When all the forces involved are conservative, it may be preferable 
to use Eq. (10.21) rather than apply the principle of virtual work 
directly [Sec. 10.8; Sample Prob. 10.4].

This approach presents another advantage, since it is possible to 
determine from the sign of the second derivative of V whether the 
equilibrium of the system is stable, unstable, or neutral [Sec. 10.9]. 
If d2V/du2 . 0, V is minimum and the equilibrium is stable; if 
d2V/du2 , 0, V is maximum and the equilibrium is unstable; if 
d2V/du2 5 0, it is necessary to examine derivatives of a higher order.

Work of the force exerted by a springWork of the force exerted by a spring

Potential energyPotential energy

Alternative expression for the 
principle of virtual work

Alternative expression for the 
principle of virtual work

Stability of equilibriumStability of equilibrium

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

Fig. 10.20
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595

REVIEW PROBLEMS

10.101 Determine the vertical force P that must be applied at G to main-
tain the equilibrium of the linkage.

 10.102 Determine the couple M that must be applied to member DEFG
to maintain the equilibrium of the linkage.

10.103 Derive an expression for the magnitude of the couple M required 
to maintain the equilibrium of the linkage shown.

 10.104 Collars A and B are connected by the wire AB and can slide freely 
on the rods shown. Knowing that the length of the wire is 440 mm 
and that the weight W of collar A is 90 N, determine the magni-
tude of the force P required to maintain equilibrium of the system 
when (a) c 5 80 mm, (b) c 5 280 mm.

 10.105 Collar B can slide along rod AC and is attached by a pin to a 
block that can slide in the vertical slot shown. Derive an expres-
sion for the magnitude of the couple M required to maintain 
equilibrium.

300 lb

100 lb

6 in.

A
B

C

D
E F

G

10 in.12 in.8 in.

Fig. P10.101 and P10.102

P

P

A

B

C

l

l

q

M

Fig. P10.103

W

P

A
b

B

c
240 mm

x

y

z

Fig. P10.104

A

B

C

R

q

P

M

Fig. P10.105 
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596 Method of Virtual Work  10.106 A slender rod of length l is attached to a collar at B and rests on 
a portion of a circular cylinder of radius r. Neglecting the effect 
of friction, determine the value of u corresponding to the equilib-
rium position of the mechanism when l 5 200 mm, r 5 60 mm, 
P 5 40 N, and Q 5 80 N.

 10.107 A horizontal force P of magnitude 40 lb is applied to the mechanism 
at C. The constant of the spring is k 5 9 lb/in., and the spring is 
unstretched when u 5 0. Neglecting the weight of the mechanism, 
determine the value of u corresponding to equilibrium.

A

C

B

q

Q

l

P

r

Fig. P10.106

P

5 in.

12 in.

q

B

A

C

Fig. P10.107

 10.108 Two identical rods ABC and DBE are connected by a pin at B 
and by a spring CE. Knowing that the spring is 4 in. long when 
unstretched and that the constant of the spring is 8 lb/in., deter-
mine the distance x corresponding to equilibrium when a 24-lb 
load is applied at E as shown.

 10.109 Solve Prob. 10.108 assuming that the 24-lb load is applied at C 
instead of E.

 10.110 Two uniform rods, each of mass m and length l, are attached to 
gears as shown. For the range 0 # u # 180°, determine the posi-
tions of equilibrium of the system and state in each case whether 
the equilibrium is stable, unstable, or neutral.

9 in.

6 in.

A

x

D

B
E

C

24 lb

Fig. P10.108
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1.5q

A

B

3a

D

2a

C

Fig. P10.110
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597Review Problems 10.111 A homogeneous hemisphere of radius r is placed on an incline as 
shown. Assuming that friction is sufficient to prevent slipping 
between the hemisphere and the incline, determine the angle u 
corresponding to equilibrium when b 5 10°.

 10.112 A homogeneous hemisphere of radius r is placed on an incline as 
shown. Assuming that friction is sufficient to prevent slipping 
between the hemisphere and the incline, determine (a) the largest 
angle b for which a position of equilibrium exists, (b) the angle u 
corresponding to equilibrium when the angle b is equal to half 
the value found in part a.

q

b

G

C

Fig. P10.111 and P10.112
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598

COMPUTER PROBLEMS

 10.C1 A couple M is applied to crank AB in order to maintain the equi-
librium of the engine system shown when a force P is applied to the piston. 
Knowing that b 5 2.4 in. and l 5 7.5 in., write a computer program that can 
be used to calculate the ratio M/P for values of u from 0 to 180° using 10° 
increments. Using appropriate smaller increments, determine the value of u
for which the ratio M/P is maximum, and the corresponding value of M/P.

qP
A

B

C

l

b
M

Fig. P10.C1

 10.C2 Knowing that a 5 500 mm, b 5 150 mm, L 5 500 mm, and P 5 
100 N, write a computer program that can be used to calculate the force in 
member BD for values of u from 30° to 150° using 10° increments. Using 
appropriate smaller increments, determine the range of values of u for which 
the absolute value of the force in member BD is less than 400 N.

A

B

C

b

D

a

L

q

P

Fig. P10.C2

a

C

B

D

A
a

a

90°

q

W

Fig. P10.C4

 10.C3 Solve Prob. 10.C2 assuming that the force P applied at A is directed 
horizontally to the right.

 10.C4 The constant of spring AB is k, and the spring is unstretched when 
u 5 0. (a) Neglecting the weight of the member BCD, write a computer 
program that can be used to calculate the potential energy of the system and 
its derivative dV/du. (b) For W 5 150 lb, a 5 10 in., and k 5 75 lb/in., cal-
culate and plot the potential energy versus u for values of u from 0 to 165° 
using 15° increments. (c) Using appropriate smaller increments, determine 
the values of u for which the system is in equilibrium and state in each case 
whether the equilibrium is stable, unstable, or neutral.
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599Computer Problems 10.C5 Two rods, AC and DE, each of length L, are connected by a collar 
that is attached to rod AC at its midpoint B. (a) Write a computer program 
that can be used to calculate the potential energy V of the system and its 
derivative dV/du. (b) For W 5 75 N, P 5 200 N, and L 5 500 mm, calculate 
V and dV/du for values of u from 0 to 70° using 5° increments. (c) Using 
appropriate smaller increments, determine the values of u for which the 
system is in equilibrium and state in each case whether the equilibrium is 
stable, unstable, or neutral.

 10.C6 A slender rod ABC is attached to blocks A and B that can move 
freely in the guides shown. The constant of the spring is k, and the spring 
is unstretched when the rod is vertical. (a) Neglecting the weights of the 
rod and of the blocks, write a computer program that can be used to cal-
culate the potential energy V of the system and its derivative dV/du. (b) For 
P 5 150 N, l 5 200 mm, and k 5 3 kN/m, calculate and plot the potential 
energy versus u for values of u from 0 to 75° using 5° increments. (c) Using 
appropriate smaller increments, determine any positions of equilibrium in 
the range 0 # u # 75° and state in each case whether the equilibrium is 
stable, unstable, or neutral.

 10.C7 Solve Prob. 10.C6 assuming that the force P applied at C is directed 
horizontally to the right.

P

W

A

D

B

C

E

q

L

Fig. P10.C5

C

A

B

q

l

l

P

Fig. P10.C6 
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The motion of the space shuttle can 

be described in terms of its position, 

velocity, and acceleration. When landing, 

the pilot of the shuttle needs to consider 

the wind velocity and the relative motion 

of the shuttle with respect to the wind. 

The study of motion is known as 

kinematics and is the subject of 

this chapter.

600
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602

11.1 INTRODUCTION TO DYNAMICS
Chapters 1 to 10 were devoted to statics, i.e., to the analysis of bodies 
at rest. We now begin the study of dynamics, the part of mechanics 
that deals with the analysis of bodies in motion.
 While the study of statics goes back to the time of the Greek 
philosophers, the first significant contribution to dynamics was made 
by Galileo (1564–1642). Galileo’s experiments on uniformly acceler-
ated bodies led Newton (1642–1727) to formulate his fundamental 
laws of motion.
 Dynamics includes:

 1. Kinematics, which is the study of the geometry of motion. 
Kinematics is used to relate displacement, velocity, acceleration, 
and time, without reference to the cause of the motion.

 2. Kinetics, which is the study of the relation existing between the 
forces acting on a body, the mass of the body, and the motion 
of the body. Kinetics is used to predict the motion caused by 
given forces or to determine the forces required to produce a 
given motion.

 Chapters 11 to 14 are devoted to the dynamics of particles; in 
Chap. 11 the kinematics of particles will be considered. The use of 
the word particles does not mean that our study will be restricted to 
small corpuscles; rather, it indicates that in these first chapters the 
motion of bodies—possibly as large as cars, rockets, or airplanes—
will be considered without regard to their size. By saying that the 
bodies are analyzed as particles, we mean that only their motion as 
an entire unit will be considered; any rotation about their own mass 
center will be neglected. There are cases, however, when such a 
rotation is not negligible; the bodies cannot then be considered as 
particles. Such motions will be analyzed in later chapters, dealing 
with the dynamics of rigid bodies.
 In the first part of Chap. 11, the rectilinear motion of a particle 
will be analyzed; that is, the position, velocity, and acceleration of a 
particle will be determined at every instant as it moves along a 
straight line. First, general methods of analysis will be used to study 
the motion of a particle; then two important particular cases will be 
considered, namely, the uniform motion and the uniformly acceler-
ated motion of a particle (Secs. 11.4 and 11.5). In Sec. 11.6 the 
simultaneous motion of several particles will be considered, and the 
concept of the relative motion of one particle with respect to another 
will be introduced. The first part of this chapter concludes with a 
study of graphical methods of analysis and their application to the 
solution of various problems involving the rectilinear motion of par-
ticles (Secs. 11.7 and 11.8).
 In the second part of this chapter, the motion of a particle as 
it moves along a curved path will be analyzed. Since the position, 
velocity, and acceleration of a particle will be defined as vector 
quantities, the concept of the derivative of a vector function will be 
introduced in Sec. 11.10 and added to our mathematical tools. 
Applications in which the motion of a particle is defined by the 

 Chapter 11 Kinematics of 
Particles

 11.1 Introduction to Dynamics
 11.2 Position, Velocity, and 

Acceleration
 11.3 Determination of the Motion of 

a Particle
 11.4 Uniform Rectilinear Motion
 11.5 Uniformly Accelerated Rectilinear 
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 11.7 Graphical Solution of Rectilinear-
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 11.8 Other Graphical Methods
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603rectangular components of its velocity and acceleration will then be 
considered; at this point, the motion of a projectile will be analyzed 
(Sec. 11.11). In Sec. 11.12, the motion of a particle relative to a 
reference frame in translation will be considered. Finally, the cur-
vilinear motion of a particle will be analyzed in terms of components 
other than rectangular. The tangential and normal components of a 
particular velocity and an acceleration will be introduced in 
Sec. 11.13 and the radial and transverse components of its velocity 
and acceleration in Sec. 11.14.

RECTILINEAR MOTION OF PARTICLES

11.2 POSITION, VELOCITY, AND ACCELERATION
A particle moving along a straight line is said to be in rectilinear 
motion. At any given instant t, the particle will occupy a certain posi-
tion on the straight line. To define the position P of the particle, we 
choose a fixed origin O on the straight line and a positive direction 
along the line. We measure the distance x from O to P and record 
it with a plus or minus sign, according to whether P is reached from 
O by moving along the line in the positive or the negative direction. 
The distance x, with the appropriate sign, completely defines the 
position of the particle; it is called the position coordinate of the 
particle considered. For example, the position coordinate corre-
sponding to P in Fig. 11.1a is x 5 15 m; the coordinate correspond-
ing to P9 in Fig. 11.1b is x9 5 22 m.
 When the position coordinate x of a particle is known for every 
value of time t, we say that the motion of the particle is known. The 
“timetable” of the motion can be given in the form of an equation 
in x and t, such as x 5 6t2 2 t3, or in the form of a graph of x versus 
t as shown in Fig. 11.6. The units most often used to measure the 
position coordinate x are the meter (m) in the SI system of units† 
and the foot (ft) in the U.S. customary system of units. Time t is 
usually measured in seconds (s).
 Consider the position P occupied by the particle at time t 
and the corresponding coordinate x (Fig. 11.2). Consider also the 
position P9 occupied by the particle at a later time t 1 ¢t; the 
position coordinate of P9 can be obtained by adding to the coor-
dinate x of P the small displacement ¢x, which will be positive or 
negative according to whether P9 is to the right or to the left of 
P. The average velocity of the particle over the time interval ¢t 
is defined as the quotient of the displacement ¢x and the time 
interval ¢t:

Average velocity 5
¢x
¢t

†Cf. Sec. 1.3.

11.2 Position, Velocity, and Acceleration

Fig. 11.1

O

O

P

x

x

(a)

(b)
1 m

P'

x'

x

1 m

Fig. 11.2

O

P
x

x(t) (t + Δt)

P'
Δx

Photo 11.1 The motion of this solar car can be 
described by its position, velocity and 
acceleration.
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604 Kinematics of Particles If SI units are used, ¢x is expressed in meters and ¢t in seconds; 
the average velocity will thus be expressed in meters per second 
(m/s). If U.S. customary units are used, ¢x is expressed in feet and 
¢t in seconds; the average velocity will then be expressed in feet per 
second (ft/s).
 The instantaneous velocity v of the particle at the instant t is 
obtained from the average velocity by choosing shorter and shorter 
time intervals ¢t and displacements ¢x:

Instantaneous velocity 5 v 5 lim
¢ty0

 
¢x
¢t

The instantaneous velocity will also be expressed in m/s or ft/s. 
Observing that the limit of the quotient is equal, by definition, to 
the derivative of x with respect to t, we write

 
v 5

dx
dt  

(11.1)

The velocity v is represented by an algebraic number which can be 
positive or negative.† A positive value of v indicates that x increases, 
i.e., that the particle moves in the positive direction (Fig. 11.3a); a 
negative value of v indicates that x decreases, i.e., that the particle 
moves in the negative direction (Fig. 11.3b). The magnitude of v is 
known as the speed of the particle.
 Consider the velocity v of the particle at time t and also its 
velocity v 1 ¢v at a later time t 1 ¢t (Fig. 11.4). The average accel-
eration of the particle over the time interval ¢t is defined as the 
quotient of ¢v and ¢t:

Average acceleration 5
¢v
¢t

If SI units are used, ¢v is expressed in m/s and ¢t in seconds; the 
average acceleration will thus be expressed in m/s2. If U.S. customary 
units are used, ¢v is expressed in ft/s and ¢t in seconds; the average 
acceleration will then be expressed in ft/s2.
 The instantaneous acceleration a of the particle at the instant 
t is obtained from the average acceleration by choosing smaller and 
smaller values for ¢t and ¢v:

Instantaneous acceleration 5 a 5 lim
¢ty0

 
¢v
¢t

The instantaneous acceleration will also be expressed in m/s2 or ft/s2. 
The limit of the quotient, which is by definition the derivative of v 

†As you will see in Sec. 11.9, the velocity is actually a vector quantity. However, since 
we are considering here the rectilinear motion of a particle, where the velocity of the 
particle has a known and fixed direction, we need only specify the sense and magnitude 
of the velocity; this can be conveniently done by using a scalar quantity with a plus or 
minus sign. The same is true of the acceleration of a particle in rectilinear motion.

Fig. 11.4

(t) (t + Δt)

v + ΔvP'P

x

v

Fig. 11.3

(a)

(b)

P

P

x

x

v > 0

v < 0
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605with respect to t, measures the rate of change of the velocity. We 
write

 
a 5

dv
dt  

(11.2)

or, substituting for v from (11.1),

 
a 5

d2x

dt2  
(11.3)

The acceleration a is represented by an algebraic number which can 
be positive or negative.† A positive value of a indicates that the 
velocity (i.e., the algebraic number v) increases. This may mean that 
the particle is moving faster in the positive direction (Fig. 11.5a) or 
that it is moving more slowly in the negative direction (Fig. 11.5b); 
in both cases, ¢v is positive. A negative value of a indicates that the  
velocity decreases; either the particle is moving more slowly in the 
positive direction (Fig. 11.5c) or it is moving faster in the negative 
direction (Fig. 11.5d).

†See footnote, page 604.

 The term deceleration is sometimes used to refer to a when 
the speed of the particle (i.e., the magnitude of v) decreases; the par-
ticle is then moving more slowly. For example, the particle of Fig. 11.5 
is decelerated in parts b and c; it is truly accelerated (i.e., moves faster) 
in parts a and d.
 Another expression for the acceleration can be obtained by 
eliminating the differential dt in Eqs. (11.1) and (11.2). Solving (11.1) 
for dt, we obtain dt 5 dx/v; substituting into (11.2), we write

 
a 5 v 

dv
dx  

(11.4)

11.2 Position, Velocity, and Acceleration

Fig. 11.5
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606 Kinematics of Particles EXAMPLE Consider a particle moving in a straight line, and assume that 
its position is defined by the equation

x 5 6t2 2 t3

where t is expressed in seconds and x in meters. The velocity v at any time 
t is obtained by differentiating x with respect to t:

v 5
dx
dt

5 12 t 2 3t2

The acceleration a is obtained by differentiating again with respect to t:

a 5
dv
dt

5 12 2 6 t

The position coordinate, the velocity, and the acceleration have been plot-
ted against t in Fig. 11.6. The curves obtained are known as motion 
curves. Keep in mind, however, that the particle does not move along any 
of these curves; the particle moves in a straight line. Since the derivative 
of a function measures the slope of the corresponding curve, the slope 
of the x–t curve at any given time is equal to the value of v at that time 
and the slope of the v−t curve is equal to the value of a. Since a 5 0 at 
t 5 2 s, the slope of the v−t curve must be zero at t 5 2 s; the velocity 
reaches a maximum at this instant. Also, since v 5 0 at t 5 0 and at t 5 
4 s, the tangent to the x−t curve must be horizontal for both of these 
values of t.

 A study of the three motion curves of Fig. 11.6 shows that the motion 
of the particle from t 5 0 to t 5 ∞ can be divided into four phases:

 1. The particle starts from the origin, x 5 0, with no velocity but with a 
positive acceleration. Under this acceleration, the particle gains a posi-
tive velocity and moves in the positive direction. From t 5 0 to t 5 
2 s, x, v, and a are all positive.

 2. At t 5 2 s, the acceleration is zero; the velocity has reached its maxi-
mum value. From t 5 2 s to t 5 4 s, v is positive, but a is negative; 
the particle still moves in the positive direction but more and more 
slowly; the particle is decelerating.

 3. At t 5 4 s, the velocity is zero; the position coordinate x has reached 
its maximum value. From then on, both v and a are negative; the 
particle is accelerating and moves in the negative direction with 
increasing speed.

 4. At t 5 6 s, the particle passes through the origin; its coordinate x is 
then zero, while the total distance traveled since the beginning of the 
motion is 64 m. For values of t larger than 6 s, x, v, and a will all be 
negative. The particle keeps moving in the negative direction, away 
from O, faster and faster. ◾

Fig. 11.6
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60711.3  DETERMINATION OF THE MOTION 
OF A PARTICLE

We saw in the preceding section that the motion of a particle is said 
to be known if the position of the particle is known for every value 
of the time t. In practice, however, a motion is seldom defined by a 
relation between x and t. More often, the conditions of the motion 
will be specified by the type of acceleration that the particle pos-
sesses. For example, a freely falling body will have a constant accel-
eration, directed downward and equal to 9.81 m/s2, or 32.2 ft/s2; a 
mass attached to a spring which has been stretched will have an 
acceleration proportional to the instantaneous elongation of the 
spring measured from the equilibrium position; etc. In general, the 
acceleration of the particle can be expressed as a function of one or 
more of the variables x, v, and t. In order to determine the position 
coordinate x in terms of t, it will thus be necessary to perform two 
successive integrations.
 Let us consider three common classes of motion:

 1. a 5 f(t). The Acceleration Is a Given Function of t. Solving 
(11.2) for dv and substituting f(t) for a, we write

 dv 5 a dt
 dv 5 f(t) dt

  Integrating both members, we obtain the equation

e dv 5 e f(t) dt

  which defines v in terms of t. It should be noted, however, that 
an arbitrary constant will be introduced as a result of the inte-
gration. This is due to the fact that there are many motions 
which correspond to the given acceleration a 5 f(t). In order 
to uniquely define the motion of the particle, it is necessary to 
specify the initial conditions of the motion, i.e., the value v0 of 
the velocity and the value x0 of the position coordinate at t 5 
0. Replacing the indefinite integrals by definite integrals with 
lower limits corresponding to the initial conditions t 5 0 and 
v 5 v0 and upper limits corresponding to t 5 t and v 5 v, we 
write

 #
v

v0

 
dv 5 #

t

0
 
f(t) dt

 v 2 v0 5 #
t

0
 
f(t) dt

  which yields v in terms of t.
   Equation (11.1) can now be solved for dx,

dx 5 v dt

  and the expression just obtained substituted for v. Both mem-
bers are then integrated, the left-hand member with respect 
to x from x 5 x0 to x 5 x, and the right-hand member with 

11.3 Determination of the Motion 
of a Particle
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608 Kinematics of Particles respect to t from t 5 0 to t 5 t. The position coordinate x 
is thus obtained in terms of t; the motion is completely 
determined.

   Two important particular cases will be studied in greater 
detail in Secs. 11.4 and 11.5: the case when a 5 0, correspond-
ing to a uniform motion, and the case when a 5 constant, 
 corresponding to a uniformly accelerated motion.

 2. a 5 f(x). The Acceleration Is a Given Function of x. Rearranging 
Eq. (11.4) and substituting f(x) for a, we write

 v dv 5 a dx
 v dv 5 f(x) dx

  Since each member contains only one variable, we can inte-
grate the equation. Denoting again by v0 and x0, respectively, 
the initial values of the velocity and of the position coordinate, 
we obtain

 #
v

v0

 
v dv 5 #

x

x0

 
f(x) dx

 12v2 2 1
2 v2

0 5 #
x

x0

 
f(x) dx

  which yields v in terms of x. We now solve (11.1) for dt,

dt 5
dx
v

  and substitute for v the expression just obtained. Both mem-
bers can then be integrated to obtain the desired relation 
between x and t. However, in most cases this last integration 
cannot be performed analytically and one must resort to a 
numerical method of integration.

 3. a 5 f(v). The Acceleration Is a Given Function of v. We can 
now substitute f(v) for a in either (11.2) or (11.4) to obtain 
either of the following relations:

  f(v) 5
dv
dt

   f(v) 5 v 

dv
dx

 dt 5
dv

f(v)
   dx 5

v dv
f(v)

  Integration of the first equation will yield a relation between v 
and t; integration of the second equation will yield a relation 
between v and x. Either of these relations can be used in con-
junction with Eq. (11.1) to obtain the relation between x and 
t which characterizes the motion of the particle.
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609

SAMPLE PROBLEM 11.1

The position of a particle which moves along a straight line is defined by the 
relation x 5 t3 2 6t2 2 15t 1 40, where x is expressed in feet and t in seconds. 
Determine (a) the time at which the velocity will be zero, (b) the position and 
distance traveled by the particle at that time, (c) the acceleration of the particle 
at that time, (d) the distance traveled by the particle from t 5 4 s to t 5 6 s.

SOLUTION

The equations of motion are
 x 5 t3 2 6t2 2 15t 1 40 (1)

 
 v 5

dx
dt

5 3t2 2 12t 2 15
 

(2)

 
 a 5

dv
dt

5 6 t 2 12
 

(3)

a. Time at Which v 5 0. We set v 5 0 in (2):

 3t2 2 12t 2 15 5 0  t 5 21 s  and t 5 15 s ◀

Only the root t 5 15 s corresponds to a time after the motion has begun: 
for t , 5 s, v , 0, the particle moves in the negative direction; for t . 5 s, 
v . 0, the particle moves in the positive direction.

b. Position and Distance Traveled When v 5 0. Carrying t 5 15 s into 
(1), we have
 x5 5 (5)3 2 6(5)2 2 15(5) 1 40 x5 5 260 ft ◀

The initial position at t 5 0 was x0 5 140 ft. Since v fi 0 during the interval 
t 5 0 to t 5 5 s, we have

Distance traveled 5 x5 2 x0 5 260 ft 2 40 ft 5 2100 ft

Distance traveled 5 100 ft in the negative direction ◀

c. Acceleration When v 5 0. We substitute t 5 15 s into (3):

 a5 5 6(5) 2 12 a5 5 118 ft/s2 ◀

d. Distance Traveled from t 5 4 s to t 5 6 s. The particle moves in the 
negative direction from t 5 4 s to t 5 5 s and in the positive direction from 
t 5 5 s to t 5 6 s; therefore, the distance traveled during each of these 
time intervals will be computed separately.

From t 5 4 s to t 5 5 s:    x5 5 260 ft

 x4 5 (4)3 2 6(4)2 2 15(4) 1 40 5 252 ft
 Distance traveled 5 x5 2 x4 5 260 ft 2 (252 ft) 5 28 ft 
 5 8 ft in the negative direction

From t 5 5 s to t 5 6 s:    x5 5 260 ft

 x6 5 (6)3 2 6(6)2 2 15(6) 1 40 5 250 ft
 Distance traveled 5 x6 2 x5 5 250 ft 2 (260 ft) 5 110 ft 
 5 10 ft in the positive direction

Total distance traveled from t 5 4 s to t 5 6 s is 8 ft 1 10 ft   5 18 ft ◀

x (ft)

v (ft/s)

t (s)

t (s)

t (s)

18

0

0

0

a (ft/s2)

40

60–

+5

+5

+2 +5
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610

SAMPLE PROBLEM 11.2

A ball is tossed with a velocity of 10 m/s directed vertically upward from a 
window located 20 m above the ground. Knowing that the acceleration of 
the ball is constant and equal to 9.81 m/s2 downward, determine (a) the 
velocity v and elevation y of the ball above the ground at any time t, 
(b) the highest elevation reached by the ball and the corresponding value 
of t, (c) the time when the ball will hit the ground and the corresponding 
velocity. Draw the v−t and y−t curves.

SOLUTION

a. Velocity and Elevation. The y axis measuring the position coordinate (or 
elevation) is chosen with its origin O on the ground and its positive sense 
upward. The value of the acceleration and the initial values of v and y are as 
indicated. Substituting for a in a 5 dv/dt and noting that at t 5 0, v0 5 110 m/s, 
we have

 
dv
dt

5 a 5 29.81 m/s2

 #
v

v0510
 
dv 5 2#

t

0
 
9.81 dt

 [v]v
10 5 2[9.81t] t

0

 v 2 10 5 29.81t
v 5 10 2 9.81t  (1) ◀

Substituting for v in v 5 dy/dt and noting that at t 5 0, y0 5 20 m, we have

 
dy

dt
5 v 5 10 2 9.81t

 #
y

y0520

dy 5 #
t

0
 
(10 2 9.81t) dt

 [y]y
20 5 [10t 2 4.905t2] t

0

 y 2 20 5 10t 2 4.905t2

y 5 20 1 10t 2 4.905t2  (2) ◀

b. Highest Elevation. When the ball reaches its highest elevation, we have 
v 5 0. Substituting into (1), we obtain

 10 2 9.81t 5 0 t 5 1.019 s ◀

Carrying t 5 1.019 s into (2), we have

 y 5 20 1 10(1.019) 2 4.905(1.019)2 y 5 25.1 m ◀

c. Ball Hits the Ground. When the ball hits the ground, we have y 5 0. 
Substituting into (2), we obtain

20 1 10t 2 4.905t2 5 0    t 5 21.243 s    and    t 5 13.28 s ◀

Only the root t 5 13.28 s corresponds to a time after the motion has begun. 
Carrying this value of t into (1), we have

 v 5 10 2 9.81(3.28) 5 222.2 m/s  v 5 22.2 m/s w ◀

y

O

a = – 9.81 m/s2

v0 = +10 m/s

y0 = +20 m

v (m /s)

t (s)

y (m)

3.28

3.28

–22.2

25.1

1.019

1.019

Velocity-time curve

Position-time
curve

10

20

0

0

t (s)

Slope = a = –9.81 m/s 2

Sl
op

e =
 v 0 

= 
10

 m
 /s

Slope = v = –22.2 m
 /s

bee29400_ch11_600-689.indd Page 610  11/25/08  5:46:15 PM user-s173bee29400_ch11_600-689.indd Page 610  11/25/08  5:46:15 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



611

SAMPLE PROBLEM 11.3

The brake mechanism used to reduce recoil in certain types of guns consists 
essentially of a piston attached to the barrel and moving in a fixed cylinder 
filled with oil. As the barrel recoils with an initial velocity v0, the piston 
moves and oil is forced through orifices in the piston, causing the piston 
and the barrel to decelerate at a rate proportional to their velocity; that is, 
a 5 2kv. Express (a) v in terms of t, (b) x in terms of t, (c) v in terms of 
x. Draw the corresponding motion curves.

SOLUTION

a. v in Terms of t. Substituting 2kv for a in the fundamental formula 
defining acceleration, a 5 dv/dt, we write

2kv 5
dv
dt

  dv
v

5 2k dt   #
v

v0

 
dv
v

5 2k #
t

0
 
dt

 
ln 

v
v0

5 2kt
 

v 5 v0e2kt ◀

b. x in Terms of t. Substituting the expression just obtained for v into 
v 5 dx/dt, we write

 v0  
e2kt 5

dx
dt

 #
x

0
 
dx 5 v0 #

t

0
 
e2kt dt

 x 5 2
v0

k
 [e2kt] t

0 5 2
v0

k
 (e2kt 2 1)

x 5
v0

k
 (1 2 e2kt) ◀

c. v in Terms of x. Substituting −kv for a in a 5 v dv/dx, we write

 2kv 5 v
dv
dx

 dv 5 2k dx

 #
v

v0

 
dv 5 2k #

x

0
 
dx

  v 2 v0 5 2kx  v 5 v0 2 kx ◀

Check. Part c could have been solved by eliminating t from the answers 
obtained for parts a and b. This alternative method can be used as a check. 
From part a we obtain e2kt 5 v/v0; substituting into the answer of part b, 
we obtain

x 5
v0

k
 (1 2 e2kt) 5

v0

k
 a1 2

v
v0
b   v 5 v0 2 kx   (checks)

Piston

Oil

v

O t

x

O t

v0

v0

k

v

O x

v0

v0

k
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SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will be asked to determine the position, the 
velocity, or the acceleration of a particle in rectilinear motion. As you read each 

problem, it is important that you identify both the independent variable (typically 
t or x) and what is required (for example, the need to express v as a function of 
x). You may find it helpful to start each problem by writing down both the given 
information and a simple statement of what is to be determined.

1. Determining v(t ) and a(t ) for a given x(t ). As explained in Sec. 11.2, the 
first and the second derivatives of x with respect to t are respectively equal to the 
velocity and the acceleration of the particle [Eqs. (11.1) and (11.2)]. If the velocity 
and the acceleration have opposite signs, the particle can come to rest and then 
move in the opposite direction [Sample Prob. 11.1]. Thus, when computing the 
total distance traveled by a particle, you should first determine if the particle will 
come to rest during the specified interval of time. Constructing a diagram similar 
to that of Sample Prob. 11.1 that shows the position and the velocity of the particle 
at each critical instant (v 5 vmax, v 5 0, etc.) will help you to visualize the 
motion.

2. Determining v(t ) and x(t ) for a given a(t ). The solution of problems of this 
type was discussed in the first part of Sec. 11.3. We used the initial conditions, 
t 5 0 and v 5 v0, for the lower limits of the integrals in t and v, but any other 
known state (for example, t 5 t1, v 5 v1) could have been used instead. Also, if 
the given function a(t) contains an unknown constant (for example, the constant 
k if a 5 kt), you will first have to determine that constant by substituting a set of 
known values of t and a in the equation defining a(t).

3. Determining v(x) and x(t ) for a given a(x). This is the second case consid-
ered in Sec. 11.3. We again note that the lower limits of integration can be 
any known state (for example, x 5 x1, v 5 v1). In addition, since v 5 vmax when 
a 5 0, the positions where the maximum values of the velocity occur are easily 
determined by writing a(x) 5 0 and solving for x.

4. Determining v(x), v (t ), and x(t ) for a given a(v ). This is the last case treated 
in Sec. 11.3; the appropriate solution techniques for problems of this type are 
illustrated in Sample Prob. 11.3. All of the general comments for the preceding 
cases once again apply. Note that Sample Prob. 11.3 provides a summary of how 
and when to use the equations v 5 dx/dt, a 5 dv/dt, and a 5 v dv/dx.
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11.1 The motion of a particle is defined by the relation x 5 1.5t4 2
30t2 1 5t 1 10, where x and t are expressed in meters and sec-
onds, respectively. Determine the position, the velocity, and the 
acceleration of the particle when t 5 4 s.

 11.2 The motion of a particle is defined by the relation x 5 12t3 2
18t2 1 2t 1 5, where x and t are expressed in meters and sec-
onds, respectively. Determine the position and the velocity when 
the acceleration of the particle is equal to zero.

 11.3 The motion of a particle is defined by the relation x 5 5
3 
t3 2 5

2 
t2 2

30t 1 8x, where x and t are expressed in feet and seconds, 
respectively. Determine the time, the position, and the accelera-
tion when v 5 0.

 11.4 The motion of a particle is defined by the relation x 5 6t2 2 
8 1 40 cos pt, where x and t are expressed in inches and seconds, 
respectively. Determine the position, the velocity, and the accelera-
tion when t 5 6 s.

 11.5 The motion of a particle is defined by the relation x 5 6t4 2 2t3 2 
12t2 1 3t 1 3, where x and t are expressed in meters and seconds, 
respectively. Determine the time, the position, and the velocity 
when a 5 0.

 11.6 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 
24t 1 4, where x is expressed in meters and t in seconds. Deter-
mine (a) when the velocity is zero, (b) the position and the total 
distance traveled when the acceleration is zero.

 11.7 The motion of a particle is defined by the relation x 5 t3 2 6t2 2 
36t 2 40, where x and t are expressed in feet and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the velocity, the 
acceleration, and the total distance traveled when x 5 0.

 11.8 The motion of a particle is defined by the relation x 5 t3 2 9t2 1 
24t 2 8, where x and t are expressed in inches and seconds, 
respectively. Determine (a) when the velocity is zero, (b) the posi-
tion and the total distance traveled when the acceleration is zero.

11.9 The acceleration of a particle is defined by the relation a 5 28 m/s2. 
Knowing that x 5 20 m when t 5 4 s and that x 5 4 m when 
v 5 16 m/s, determine (a) the time when the velocity is zero, 
(b) the velocity and the total distance traveled when t 5 11 s.

 11.10 The acceleration of a particle is directly proportional to the square 
of the time t. When t 5 0, the particle is at x 5 24 m. Knowing 
that at t 5 6 s, x 5 96 m and v 5 18 m/s, express x and v in 
terms of t.

†Answers to all problems set in straight type (such as 11.1) are given at the end of the 
book. Answers to problems with a number set in italic type (such as 11.7 ) are not given.

PROBLEMS†
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614 Kinematics of Particles  11.11 The acceleration of a particle is directly proportional to the time t. 
At t 5 0, the velocity of the particle is v 5 16 in./s. Knowing that 
v 5 15 in./s and that x 5 20 in. when t 5 1 s, determine the 
velocity, the position, and the total distance traveled when t 5 7 s.

 11.12 The acceleration of a particle is defined by the relation a 5 kt2. 
(a) Knowing that v 5 232 ft/s when t 5 0 and that v 5 132 ft/s 
when t 5 4 s, determine the constant k. (b) Write the equations of 
motion, knowing also that x 5 0 when t 5 4 s.

 11.13 The acceleration of a particle is defined by the relation a 5 A 2 6t2, 
where A is a constant. At t 5 0, the particle starts at x 5 8 m with 
v 5 0. Knowing that at t 5 1 s, v 5 30 m/s, determine (a) the 
times at which the velocity is zero, (b) the total distance traveled 
by the particle when t 5 5 s.

 11.14  It is known that from t 5 2 s to t 5 10 s the acceleration of a 
particle is inversely proportional to the cube of the time t. When 
t 5 2 s, v 5 215 m/s, and when t 5 10 s, v 5 0.36 m/s. Knowing 
that the particle is twice as far from the origin when t 5 2 s as it 
is when t 5 10 s, determine (a) the position of the particle when 
t 5 2 s and when t 5 10 s, (b) the total distance traveled by the 
particle from t 5 2 s to t 5 10 s.

 11.15 The acceleration of a particle is defined by the relation a 5 2k/x. 
It has been experimentally determined that v 5 15 ft/s when 
x 5 0.6 ft and that v 5 9 ft/s when x 5 1.2 ft. Determine 
(a) the velocity of the particle when x 5 1.5 ft, (b) the position of 
the particle at which its velocity is zero.

 11.16 A particle starting from rest at x 5 1 ft is accelerated so that its 
velocity doubles in magnitude between x 5 2 ft and x 5 8 ft. 
Knowing that the acceleration of the particle is defined by the 
relation a 5 k[x 2 (A/x)], determine the values of the constants A 
and k if the particle has a velocity of 29 ft/s when x 5 16 ft.

 11.17 A particle oscillates between the points x 5 40 mm and 
x 5 160 mm with an acceleration a 5 k(100 2 x), where a and x  
are expressed in mm/s2 and mm, respectively, and k is a constant. 
The velocity of the particle is 18 mm/s when x 5 100 mm and is 
zero at both x 5 40 mm and x 5 160 mm. De termine (a) the value 
of k, (b) the velocity when x 5 120 mm.

 11.18 A particle starts from rest at the origin and is given an acceleration 
a 5 k/(x 1 4)2, where a and x are expressed in m/s2 and m, respec-
tively, and k is a constant. Knowing that the velocity of the particle 
is 4 m/s when x 5 8 m, determine (a) the value of k, (b) the posi-
tion of the particle when v 5 4.5 m/s, (c) the maximum velocity 
of the particle.

 11.19 A piece of electronic equipment that is surrounded by packing mate-
rial is dropped so that it hits the ground with a speed of 4 m/s. After 
impact the equipment experiences an acceleration of a 5 2kx, 
where k is a constant and x is the compression of the packing mate-
rial. If the packing material experiences a maximum compression of 
20 mm, determine the maximum acceleration of the equipment.

v

 Fig. P11.19  
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615Problems 11.20 Based on experimental observations, the acceleration of a particle 
is defined by the relation a 5 2(0.1 1 sin x/b), where a and x are 
expressed in m/s2 and meters, respectively. Knowing that 
b 5 0.8 m and that v 5 1 m/s when x 5 0, determine (a) the 
velocity of the particle when x 5 21 m, (b) the position where the 
velocity is maximum, (c) the maximum velocity.

 11.21 Starting from x 5 0 with no initial velocity, a particle is given an 
  acceleration a 5 0.82v2 1 49, where a and v are expressed in 

m/s2 and m/s, respectively. Determine (a) the position of the particle 
when v 5 24 m/s, (b) the speed of the particle when x 5 40 m.

 11.22 The acceleration of a particle is defined by the relation a 5 2k1v, 
where k is a constant. Knowing that x 5 0 and v 5 81 m/s at 
t 5 0 and that v 5 36 m/s when x 5 18 m, determine (a) the 
velocity of the particle when x 5 20 m, (b) the time required for 
the particle to come to rest.

 11.23 The acceleration of a particle is defined by the relation a 5 20.8v 
where a is expressed in in./s2 and v in in./s. Knowing that at t 5 0 
the velocity is 40 in./s, determine (a) the distance the particle will 
travel before coming to rest, (b) the time required for the particle 
to come to rest, (c) the time required for the particle to be reduced 
by 50 percent of its initial value.

 11.24 A bowling ball is dropped from a boat so that it strikes the surface 
of a lake with a speed of 25 ft/s. Assuming the ball experiences a 
downward acceleration of a 5 10 2 0.9v2 when in the water, deter-
mine the velocity of the ball when it strikes the bottom of the 
lake.

 11.25 The acceleration of a particle is defined by the relation a 5 0.4(1 2 
kv), where k is a constant. Knowing that at t 5 0 the particle starts 
from rest at x 5 4 m and that when t 5 15 s, v 5 4 m/s, determine 
(a) the constant k, (b) the position of the particle when v 5 6 m/s, 
(c) the maximum velocity of the particle.

 11.26 A particle is projected to the right from the position x 5 0 with 
an initial velocity of 9 m/s. If the acceleration of the particle is 
defined by the relation a 5 20.6v3/2, where a and v are expressed 
in m/s2 and m/s, respectively, determine (a) the distance the parti-
cle will have traveled when its velocity is 4 m/s, (b) the time when 
v 5 1 m/s, (c) the time required for the particle to travel 6 m.

 11.27 Based on observations, the speed of a jogger can be approximated 
by the relation v 5 7.5(1 2 0.04x)0.3, where v and x are expressed 
in mi/h and miles, respectively. Knowing that x 5 0 at t 5 0, deter-
mine (a) the distance the jogger has run when t 5 1 h, (b) the jogger’s 
acceleration in ft/s2 at t 5 0, (c) the time required for the jogger to 
run 6 mi.

 11.28 Experimental data indicate that in a region downstream of a given 
louvered supply vent the velocity of the emitted air is defined by 
v 5 0.18v0/x, where v and x are expressed in m/s and meters, respec-
tively, and v0 is the initial discharge velocity of the air. For v0 5 
3.6 m/s, determine (a) the acceleration of the air at x 5 2 m, (b) the 
time required for the air to flow from x 5 l to x 5 3 m.

30 ft

 Fig. P11.24

v

 Fig. P11.27  

v

x

 Fig. P11.28  
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 11.29 The acceleration due to gravity at an altitude y above the surface 
of the earth can be expressed as

a 5
232.2

[1 1 (y/20.9 3 106)]2

  where a and y are expressed in ft/s2 and feet, respectively. Using 
this expression, compute the height reached by a projectile fired 
vertically upward from the surface of the earth if its initial velocity 
is (a) 1800 ft/s, (b) 3000 ft/s, (c) 36,700 ft/s.

 11.30 The acceleration due to gravity of a particle falling toward the 
earth is a 5 2gR2/r2, where r is the distance from the center of 
the earth to the particle, R is the radius of the earth, and g is 
the acceleration due to gravity at the surface of the earth. If 
R 5 3960 mi,  calculate the escape velocity, that is, the minimum 
velocity with which a particle must be projected vertically upward 
from the surface of the earth if it is not to return to the earth. 
(Hint: v 5 0 for r 5 `.)

 11.31 The velocity of a particle is v 5 v0[1 2 sin(pt/T)]. Knowing that 
the particle starts from the origin with an initial velocity v0, deter-
mine (a) its position and its acceleration at t 5 3T, (b) its average 
velocity during the interval t 5 0 to t 5 T.

 11.32 The velocity of a slider is defined by the relation v 5
 v9sin(vnt 1 f). Denoting the velocity and the position of the 
slider at t 5 0 by v0 and x0, respectively, and knowing that the 
maximum displacement of the slider is 2x0, show that (a) v9 5 
(v0

2 1 x0
2vn

2)/2x0vn, (b) the maximum value of the velocity occurs 
when x 5 x0[3 2 (v0 /x0vn)2]/2.

11.4 UNIFORM RECTILINEAR MOTION
Uniform rectilinear motion is a type of straight-line motion which is 
frequently encountered in practical applications. In this motion, the 
acceleration a of the particle is zero for every value of t. The velocity 
v is therefore constant, and Eq. (11.1) becomes

dx
dt

5 v 5 constant

The position coordinate x is obtained by integrating this equation. 
Denoting by x0 the initial value of x, we write

 #
x

x0

 
dv 5 v #

t

0
 
dt

 x 2 x0 5 vt

  x 5 x0 1 vt (11.5)

This equation can be used only if the velocity of the particle is known 
to be constant.

P

y

 Fig. P11.29

R

P

r

 Fig. P11.30  
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61711.5  UNIFORMLY ACCELERATED RECTILINEAR MOTION
Uniformly accelerated rectilinear motion is another common type of 
motion. In this motion, the acceleration a of the particle is constant, 
and Eq. (11.2) becomes

dv
dt

5 a 5 constant

The velocity v of the particle is obtained by integrating this 
equation:

 #
v

v0

 
dv 5 a #

t

0
 
dt

 v 2 v0 5 at

 v 5 v0 1 at (11.6)

where v0 is the initial velocity. Substituting for v in (11.1), we write

dx
dt

5 v0 1 at

Denoting by x0 the initial value of x and integrating, we have

 #
x

x0

 
dx 5 #

t

0
 
(v0 1 at) dt

 x 2 x0 5 v0t 1 1
2 
at2

  x 5 x0 1 v0t 1 1
2 
at2 (11.7)

We can also use Eq. (11.4) and write

v 

dv
dx

5 a 5 constant

v dv 5 a dx

Integrating both sides, we obtain

 
 #

v

v0

 
v dv 5 a #

x

x0

 
dx

  12(v2 2 v2
0) 5 a(x 2 x0)

 v2 5 v2
0 1 2a(x 2 x0) (11.8)

 The three equations we have derived provide useful relations 
among position coordinate, velocity, and time in the case of a uni-
formly accelerated motion, as soon as appropriate values have been 
substituted for a, v0, and x0. The origin O of the x axis should first 
be defined and a positive direction chosen along the axis; this direc-
tion will be used to determine the signs of a, v0, and x0. Equation 
(11.6) relates v and t and should be used when the value of v corre-
sponding to a given value of t is desired, or inversely. Equation (11.7) 

11.5 Uniformly Accelerated Rectilinear Motion
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618 Kinematics of Particles relates x and t; Eq. (11.8) relates v and x. An important application 
of uniformly accelerated motion is the motion of a freely falling body. 
The acceleration of a freely falling body (usually denoted by g) is 
equal to 9.81 m/s2 or 32.2 ft/s2.
 It is important to keep in mind that the three equations above 
can be used only when the acceleration of the particle is known to 
be constant. If the acceleration of the particle is variable, its motion 
should be determined from the fundamental equations (11.1) to 
(11.4) according to the methods outlined in Sec. 11.3.

11.6 MOTION OF SEVERAL PARTICLES
When several particles move independently along the same line, 
independent equations of motion can be written for each particle. 
Whenever possible, time should be recorded from the same initial 
instant for all particles, and displacements should be measured from 
the same origin and in the same direction. In other words, a single 
clock and a single measuring tape should be used.

Relative Motion of Two Particles. Consider two particles A and 
B moving along the same straight line (Fig. 11.7). If the position 
coordinates xA and xB are measured from the same origin, the dif-
ference xB 2 xA defines the relative position coordinate of B with 
respect to A and is denoted by xB/A. We write

 xB/A 5 xB 2 xA  or   xB 5 xA 1 xB/A (11.9)

Regardless of the positions of A and B with respect to the origin, a 
positive sign for xB/A means that B is to the right of A, and a negative 
sign means that B is to the left of A.
 The rate of change of xB/A is known as the relative velocity of 
B with respect to A and is denoted by vB/A. Differentiating (11.9), 
we write

 vB/A 5 vB 2 vA  or   vB 5 vA 1 vB/A (11.10)

A positive sign for vB/A means that B is observed from A to move in 
the positive direction; a negative sign means that it is observed to 
move in the negative direction.
 The rate of change of vB/A is known as the relative acceleration 
of B with respect to A and is denoted by aB/A. Differentiating (11.10), 
we obtain†

 aB/A 5 aB 2 aA  or   aB 5 aA 1 aB/A (11.11)

†Note that the product of the subscripts A and B/A used in the right-hand member of 
Eqs. (11.9), (11.10), and (11.11) is equal to the subscript B used in their left-hand member.

Fig. 11.7

x
 xA

AO B

 xB/A

 xB

Photo 11.2 Multiple cables and pulleys are 
used by this shipyard crane.
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619Dependent Motions. Sometimes, the position of a particle will 
depend upon the position of another particle or of several other 
particles. The motions are then said to be dependent. For example, 
the position of block B in Fig. 11.8 depends upon the position of 
block A. Since the rope ACDEFG is of constant length, and since 
the lengths of the portions of rope CD and EF wrapped around the 
pulleys remain constant, it follows that the sum of the lengths of the 
segments AC, DE, and FG is constant. Observing that the length of 
the segment AC differs from xA only by a constant and that, similarly, 
the lengths of the segments DE and FG differ from xB only by a 
constant, we write

xA 1 2xB 5 constant

Since only one of the two coordinates xA and xB can be chosen arbi-
trarily, we say that the system shown in Fig. 11.8 has one degree of 
freedom. From the relation between the position coordinates xA and 
xB, it follows that if xA is given an increment ¢xA, that is, if block A 
is lowered by an amount ¢xA, the coordinate xB will receive an incre-
ment ¢xB 5 21

2¢xA. In other words, block B will rise by half the 
same amount; this can easily be checked directly from Fig. 11.8.

 In the case of the three blocks of Fig. 11.9, we can again 
observe that the length of the rope which passes over the pulleys is 
constant, and thus the following relation must be satisfied by the 
position coordinates of the three blocks:

2xA 1 2xB 1 xC 5 constant

Since two of the coordinates can be chosen arbitrarily, we say that 
the system shown in Fig. 11.9 has two degrees of freedom.
 When the relation existing between the position coordinates of 
several particles is linear, a similar relation holds between the veloci-
ties and between the accelerations of the particles. In the case of the 
blocks of Fig. 11.9, for instance, we differentiate twice the equation 
obtained and write

 2 

dxA

dt
1 2 

dxB

dt
1

dxC

dt
5 0    or    2vA 1 2vB 1 vC 5 0

 2 

dvA

dt
1 2 

dvB

dt
1

dvC

dt
5 0    or    2aA 1 2aB 1 aC 5 0

Fig. 11.8

 xA

 xB

A

B

C D

E F

G

Fig. 11.9

A

B

C  xB

 xC xA

11.6 Motion of Several Particles
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620

SAMPLE PROBLEM 11.4

A ball is thrown vertically upward from the 12-m level in an elevator shaft 
with an initial velocity of 18 m/s. At the same instant an open-platform ele-
vator passes the 5-m level, moving upward with a constant velocity of 2 m/s. 
Determine (a) when and where the ball will hit the elevator, (b) the relative 
velocity of the ball with respect to the elevator when the ball hits the 
elevator.

SOLUTION

Motion of Ball. Since the ball has a constant acceleration, its motion is 
uniformly accelerated. Placing the origin O of the y axis at ground level and 
choosing its positive direction upward, we find that the initial position is 
y0 5 112 m, the initial velocity is v0 5 118 m/s, and the acceleration is 
a 5 29.81 m/s2. Substituting these values in the equations for uniformly 
accelerated motion, we write

 vB 5 v0 1 at vB 5 18 2 9.81t  (1)
 yB 5 y0 1 v0t 1 1

2 
at2   yB 5 12 1 18t 2 4.905t2 (2)

Motion of Elevator. Since the elevator has a constant velocity, its motion 
is uniform. Again placing the origin O at the ground level and choosing the 
positive direction upward, we note that y0 5 15 m and write

 vE 5 12 m/s (3)
 yE 5 y0 1 vE t  yE 5 5 1 2t (4)

Ball Hits Elevator. We first note that the same time t and the same origin 
O were used in writing the equations of motion of both the ball and the 
elevator. We see from the figure that when the ball hits the elevator,

 yE 5 yB (5)

Substituting for yE and yB from (2) and (4) into (5), we have

5 1 2t 5 12 1 18t 2 4.905t2

 t 5 20.39 s  and t 5 3.65 s ◀

Only the root t 5 3.65 s corresponds to a time after the motion has begun. 
Substituting this value into (4), we have

yE 5 5 1 2(3.65) 5 12.30 m
Elevation from ground 5 12.30 m ◀

The relative velocity of the ball with respect to the elevator is

vB/E 5 vB 2 vE 5 (18 2 9.81t) 2 2 5 16 2 9.81t

When the ball hits the elevator at time t 5 3.65 s, we have

vB/E 5 16 2 9.81(3.65)  vB/E 5 219.81 m/s ◀

The negative sign means that the ball is observed from the elevator to be 
moving in the negative sense (downward).

t = t

t = 0

yB
a = –9.81 m/s2

v0 = 18 m/s

vE = 2 m/s

y0 = 12 m

O

t = t

yE

y0 = 5 m
O

yB yE

O

t = 0
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SAMPLE PROBLEM 11.5

Collar A and block B are connected by a cable passing over three pulleys 
C, D, and E as shown. Pulleys C and E are fixed, while D is attached to a 
collar which is pulled downward with a constant velocity of 3 in./s. At t 5 0, 
collar A starts moving downward from position K with a constant accelera-
tion and no initial velocity. Knowing that the velocity of collar A is 12 in./s 
as it passes through point L, determine the change in elevation, the velocity, 
and the acceleration of block B when collar A passes through L.

SOLUTION

Motion of Collar A. We place the origin O at the upper horizontal sur-
face and choose the positive direction downward. We observe that when 
t 5 0, collar A is at the position K and (vA)0 5 0. Since vA 5 12 in./s 
and xA 2 (xA)0 5 8 in. when the collar passes through L, we write

 v2
A 5 (vA)2

0 1 2aA[xA 2 (xA)0]    (12)2 5 0 1 2aA(8)
 aA 5 9 in./s2

The time at which collar A reaches point L is obtained by writing

vA 5 (vA)0 1 aAt  12 5 0 1 9t  t 5 1.333 s

Motion of Pulley D. Recalling that the positive direction is downward, 
we write

aD 5 0  vD 5 3 in./s  xD 5 (xD)0 1 vDt 5 (xD)0 1 3t

When collar A reaches L, at t 5 1.333 s, we have

xD 5 (xD)0 1 3(1.333) 5 (xD)0 1 4

Thus, xD 2 (xD)0 5 4 in.

Motion of Block B. We note that the total length of cable ACDEB differs 
from the quantity (xA 1 2xD 1 xB) only by a constant. Since the cable length 
is constant during the motion, this quantity must also remain constant. Thus, 
considering the times t 5 0 and t 5 1.333 s, we write

 xA 1 2xD 1 xB 5 (xA)0 1 2(xD)0 1 (xB)0 (1)
 [xA 2 (xA)0] 1 2[xD 2 (xD)0] 1 [xB 2 (xB)0] 5 0 (2)

But we know that xA 2 (xA)0 5 8 in. and xD 2 (xD)0 5 4 in.; substituting 
these values in (2), we find

8 1 2(4) 1 [xB 2 (xB)0] 5 0  xB 2 (xB)0 5 216 in.

Thus: Change in elevation of B 5 16 in.x ◀

Differentiating (1) twice, we obtain equations relating the velocities and the 
accelerations of A, B, and D. Substituting for the velocities and accelerations 
of A and D at t 5 1.333 s, we have

vA 1 2vD 1 vB 5 0:  12 1 2(3) 1 vB 5 0 
 vB 5 218 in./s  vB 5 18 in./sx ◀

aA 1 2aD 1 aB 5 0:  9 1 2(0) 1 aB 5 0 
 aB 5 29 in./s2  aB 5 9 in./s2

x ◀

C E

K

L

A

B

D
8 in.

A

O

L

K

C E

A
B

D

D

8 in.

xA
aA

(xA)0

xA xB

xD

vA = 12 in./s

O

(xD)0

xD

vD = 3 in./s

O
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we derived the equations that describe uniform rectilinear motion 
(constant velocity) and uniformly accelerated rectilinear motion (constant accel-

eration). We also introduced the concept of relative motion. The equations for 
relative motion [Eqs. (11.9) to (11.11)] can be applied to the independent or 
dependent motions of any two particles moving along the same straight line.

A. Independent motion of one or more particles. The solution of problems of 
this type should be organized as follows:

1. Begin your solution by listing the given information, sketching the system, and 
selecting the origin and the positive direction of the coordinate axis [Sample 
Prob. 11.4]. It is always advantageous to have a visual representation of problems 
of this type.

2. Write the equations that describe the motions of the various particles as 
well as those that describe how these motions are related [Eq. (5) of Sample 
Prob. 11.4].

3. Define the initial conditions, i.e., specify the state of the system corresponding 
to t 5 0. This is especially important if the motions of the particles begin at dif-
ferent times. In such cases, either of two approaches can be used.
 a. Let t 5 0 be the time when the last particle begins to move. You must then 
determine the initial position x0 and the initial velocity v0 of each of the other 
particles.
 b. Let t 5 0 be the time when the first particle begins to move. You must 
then, in each of the equations describing the motion of another particle, replace 
t with t 2 t0, where t0 is the time at which that specific particle begins to move. 
It is important to recognize that the equations obtained in this way are valid only 
for t $ t0.
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B. Dependent motion of two or more particles. In problems of this type the 
particles of the system are connected to each other, typically by ropes or by cables. 
The method of solution of these problems is similar to that of the preceding group 
of problems, except that it will now be necessary to describe the physical connec-
tions between the particles. In the following problems, the connection is provided 
by one or more cables. For each cable, you will have to write equations similar to 
the last three equations of Sec. 11.6. We suggest that you use the following 
procedure:

1. Draw a sketch of the system and select a coordinate system, indicating 
clearly a positive sense for each of the coordinate axes. For example, in Sample 
Prob. 11.5 lengths are measured downward from the upper horizontal support. It 
thus follows that those displacements, velocities, and accelerations which have 
positive values are directed downward.

2. Write the equation describing the constraint imposed by each cable on the 
motion of the particles involved. Differentiating this equation twice, you will obtain 
the corresponding relations among velocities and accelerations.

3. If several directions of motion are involved, you must select a coordinate 
axis and a positive sense for each of these directions. You should also try to locate 
the origins of your coordinate axes so that the equations of constraints will be as 
simple as possible. For example, in Sample Prob. 11.5 it is easier to define the 
various coordinates by measuring them downward from the upper support than 
by measuring them upward from the bottom support.

Finally, keep in mind that the method of analysis described in this lesson and 
the corresponding equations can be used only for particles moving with uniform 
or uniformly accelerated rectilinear motion.
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PROBLEMS
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 11.33 A motorist enters a freeway at 45 km/h and accelerates uniformly 
to 99 km/h. From the odometer in the car, the motorist knows 
that she traveled 0.2 km while accelerating. Determine (a) the 
acceleration of the car, (b) the time required to reach 99 km/h.

 11.34 A truck travels 220 m in 10 s while being decelerated at a constant 
rate of 0.6 m/s2. Determine (a) its initial velocity, (b) its final veloc-
ity, (c) the distance traveled during the first 1.5 s.

v0 = 45 km/h

 Fig. P11.33  

v0
a = 0.6 m/s2

 Fig. P11.34  

 11.35 Assuming a uniform acceleration of 11 ft/s2 and knowing that the 
speed of a car as it passes A is 30 mi/h, determine (a) the time 
required for the car to reach B, (b) the speed of the car as it 
passes B.

vA = 30 mi/h

A B

160 ft

 Fig. P11.35  

v1

89.6 ft

 Fig. P11.36  

v

 Fig. P11.37  

 11.36 A group of students launches a model rocket in the vertical direc-
tion. Based on tracking data, they determine that the altitude of 
the rocket was 89.6 ft at the end of the powered portion of the 
flight and that the rocket landed 16 s later. Knowing that the 
descent parachute failed to deploy so that the rocket fell freely 
to the ground after reaching its maximum altitude and assuming 
that g 5 32.2 ft/s2, determine (a) the speed v1 of the rocket at 
the end of powered flight, (b) the maximum altitude reached by 
the rocket.

 11.37 A sprinter in a 100-m race accelerates uniformly for the first 35 m 
and then runs with constant velocity. If the sprinter’s time for the 
first 35 m is 5.4 s, determine (a) his acceleration, (b) his final 
velocity, (c) his time for the race.
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625Problems 11.38 A small package is released from rest at A and moves along the 
skate wheel conveyor ABCD. The package has a uniform accelera-
tion of 4.8 m/s2 as it moves down sections AB and CD, and its 
velocity is constant between B and C. If the velocity of the package 
at D is 7.2 m/s, determine (a) the distance d between C and D, 
(b) the time required for the package to reach D.

B

A

C

D

3 m

3 m
d

 Fig. P11.38  

 11.39 A police officer in a patrol car parked in a 70 km/h speed zone 
observes a passing automobile traveling at a slow, constant speed. 
Believing that the driver of the automobile might be intoxicated, 
the officer starts his car, accelerates uniformly to 90 km/h in 8 s, 
and, maintaining a constant velocity of 90 km/h, overtakes the 
motorist 42 s after the automobile passed him. Knowing that 18 s 
elapsed before the officer began pursuing the motorist, determine 
(a) the distance the officer traveled before overtaking the motorist, 
(b) the motorist’s speed.

 11.40 As relay runner A enters the 20-m-long exchange zone with a 
speed of 12.9 m/s, he begins to slow down. He hands the baton to 
runner B 1.82 s later as they leave the exchange zone with the 
same velocity. Determine (a) the uniform acceleration of each of 
the runners, (b) when runner B should begin to run.

A B

x

(vA)0 = 24 mi/h (vB)0 = 36 mi/h

75 ft

 Fig. P11.41  

A B

(vA)0 = 12.9 m/s

(vB)0 = 0

20 m

 Fig. P11.40  

 11.41 Automobiles A and B are traveling in adjacent highway lanes and 
at t 5 0 have the positions and speeds shown. Knowing that 
automobile A has a constant acceleration of 1.8 ft/s2 and that B 
has a constant deceleration of 1.2 ft/s2, determine (a) when and 
where A will overtake B, (b) the speed of each automobile at 
that time.
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626 Kinematics of Particles  11.42 In a boat race, boat A is leading boat B by 120 ft and both boats 
are traveling at a constant speed of 105 mi/h. At t 5 0, the boats 
accelerate at constant rates. Knowing that when B passes A, t 5 8 s 
and vA 5 135 mi/h, determine (a) the acceleration of A, (b) the 
acceleration of B.

vA

(vB)0 = 0

A

B 6 m

 Fig. P11.43  

A

B

120 ft

vB

vA

 Fig. P11.42  

A B

P Q

vB = 63 km/hvA = 108 km/h

1 km

 Fig. P11.44  

 11.43 Boxes are placed on a chute at uniform intervals of time tR and 
slide down the chute with uniform acceleration. Knowing that as 
any box B is released, the preceding box A has already slid 6 m 
and that 1 s later they are 10 m apart, determine (a) the value of 
tR, (b) the acceleration of the boxes.

 11.44 Two automobiles A and B are approaching each other in adjacent 
highway lanes. At t 5 0, A and B are 1 km apart, their speeds are 
vA 5 108 km/h and vB 5 63 km/h, and they are at points P and 
Q, respectively. Knowing that A passes point Q 40 s after B was 
there and that B passes point P 42 s after A was there, determine 
(a) the uniform accelerations of A and B, (b) when the vehicles 
pass each other, (c) the speed of B at that time.
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627Problems

 11.46 Two blocks A and B are placed on an incline as shown. At t 5 0, 
A is projected up the incline with an initial velocity of 27 ft/s and 
B is released from rest. The blocks pass each other 1 s later, and 
B reaches the bottom of the incline when t 5 3.4 s. Knowing that 
the maximum distance from the bottom of the incline reached by 
block A is 21 ft and that the accelerations of A and B (due to 
gravity and friction) are constant and are directed down the 
incline, determine (a) the accelerations of A and B, (b) the dis-
tance d, (c) the speed of A when the blocks pass each other.

 11.45 Car A is parked along the northbound lane of a highway, and car B 
is traveling in the southbound lane at a constant speed of 60 mi/h. 
At t 5 0, A starts and accelerates at a constant rate aA, while at 
t 5 5 s, B begins to slow down with a constant deceleration of 
magnitude aA/6. Knowing that when the cars pass each other x 5 
294 ft and vA 5 vB, determine (a) the acceleration aA, (b) when 
the vehicles pass each other, (c) the distance d between the vehicles 
at t 5 0.

A B

(vB)0 = 60 mi /h(vA)0 = 0

x

d

 Fig. P11.45  

A

B

(vA)0 = 27 ft /s

(vB)0 = 0

d

 Fig. P11.46  

B

A

C
D

 Fig. P11.47 and P11.48

 11.47 Slider block A moves to the left with a constant velocity of 6 m/s. 
Determine (a) the velocity of block B, (b) the velocity of portion 
D of the cable, (c) the relative velocity of portion C of the cable 
with respect to portion D.

 11.48 Block B starts from rest and moves downward with a constant 
acceleration. Knowing that after slider block A has moved 
400 mm its velocity is 4 m/s, determine (a) the accelerations 
of A and B, (b) the velocity and the change in position of B 
after 2 s.
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628 Kinematics of Particles  11.49 The elevator shown in the figure moves downward with a constant 
velocity of 15 ft/s. Determine (a) the velocity of the cable C, (b) the 
velocity of the counterweight W, (c) the relative velocity of the cable 
C with respect to the elevator, (d) the relative velocity of the coun-
terweight W with respect to the elevator.

W

EC

M

 Fig. P11.49 and P11.50  A

B

C

 Fig. P11.51
and P11.52

 11.50 The elevator shown starts from rest and moves upward with a con-
stant acceleration. If the counterweight W moves through 30 ft in 
5 s, determine (a) the acceleration of the elevator and the cable 
C, (b) the velocity of the elevator after 5 s.

 11.51 Collar A starts from rest and moves upward with a constant accelera-
tion. Knowing that after 8 s the relative velocity of collar B with 
respect to collar A is 24 in./s, determine (a) the accelerations of A 
and B, (b) the velocity and the change in position of B after 6 s.

 11.52 In the position shown, collar B moves downward with a velocity of 
12 in./s. Determine (a) the velocity of collar A, (b) the velocity of 
portion C of the cable, (c) the relative velocity of portion C of the 
cable with respect to collar B.

 11.53 Slider block B moves to the right with a constant velocity of 
300 mm/s. Determine (a) the velocity of slider block A, (b) the 
velocity of portion C of the cable, (c) the velocity of portion D 
of the cable, (d) the relative velocity of portion C of the cable with 
respect to slider block A.

BC

DA

 Fig. P11.53 and P11.54

 11.54 At the instant shown, slider block B is moving with a constant 
acceleration, and its speed is 150 mm/s. Knowing that after slider 
block A has moved 240 mm to the right its velocity is 60 mm/s, 
determine (a) the accelerations of A and B, (b) the acceleration of 
portion D of the cable, (c) the velocity and the change in position 
of slider block B after 4 s.
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629Problems 11.55 Block B moves downward with a constant velocity of 20 mm/s. At 
t 5 0, block A is moving upward with a constant acceleration, and 
its velocity is 30 mm/s. Knowing that at t 5 3 s slider block C has 
moved 57 mm to the right, determine (a) the velocity of slider 
block C at t 5 0, (b) the accelerations of A and C, (c) the change 
in position of block A after 5 s.

C

A

B

 Fig. P11.57 and P11.58

BA  

C

 Fig. P11.55 and P11.56

C

A

D

B

 Fig. P11.59 and P11.60

 11.56 Block B starts from rest, block A moves with a constant accelera-
tion, and slider block C moves to the right with a constant accelera-
tion of 75 mm/s2. Knowing that at t 5 2 s the velocities of B and 
C are 480 mm/s downward and 280 mm/s to the right, respectively, 
determine (a) the accelerations of A and B, (b) the initial velocities 
of A and C, (c) the change in position of slider block C after 3 s.

 11.57 Collar A starts from rest at t 5 0 and moves downward with a 
constant acceleration of 7 in./s2. Collar B moves upward with a 
constant acceleration, and its initial velocity is 8 in./s. Knowing that 
collar B moves through 20 in. between t 5 0 and t 5 2 s, deter-
mine (a) the accelerations of collar B and block C, (b) the time at 
which the velocity of block C is zero, (c) the distance through 
which block C will have moved at that time.

 11.58 Collars A and B start from rest, and collar A moves upward with an 
acceleration of 3t2 in./s2. Knowing that collar B moves downward 
with a constant acceleration and that its velocity is 8 in./s after mov-
ing 32 in., determine (a) the acceleration of block C, (b) the distance 
through which block C will have moved after 3 s.

 11.59 The system shown starts from rest, and each component moves with 
a constant acceleration. If the relative acceleration of block C with 
respect to collar B is 60 mm/s2 upward and the relative acceleration 
of block D with respect to block A is 110 mm/s2 downward, deter-
mine (a) the velocity of block C after 3 s, (b) the change in position 
of block D after 5 s.

 *11.60 The system shown starts from rest, and the length of the upper 
cord is adjusted so that A, B, and C are initially at the same level. 
Each component moves with a constant acceleration, and after 2 s 
the relative change in position of block C with respect to block A 
is 280 mm upward. Knowing that when the relative velocity of 
collar B with respect to block A is 80 mm/s downward, the dis-
placements of A and B are 160 mm downward and 320 mm down-
ward, respectively, determine (a) the accelerations of A and B if 
aB . 10 mm/s2, (b) the change in position of block D when the 
velocity of block C is 600 mm/s upward.
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630 Kinematics of Particles *11.7  GRAPHICAL SOLUTION OF RECTILINEAR-
MOTION PROBLEMS

It was observed in Sec. 11.2 that the fundamental formulas

v 5
dx
dt

  and   a 5
dv
dt

have a geometrical significance. The first formula expresses that the 
velocity at any instant is equal to the slope of the x–t curve at the 
same instant (Fig. 11.10). The second formula expresses that the accel-

t2t1

x1

x2

t

t2t1 t

t2t1 t

x

v2

v1

v

a

Area

Area

v2 − v1 =       �
t1

t2

x2 − x1 =        �
t1

t2

      a dt 

       v dt 

Fig. 11.11

eration is equal to the slope of the v–t curve. These two properties 
can be used to determine graphically the v–t and a–t curves of a 
motion when the x–t curve is known.
 Integrating the two fundamental formulas from a time t1 to a 
time t2, we write

 
x2 2 x1 5 #

t2

t1

 
v dt   and   v2 2 v1 5 #

t2

t1

 
a dt

 
(11.12)

The first formula expresses that the area measured under the v−t 
curve from t1 to t2 is equal to the change in x during that time inter-
val (Fig. 11.11). Similarly, the second formula expresses that the area 
measured under the a–t curve from t1 to t2 is equal to the change 
in v during that time interval. These two properties can be used to 
determine graphically the x–t curve of a motion when its v−t curve 
or its a–t curve is known (see Sample Prob. 11.6).
 Graphical solutions are particularly useful when the motion con-
sidered is defined from experimental data and when x, v, and a are 
not analytical functions of t. They can also be used to advantage when 
the motion consists of distinct parts and when its analysis requires 
writing a different equation for each of its parts. When using a graphi-
cal solution, however, one should be careful to note that (1) the area 
under the v–t curve measures the change in x, not x itself, and simi-
larly, that the area under the a–t curve measures the change in v; 
(2) an area above the t axis corresponds to an increase in x or v, while 
an area located below the t axis measures a decrease in x or v.
 It will be useful to remember in drawing motion curves that if 
the velocity is constant, it will be represented by a horizontal straight 
line; the position coordinate x will then be a linear function of t and 
will be represented by an oblique straight line. If the acceleration is 

Slop
e

Slop
e

dx
dt

 = v

v a

dv
dt

 = a

x v a

ttt t1t1t1

x

Fig. 11.10
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631constant and different from zero, it will be represented by a hori-
zontal straight line; v will then be a linear function of t, represented 
by an oblique straight line, and x will be expressed as a second-degree 
polynomial in t, represented by a parabola. If the acceleration is a 
linear function of t, the velocity and the position coordinate will be 
equal, respectively, to second-degree and third-degree polynomials; 
a will then be represented by an oblique straight line, v by a parab-
ola, and x by a cubic. In general, if the acceleration is a polynomial 
of degree n in t, the velocity will be a polynomial of degree n 1 1 and 
the position coordinate a polynomial of degree n 1 2; these polyno-
mials are represented by motion curves of a corresponding degree.

*11.8 OTHER GRAPHICAL METHODS
An alternative graphical solution can be used to determine the posi-
tion of a particle at a given instant directly from the a–t curve. 
Denoting the values of x and v at t 5 0 as x0 and v0 and their values 
at t 5 t1 as x1 and v1, and observing that the area under the v–t 
curve can be divided into a rectangle of area v0 t1 and horizontal dif-
ferential elements of area (t1 2 t) dv (Fig. 11.12a), we write

x1 2 x0 5 area under v  – t curve 5 v0 
t1 1 #

v1

v0

 
(t1 2 t) dv

Substituting dv 5 a dt in the integral, we obtain

x1 2 x0 5 v0 
t1 1 #

t1

0
 
(t1 2 t) a dt

Referring to Fig. 11.12b, we note that the integral represents the 
first moment of the area under the a–t curve with respect to the line 
t 5 t1 bounding the area on the right. This method of solution is 
known, therefore, as the moment-area method. If the abscissa t of 
the centroid C of the area is known, the position coordinate x1 can 
be obtained by writing

 x1 5 x0 1 v0 t1 1 (area under a–t curve)(t1 2 t) (11.13)

If the area under the a–t curve is a composite area, the last term 
in (11.13) can be obtained by multiplying each component area by 
the distance from its centroid to the line t 5 t1. Areas above the t 
axis should be considered as positive and areas below the t axis as 
negative.
 Another type of motion curve, the v−x curve, is sometimes used. 
If such a curve has been plotted (Fig. 11.13), the acceleration a can 
be obtained at any time by drawing the normal AC to the curve and 
measuring the subnormal BC. Indeed, observing that the angle between 
AC and AB is equal to the angle u between the horizontal and the 
tangent at A (the slope of which is tan u 5 dv/dx), we write

BC 5 AB tan u 5 v
dv
dx

and thus, recalling formula (11.4),

BC 5 a Fig. 11.13

v

x
B C

A

θ

Slope =
 ta

n q =
dv

dx

v

a

θ

Fig. 11.12

v

v

v1

t1

t1 – t

v0

O tt

a

tt t1

dv

(a)

(b)

dt
Ca

t1 – t

t1 –t t

11.8 Other Graphical Methods
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SAMPLE PROBLEM 11.6

A subway car leaves station A; it gains speed at the rate of 4 ft/s2 for 6 s 
and then at the rate of 6 ft/s2 until it has reached the speed of 48 ft/s. The 
car maintains the same speed until it approaches station B; brakes are then 
applied, giving the car a constant deceleration and bringing it to a stop in 
6 s. The total running time from A to B is 40 s. Draw the a−t, v−t, and x−t 
curves, and determine the distance between stations A and B.

SOLUTION

Acceleration-Time Curve. Since the acceleration is either constant or zero, 
the a−t curve is made of horizontal straight-line segments. The values of t2 
and a4 are determined as follows:

0 , t , 6: Change in v 5 area under a – t curve
    v6 2 0 5 (6 s)(4 ft/s2) 5 24 ft/s
6 , t , t2: Since the velocity increases from 24 to 48 ft/s,
  Change in v 5 area under a – t curve

48 ft/s 2 24 ft/s 5 (t2 2 6)(6 ft/s2)  t2 5 10 s
t2 , t , 34: Since the velocity is constant, the acceleration is zero.
34 , t , 40: Change in v 5 area under a – t curve
  0 2 48 ft/s 5 (6 s)a4  a4 5 28 ft/s2

The acceleration being negative, the corresponding area is below the t axis; 
this area represents a decrease in velocity.

Velocity-Time Curve. Since the acceleration is either constant or zero, the 
v−t curve is made of straight-line segments connecting the points deter-
mined above.

Change in x 5 area under v−t curve

 0 , t , 6: x6 2 0 5 1
2(6)(24) 5 72 ft

 6 , t , 10: x10 2 x6 5 1
2(4)(24 1 48) 5 144 ft

10 , t , 34: x34 2 x10 5 (24)(48) 5 1152 ft
34 , t , 40: x40 2 x34 5 1

2(6)(48) 5 144 ft

Adding the changes in x, we obtain the distance from A to B:

 d 5 x40 2 0 5 1512 ft
 d 5 1512 ft ◀

Position-Time Curve. The points determined above should be joined by 
three arcs of parabola and one straight-line segment. In constructing the 
x−t curve, keep in mind that for any value of t the slope of the tangent to 
the x−t curve is equal to the value of v at that instant.

A B

x
d

8

a (ft/s2)

t2

a4

6

6
34 40

4

2

0

–8

–6

–4

–2
t (s)

60 10 34 40

48

24

v (ft /s)

t (s)

0 6 10 4034

x (ft)

1512 ft

t (s)
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633

SOLVING PROBLEMS
ON YOUR OWN

In this lesson (Secs. 11.7 and 11.8), we reviewed and developed several graphical 
techniques for the solution of problems involving rectilinear motion. These tech-

niques can be used to solve problems directly or to complement analytical methods 
of solution by providing a visual description, and thus a better understanding, of 
the motion of a given body. We suggest that you sketch one or more motion curves 
for several of the problems in this lesson, even if these problems are not part of 
your homework assignment.

1. Drawing x−t, v−t, and a−t curves and applying graphical methods. The 
following properties were indicated in Sec. 11.7 and should be kept in mind as 
you use a graphical method of solution.
 a. The slopes of the x−t and v−t curves at a time t1 are respectively equal 
to the velocity and the acceleration at time t1.
 b. The areas under the a−t and v−t curves between the times t1 and t2 are 
respectively equal to the change ¢v in the velocity and to the change ¢x in the 
position coordinate during that time interval.
 c. If one of the motion curves is known, the fundamental properties we have 
summarized in paragraphs a and b will enable you to construct the other two 
curves. However, when using the properties of paragraph b, the velocity and the 
position coordinate at time t1 must be known in order to determine the velocity 
and the position coordinate at time t2. Thus, in Sample Prob. 11.6, knowing that 
the initial value of the velocity was zero allowed us to find the velocity at t 5 6 s: 
v6 5 v0 1 ¢v 5 0 1 24 ft/s 5 24 ft/s.

If you have previously studied the shear and bending-moment diagrams for a 
beam, you should recognize the analogy that exists between the three motion 
curves and the three diagrams representing respectively the distributed load, the 
shear, and the bending moment in the beam. Thus, any techniques that you learned 
regarding the construction of these diagrams can be applied when drawing the 
motion curves.

2. Using approximate methods. When the a–t and v–t curves are not repre-
sented by analytical functions or when they are based on experimental data, it is 
often necessary to use approximate methods to calculate the areas under these 
curves. In those cases, the given area is approximated by a series of rectangles of 
width ¢t. The smaller the value of ¢t, the smaller the error introduced by the 
approximation. The velocity and the position coordinate are obtained by writing

v 5 v0 1 oaave ¢t  x 5 x0 1 ovave ¢t

where aave and vave are the heights of an acceleration rectangle and a velocity 
rectangle, respectively.

(continued)
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3. Applying the moment-area method. This graphical technique is used when 
the a−t curve is given and the change in the position coordinate is to be determined. 
We found in Sec. 11.8 that the position coordinate x1 can be expressed as

 x1 5 x0 1 v0t1 1 (area under a – t curve)(t1 2 t) (11.13)

Keep in mind that when the area under the a−t curve is a composite area, the 
same value of t1 should be used for computing the contribution of each of the 
component areas.

4. Determining the acceleration from a v–x curve. You saw in Sec. 11.8 that 
it is possible to determine the acceleration from a v–x curve by direct measure-
ment. It is important to note, however, that this method is applicable only if the 
same linear scale is used for the v and x axes (for example, 1 in. 5 10 ft and 1 in. 5 
10 ft/s). When this condition is not satisfied, the acceleration can still be deter-
mined from the equation

a 5 v 

dv
dx

where the slope dv/dx is obtained as follows: First, draw the tangent to the curve at 
the point of interest. Next, using appropriate scales, measure along that tangent cor-
responding increments ¢x and ¢v. The desired slope is equal to the ratio ¢v/¢x.
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PROBLEMS
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 11.61 A particle moves in a straight line with the acceleration shown in 
the figure. Knowing that it starts from the origin with v0 5 218 ft/s, 
(a) plot the v–t and x–t curves for 0 , t , 20 s, (b) determine its 
velocity, its position, and the total distance traveled when t 5 12 s.

 11.62 For the particle and motion of Problem 11.61, plot the v–t and x–t
curves for 0 , t , 20 s and determine (a) the maximum value of 
the velocity of the particle, (b) the maximum value of its position 
coordinate.

 11.63 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 ft at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the total dis-
tance traveled by the particle when t 5 50 s, (c) the two times at 
which x 5 0.

6
3
0

10
4 t(s)

–5

a (ft/s2)

 Fig. P11.61  

60

–20
–5

t (s)

v (ft /s)

26 41 46
10

 Fig. P11.63  

v

 Fig. P11.65

 11.64 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 ft at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the maximum 
value of the position coordinate of the particle, (c) the values of t 
for which the particle is at x 5 100 ft.

 11.65 A parachutist is in free fall at a rate of 200 km/h when he opens 
his parachute at an altitude of 600 m. Following a rapid and con-
stant deceleration, he then descends at a constant rate of 50 km/h 
from 586 m to 30 m, where he maneuvers the parachute into the 
wind to further slow his descent. Knowing that the parachutist 
lands with a negligible downward velocity, determine (a) the time 
required for the parachutist to land after opening his parachute, 
(b) the initial deceleration.

 11.66 A machine component is spray-painted while it is mounted on a 
pallet that travels 4 m in 20 s. The pallet has an initial velocity of 
80 mm/s and can be accelerated at a maximum rate of 60 mm/s2. 
Knowing that the painting process requires 15 s to complete and 
is performed as the pallet moves with a constant speed, determine 
the smallest possible value of the maximum speed of the pallet.
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636 Kinematics of Particles  11.67 A temperature sensor is attached to slider AB which moves back 
and forth through 60 in. The maximum velocities of the slider are 
12 in./s to the right and 30 in./s to the left. When the slider is 
moving to the right, it accelerates and decelerates at a constant rate 
of 6 in./s2; when moving to the left, the slider accelerates and 
decelerates at a constant rate of 20 in./s2. Determine the time 
required for the slider to complete a full cycle, and construct the 
v–t and x–t curves of its motion.

 11.68 A commuter train traveling at 40 mi/h is 3 mi from a station. The 
train then decelerates so that its speed is 20 mi/h when it is 0.5 mi 
from the station. Knowing that the train arrives at the station 
7.5 min after beginning to decelerate and assuming constant 
decelerations, determine (a) the time required for the train to 
travel the first 2.5 mi, (b) the speed of the train as it arrives at the 
station, (c) the final constant deceleration of the train.

x

A B

60 in.

 Fig. P11.67  

A C B
4 km8 km

 Fig. P11.69

40 mi/h
3 mi

 Fig. P11.68

 11.69 Two road rally checkpoints A and B are located on the same high-
way and are 12 km apart. The speed limits for the first 8 km and 
the last 4 km of the section of highway are 100 km/h and 70 km/h, 
respectively. Drivers must stop at each checkpoint, and the speci-
fied time between points A and B is 8 min 20 s. Knowing that a 
driver accelerates and decelerates at the same constant rate, deter-
mine the magnitude of her acceleration if she travels at the speed 
limit as much as possible.

 11.70 In a water-tank test involving the launching of a small model boat, 
the model’s initial horizontal velocity is 6 m/s and its horizontal 
acceleration varies linearly from 212 m/s2 at t 5 0 to 22 m/s2 at 
t 5 t1 and then remains equal to 22 m/s2 until t 5 1.4 s. Know-
ing that v 5 1.8 m/s when t 5 t1, determine (a) the value of t1, 
(b) the velocity and the position of the model at t 5 1.4 s.

x

v0 = 6 m/s

 Fig. P11.70
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637Problems 11.71 A car and a truck are both traveling at the constant speed of 35 mi/h; 
the car is 40 ft behind the truck. The driver of the car wants to 
pass the truck, i.e., he wishes to place his car at B, 40 ft in front 
of the truck, and then resume the speed of 35 mi/h. The maximum 
acceleration of the car is 5 ft/s2 and the maximum deceleration 
obtained by applying the brakes is 20 ft/s2. What is the shortest 
time in which the driver of the car can complete the passing opera-
tion if he does not at any time exceed a speed of 50 mi/h? Draw 
the v–t curve.

A B

16 ft
40 ft 50 ft 40 ft

 Fig. P11.71

A (vA)0

(vB)0

(vA)0

380 ft

B
(vB)0

 Fig. P11.75

0.75

6 8
0

10

12 14 20 t(s)
–0.75

a (m/s2)

 Fig. P11.74

12 m

 Fig. P11.73

 11.72 Solve Prob. 11.71, assuming that the driver of the car does not pay 
any attention to the speed limit while passing and concentrates on 
reaching position B and resuming a speed of 35 mi/h in the short-
est possible time. What is the maximum speed reached? Draw the 
v–t curve.

 11.73 An elevator starts from rest and moves upward, accelerating at a 
rate of 1.2 m/s2 until it reaches a speed of 7.8 m/s, which it then 
maintains. Two seconds after the elevator begins to move, a man 
standing 12 m above the initial position of the top of the elevator 
throws a ball upward with an initial velocity of 20 m/s. Determine 
when the ball will hit the elevator.

 11.74 The acceleration record shown was obtained for a small airplane 
traveling along a straight course. Knowing that x 5 0 and v 5 
60 m/s when t 5 0, determine (a) the velocity and position of the 
plane at t 5 20 s, (b) its average velocity during the interval 6 s , 
t , 14 s.

 11.75 Car A is traveling on a highway at a constant speed (vA)05 60 mi/h 
and is 380 ft from the entrance of an access ramp when car B 
enters the acceleration lane at that point at a speed (vB)0 5 15 mi/h.
Car B accelerates uniformly and enters the main traffic lane after 
traveling 200 ft in 5 s. It then continues to accelerate at the same 
rate until it reaches a speed of 60 mi/h, which it then maintains. 
Determine the final distance between the two cars.
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638 Kinematics of Particles  11.76 Car A is traveling at 40 mi/h when it enters a 30 mi/h speed zone. 
The driver of car A decelerates at a rate of 16 ft/s2 until reaching a 
speed of 30 mi/h, which she then maintains. When car B, which 
was initially 60 ft behind car A and traveling at a constant speed of 
45 mi/h, enters the speed zone, its driver decelerates at a rate of 
20 ft/s2 until reaching a speed of 28 mi/h. Knowing that the driver 
of car B maintains a speed of 28 mi/h, determine (a) the closest that 
car B comes to car A, (b) the time at which car A is 70 ft in front 
of car B.

2

0
21

4.5 t(s)t1

–6

a (m/s2)

 Fig. P11.77

B A

60 ft

(vB)0 = 45 mi/h (vA)0 = 40 mi/h

 Fig. P11.76

 11.77 A car is traveling at a constant speed of 54 km/h when its driver 
sees a child run into the road. The driver applies her brakes until 
the child returns to the sidewalk and then accelerates to resume 
her original speed of 54 km/h; the acceleration record of the car 
is shown in the figure. Assuming x 5 0 when t 5 0, determine 
(a) the time t1 at which the velocity is again 54 km/h, (b) the posi-
tion of the car at that time, (c) the average velocity of the car 
during the interval 1 s # t # t1.

 11.78 As shown in the figure, from t 5 0 to t 5 4 s the acceleration of 
a given particle is represented by a parabola. Knowing that x 5 0 
and v 5 8 m/s when t 5 0, (a) construct the v–t and x–t curves 
for 0 , t , 4 s, (b) determine the position of the particle at 
t 5 3s. (Hint: Use table inside the front cover.)

 11.79 During a manufacturing process, a conveyor belt starts from rest 
and travels a total of 1.2 ft before temporarily coming to rest. 
Knowing that the jerk, or rate of change of acceleration, is limited 
to 64.8 ft/s2 per second, determine (a) the shortest time required 
for the belt to move 1.2 ft, (b) the maximum and average values of 
the velocity of the belt during that time.

42

t(s)

a = – 3 (t – 2)2 m/s2

–12

a (m/s2)

 Fig. P11.78
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639Problems 11.80 An airport shuttle train travels between two terminals that are 
1.6 mi apart. To maintain passenger comfort, the acceleration of 
the train is limited to 64 ft/s2, and the jerk, or rate of change of 
acceleration, is limited to 60.8 ft/s2 per second. If the shuttle has 
a maximum speed of 20 mi/h, determine (a) the shortest time for 
the shuttle to travel between the two terminals, (b) the corre-
sponding average velocity of the shuttle.

 11.81 The acceleration record shown was obtained during the speed tri-
als of a sports car. Knowing that the car starts from rest, determine 
by approximate means (a) the velocity of the car at t 5 8s, (b) the 
distance the car has traveled at t 5 20 s.

a (m/s2)

t (s)

6.0

7.0

5.0

4.0

3.0

2.0

1.0

0
0 2 4 6 8 10 12 14 16 18 20 22

 Fig. P11.81
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3.0

2.0

1.0

0

–a (m/s2)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

 Fig. P11.82

 11.82 Two seconds are required to bring the piston rod of an air cylinder 
to rest; the acceleration record of the piston rod during the 2 s is 
as shown. Determine by approximate means (a) the initial velocity 
of the piston rod, (b) the distance traveled by the piston rod as it 
is brought to rest.
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640 Kinematics of Particles  11.83 A training airplane has a velocity of 126 ft/s when it lands on an 
aircraft carrier. As the arresting gear of the carrier brings the air-
plane to rest, the velocity and the acceleration of the airplane are 
recorded; the results are shown (solid curve) in the figure. Deter-
mine by approximate means (a) the time required for the airplane 
to come to rest, (b) the distance traveled in that time.
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 Fig. P11.84
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a (ft/s2)

t1
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 Fig. P11.87

 11.84 Shown in the figure is a portion of the experimentally determined 
v–x curve for a shuttle cart. Determine by approximate means the 
acceleration of the cart (a) when x 5 10 in., (b) when v 5 80 in./s.

 11.85 Using the method of Sec. 11.8, derive the formula x 5 x0 1 v0t 1 
1
2 at2 for the position coordinate of a particle in uniformly accelerated 
rectilinear motion.

 11.86 Using the method of Sec. 11.8, determine the position of the par-
ticle of Prob. 11.61 when t 5 14.

 11.87 While testing a new lifeboat, an accelerometer attached to the boat 
provides the record shown. If the boat has a velocity of 7.5 ft/s 
at t 5 0 and is at rest at time t1, determine, using the method of 
Sec. 11.8, (a) the time t1, (b) the distance through which the boat 
moves before coming to rest.

 11.88 For the particle of Prob. 11.63, draw the a–t curve and determine, 
using the method of Sec. 11.8, (a) the position of the particle when 
t 5 52 s, (b) the maximum value of its position coordinate.
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641CURVILINEAR MOTION OF PARTICLES

11.9  POSITION VECTOR, VELOCITY, 
AND ACCELERATION

When a particle moves along a curve other than a straight line, we say 
that the particle is in curvilinear motion. To define the position P occu-
pied by the particle at a given time t, we select a fixed reference system, 
such as the x, y, z axes shown in Fig. 11.14a, and draw the vector r 
joining the origin O and point P. Since the vector r is characterized by its 
magnitude r and its direction with respect to the reference axes, it com-
pletely defines the position of the particle with respect to those axes; the 
vector r is referred to as the position vector of the particle at time t.
 Consider now the vector r9 defining the position P9 occupied by 
the same particle at a later time t 1 ¢t. The vector ¢r joining P and 
P9 represents the change in the position vector during the time interval 
¢t since, as we can easily check from Fig. 11.14a, the vector r9 is 
obtained by adding the vectors r and ¢r according to the triangle 
rule. We note that ¢r represents a change in direction as well as a 
change in magnitude of the position vector r. The average velocity of 
the particle over the time interval ¢t is defined as the quotient of ¢r 
and ¢t. Since ¢r is a vector and ¢t is a scalar, the quotient ¢r/¢t is 
a vector attached at P, of the same direction as ¢r and of magnitude 
equal to the magnitude of ¢r divided by ¢t (Fig. 11.14b).
 The instantaneous velocity of the particle at time t is obtained 
by choosing shorter and shorter time intervals ¢t and, correspond-
ingly, shorter and shorter vector increments ¢r. The instantaneous 
velocity is thus represented by the vector

 
v 5 lim

¢ty0
 
¢r
¢t  

(11.14)

As ¢t and ¢r become shorter, the points P and P9 get closer; the 
vector v obtained in the limit must therefore be tangent to the path 
of the particle (Fig. 11.14c).
 Since the position vector r depends upon the time t, we can 
refer to it as a vector function of the scalar variable t and denote it 
by r(t). Extending the concept of derivative of a scalar function intro-
duced in elementary calculus, we will refer to the limit of the quo-
tient ¢r/¢t as the derivative of the vector function r(t). We write

 
v 5

dr
dt  

(11.15)

 The magnitude v of the vector v is called the speed of the particle. 
It can be obtained by substituting for the vector ¢r in formula (11.14) 
the magnitude of this vector represented by the straight-line segment 
PP9. But the length of the segment PP9 approaches the length ¢s of 
the arc PP9 as ¢t decreases (Fig. 11.14a), and we can write

 
v 5 lim

¢ty0
 
PP ¿
¢t

5 lim
¢ty0

 
¢s
¢t

    v 5
ds
dt  

(11.16)

11.9 Position Vector, Velocity, and Acceleration

Fig. 11.14
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642 Kinematics of Particles

The speed v can thus be obtained by differentiating with respect to t 
the length s of the arc described by the particle.
 Consider the velocity v of the particle at time t and its velocity v9 
at a later time t 1 ¢t (Fig. 11.15a). Let us draw both vectors v and v9 
from the same origin O9 (Fig. 11.15b). The vector ¢v joining Q and 
Q9 represents the change in the velocity of the particle during the time 
interval ¢t, since the vector v9 can be obtained by adding the vectors 
v and ¢v. We should note that ¢v represents a change in the direction 
of the velocity as well as a change in speed. The average acceleration 
of the particle over the time interval ¢t is defined as the quotient of 
¢v and ¢t. Since ¢v is a vector and ¢t a scalar, the quotient ¢v/¢t is 
a vector of the same direction as ¢v.
 The instantaneous acceleration of the particle at time t is 
obtained by choosing smaller and smaller values for ¢t and ¢v. The 
instantaneous acceleration is thus represented by the vector

 
a 5 lim

¢ty0
 
¢v
¢t  

(11.17)

Noting that the velocity v is a vector function v(t) of the time t, we 
can refer to the limit of the quotient ¢v/¢t as the derivative of v 
with respect to t. We write

 
a 5

dv
dt  

(11.18)

 We observe that the acceleration a is tangent to the curve 
described by the tip Q of the vector v when the latter is drawn from 
a fixed origin O9 (Fig. 11.15c) and that, in general, the acceleration 
is not tangent to the path of the particle (Fig. 11.15d). The curve 
described by the tip of v and shown in Fig. 11.15c is called the 
hodograph of the motion.Fig. 11.15
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64311.10 DERIVATIVES OF VECTOR FUNCTIONS
We saw in the preceding section that the velocity v of a particle in 
curvilinear motion can be represented by the derivative of the vector 
function r(t) characterizing the position of the particle. Similarly, the 
acceleration a of the particle can be represented by the derivative 
of the vector function v(t). In this section, we will give a formal 
definition of the derivative of a vector function and establish a few 
rules governing the differentiation of sums and products of vector 
functions.
 Let P(u) be a vector function of the scalar variable u. By that we 
mean that the scalar u completely defines the magnitude and direction 
of the vector P. If the vector P is drawn from a fixed origin O and the 
scalar u is allowed to vary, the tip of P will describe a given curve in 
space. Consider the vectors P corresponding, respectively, to the  values 
u and u 1 ¢u of the scalar variable (Fig. 11.16a). Let ¢P be the vector 
joining the tips of the two given vectors; we write

¢P 5 P(u 1 ¢u) 2 P(u)

Dividing through by ¢u and letting ¢u approach zero, we define the 
derivative of the vector function P(u):

 
dP
du

5 lim
¢uy0

 
¢P
¢u

5 lim
¢uy0

 
P(u 1 ¢u) 2 P(u)

¢u  
(11.19)

As ¢u approaches zero, the line of action of ¢P becomes tangent 
to the curve of Fig. 11.16a. Thus, the derivative dP/du of the vector 
function P(u) is tangent to the curve described by the tip of  P(u) 
(Fig. 11.16b).
 The standard rules for the differentiation of the sums and prod-
ucts of scalar functions can be extended to vector functions. Consider 
first the sum of two vector functions P(u) and Q(u) of the same scalar 
variable u. According to the definition given in (11.19), the derivative 
of the vector P 1 Q is

d(P 1 Q)
du

5 lim
¢uy0

 
¢(P 1 Q)

¢u
5 lim

¢uy0 
a¢P

¢u
1

¢Q
¢u
b

or since the limit of a sum is equal to the sum of the limits of its terms,

d(P 1 Q)
du

5 lim
¢uy0

 
¢P
¢u

1 lim
¢uy0

 
¢Q
¢u

 
d(P 1 Q)

du
5

dP
du

1
dQ
du  

(11.20)

 The product of a scalar function f(u) and a vector function P(u) 
of the same scalar variable u will now be considered. The derivative 
of the vector f P is

d( f P)

du
5 lim

¢uy0
 
( f 1 ¢f )(P 1 ¢P) 2 f P

¢u
5 lim

¢uy0 
a ¢f

¢u
P 1 f 

¢P
¢u
b

11.10 Derivatives of Vector Functions

Fig. 11.16
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644 Kinematics of Particles or recalling the properties of the limits of sums and products,

 

d( f P)

du
5

df

du
 P 1 f 

dP
du  

(11.21)

The derivatives of the scalar product and the vector product of two 
vector functions P(u) and Q(u) can be obtained in a similar way. We 
have

 
 
d(P ? Q)

du
5

dP
du

? Q 1 P ?
dQ
du  

(11.22)

 
 
d(P 3 Q)

du
5

dP
du

3 Q 1 P 3
dQ
du  

(11.23)†

 The properties established above can be used to determine the 
rectangular components of the derivative of a vector function P(u). 
Resolving P into components along fixed rectangular axes x, y, z, we 
write
 P 5 Pxi 1 Pyj 1 Pzk (11.24)

where Px, Py, Pz are the rectangular scalar components of the vector 
P, and i, j, k the unit vectors corresponding, respectively, to the x, y, 
and z axes (Sec. 2.12). By (11.20), the derivative of P is equal to the 
sum of the derivatives of the terms in the right-hand member. Since 
each of these terms is the product of a scalar and a vector function, 
we should use (11.21). But the unit vectors i, j, k have a constant 
magnitude (equal to 1) and fixed directions. Their derivatives are 
therefore zero, and we write

 
dP
du

5
dPx

du
 i 1

dPy

du
 j 1

dPz

du
 k

 
(11.25)

Noting that the coefficients of the unit vectors are, by definition, the 
scalar components of the vector dP/du, we conclude that the rectan-
gular scalar components of the derivative dP/du of the vector func-
tion P(u) are obtained by differentiating the corresponding scalar 
components of P.

Rate of Change of a Vector. When the vector P is a function 
of the time t, its derivative dP/dt represents the rate of change of P 
with respect to the frame Oxyz. Resolving P into rectangular com-
ponents, we have, by (11.25),

dP
dt

5
dPx

dt
 i 1

dPy

dt
 j 1

dPz

dt
 k

or, using dots to indicate differentiation with respect to t,

 Ṗ 5 Ṗxi 1 Ṗyj 1 Ṗzk (11.259)

†Since the vector product is not commutative (Sec. 3.4), the order of the factors in 
Eq. (11.23) must be maintained.
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645 As you will see in Sec. 15.10, the rate of change of a vector as 
observed from a moving frame of reference is, in general, different 
from its rate of change as observed from a fixed frame of reference. 
However, if the moving frame O9x9y9z9 is in translation, i.e., if its 
axes remain parallel to the corresponding axes of the fixed frame 
Oxyz (Fig. 11.17), the same unit vectors i, j, k are used in both 
frames, and at any given instant the vector P has the same compo-
nents Px, Py, Pz in both frames. It follows from (11.259) that the rate of 
change Ṗ is the same with respect to the frames Oxyz and O9x9y9z9. 
We state, therefore: The rate of change of a vector is the same with 
respect to a fixed frame and with respect to a frame in translation. 
This property will greatly simplify our work, since we will be con-
cerned mainly with frames in translation.

11.11  RECTANGULAR COMPONENTS OF VELOCITY 
AND ACCELERATION

When the position of a particle P is defined at any instant by its 
rectangular coordinates x, y, and z, it is convenient to resolve the 
velocity v and the acceleration a of the particle into rectangular com-
ponents (Fig. 11.18).
 Resolving the position vector r of the particle into rectangular 
components, we write

 r 5 xi 1 yj 1 zk (11.26)

where the coordinates x, y, z are functions of t. Differentiating twice, 
we obtain

 
 v 5

dr
dt

5 x
.
i 1 y

.
j 1 z

. k
 

(11.27)

 
 a 5

dv
dt

5 ẍi 1 ÿj 1 z̈k
 

(11.28)

where x. , y. , z.  and ẍ , ÿ , z̈  represent, respectively, the first and second 
derivatives of x, y, and z with respect to t. It follows from (11.27) 
and (11.28) that the scalar components of the velocity and accelera-
tion are
 vx 5 ẋ    vy 5 ẏ    vz 5 ż (11.29)
 ax 5 ẍ    ay 5 ÿ    az 5 z̈ (11.30)

A positive value for vx indicates that the vector component vx is 
directed to the right, and a negative value indicates that it is directed 
to the left. The sense of each of the other vector components can 
be determined in a similar way from the sign of the corresponding 
scalar component. If desired, the magnitudes and directions of the 
velocity and acceleration can be obtained from their scalar compo-
nents by the methods of Secs. 2.7 and 2.12.
 The use of rectangular components to describe the position, 
the velocity, and the acceleration of a particle is particularly effective 
when the component ax of the acceleration depends only upon t, x, 
and/or vx, and when, similarly, ay depends only upon t, y, and/or vy, 

11.11 Rectangular Components of Velocity 
and Acceleration

Fig. 11.17
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646 Kinematics of Particles and az upon t, z, and/or vz. Equations (11.30) can then be integrated 
independently, and so can Eqs. (11.29). In other words, the motion 
of the particle in the x direction, its motion in the y direction, and 
its motion in the z direction can be considered separately.
 In the case of the motion of a projectile, for example, it can be 
shown (see Sec. 12.5) that the components of the acceleration are

ax 5 ẍ 5 0    ay 5 ÿ 5 2g    az 5 z̈ 5 0

if the resistance of the air is neglected. Denoting by x0, y0, and z0 
the coordinates of a gun, and by (vx)0, (vy)0, and (vz)0 the components 
of the initial velocity v0 of the projectile (a bullet), we integrate twice 
in t and obtain

 vx 5 ẋ 5 (vx)0       vy 5 ẏ 5 (vy)0 2 gt        vz 5 ż 5 (vz)0

 x 5 x0 1 (vx)0t      y 5 y0 1 (vy)0t 2 1
2 gt2      z 5 z0 1 (vz)0t

If the projectile is fired in the xy plane from the origin O, we have 
x0 5 y0 5 z0 5 0 and (vz)0 5 0, and the equations of motion 
reduce  to
 vx 5 (vx)0    vy 5 (vy)0 2 gt      vz 5 0
 x 5 (vx)0t    y 5 (vy)0t 2 1

2 gt2    z 5 0

These equations show that the projectile remains in the xy plane, 
that its motion in the horizontal direction is uniform, and that its 
motion in the vertical direction is uniformly accelerated. The motion 
of a projectile can thus be replaced by two independent rectilinear 
motions, which are easily visualized if we assume that the projectile 
is fired vertically with an initial velocity (vy)0 from a platform moving 
with a constant horizontal velocity (vx)0 (Fig. 11.19). The coordinate 
x of the projectile is equal at any instant to the distance traveled by 
the platform, and its coordinate y can be computed as if the projec-
tile were moving along a vertical line.
 It can be observed that the equations defining the coordinates 
x and y of a projectile at any instant are the parametric equations 
of a parabola. Thus, the trajectory of a projectile is parabolic. This 
result, however, ceases to be valid when the resistance of the air 
or the variation with altitude of the acceleration of gravity is taken 
into account.

11.12  MOTION RELATIVE TO A FRAME 
IN TRANSLATION

In the preceding section, a single frame of reference was used to 
describe the motion of a particle. In most cases this frame was 
attached to the earth and was considered as fixed. Situations in 
which it is convenient to use several frames of reference simultane-
ously will now be analyzed. If one of the frames is attached to the 
earth, it will be called a fixed frame of reference, and the other 
frames will be referred to as moving frames of reference. It should 
be understood, however, that the selection of a fixed frame of refer-
ence is purely arbitrary. Any frame can be designated as “fixed”; all 
other frames not rigidly attached to this frame will then be described 
as “moving.”

Fig. 11.19
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Photo 11.3 The motion of this snowboarder in 
the air will be a parabola assuming we can 
neglect air resistance.
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647 Consider two particles A and B moving in space (Fig. 11.20); 
the vectors rA and rB define their positions at any given instant with 
respect to the fixed frame of reference Oxyz. Consider now a sys-
tem of axes x9, y9, z9 centered at A and parallel to the x, y, z axes. 
While the origin of these axes moves, their orientation remains the 
same; the frame of reference Ax9y9z9 is in translation with respect 
to Oxyz. The vector rB/A joining A and B defines the position of B 
relative to the moving frame Ax9y9z9 (or, for short, the position of 
B relative to A).
 We note from Fig. 11.20 that the position vector rB of particle B 
is the sum of the position vector rA of particle A and of the position 
vector rB/A of B relative to A; we write

 rB 5 rA 1 rB/A (11.31)

Differentiating (11.31) with respect to t within the fixed frame of 
reference, and using dots to indicate time derivatives, we have

 ṙB 5 ṙA 1 ṙB/A (11.32)

The derivatives ṙA and ṙB represent, respectively, the velocities vA 
and vB of the particles A and B. Since Ax9y9z9 is in translation, the 
derivative ṙB/A represents the rate of change of rB/A with respect to 
the frame Ax9y9z9 as well as with respect to the fixed frame (Sec. 
11.10). This derivative, therefore, defines the velocity vB/A of B rela-
tive to the frame Ax9y9z9 (or, for short, the velocity vB/A of B relative 
to A). We write

 vB 5 vA 1 vB/A (11.33)

Differentiating Eq. (11.33) with respect to t, and using the derivative 
v̇B/A to define the acceleration aB/A of B relative to the frame Ax9y9z9 
(or, for short, the acceleration aB/A of B relative to A), we write

 aB 5 aA 1 aB/A (11.34)

 The motion of B with respect to the fixed frame Oxyz is 
referred to as the absolute motion of B. The equations derived in 
this section show that the absolute motion of B can be obtained by 
combining the motion of A and the relative motion of B with respect 
to the moving frame attached to A. Equation (11.33), for example, 
expresses that the absolute velocity vB of particle B can be obtained 
by adding vectorially the velocity of A and the velocity of B relative 
to the frame Ax9y9z9. Equation (11.34) expresses a similar property 
in terms of the accelerations.† We should keep in mind, however, 
that the frame Ax9y9z9 is in translation; that is, while it moves with A, 
it maintains the same orientation. As you will see later (Sec. 15.14), 
different relations must be used in the case of a rotating frame of 
reference.

11.12 Motion Relative to a Frame
in Translation

†Note that the product of the subscripts A and B/A used in the right-hand member of 
Eqs. (11.31) through (11.34) is equal to the subscript B used in their left-hand member.

Fig. 11.20
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Photo 11.4 The pilot of a helicopter must take 
into account the relative motion of the ship when 
landing. 
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648

SAMPLE PROBLEM 11.7

A projectile is fired from the edge of a 150-m cliff with an initial velocity 
of 180 m/s at an angle of 30° with the horizontal. Neglecting air resistance, 
find (a) the horizontal distance from the gun to the point where the pro-
jectile strikes the ground, (b) the greatest elevation above the ground 
reached by the projectile.

SOLUTION

The vertical and the horizontal motion will be considered separately.

Vertical Motion. Uniformly Accelerated Motion. Choosing the positive 
sense of the y axis upward and placing the origin O at the gun, we have

 (vy)0 5 (180 m/s) sin 30° 5 190 m/s
 a 5 29.81 m/s2

Substituting into the equations of uniformly accelerated motion, we have

 vy 5 (vy)0 1 at      vy 5 90 2 9.81t (1)
 y 5 (vy)0t 1 1

2 at2    y 5 90t 2 4.90t2 (2)
 v2

y 5 (vy)
2
0 1 2ay    v2

y 5 8100 2 19.62y (3)

Horizontal Motion. Uniform Motion. Choosing the positive sense of the 
x axis to the right, we have

(vx)0 5 (180 m/s) cos 30° 5 1155.9 m/s

Substituting into the equation of uniform motion, we obtain

 x 5 (vx)0t    x 5 155.9t (4)

a. Horizontal Distance. When the projectile strikes the ground, we have

y 5 2150 m

Carrying this value into Eq. (2) for the vertical motion, we write

2150 5 90t 2 4.90t2 t2 2 18.37t 2 30.6 5 0 t 5 19.91 s

Carrying t 5 19.91 s into Eq. (4) for the horizontal motion, we obtain

 x 5 155.9(19.91) x 5 3100 m ◀

b. Greatest Elevation. When the projectile reaches its greatest elevation, 
we have vy 5 0; carrying this value into Eq. (3) for the vertical motion, 
we write

0 5 8100 2 19.62y    y 5 413 m
Greatest elevation above ground 5 150 m 1 413 m 5 563 m ◀

x

30°

180 m/s

150 m

O

y

30°

180 m/s

–150 m

a = –9.81 m /s2

(vy)0

x
O 30°

180 m/s

(vx)0
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649

SAMPLE PROBLEM 11.8

A projectile is fired with an initial velocity of 800 ft/s at a target B located 
2000 ft above the gun A and at a horizontal distance of 12,000 ft. Neglecting 
air resistance, determine the value of the firing angle a.

SOLUTION

The horizontal and the vertical motion will be considered separately.

Horizontal Motion. Placing the origin of the coordinate axes at the gun, 
we have

(vx)0 5 800 cos a

Substituting into the equation of uniform horizontal motion, we obtain

x 5 (vx)0t  x 5 (800 cos a)t

The time required for the projectile to move through a horizontal distance 
of 12,000 ft is obtained by setting x equal to 12,000 ft.

 12,000 5 (800 cos a)t

 t 5
12,000

800 cos a
5

15
cos a

Vertical Motion

(vy)0 5 800 sin a  a 5 232.2 ft/s2

Substituting into the equation of uniformly accelerated vertical motion, 
we obtain

y 5 (vy)0t 1 1
2 at2    y 5 (800 sin a)t 2 16.1t2

Projectile Hits Target. When x 5 12,000 ft, we must have y 5 2000 ft. 
Substituting for y and setting t equal to the value found above, we write

2000 5 800 sin a  

15
cos a

2 16.1a 15
cos a

b2

Since 1/cos2 a 5 sec2 a 5 1 1 tan2 a, we have

2000 5 800(15) tan a 2 16.1(152)(1 1 tan2 a)
3622 tan2 a 2 12,000 tan a 1 5622 5 0

Solving this quadratic equation for tan a, we have

tan a 5 0.565  and  tan a 5 2.75
a 5 29.5°  and  a 5 70.0° ◀

The target will be hit if either of these two firing angles is used (see figure).

70.0°

29.5°A

B

(vx)0 = 800 cos �
x

O

v0 = 800 ft /s
B

a

12,000 ft

800 ft /s

2000 ftA

B

a

12,000 ft

(vy)0 = 800 sin a

a = – 32.2 ft /s2

O
v0 = 800 ft /s

B

a

y

2000 ft
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650

SAMPLE PROBLEM 11.9

Automobile A is traveling east at the constant speed of 36 km/h. As automobile 
A crosses the intersection shown, automobile B starts from rest 35 m north of 
the intersection and moves south with a constant acceleration of 1.2 m/s2. 
Determine the position, velocity, and acceleration of B relative to A 5 s after 
A crosses the intersection.

SOLUTION

We choose x and y axes with origin at the intersection of the two streets 
and with positive senses directed respectively east and north.

Motion of Automobile A. First the speed is expressed in m/s:

vA 5 a36 

km
h
b a1000 m

1 km
b a 1 h

3600 s
b 5 10 m/s

Noting that the motion of A is uniform, we write, for any time t,

 aA 5 0
 vA 5 110 m/s
 xA 5 (xA)0 1 vAt 5 0 1 10t

For t 5 5 s, we have

 aA 5 0 aA 5 0
 vA 5 110 m/s vA 5 10 m/s y
 xA 5 1(10 m/s)(5 s) 5 150 m  rA 5 50 m y

Motion of Automobile B. We note that the motion of B is uniformly ac-
celerated and write

 aB 5 21.2 m/s2

 vB 5 (vB)0 1 at 5 0 2 1.2 t
 yB 5 (yB)0 1 (vB)0t 1 1

2 aBt2 5 35 1 0 2 1
2(1.2)t2

For t 5 5 s, we have

 aB 5 21.2 m/s2 aB 5 1.2 m/s2
w

 vB 5 2(1.2 m/s2)(5 s) 5 26 m/s vB 5 6 m/sw
 yB 5 35 2 1

2(1.2 m/s2)(5 s)2 5 120 m  rB 5 20 mx

Motion of B Relative to A. We draw the triangle corresponding to the vec-
tor equation rB 5 rA 1 rB/A and obtain the magnitude and direction of the 
position vector of B relative to A.

rB/A 5 53.9 m    a 5 21.8°    rB/A 5 53.9 m b 21.8° ◀

Proceeding in a similar fashion, we find the velocity and acceleration of B 
relative to A.
 vB 5 vA 1 vB/A
 vB/A 5 11.66 m/s  b 5 31.0°  vB/A 5 11.66 m/s d 31.0° ◀

 aB 5 aA 1 aB/A aB/A 5 1.2 m/s2
w ◀

A

B

36 km /h

1.2 m /s2
35 m

rB

rA

rB/ArB/A

vB

vA

vB/A vB/A

aB aB/A aB/A

a

b

20 m

10 m/s

6 m/s

1.2 m/s2

50 m

A

B

x

y

xA

yB

35 m
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651

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will analyze the two- and three-dimensional 
motion of a particle. While the physical interpretations of the velocity and accel-

eration are the same as in the first lessons of the chapter, you should remember 
that these quantities are vectors. In addition, you should understand from your 
experience with vectors in statics that it will often be advantageous to express 
position vectors, velocities, and accelerations in terms of their rectangular scalar 
components [Eqs. (11.27) and (11.28)]. Furthermore, given two vectors A and B, 
recall that A ? B 5 0 if A and B are perpendicular to each other, while A 3 B 5 0 
if A and B are parallel.

A. Analyzing the motion of a projectile. Many of the following problems deal 
with the two-dimensional motion of a projectile, where the resistance of the air 
can be neglected. In Sec. 11.11, we developed the equations which describe this 
type of motion, and we observed that the horizontal component of the velocity 
remained constant (uniform motion) while the vertical component of the accelera-
tion was constant (uniformly accelerated motion). We were able to consider sepa-
rately the horizontal and the vertical motions of the particle. Assuming that the 
projectile is fired from the origin, we can write the two equations

x 5 (vx)0t   y 5 (vy)0t 2 1
2gt2

1. If the initial velocity and firing angle are known, the value of y correspond-
ing to any given value of x (or the value of x for any value of y) can be obtained 
by solving one of the above equations for t and substituting for t into the other, 
equation [Sample Prob. 11.7].

2. If the initial velocity and the coordinates of a point of the trajectory are 
known, and you wish to determine the firing angle a, begin your solution by 
expressing the components (vx)0 and (vy)0 of the initial velocity as functions of the 
angle a. These expressions and the known values of x and y are then substituted 
into the above equations. Finally, solve the first equation for t and substitute that 
value of t into the second equation to obtain a trigonometric equation in a, which 
you can solve for that unknown [Sample Prob. 11.8].

(continued)
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652

B. Solving translational two-dimensional relative-motion problems. You saw 
in Sec. 11.12 that the absolute motion of a particle B can be obtained by combin-
ing the motion of a particle A and the relative motion of B with respect to a frame 
attached to A which is in translation. The velocity and acceleration of B can then 
be expressed as shown in Eqs. (11.33) and (11.34), respectively.

1. To visualize the relative motion of B with respect to A, imagine that you 
are attached to particle A as you observe the motion of particle B. For example, 
to a passenger in automobile A of Sample Prob. 11.9, automobile B appears to be 
heading in a southwesterly direction (south should be obvious; and west is due 
to the fact that automobile A is moving to the east—automobile B then appears 
to travel to the west). Note that this conclusion is consistent with the direction 
of vB/A.

2. To solve a relative-motion problem, first write the vector equations (11.31), 
(11.33), and (11.34), which relate the motions of particles A and B. You may then 
use either of the following methods:
 a. Construct the corresponding vector triangles and solve them for the 
desired position vector, velocity, and acceleration [Sample Prob. 11.9].
 b. Express all vectors in terms of their rectangular components and solve 
the two independent sets of scalar equations obtained in that way. If you choose 
this approach, be sure to select the same positive direction for the displacement, 
velocity, and acceleration of each particle.
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PROBLEMS

653

 11.89 The motion of a particle is defined by the equations x 5 4t3 2 
5t2 1 5t and y 5 5t2 2 15t, where x and y are expressed in milli-
meters and t is expressed in seconds. Determine the velocity and 
the acceleration when (a) t 5 1 s, (b) t 5 2 s.

 11.90 The motion of a particle is defined by the equations x 5 2 cos pt
and y 5 1 2 4 cos 2pt, where x and y are expressed in meters 
and t is expressed in seconds. Show that the path of the particle 
is part of the parabola shown, and determine the velocity and the 
acceleration when (a) t 5 0, (b) t 5 1.5 s.

1.0

0.5

0

–0.5

–1.0

0.2 0.4 0.6

y/y1

x/x1

 Fig. P11.94

y

P
r

xO P0A

 Fig. P11.93

y (m)

x (m)

y = 5 – 2x2

t = 0

2

–3

 Fig. P11.90

 11.91 The motion of a particle is defined by the equations x 5 t2 2 8t 1 7
and y 5 0.5t2 1 2t 2 4, where x and y are expressed in meters and 
t in seconds. Determine (a) the magnitude of the smallest veloc-
ity reached by the particle, (b) the corresponding time, position, 
and direction of the velocity.

 11.92 The motion of a particle is defined by the equations x 5 4t 2 
2 sin t and y 5 4 2 2 cos t, where x and y are expressed in inches 
and t is expressed in seconds. Sketch the path of the  particle, and 
determine (a) the magnitudes of the smallest and largest velocities 
reached by the particle, (b) the corresponding times, positions, and 
directions of the velocities.

 11.93 The motion of a particle is defined by the position vector r 5 
A(cos t 1 t sin t)i 1 A(sin t 2 t cos t)j, where t is expressed in 
seconds. Determine the values of t for which the position vector 
and the acceleration are (a) perpendicular, (b) parallel.

 11.94 The damped motion of a vibrating particle is defined by the posi-
tion vector r 5 x1(1 2 1/(t 1 1))i 1 (y1e2pt/2 cos 2pt)j, where t is 
expressed in seconds. For x1 5 30 mm and y1 5 20 mm, determine 
the position, the velocity, and the acceleration of the particle when 
(a) t 5 0, (b) t 5 1.5 s.
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654 Kinematics of Particles  11.95 The three-dimensional motion of a particle is defined by the posi-
tion vector r 5 (Rt cos vnt)i 1 ctj 1 (Rt sin vnt)k. Determine 
the magnitudes of the velocity and acceleration of the particle. 
(The space curve described by the particle is a conic helix.)

 *11.96 The three-dimensional motion of a particle is defined by the 
  position vector r 5 (At cos t)i 1 (A2t2 1 1)j 1 (Bt sin t)k, 

where r and t are expressed in feet and seconds, respectively. 
Show that the curve described by the particle lies on the hyper-
boloid (y/A)2 2 (x/A)2 2 (z/B)2 5 1. For A 5 3 and B 5 1, 
determine (a) the magnitudes of the velocity and acceleration 
when t 5 0, (b) the smallest nonzero value of t for which the 
position vector and the velocity are perpendicular to each other.

 11.97 An airplane used to drop water on brushfires is flying horizontally 
in a straight line at 315 km/h at an altitude of 80 m. Determine 
the distance d at which the pilot should release the water so that 
it will hit the fire at B.

A

B

C

1 m

2 m

7 m d

v0

 Fig. P11.98

A

v0

B

d

 Fig. P11.97

y

xz

y2

A2
x2

A2
z2

B2
– – = 1

 Fig. P11.96

 11.98 Three children are throwing snowballs at each other. Child A 
throws a snowball with a horizontal velocity v0. If the snowball just 
passes over the head of child B and hits child C, determine (a) the 
value of v0, (b) the distance d.
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655Problems 11.99 While delivering newspapers, a girl throws a newspaper with a 
horizontal velocity v0. Determine the range of values of v0 if the 
newspaper is to land between points B and C.

v0A

B

C

14 in.

8 in.
8 in.

8 in.

36 in.

4 ft

7 ft

 Fig. P11.99

v0A

Bh
5 ft

40 ft

a

 Fig. P11.100

v0

A
C

20°

2.1 m 2.43 m

9 m

 Fig. P11.101

 11.100 A baseball pitching machine “throws” baseballs with a horizontal 
velocity v0. Knowing that height h varies between 31 in. and 42 in., 
determine (a) the range of values of v0, (b) the values of a corre-
sponding to h 5 31 in. and h 5 42 in.

 11.101 A volleyball player serves the ball with an initial velocity v0 of 
magnitude 13.40 m/s at an angle of 20° with the horizontal. Deter-
mine (a) if the ball will clear the top of the net, (b) how far from 
the net the ball will land.
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656 Kinematics of Particles  11.102 Milk is poured into a glass of height 140 mm and inside diameter 
66 mm. If the initial velocity of the milk is 1.2 m/s at an angle of 
40° with the horizontal, determine the range of values of the 
height h for which the milk will enter the glass.

A

CB

v0

15°

2 ft

1.2 ft

d

10 ft

 Fig. P11.104

v0

A

40°

B C

h

80 mm

 Fig. P11.102

A

B

v0

25°
5°

d

 Fig. P11.103

 11.103 A golfer hits a golf ball with an initial velocity of 160 ft/s at an 
angle of 25° with the horizontal. Knowing that the fairway slopes 
downward at an average angle of 5°, determine the distance d 
between the golfer and point B where the ball first lands.

 11.104 Water flows from a drain spout with an initial velocity of 2.5 ft/s at 
an angle of 15° with the horizontal. Determine the range of values 
of the distance d for which the water will enter the trough BC.
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657Problems 11.105 Sand is discharged at A from a conveyor belt and falls onto the 
top of a stockpile at B. Knowing that the conveyor belt forms 
an angle a 5 20° with the horizontal, determine the speed v0 of 
the belt.

 11.106 A basketball player shoots when she is 16 ft from the backboard. 
Knowing that the ball has an initial velocity v0 at an angle of 30° 
with the horizontal, determine the value of v0 when d is equal to 
(a) 9 in., (b) 17 in.

30°
A

B v0

d
16 ft

10 ft

6.8 ft

 Fig. P11.106

v0

0.25 m

3 

1.5 m

A B

C

6 m

0.72 m

 Fig. P11.107

v0

a

A

B
18 ft

30 ft

 Fig. P11.105

 11.107 A group of children are throwing balls through a 0.72-m-inner-
diameter tire hanging from a tree. A child throws a ball with 
an initial velocity v0 at an angle of 3° with the horizontal. Deter-
mine the range of values of v0 for which the ball will go through 
the tire.

 11.108 The nozzle at A discharges cooling water with an initial velocity 
v0 at an angle of 6° with the horizontal onto a grinding wheel 
350 mm in diameter. Determine the range of values of the initial 
velocity for which the water will land on the grinding wheel 
between points B and C.

10°

6°

v0

20 mm

A B

C 30°
205 mm

200 mm

 Fig. P11.108
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658 Kinematics of Particles  11.109 While holding one of its ends, a worker lobs a coil of rope over 
the lowest limb of a tree. If he throws the rope with an initial 
velocity v0 at an angle of 65° with the horizontal, determine the 
range of values of v0 for which the rope will go over only the 
lowest limb.

 11.110 A ball is dropped onto a step at point A and rebounds with a veloc-
ity v0 at an angle of 15° with the vertical. Determine the value of 
v0 knowing that just before the ball bounces at point B its velocity 
vB forms an angle of 12° with the vertical.

v0

vB

A

B

12°

15°

0.2 m

 Fig. P11.110

65°

v0

A

B

C

0.9 m

0.7 m

5.7 m

5 m

 Fig. P11.109

 11.111 A model rocket is launched from point A with an initial velocity 
v0 of 250 ft/s. If the rocket’s descent parachute does not deploy 
and the rocket lands 400 ft from A, determine (a) the angle a that 
v0 forms with the vertical, (b) the maximum height above point A 
reached by the rocket, (c) the duration of the flight.

 Fig. P11.111
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659Problems 11.112 The initial velocity v0 of a hockey puck is 105 mi/h. Determine 
(a) the largest value (less than 45°) of the angle a for which the 
puck will enter the net, (b) the corresponding time required for 
the puck to reach the net.

vv00

A B

d

1.5 m

hv0

a

 Fig. P11.115

 Fig. P11.114

v0

DC

2.5 ft
16 ft

4 ft

B EA

a

 Fig. P11.112

v0

vB

A
B

0.6 m

0.68 m

14 m

a
q

 Fig. P11.113

 11.113 The pitcher in a softball game throws a ball with an initial velocity 
v0 of 72 km/h at an angle a with the horizontal. If the height of 
the ball at point B is 0.68 m, determine (a) the angle a, (b) the 
angle u that the velocity of the ball at point B forms with the 
horizontal.

  *11.114 A mountain climber plans to jump from A to B over a crevasse. 
Determine the smallest value of the climber’s initial velocity v0 
and the corresponding value of angle a so that he lands at B.

 11.115 An oscillating garden sprinkler which discharges water with an 
initial velocity v0 of 8 m/s is used to water a vegetable garden. 
Determine the distance d to the farthest point B that will be 
watered and the corresponding angle a when (a) the vegetables 
are just beginning to grow, (b) the height h of the corn is 1.8 m.
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660 Kinematics of Particles  11.116 A worker uses high-pressure water to clean the inside of a long 
drainpipe. If the water is discharged with an initial velocity v0 of 
11.5 m/s, determine (a) the distance d to the farthest point B on 
the top of the pipe that the worker can wash from his position at 
A, (b) the corresponding angle a.

A

B

25°

10°

14 m/s

10 m/s

 Fig. P11.118

A

B

1.1 m

d

v0

C

a

 Fig. P11.116

A

B

C

q

D

65°

 Fig. P11.117

 11.117 As slider block A moves downward at a speed of 0.5 m/s, the veloc-
ity with respect to A of the portion of belt B between idler pulleys 
C and D is vCD/A 5 2 m/s au. Determine the velocity of portion 
CD of the belt when (a) u 5 45°, (b) u 5 60°.

 11.118 The velocities of skiers A and B are as shown. Determine the 
velocity of A with respect to B.
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661Problems 11.119 Shore-based radar indicates that a ferry leaves its slip with a veloc-
ity v 5 9.8 knots d70°, while instruments aboard the ferry indi-
cate a speed of 10 knots and a heading of 30° west of south relative 
to the river. Determine the velocity of the river.

A

B

C
N

 Fig. P11.120

 Fig. P11.119

 11.120 Airplanes A and B are flying at the same altitude and are tracking 
the eye of hurricane C. The relative velocity of C with respect to 
A is vC/A 5 235 mi/h d75°, and the relative velocity of C with 
respect to B is vC/B 5 260 mi/h c 40°. Determine (a) the relative 
velocity of B with respect to A, (b) the velocity of A if ground-based 
radar indicates that the hurricane is moving at a speed of 24 mi/h 
due north, (c) the change in position of C with respect to B during 
a 15-min interval.

 11.121 The velocities of commuter trains A and B are as shown. Knowing 
that the speed of each train is constant and that B reaches the 
crossing 10 min after A passed through the same crossing, deter-
mine (a) the relative velocity of B with respect to A, (b) the dis-
tance between the fronts of the engines 3 min after A passed 
through the crossing.

66 km/h

48 km/h 25°B

A

 Fig. P11.121
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662 Kinematics of Particles  11.122 Knowing that the velocity of block B with respect to block A is 
vB/A 5 5.6 m/s a 70°, determine the velocities of A and B.

25°

15°

A

B

 Fig. P11.123

30°

A

Bq

B

 Fig. P11.122

B

A

q = 50°

 Fig. P11.124

 11.123 Knowing that at the instant shown block A has a velocity of 8 in./s 
and an acceleration of 6 in./s2 both directed down the incline, deter-
mine (a) the velocity of block B, (b) the acceleration of block B.

 11.124 Knowing that at the instant shown assembly A has a velocity of 9 in./s 
and an acceleration of 15 in./s2 both directed downwards, determine 
(a) the velocity of block B, (b) the acceleration of block B.
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663Problems 11.125 The assembly of rod A and wedge B starts from rest and moves 
to the right with a constant acceleration of 2 mm/s2. Determine 
(a) the acceleration of wedge C, (b) the velocity of wedge C when 
t 5 10 s.

vA

(vB)0

30 

20 
A

B

1.5 ft

 Fig. P11.127

A

B
75°

20°

C

 Fig. P11.125

vB

vA = 5 ft/s

3 ft

15°

A

B

 Fig. P11.128

A

B

50 

 Fig. P11.126

 11.126 As the truck shown begins to back up with a constant acceleration 
of 1.2 m/s2, the outer section B of its boom starts to retract with 
a constant acceleration of 0.5 m/s2 relative to the truck. Determine 
(a) the acceleration of section B, (b) the velocity of section B when 
t 5 2 s.

 11.127 Conveyor belt A, which forms a 20° angle with the horizontal, 
moves at a constant speed of 4 ft/s and is used to load an airplane. 
Knowing that a worker tosses duffel bag B with an initial velocity 
of 2.5 ft/s at an angle of 30° with the horizontal, determine the 
velocity of the bag relative to the belt as it lands on the belt.

 11.128 Determine the required velocity of the belt B if the relative veloc-
ity with which the sand hits belt B is to be (a) vertical, (b) as small 
as possible.

 11.129 As observed from a ship moving due east at 9 km/h, the wind 
appears to blow from the south. After the ship has changed course 
and speed, and as it is moving north at 6 km/h, the wind appears 
to blow from the southwest. Assuming that the wind velocity is 
constant during the period of observation, determine the magni-
tude and direction of the true wind velocity.
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664 Kinematics of Particles  11.130 When a small boat travels north at 5 km/h, a flag mounted on its 
stern forms an angle u 5 50° with the centerline of the boat as shown. 
A short time later, when the boat travels east at 20 km/h, angle u is 
again 50°. Determine the speed and the direction of the wind.

vB

vC

30°

A

B

C

D

30°

 Fig. P11.131

 11.131 As part of a department store display, a model train D runs on a 
slight incline between the store’s up and down escalators. When 
the train and shoppers pass point A, the train appears to a shopper 
on the up escalator B to move downward at an angle of 22° with 
the horizontal, and to a shopper on the down escalator C to move 
upward at an angle of 23° with the horizontal and to travel to the 
left. Knowing that the speed of the escalators is 3 ft/s, determine 
the speed and the direction of the train.

q

 Fig. P11.130

 11.132 The paths of raindrops during a storm appear to form an angle of 
75° with the vertical and to be directed to the left when observed 
through a left-side window of an automobile traveling north at a 
speed of 40 mi/h. When observed through a right-side window of 
an automobile traveling south at a speed of 30 mi/h, the raindrops 
appear to form an angle of 60° with the vertical. If the driver of the 
automobile traveling north were to stop, at what angle and with what 
speed would she observe the drops to fall?
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66511.13 TANGENTIAL AND NORMAL COMPONENTS
We saw in Sec. 11.9 that the velocity of a particle is a vector tangent 
to the path of the particle but that, in general, the acceleration is 
not tangent to the path. It is sometimes convenient to resolve the 
acceleration into components directed, respectively, along the tan-
gent and the normal to the path of the particle.

Plane Motion of a Particle. First, let us consider a particle which 
moves along a curve contained in the plane of the figure. Let P be 
the position of the particle at a given instant. We attach at P a unit 
vector et tangent to the path of the particle and pointing in the direc-
tion of motion (Fig. 11.21a). Let e9t be the unit vector corresponding 
to the position P9 of the particle at a later instant. Drawing both vec-
tors from the same origin O9, we define the vector ¢et 5 e9t 2 et 
(Fig. 11.21b). Since et and e9t are of unit length, their tips lie on a 
circle of radius 1. Denoting by ¢u the angle formed by et and e9t, we 
find that the magnitude of ¢et is 2 sin (¢u/2). Considering now the 
vector ¢et/¢u, we note that as ¢u approaches zero, this vector 
becomes tangent to the unit circle of Fig. 11.21b, i.e., perpendicular 
to et, and that its magnitude approaches

lim
¢uy0

2 sin(¢u/2)
¢u

5 lim
¢uy0

 sin(¢u/2)
¢u/2

5 1

Thus, the vector obtained in the limit is a unit vector along the 
 normal to the path of the particle, in the direction toward which et 
turns. Denoting this vector by en, we write

en 5 lim
¢uy0

 
¢et

¢u

 
en 5

det

du  
(11.35)

 Since the velocity v of the particle is tangent to the path, it can 
be expressed as the product of the scalar v and the unit vector et. 
We have
 v 5 vet (11.36)

To obtain the acceleration of the particle, (11.36) will be differenti-
ated with respect to t. Applying the rule for the differentiation of 
the product of a scalar and a vector function (Sec. 11.10), we write

 
a 5

dv
dt

5
dv
dt

 et 1 v 

det

dt  
(11.37)

But
det

dt
5

det

du
 
du
ds

 
ds
dt

Recalling from (11.16) that ds/dt 5 v, from (11.35) that det/du 5 en, 
and from elementary calculus that du/ds is equal to 1/r, where r is 
the radius of curvature of the path at P (Fig. 11.22), we have

11.13 Tangential and Normal Components
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666 Kinematics of Particles

 
det

dt
5

v
r

 en 
(11.38)

Substituting into (11.37), we obtain

 
a 5

dv
dt

 et 1
v2

r
 en 

(11.39)

Thus, the scalar components of the acceleration are

 
at 5

dv
dt

  an 5
v2

r  
(11.40)

 The relations obtained express that the tangential component 
of the acceleration is equal to the rate of change of the speed of the 
particle, while the normal component is equal to the square of the 
speed divided by the radius of curvature of the path at P. If the speed 
of the particle increases, at is positive and the vector component at 
points in the direction of motion. If the speed of the particle 
decreases, at is negative and at points against the direction of motion. 
The vector component an, on the other hand, is always directed 
toward the center of curvature C of the path (Fig. 11.23).

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x

Fig. 11.23

 We conclude from the above that the tangential component of 
the acceleration reflects a change in the speed of the particle, while 
its normal component reflects a change in the direction of motion 
of the particle. The acceleration of a particle will be zero only if both 
its components are zero. Thus, the acceleration of a particle moving 
with constant speed along a curve will not be zero unless the particle 
happens to pass through a point of inflection of the curve (where the 
radius of curvature is infinite) or unless the curve is a straight line.
 The fact that the normal component of the acceleration depends 
upon the radius of curvature of the path followed by the particle is 
taken into account in the design of structures or mechanisms as 
widely different as airplane wings, railroad tracks, and cams. In order 
to avoid sudden changes in the acceleration of the air particles flow-
ing past a wing, wing profiles are designed without any sudden 
change in curvature. Similar care is taken in designing railroad 
curves, to avoid sudden changes in the acceleration of the cars (which 

Photo 11.5 The passengers in a train traveling 
around a curve will experience a normal 
acceleration towards the center of curvature 
of the path.
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667would be hard on the equipment and unpleasant for the passengers). 
A straight section of track, for instance, is never directly followed by 
a circular section. Special transition sections are used to help pass 
smoothly from the infinite radius of curvature of the straight section 
to the finite radius of the circular track. Likewise, in the design of 
high-speed cams, abrupt changes in acceleration are avoided by 
using transition curves which produce a continuous change in 
acceleration.

Motion of a Particle in Space. The relations (11.39) and (11.40) 
still hold in the case of a particle moving along a space curve. How-
ever, since there are an infinite number of straight lines which are 
perpendicular to the tangent at a given point P of a space curve, it is 
necessary to define more precisely the direction of the unit vector en.
 Let us consider again the unit vectors et and e9t tangent to the 
path of the particle at two neighboring points P and P9 (Fig. 11.24a) 
and the vector ¢et representing the difference between et and e9t 

11.13 Tangential and Normal Components

†From the Latin osculari, to kiss. 

(Fig. 11.24b). Let us now imagine a plane through P (Fig. 11.24a) 
parallel to the plane defined by the vectors et, e9t, and ¢et (Fig. 11.24b). 
This plane contains the tangent to the curve at P and is parallel to 
the tangent at P9. If we let P9 approach P, we obtain in the limit the 
plane which fits the curve most closely in the neighborhood of P. 
This plane is called the osculating plane at P.† It follows from this 
definition that the osculating plane contains the unit vector en, since 
this vector represents the limit of the vector ¢et/¢u. The normal 
defined by en is thus contained in the osculating plane; it is called 
the principal normal at P. The unit vector eb 5 et 3 en which com-
pletes the right-handed triad et, en, eb (Fig. 11.24c) defines the 
binormal at P. The binormal is thus perpendicular to the osculating 
plane. We conclude that the acceleration of the particle at P can be 
resolved into two components, one along the tangent, the other along 
the principal normal at P, as indicated in Eq. (11.39). Note that the 
acceleration has no component along the binormal.

y
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Fig. 11.24
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668 Kinematics of Particles 11.14 RADIAL AND TRANSVERSE COMPONENTS
In certain problems of plane motion, the position of the particle P is 
defined by its polar coordinates r and u (Fig. 11.25a). It is then con-
venient to resolve the velocity and acceleration of the particle into 
components parallel and perpendicular, respectively, to the line OP. 
These components are called radial and transverse components.

 We attach at P two unit vectors, er and eu (Fig. 11.25b). The 
vector er is directed along OP and the vector eu is obtained by rotat-
ing er through 90° counterclockwise. The unit vector er defines the 
radial direction, i.e., the direction in which P would move if r were 
increased and u were kept constant; the unit vector eu defines the 
transverse direction, i.e., the direction in which P would move if u 
were increased and r were kept constant. A derivation similar to the 
one we used in Sec. 11.13 to determine the derivative of the unit 
vector et leads to the relations

 
der

du
5 eu   deu

du
5 2er 

(11.41)

where 2er denotes a unit vector of sense opposite to that of er 
(Fig. 11.25c). Using the chain rule of differentiation, we express the 
time derivatives of the unit vectors er and eu as follows:

der

dt
5

der

du
 
du
dt

5 eu 

du
dt

  deu
dt

5
deu
du

 
du
dt

5 2er 

du
dt

or, using dots to indicate differentiation with respect to t,

 ėr 5 u
.
eu   ėu 5 2u

.
er (11.42)

 To obtain the velocity v of the particle P, we express the posi-
tion vector r of P as the product of the scalar r and the unit vector 
er and differentiate with respect to t:

v 5
d
dt

 (rer) 5 ·rer 1 rėr

or, recalling the first of the relations (11.42),

 v 5 ·rer 1 ru
.
eu (11.43)

P
P

O O

r

θ θ

(a) (b) (c)

er

r = rer

eθ

er

eθ

e'θ

e'r
Δeθ

Δer

Δθ

O'

Δθ

Fig. 11.25

Photo 11.6 The footpads on an elliptical 
trainer undergo curvilinear motion.
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669Differentiating again with respect to t to obtain the acceleration, 
we write

a 5
dv
dt

5 r̈er 1 ṙėr 1 ṙu̇eu 1 r üeu 1 ru̇ėu

or, substituting for ėr and ėu from (11.42) and factoring er and eu,

 a 5 ( r̈ 2 ru
.

2)er 1 (rü 1 2r
.
u
.
)eu (11.44)

The scalar components of the velocity and the acceleration in the 
radial and transverse directions are, therefore,

 vr 5 ṙ  vu 5 ru̇ (11.45)

 ar 5 r̈ 2 ru̇2  au 5 rü  1 2ṙu̇ (11.46)

It is important to note that ar is not equal to the time derivative of vr 
and that au is not equal to the time derivative of vu.
 In the case of a particle moving along a circle of center O, we 
have r 5 constant and ṙ 5 r̈ 5 0, and the formulas (11.43) and 
(11.44) reduce, respectively, to

 v 5 ru̇eu  a 5 2ru̇2er 1 rüeu (11.47)

Extension to the Motion of a Particle in Space: Cylindrical 
Coordinates. The position of a particle P in space is sometimes 
defined by its cylindrical coordinates R, u, and z (Fig. 11.26a). It is 
then convenient to use the unit vectors eR, eu, and k shown in Fig. 
11.26b. Resolving the position vector r of the particle P into compo-
nents along the unit vectors, we write

 r 5 ReR 1 zk (11.48)

Observing that eR and eu define, respectively, the radial and trans-
verse directions in the horizontal xy plane, and that the vector k, 
which defines the axial direction, is constant in direction as well as 
in magnitude, we easily verify that

 
 v 5

dr
dt

5 R
.
eR 1 Ru

.
eu 1 z

. k
 

(11.49)

 
 a 5

dv
dt

5 (R̈ 2 Ru
.

2)eR 1 (Rü 1 2R
.
u
.
)eu 1 z̈ k

 
(11.50)

11.14 Radial and Transverse Components

Fig. 11.26
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SAMPLE PROBLEM 11.10

A motorist is traveling on a curved section of highway of radius 2500 ft at 
the speed of 60 mi/h. The motorist suddenly applies the brakes, causing the 
automobile to slow down at a constant rate. Knowing that after 8 s the speed 
has been reduced to 45 mi/h, determine the acceleration of the automobile 
immediately after the brakes have been applied.

SAMPLE PROBLEM 11.11

Determine the minimum radius of curvature of the trajectory described by 
the projectile considered in Sample Prob. 11.7.

A

a t = 2.75 ft /s2

a n = 3.10 ft /s2

a

a
Motion

SOLUTION

Tangential Component of Acceleration. First the speeds are expressed 
in ft/s.

 60 mi/h 5 a60 

mi
h
b a5280 ft

1 mi
b a 1 h

3600 s
b 5 88 ft/s

 45 mi/h 5 66 ft/s

Since the automobile slows down at a constant rate, we have

at 5 average at 5
¢v
¢t

5
66 ft/s 2 88 ft/s

8 s
5 22.75 ft/s2

Normal Component of Acceleration. Immediately after the brakes have 
been applied, the speed is still 88 ft/s, and we have

an 5
v2

r
5

(88 ft/s)2

2500 ft
5 3.10 ft/s2

Magnitude and Direction of Acceleration. The magnitude and direction 
of the resultant a of the components an and at are

 
 tan a 5

an

at
5

3.10 ft/s2

2.75 ft/s2  
a 5 48.4° ◀

 
 a 5

an

 sin a
5

3.10 ft/s2

 sin 48.4° 
a 5 4.14 ft/s2 ◀

SOLUTION

Since an 5 v2/r, we have r 5 v2/an. The radius will be small when v is small 
or when an is large. The speed v is minimum at the top of the trajectory since 
vy 5 0 at that point; an is maximum at that same point, since the direction of 
the vertical coincides with the direction of the normal. Therefore, the  minimum 
radius of curvature occurs at the top of the trajectory. At this point, we have

v 5 vx 5 155.9 m/s    an 5 a 5 9.81 m/s2

    
r 5

v2

an
5

(155.9 m/s)2

9.81 m/s2  
r 5 2480 m ◀

a = a n

v = vx

A

vA = 60 mi /h

2500 ft
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SAMPLE PROBLEM 11.12

The rotation of the 0.9-m arm OA about O is defined by the relation 
u 5 0.15t2, where u is expressed in radians and t in seconds. Collar B slides 
along the arm in such a way that its distance from O is r 5 0.9 2 0.12t2, 
where r is expressed in meters and t in seconds. After the arm OA has 
rotated through 30°, determine (a) the total velocity of the collar, (b) the 
total acceleration of the collar, (c) the relative acceleration of the collar with 
respect to the arm.

SOLUTION

Time t at which U 5 30°. Substituting u 5 30° 5 0.524 rad into the 
expression for u, we obtain

u 5 0.15t2    0.524 5 0.15t2    t 5 1.869 s

Equations of Motion. Substituting t 5 1.869 s in the expressions for r, u, 
and their first and second derivatives, we have

 r 5 0.9 2 0.12t2 5 0.481 m  u 5 0.15t2 5 0.524 rad
 ṙ 5 20.24t 5 20.449 m/s   u̇ 5 0.30t 5 0.561 rad /s
 r̈ 5 20.24 5 20.240 m/s2   ü 5 0.30 5 0.300 rad /s2

a. Velocity of B. Using Eqs. (11.45), we obtain the values of vr and vu 
when t 5 1.869 s.

 vr 5 ṙ 5 20.449 m/s
 vu 5 ru̇ 5 0.481(0.561) 5 0.270 m/s

Solving the right triangle shown, we obtain the magnitude and direction of 
the velocity,

v 5 0.524 m/s  b 5 31.0° ◀

b. Acceleration of B. Using Eqs. (11.46), we obtain

 ar 5 r̈ 2 ru̇2

 5 20.240 2 0.481(0.561)2 5 20.391 m/s2

 au 5 rü 1 2ṙu̇
 5 0.481(0.300) 1 2(20.449)(0.561) 5 20.359 m/s2

a 5 0.531 m/s2  g 5 42.6° ◀

c. Acceleration of B with Respect to Arm OA. We note that the motion 
of the collar with respect to the arm is rectilinear and defined by the coor-
dinate r. We write

aB/OA 5  r̈ 5 20.240 m/s2

aB/OA 5 0.240 m/s2 toward O. ◀

O

B
A

q

r

er

eq

A

B

B

B

B

O

q
O

O

v = vrer + vUeU

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

aB/OA = (–0.240 m/s2)er

a = arer + aUeU

b

30°

g

r

r = 0.481 m

a

v

q

q

q

qq

q

q
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SOLVING PROBLEMS 
ON YOUR OWN

You will be asked in the following problems to express the velocity and the 
acceleration of particles in terms of either their tangential and normal compo-

nents or their radial and transverse components. Although those components may 
not be as familiar to you as the rectangular components, you will find that they 
can simplify the solution of many problems and that certain types of motion are 
more easily described when they are used.

1. Using tangential and normal components. These components are most often 
used when the particle of interest travels along a circular path or when the radius 
of curvature of the path is to be determined. Remember that the unit vector et is 
tangent to the path of the particle (and thus aligned with the velocity) while the 
unit vector en is directed along the normal to the path and always points toward 
its center of curvature. It follows that, as the particle moves, the directions of the 
two unit vectors are constantly changing.

2. Expressing the acceleration in terms of its tangential and normal compo-
nents. We derived in Sec. 11.13 the following equation, applicable to both the 
two-dimensional and the three-dimensional motion of a particle:

 
a 5

dv
dt

 et 1
v2

r
 en 

(11.39)

The following observations may help you in solving the problems of this lesson.
 a. The tangential component of the acceleration measures the rate of change 
of the speed: at 5 dv/dt. It follows that when at is constant, the equations for 
uniformly accelerated motion can be used with the acceleration equal to at. Fur-
thermore, when a particle moves at a constant speed, we have at 5 0 and the 
acceleration of the particle reduces to its normal component.
 b. The normal component of the acceleration is always directed toward the 
center of curvature of the path of the particle, and its magnitude is an 5 v2/r. 
Thus, the normal component can be easily determined if the speed of the particle 
and the radius of curvature r of the path are known. Conversely, when the speed 
and normal acceleration of the particle are known, the radius of curvature of the 
path can be obtained by solving this equation for r [Sample Prob. 11.11].
 c. In three-dimensional motion, a third unit vector is used, eb 5 et 3 en, 
which defines the direction of the binormal. Since this vector is perpendicular to 
both the velocity and the acceleration, it can be obtained by writing

eb 5
v 3 a
0v 3 a 0
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3. Using radial and transverse components. These components are used to 
analyze the plane motion of a particle P, when the position of P is defined by its 
polar coordinates r and u. As shown in Fig. 11.25, the unit vector er, which defines 
the radial direction, is attached to P and points away from the fixed point O, while 
the unit vector eu, which defines the transverse direction, is obtained by rotating 
er counterclockwise through 90°. The velocity and the acceleration of a particle 
were expressed in terms of their radial and transverse components in Eqs. (11.43) 
and (11.44), respectively. You will note that the expressions obtained contain the 
first and second derivatives with respect to t of both coordinates r and u.

In the problems of this lesson, you will encounter the following types of problems 
involving radial and transverse components:
 a. Both r and U are known functions of t. In this case, you will compute 
the first and second derivatives of r and u and substitute the expressions obtained 
into Eqs. (11.43) and (11.44).
 b. A certain relationship exists between r and U. First, you should deter-
mine this relationship from the geometry of the given system and use it to express 
r as a function of u. Once the function r 5 f(u) is known, you can apply the chain 
rule to determine r

.  in terms of u and u̇, and r̈  in terms of u, u̇, ü :

 ṙ 5 f 9(u)u̇

 r̈ 5 f 0(u)u̇2 1 f 9(u)ü

The expressions obtained can then be substituted into Eqs. (11.43) and (11.44).
 c. The three-dimensional motion of a particle, as indicated at the end of 
Sec. 11.14, can often be effectively described in terms of the cylindrical coordi-
nates R, u, and z (Fig. 11.26). The unit vectors then should consist of eR, eu, and k. 
The corresponding components of the velocity and the acceleration are given in 
Eqs. (11.49) and (11.50). Please note that the radial distance R is always measured 
in a plane parallel to the xy plane, and be careful not to confuse the position vec-
tor r with its radial component ReR.
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PROBLEMS

674

 11.133 Determine the peripheral speed of the centrifuge test cab A for 
which the normal component of the acceleration is 10g.

 11.134 To test its performance, an automobile is driven around a circular 
test track of diameter d. Determine (a) the value of d if when the 
speed of the automobile is 72 km/h, the normal component of 
the acceleration is 3.2 m/s2, (b) the speed of the automobile if d 5 
180 m and the normal component of the acceleration is measured 
to be 0.6g.

 11.135 Determine the smallest radius that should be used for a highway 
if the normal component of the acceleration of a car traveling at 
45 mi/h is not to exceed 2.4 ft/s2.

A
r

B

 Fig. P11.135

A

8 m

 Fig. P11.133

B
A

80 ft

 Fig. P11.136A

B

C

D

90 mm

 Fig. P11.137

 11.136 Determine the maximum speed that the cars of the roller-coaster 
can reach along the circular portion AB of the track if the normal 
component of their acceleration cannot exceed 3g.

 11.137 Pin A, which is attached to link AB, is constrained to move in 
the circular slot CD. Knowing that at t 5 0 the pin starts from 
rest and moves so that its speed increases at a constant rate of 
20 mm/s2, determine the magnitude of its total acceleration when 
(a) t 5 0, (b) t 5 2 s.
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675Problems 11.138 A monorail train starts from rest on a curve of radius 400 m and 
accelerates at the constant rate at. If the maximum total accelera-
tion of the train must not exceed 1.5 m/s2, determine (a) the short-
est distance in which the train can reach a speed of 72 km/h, (b) the 
corresponding constant rate of acceleration at.

 11.139 An outdoor track is 420 ft in diameter. A runner increases her 
speed at a constant rate from 14 to 24 ft/s over a distance of 95 ft. 
Determine the total acceleration of the runner 2 s after she begins 
to increase her speed.

 11.140 At a given instant in an airplane race, airplane A is flying horizontally 
in a straight line, and its speed is being increased at the rate of 8 m/s2. 
Airplane B is flying at the same altitude as airplane A and, as it 
rounds a pylon, is following a circular path of 300-m radius. Know-
ing that at the given instant the speed of B is being decreased at 
the rate of 3 m/s2, determine, for the positions shown, (a) the veloc-
ity of B relative to A, (b) the acceleration of B relative to A.

v

 Fig. P11.139

560 ft

 Fig. P11.141

A

30°

400 m

B

200 m

450  km/h

540 km/h

 Fig. P11.140

 11.141 A motorist traveling along a straight portion of a highway is decreas-
ing the speed of his automobile at a constant rate before exiting 
from the highway onto a circular exit ramp with a radius of 560-ft. 
He continues to decelerate at the same constant rate so that 10 s 
after entering the ramp, his speed has decreased to 20 mi/h, a speed 
which he then maintains. Knowing that at this constant speed the 
total acceleration of the automobile is equal to one-quarter of its 
value prior to entering the ramp, determine the maximum value 
of the total acceleration of the automobile.
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676 Kinematics of Particles  11.142 Racing cars A and B are traveling on circular portions of a race 
track. At the instant shown, the speed of A is decreasing at the 
rate of 7 m/s2, and the speed of B is increasing at the rate of 2 m/s2. 
For the positions shown, determine (a) the velocity of B relative 
to A, (b) the acceleration of B relative to A.

15°

A

vA

 Fig. P11.145

A

vA

25°

 Fig. P11.143

A 40°

vA

 Fig. P11.144

250 m

45°

30°
A

B

144 km/h

300 m

162 km/h

400 m

700 m

 Fig. P11.142

 11.143 A golfer hits a golf ball from point A with an initial velocity of 
50 m/s at an angle of 25° with the horizontal. Determine the radius 
of curvature of the trajectory described by the ball (a) at point A, 
(b) at the highest point of the trajectory.

 11.144 From a photograph of a homeowner using a snowblower, it is 
determined that the radius of curvature of the trajectory of the 
snow was 8.5 m as the snow left the discharge chute at A. Deter-
mine (a) the discharge velocity vA of the snow, (b) the radius of 
curvature of the trajectory at its maximum height.

 11.145 A basketball is bounced on the ground at point A and rebounds 
with a velocity vA of magnitude 7.5 ft/s as shown. Determine the 
radius of curvature of the trajectory described by the ball (a) at 
point A, (b) at the highest point of the trajectory.

 11.146 Coal is discharged from the tailgate A of a dump truck with an 
initial velocity vA 5 6 ft/s d 50°. Determine the radius of  curvature 
of the trajectory described by the coal (a) at point A, (b) at the point 
of the trajectory 3 ft below point A.

vA

50° A

 Fig. P11.146
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677Problems 11.147 A horizontal pipe discharges at point A a stream of water into a 
reservoir. Express the radius of curvature of the stream at point B 
in terms of the magnitudes of the velocities vA and vB.

 11.148 A child throws a ball from point A with an initial velocity vA of 
20 m/s at an angle of 25° with the horizontal. Determine the 
velocity of the ball at the points of the trajectory described by the 
ball where the radius of curvature is equal to three-quarters of 
its value at A.

 11.149 A projectile is fired from point A with an initial velocity v0. (a) Show 
that the radius of curvature of the trajectory of the projectile 
reaches its minimum value at the highest point B of the trajectory. 
(b) Denoting by u the angle formed by the trajectory and the hori-
zontal at a given point C, show that the radius of curvature of the 
trajectory at C is r 5 rmin/cos3u.

25°A

vA

 Fig. P11.148

A

B

vA

vB

 Fig. P11.147

A

B

C qminr

r

v0

x

a

 Fig. P11.149 and P11.150

 11.150 A projectile is fired from point A with an initial velocity v0 which 
forms an angle a with the horizontal. Express the radius of cur-
vature of the trajectory of the projectile at point C in terms of x, 
v0, a, and g.

  *11.151 Determine the radius of curvature of the path described by the 
particle of Prob. 11.95 when t 5 0.

  *11.152 Determine the radius of curvature of the path described by the 
particle of Prob. 11.96 when t 5 0, A 5 3, and B 5 1.

 11.153 through 11.155 A satellite will travel indefinitely in a circular 
orbit around a planet if the normal component of the acceleration 
of the satellite is equal to g(R/r)2, where g is the acceleration of 
gravity at the surface of the planet, R is the radius of the planet, 
and r is the distance from the center of the planet to the satellite. 
Determine the speed of a satellite relative to the indicated planet 
if the satellite is to travel indefinitely in a circular orbit 160 km 
above the surface of the planet.

11.153 Venus: g 5 8.53 m/s2, R 5 6161 km.
11.154 Mars: g 5 3.83 m/s2, R 5 3332 km.
11.155 Jupiter: g 5 26.0 m/s2, R 5 69 893 km.
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678 Kinematics of Particles  11.156 and 11.157 Knowing that the diameter of the sun is 864,000 mi 
and that the acceleration of gravity at its surface is 900 ft/s2, deter-
mine the radius of the orbit of the indicated planet around the 
sun assuming that the orbit is circular. (See information given in 
Probs. 11.153–11.155.)

11.156 Earth: (vmean)orbit 5 66,600 mi/h
11.157 Saturn: (vmean)orbit 5 21,580 mi/h

 11.158 Knowing that the radius of the earth is 6370 km, determine the 
time of one orbit of the Hubble Space Telescope knowing that the 
telescope travels in a circular orbit 590 km above the surface of 
the earth. (See information given in Probs. 11.153–11.155.)

 11.159 A satellite is traveling in a circular orbit around Mars at an altitude 
of 180 mi. After the altitude of the satellite is adjusted, it is found 
that the time of one orbit has increased by 10 percent. Knowing 
that the radius of Mars is 2071 mi, determine the new altitude of 
the satellite. (See information given in Probs. 11.153–11.155).

 11.160 Satellites A and B are traveling in the same plane in circular orbits 
around the earth at altitudes of 120 and 200 mi, respectively. If 
at t 5 0 the satellites are aligned as shown and knowing that the 
radius of the earth is R 5 3960 mi, determine when the satellites 
will next be radially aligned. (See information given in Probs. 
11.153–11.155.)

 11.161 The path of a particle P is a limacon. The motion of the particle 
is defined by the relations r 5 b(2 1 cos pt) and u 5 pt, where t 
and u are expressed in seconds and radians, respectively. Determine 
(a) the velocity and the acceleration of the particle when t 5 2 s, 
(b) the values of u for which the magnitude of the velocity is 
maximum.

 11.162 The two-dimensional motion of a particle is defined by the relation 
r 5 2b cos vt and u 5 vt, where b and v are constant. Determine 
(a) the velocity and acceleration of the particle at any instant, 
(b) the radius of curvature of its path. What conclusions can you 
draw regarding the path of the particle?

 11.163 The rotation of rod OA about O is defined by the relation 
u 5 p(4t2 2 8t), where u and t are expressed in radians and 
seconds, respectively. Collar B slides along the rod so that its dis-
tance from O is r 5 10 1 6 sin pt, where r and t are expressed in 
inches and seconds, respectively. When t 5 1 s, determine (a) the 
velocity of the collar, (b) the total acceleration of the collar, (c) the 
acceleration of the collar relative to the rod.

 11.164 The oscillation of rod OA about O is defined by the relation 
u 5 (2/p)(sin pt), where u and t are expressed in radians and sec-
onds, respectively. Collar B slides along the rod so that its distance 
from O is r 5 25/(t 1 4) where r and t are expressed in inches 
and seconds, respectively. When t 5 1 s, determine (a) the velocity 
of the collar, (b) the total acceleration of the  collar, (c) the accelera-
tion of the collar relative to the rod.

A

B

rB

rA

 Fig. P11.160

P

r

q

 Fig. P11.161

O

B

A

q

r

 Fig. P11.163
and P11.164
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679Problems 11.165 The path of particle P is the ellipse defined by the relations 
r 5 2/(2 2 cos pt) and u 5 pt, where r is expressed in meters, 
t is in seconds, and u is in radians. Determine the velocity and the 
acceleration of the particle when (a) t 5 0, (b) t 5 0.5 s.

 11.166 The two-dimensional motion of a particle is defined by the rela-
tions r 5 2a cos u and u 5 bt2/2, where a and b are constants. 
Determine (a) the magnitudes of the velocity and acceleration at 
any instant, (b) the radius of curvature of the path. What conclu-
sion can you draw regarding the path of the particle?

 11.167 To study the performance of a race car, a high-speed motion-
picture camera is positioned at point A. The camera is mounted 
on a mechanism which permits it to record the motion of the car 
as the car travels on straightaway BC. Determine the speed of the 
car in terms of b, u, and 

·
u.

P

r
q

 Fig. P11.165

B

r

A q

C

v a

b

 Fig. P11.167

 11.168 Determine the magnitude of the acceleration of the race car of 
Prob. 11.167 in terms of b, u, 

·
u, ü.

 11.169 After taking off, a helicopter climbs in a straight line at a constant 
angle b. Its flight is tracked by radar from point A. Determine the 
speed of the helicopter in terms of d, b, u, and 

·
u.

B

A
q

d

v

b

Fig. P11.169
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680 Kinematics of Particles   *11.170 Pin P is attached to BC and slides freely in the slot of OA. Deter-
mine the rate of change 

·
u of the angle u, knowing that BC moves 

at a constant speed v0. Express your answer in terms of v0, h, b, 
and u.

B

C

A

q

b

P

O

h

v0

Fig. P11.170

O
b

Hyperbolic spiral r q = b

Fig. P11.173 and P11.175

O

Logarithmic spiral r = ebq

Fig. P11.174 and P11.176

 11.171 For the race car of Prob. 11.167, it was found that it took 0.5 s for 
the car to travel from the position u 5 60° to the position u 5 35°. 
Knowing that b 5 25 m, determine the average speed of the car 
during the 0.5-s interval.

 11.172 For the helicopter of Prob. 11.169, it was found that when the 
helicopter was at B, the distance and the angle of elevation of the 
helicopter were r 5 3000 ft and u 5 20°, respectively. Four sec-
onds later, the radar station sighted the helicopter at r 5 3320 ft 
and u 5 23.1°. Determine the average speed and the angle of 
climb b of the helicopter during the 4-s interval.

 11.173 and 11.174 A particle moves along the spiral shown; deter-
mine the magnitude of the velocity of the particle in terms of b, u, 
and 

·
u.

 11.175 and 11.176 A particle moves along the spiral shown. Know-
ing that 

·
u is constant and denoting this constant by v, determine 

the magnitude of the acceleration of the particle in terms of b, u, 
and v.
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681Problems 11.177 Show that r
.

5 hf
.

 sin u  knowing that at the instant shown, step 
AB of the step exerciser is rotating counterclockwise at a constant 
rate 

·
f.

h

B

A

P

O

f

q

d

r

Fig. P11.177

 11.178 The motion of a particle on the surface of a right circular cylinder 
is defined by the relations, R 5 A, u 5 2pt, and z 5 At2/4, where 
A is a constant. Determine the magnitudes of the velocity and 
acceleration of the particle at any time t.

 11.179 The three-dimensional motion of a particle is defined by the cylin-
drical coordinates (see Fig. 11.26) R 5 A/(t 1 1), u 5 Bt, and z 5 
Ct/(t 1 1). Determine the magnitudes of the velocity and accelera-
tion when (a) t 5 0, (b) t 5 .̀

  *11.180 For the conic helix of Prob. 11.95, determine the angle that the 
osculating plane forms with the y axis.

  *11.181 Determine the direction of the binormal of the path described by 
the particle of Prob. 11.96 when (a) t 5 0, (b) t 5 p/2 s.

x y

z

O

A

Fig. P11.178
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682

REVIEW AND SUMMARY

In the first half of the chapter, we analyzed the rectilinear motion of 
a particle, i.e., the motion of a particle along a straight line. To define 
the position P of the particle on that line, we chose a fixed origin O
and a positive direction (Fig. 11.27). The distance x from O to P, 
with the appropriate sign, completely defines the position of the 
particle on the line and is called the position coordinate of the par-
ticle [Sec. 11.2].

The velocity v of the particle was shown to be equal to the time 
derivative of the position coordinate x,

 
v 5

dx
dt  

(11.1)

and the acceleration a was obtained by differentiating v with respect 
to t,

 
a 5

dv
dt  

(11.2)

or

 
a 5

d2x

dt2  
(11.3)

We also noted that a could be expressed as

a 5 v
dv
dx  

(11.4)

 We observed that the velocity v and the acceleration a were 
represented by algebraic numbers which can be positive or negative. 
A positive value for v indicates that the particle moves in the positive 
direction, and a negative value that it moves in the negative direc-
tion. A positive value for a, however, may mean that the particle is 
truly accelerated (i.e., moves faster) in the positive direction, or that 
it is decelerated (i.e., moves more slowly) in the negative direction. 
A negative value for a is subject to a similar interpretation [Sample 
Prob. 11.1].

In most problems, the conditions of motion of a particle are defined 
by the type of acceleration that the particle possesses and by the 
initial conditions [Sec. 11.3]. The velocity and position of the particle 
can then be obtained by integrating two of the equations (11.1) to 
(11.4). Which of these equations should be selected depends upon 
the type of acceleration involved [Sample Probs. 11.2 and 11.3].

Position coordinate of a particle
in rectilinear motion

Velocity and acceleration
in rectilinear motion

Determination of the velocity
and acceleration by integration

O P

x
x

Fig. 11.27
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683Two types of motion are frequently encountered: the uniform recti-
linear motion [Sec. 11.4], in which the velocity v of the particle is 
constant and

 x 5 x0 1 vt (11.5)

and the uniformly accelerated rectilinear motion [Sec. 11.5], in which 
the acceleration a of the particle is constant and we have

 v 5 v0 1 at (11.6)
 x 5 x0 1 v0t 1 1

2at2 (11.7)
 v2 5 v2

0 1 2a(x 2 x0) (11.8)

When two particles A and B move along the same straight line, 
we may wish to consider the relative motion of B with respect to A 

Uniform rectilinear motion

Uniformly accelerated rectilinear 
motion

Relative motion of two particles

Review and Summary

x
 xA

AO B

 xB

 xB/A

Fig. 11.28

[Sec. 11.6]. Denoting by xB/A the relative position coordinate of B 
with respect to A (Fig. 11.28), we had

 xB 5 xA 1 xB/A (11.9)

Differentiating Eq. (11.9) twice with respect to t, we obtained 
successively

 vB 5 vA 1 vB/A (11.10)
 aB 5 aA 1 aB/A (11.11)

where vB/A and aB/A represent, respectively, the relative velocity and 
the relative acceleration of B with respect to A.

When several blocks are connected by inextensible cords, it is possi-
ble to write a linear relation between their position coordinates. 
Similar relations can then be written between their velocities and 
between their accelerations and can be used to analyze their motion 
[Sample Prob. 11.5].

It is sometimes convenient to use a graphical solution for problems 
involving the rectilinear motion of a particle [Secs. 11.7 and 11.8]. 
The graphical solution most commonly used involves the x−t, v−t, 
and a−t curves [Sec. 11.7; Sample Prob. 11.6]. It was shown that, at 
any given time t,

v 5 slope of x – t curve
a 5 slope of v – t curve

while, over any given time interval from t1 to t2,

v2 2 v1 5 area under a – t curve
x2 2 x1 5 area under v – t curve

In the second half of the chapter, we analyzed the curvilinear motion 
of a particle, i.e., the motion of a particle along a curved path. The 
position P of the particle at a given time [Sec. 11.9] was defined by 

Blocks connected by inextensible 
cords

Graphical solutions

Position vector and velocity 
in curvilinear motion
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684 Kinematics of Particles the position vector r joining the O of the coordinates and point P 
(Fig. 11.29). The velocity v of the particle was defined by the 
relation

 
v 5

dr
dt  

(11.15)

and was found to be a vector tangent to the path of the particle and 
of magnitude v (called the speed of the particle) equal to the time 
derivative of the length s of the arc described by the particle:

 
v 5

ds
dt  

(11.16)

The acceleration a of the particle was defined by the relation

 
a 5

dv
dt  

(11.18)

and we noted that, in general, the acceleration is not tangent to the 
path of the particle.

Before proceeding to the consideration of the components of velocity 
and acceleration, we reviewed the formal definition of the derivative 
of a vector function and established a few rules governing the differ-
entiation of sums and products of vector functions. We then showed 
that the rate of change of a vector is the same with respect to a fixed 
frame and with respect to a frame in translation [Sec. 11.10].

Denoting by x, y, and z the rectangular coordinates of a particle P, 
we found that the rectangular components of the velocity and accel-
eration of P equal, respectively, the first and second derivatives with 
respect to t of the corresponding coordinates:

  vx 5 x
.    vy 5 y

.    vz 5 z
.  (11.29)

  ax 5 ẍ    ay 5 ÿ    az 5 z̈  (11.30)

When the component ax of the acceleration depends only upon t, x, 
and/or vx, and when similarly ay depends only upon t, y, and/or vy, 
and az upon t, z, and/or vz, Eqs. (11.30) can be integrated indepen-
dently. The analysis of the given curvilinear motion can thus be 
reduced to the analysis of three independent rectilinear component 
motions [Sec. 11.11]. This approach is particularly effective in the 
study of the motion of projectiles [Sample Probs. 11.7 and 11.8].

For two particles A and B moving in space (Fig. 11.30), we consid-
ered the relative motion of B with respect to A, or more precisely, 
with respect to a moving frame attached to A and in translation 
with A [Sec. 11.12]. Denoting by rB/A the relative position vector of 
B with respect to A (Fig. 11.30), we had

 rB 5 rA 1 rByA (11.31)

Denoting by vB/A and aB/A, respectively, the relative velocity and the 
relative acceleration of B with respect to A, we also showed that

 vB 5 vA 1 vB/A (11.33)
and
 aB 5 aA 1 aB/A (11.34)

Acceleration in curvilinear motion

Derivative of a vector function

Rectangular components of velocity 
and acceleration

Component motions

Relative motion of two particles

O

y

x

P

P0

r

v

s

Fig. 11.29

rB/A
rA

rB

y

O x

z

B

A x'

z'

y'

Fig. 11.30
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685It is sometimes convenient to resolve the velocity and acceleration of 
a particle P into components other than the rectangular x, y, and z 
components. For a particle P moving along a path contained in a 
plane, we attached to P unit vectors et tangent to the path and en 
normal to the path and directed toward the center of curvature of 
the path [Sec. 11.13]. We then expressed the velocity and acceleration 
of the particle in terms of tangential and normal components. We 
wrote

 v 5 vet (11.36)

and

 
a 5

dv
dt

 et 1
v2

r
 en 

(11.39)

where v is the speed of the particle and r the radius of curvature of 
its path [Sample Probs. 11.10 and 11.11]. We observed that while 
the velocity v is directed along the tangent to the path, the accelera-
tion a consists of a component at directed along the tangent to the 
path and a component an directed toward the center of curvature of 
the path (Fig. 11.31).

For a particle P moving along a space curve, we defined the plane 
which most closely fits the curve in the neighborhood of P as the 
osculating plane. This plane contains the unit vectors et and en which 
define, respectively, the tangent and principal normal to the curve. 
The unit vector eb which is perpendicular to the osculating plane 
defines the binormal.

When the position of a particle P moving in a plane is defined by its 
polar coordinates r and u, it is convenient to use radial and transverse 
components directed, respectively, along the position vector r of the 
particle and in the direction obtained by rotating r through 90° counter-
clockwise [Sec. 11.14]. We attached to P unit vectors er and eu 
directed, respectively, in the radial and transverse directions (Fig. 11.32). 
We then expressed the velocity and acceleration of the particle in 
terms of radial and transverse components

 v 5 r
. er 1 r

·
ueu (11.43)

 a 5 (r$ 2 r
·
u2)er 1 (ru

$
1 2 ·r

·
u)eu (11.44)

where dots are used to indicate differentiation with respect to time. 
The scalar components of the velocity and acceleration in the radial 
and transverse directions are therefore

  vr 5 ·r    vu 5 r
·
u  (11.45)

  ar 5 r$ 2 r
·
u2    au 5 ru

$
5 2 ·r

·
u (11.46)

It is important to note that ar is not equal to the time derivative 
of vr, and that au is not equal to the time derivative of vu [Sample 
Prob. 11.12].

 The chapter ended with a discussion of the use of cylindrical 
coordinates to define the position and motion of a particle in space.

Tangential and normal components

Motion along a space curve

Radial and transverse components

Review and Summary

Fig. 11.31

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x

Fig. 11.32

r = rer

er

eθ

O

P

θ
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686

REVIEW PROBLEMS

 11.182 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 
24t 1 4, where x and t are expressed in meters and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the position and 
the total distance traveled when the acceleration is zero.

11.183 The acceleration of a particle is defined by the relation a 5 
260x21.5, where a and x are expressed in m/s2 and meters, respec-
tively. Knowing that the particle starts with no initial velocity at 
x 5 4 m, determine the velocity of the particle when (a) x 5 2 m, 
(b) x 5 1 m, (c) x 5 100 mm.

 11.184 A projectile enters a resisting medium at x 5 0 with an initial 
velocity v0 5 900 ft/s and travels 4 in. before coming to rest. 
Assuming that the velocity of the projectile is defined by the rela-
tion v 5 v0 2 kx, where v is expressed in ft/s and x is in feet, 
determine (a) the initial acceleration of the projectile, (b) the time 
required for the projectile to penetrate 3.9 in. into the resisting 
medium.

 11.185 A freight elevator moving upward with a constant velocity of 6 ft/s 
passes a passenger elevator which is stopped. Four seconds later 
the passenger elevator starts upward with a constant acceleration 
of 2.4 ft /s2. Determine (a) when and where the elevators will 
be at the same height, (b) the speed of the passenger elevator at 
that time.

 11.186 Block C starts from rest at t 5 0 and moves upward with a constant 
acceleration of 25 mm/s2. Knowing that block A moves downward 
with a constant velocity of 75 mm/s, determine (a) the time for 
which the velocity of block B is zero, (b) the corresponding position 
of block B.

 11.187 The three blocks shown move with constant velocities. Find the 
velocity of each block, knowing that the relative velocity of A with 
respect to C is 300 mm/s upward and that the relative velocity of 
B with respect to A is 200 mm/s downward.

 11.188 An oscillating water sprinkler at point A rests on an incline which 
forms an angle a with the horizontal. The sprinkler discharges 
water with an initial velocity v0 at an angle f with the vertical which 
varies from 2f0 to 1f0. Knowing that v0 5 30 ft/s, f0 5 40°, and 
a 5 10°, determine the horizontal distance between the sprinkler 
and points B and C which define the watered area.

 11.189 As the driver of an automobile travels north at 25 km/h in a park-
ing lot, he observes a truck approaching from the northwest. After 
he reduces his speed to 15 km/h and turns so that he is traveling 
in a northwest direction, the truck appears to be approaching from 
the west. Assuming that the velocity of the truck is constant during 
the period of observation, determine the magnitude and the direc-
tion of the velocity of the truck.

x

v

Fig. P11.184

C

A

B

Fig. P11.186 

A B

D

C

Fig. P11.187
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v0 v0

Fig. P11.188
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687Review Problems 11.190 The driver of an automobile decreases her speed at a constant rate 
from 45 to 30 mi/h over a distance of 750 ft along a curve of 
1500-ft radius. Determine the magnitude of the total acceleration 
of the automobile after the automobile has traveled 500 ft along 
the curve.

 11.191 A homeowner uses a snowblower to clear his driveway. Knowing 
that the snow is discharged at an average angle of 40° with the 
horizontal, determine the initial velocity n0 of the snow.

A

B
v0

40°
3.5 ft

2 ft

14 ft

Fig. P11.191

 11.192 From measurements of a photograph, it has been found that as the 
stream of water shown left the nozzle at A, it had a radius of cur-
vature of 25 m. Determine (a) the initial velocity vA of the stream, 
(b) the radius of curvature of the stream as it reaches its maximum 
height at B.

 11.193 At the bottom of a loop in the vertical plane an airplane has a 
horizontal velocity of 150 m/s and is speeding up at a rate of 
25 m/s2. The radius of curvature of the loop is 2000 m. The plane 
is being tracked by radar at O. What are the recorded  values of ·r, 
r
$
, 

·
u and ü  for this instant?

A

B

4

3

vA

Fig. P11.192

150 m/s

600 m

800 m

q

2000 m

r

Fig. P11.193
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COMPUTER PROBLEMS

 11.C1 The mechanism shown is known as a Whitworth quick-return 
 mechanism. The input rod AP rotates at a constant rate 

·
f, and the pin P

is free to slide in the slot of the output rod BD. Plot u versus f and 
·
u

versus f for one revolution of rod AP. Assume 
·
f 5 1 rad/s, l 5 4 in., and 

(a) b 5 2.5 in., (b) b 5 3 in., (c) b 5 3.5 in.

 11.C2 A ball is dropped with a velocity v0 at an angle a with the vertical 
onto the top step of a flight of stairs consisting of 8 steps. The ball rebounds 
and bounces down the steps as shown. Each time the ball bounces, at points 
A, B, C, . . . , the horizontal component of its velocity remains constant and 
the magnitude of the vertical component of its velocity is reduced by 
k percent. Use computational software to determine (a) if the ball bounces 
down the steps without skipping any step, (b) if the ball bounces down the 
steps without bouncing twice on the same step, (c) the first step on which 
the ball bounces twice. Use values of v0 from 1.8 m/s to 3.0 m/s in 0.6-m/s 
increments, values of a from 18° to 26° in 4° increments, and values of k 
equal to 40 and 50.

D

B

A

q

P

b
lf

Fig. P11.C1

A

B

C

a

0.15 m

v0

0.15 m

0.15 m

0.15 m

0.3 m 0.3 m 0.3 m

Fig. P11.C2

 11.C3 In an amusement park ride, “airplane” A is attached to the 10-m-
long rigid member OB. To operate the ride, the airplane and OB are rotated 
so that 70° # u0 # 130° and then are allowed to swing freely about O. The 
airplane is subjected to the acceleration of gravity and to a deceleration due 
to air resistance, 2kv2, which acts in a direction opposite to that of its veloc-
ity v. Neglecting the mass and the aerodynamic drag of OB and the friction 
in the bearing at O, use computational software or write a computer pro-
gram to determine the speed of the airplane for given values of u0 and u 
and the value of u at which the airplane first comes to rest after being 
released. Use values of u0 from 70° to 130° in 30° increments, and deter-
mine the maximum speed of the airplane and the first two values of u at 
which v 5 0. For each value of u0, let (a) k 5 0, (b) k 5 2 3 1024 m21, 
(c) k 5 4 3 1022 m21. (Hint: Express the tangential acceleration of the 
airplane in terms of g, k, and u. Recall that vu 5 r

·
u.)

q

O

A

B

Fig. P11.C3

bee29400_ch11_600-689.indd Page 688  12/14/08  1:08:19 AM user-s172bee29400_ch11_600-689.indd Page 688  12/14/08  1:08:19 AM user-s172 /Users/user-s172/Desktop/Tempwork/13:12:2008/Beer/Users/user-s172/Desktop/Tempwork/13:12:2008/Beer



689Computer Problems 11.C4 A motorist traveling on a highway at a speed of 60 mi/h exits onto 
an ice-covered exit ramp. Wishing to stop, he applies his brakes until his 
automobile comes to rest. Knowing that the magnitude of the total accelera-
tion of the automobile cannot exceed 10 ft/s2, use computational software 
to determine the minimum time required for the automobile to come to 
rest and the distance it travels on the exit ramp during that time if the exit 
ramp (a) is straight, (b) has a constant radius of curvature of 800 ft. Solve 
each part assuming that the driver applies his brakes so that dv/dt, during 
each time interval, (1) remains constant, (2) varies linearly.

 11.C5 An oscillating garden sprinkler discharges water with an initial 
velocity v0 of 10 m/s. (a) Knowing that the sides but not the top of arbor 
BCDE are open, use computational software to calculate the distance d to 
the point F that will be watered for values of a from 20° to 80°. (b) Deter-
mine the maximum value of d and the corresponding value of a.

A B

d

C

v0

2.2 m 3.2 m

1.8 m

D

E F
a

Fig. P11.C5
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The forces experienced by the 

 passengers on a roller coaster will 

 depend on whether the roller-coaster car 

is traveling up a hill or down a hill, in 

a straight line, or along a horizontal or 

vertical curved path. The relation existing 

among force, mass, and acceleration will 

be studied in this chapter.
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12.1 INTRODUCTION
Newton’s first and third laws of motion were used extensively in statics 
to study bodies at rest and the forces acting upon them. These two 
laws are also used in dynamics; in fact, they are sufficient for the study 
of the motion of bodies which have no acceleration. However, when 
bodies are accelerated, i.e., when the magnitude or the direction of 
their velocity changes, it is necessary to use Newton’s second law of 
motion to relate the motion of the body with the forces acting on it.
 In this chapter we will discuss Newton’s second law and apply 
it to the analysis of the motion of particles. As we state in Sec. 12.2, 
if the resultant of the forces acting on a particle is not zero, the 
particle will have an acceleration proportional to the magnitude of 
the resultant and in the direction of this resultant force. Moreover, 
the ratio of the magnitudes of the resultant force and of the accelera-
tion can be used to define the mass of the particle.
 In Sec. 12.3, the linear momentum of a particle is defined as 
the product L 5 mv of the mass m and velocity v of the particle, 
and it is demonstrated that Newton’s second law can be expressed 
in an alternative form relating the rate of change of the linear 
momentum with the resultant of the forces acting on that particle.
 Section 12.4 stresses the need for consistent units in the solu-
tion of dynamics problems and provides a review of the International 
System of Units (SI units) and the system of U.S. customary units.
 In Secs. 12.5 and 12.6 and in the Sample Problems which fol-
low, Newton’s second law is applied to the solution of engineering 
problems, using either rectangular components or tangential and 
normal components of the forces and accelerations involved. We 
recall that an actual body—including bodies as large as a car, rocket, 
or airplane—can be considered as a particle for the purpose of ana-
lyzing its motion as long as the effect of a rotation of the body about 
its mass center can be ignored.
 The second part of the chapter is devoted to the solution of 
problems in terms of radial and transverse components, with particu-
lar emphasis on the motion of a particle under a central force. In 
Sec. 12.7, the angular momentum HO of a particle about a point O 
is defined as the moment about O of the linear momentum of the 
particle: HO 5 r 3 mv. It then follows from Newton’s second law 
that the rate of change of the angular momentum HO of a particle 
is equal to the sum of the moments about O of the forces acting on 
that particle.
 Section 12.9 deals with the motion of a particle under a central 
force, i.e., under a force directed toward or away from a fixed point O. 
Since such a force has zero moment about O, it follows that the 
angular momentum of the particle about O is conserved. This prop-
erty greatly simplifies the analysis of the motion of a particle under 
a central force; in Sec. 12.10 it is applied to the solution of problems 
involving the orbital motion of bodies under gravitational 
attraction.
 Sections 12.11 through 12.13 are optional. They present a more 
extensive discussion of orbital motion and contain a number of prob-
lems related to space mechanics.

 Chapter 12 Kinetics of Particles:
Newton’s Second Law

 12.1 Introduction
 12.2 Newton’s Second Law of Motion
 12.3  Linear Momentum of a Particle. 

Rate of Change of Linear 
Momentum

 12.4 Systems of Units
 12.5 Equations of Motion
 12.6 Dynamic Equilibrium
 12.7 Angular Momentum of a Particle. 

Rate of Change of Angular 
Momentum

 12.8 Equations of Motion in Terms 
of Radial and Transverse 
Components

 12.9 Motion Under a Central Force. 
Conservation of Angular 
Momentum

 12.10 Newton’s Law of Gravitation
 12.11 Trajectory of a Particle Under a 

Central Force
 12.12 Application to Space Mechanics
 12.13 Kepler’s Laws of Planetary 

Motion
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69312.2 NEWTON’S SECOND LAW OF MOTION
Newton’s second law can be stated as follows:
 If the resultant force acting on a particle is not zero, the particle 
will have an acceleration proportional to the magnitude of the resul-
tant and in the direction of this resultant force.
 Newton’s second law of motion is best understood by imagining 
the following experiment: A particle is subjected to a force F1 of 
constant direction and constant magnitude F1. Under the action of 
that force, the particle is observed to move in a straight line and in 
the direction of the force (Fig. 12.1a). By determining the position 
of the particle at various instants, we find that its acceleration has a 
constant magnitude a1. If the experiment is repeated with forces F2, 
F3, . . . , of different magnitude or direction (Fig. 12.1b and c), we 
find each time that the particle moves in the direction of the force 
acting on it and that the magnitudes a1, a2, a3, . . . , of the accelera-
tions are proportional to the magnitudes F1, F2, F3, . . . , of the cor-
responding forces:

F1

a1
5

F2

a2
5

F3

a3
5 p 5 constant

 The constant value obtained for the ratio of the magnitudes of 
the forces and accelerations is a characteristic of the particle under 
consideration; it is called the mass of the particle and is denoted by m. 
When a particle of mass m is acted upon by a force F, the force F and 
the acceleration a of the particle must therefore satisfy the relation

 F 5 ma (12.1)

This relation provides a complete formulation of Newton’s second law; 
it expresses not only that the magnitudes of F and a are proportional 
but also (since m is a positive scalar) that the vectors F and a have 
the same direction (Fig. 12.2). We should note that Eq. (12.1) still 
holds when F is not constant but varies with time in magnitude or 
direction. The magnitudes of F and a remain proportional, and the 
two vectors have the same direction at any given instant. However, 
they will not, in general, be tangent to the path of the particle.
 When a particle is subjected simultaneously to several forces, 
Eq. (12.1) should be replaced by

 oF 5 ma (12.2)

where oF represents the sum, or resultant, of all the forces acting 
on the particle.
 It should be noted that the system of axes with respect to which 
the acceleration a is determined is not arbitrary. These axes must 
have a constant orientation with respect to the stars, and their origin 
must either be attached to the sun† or move with a constant velocity 

12.2 Newton’s Second Law of Motion

†More accurately, to the mass center of the solar system.

Fig. 12.1

F1

a1

(a)

F2

a2

(b)

F3

a3

(c)

Fig. 12.2

a

m

F = ma

Photo 12.1 When the racecar accelerates 
forward the rear tires have a friction force acting on 
them in the direction the car is moving.
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694 Kinetics of Particles: Newton’s Second Law with respect to the sun. Such a system of axes is called a newtonian 
frame of reference.† A system of axes attached to the earth does not 
constitute a newtonian frame of reference, since the earth rotates 
with respect to the stars and is accelerated with respect to the sun. 
However, in most engineering applications, the acceleration a can be 
determined with respect to axes attached to the earth and Eqs. (12.1) 
and (12.2) used without any appreciable error. On the other hand, 
these equations do not hold if a represents a relative acceleration 
measured with respect to moving axes, such as axes attached to an 
accelerated car or to a rotating piece of machinery.
 We observe that if the resultant oF of the forces acting on the 
particle is zero, it follows from Eq. (12.2) that the acceleration a of 
the particle is also zero. If the particle is initially at rest (v0 5 0) 
with respect to the newtonian frame of reference used, it will thus 
remain at rest (v 5 0). If originally moving with a velocity v0, the 
particle will maintain a constant velocity v 5 v0; that is, it will move 
with the constant speed v0 in a straight line. This, we recall, is the 
statement of Newton’s first law (Sec. 2.10). Thus, Newton’s first law 
is a particular case of Newton’s second law and can be omitted from 
the fundamental principles of mechanics.

12.3  LINEAR MOMENTUM OF A PARTICLE. RATE 
OF CHANGE OF LINEAR MOMENTUM

Replacing the acceleration a by the derivative dv/dt in Eq. (12.2), 
we write

oF 5 m
dv
dt

or, since the mass m of the particle is constant,

 
oF 5

d
dt

(mv)
 

(12.3)

 The vector mv is called the linear momentum, or simply the 
momentum, of the particle. It has the same direction as the velocity 
of the particle, and its magnitude is equal to the product of the mass 
m and the speed v of the particle (Fig. 12.3). Equation (12.3) 
expresses that the resultant of the forces acting on the particle is 
equal to the rate of change of the linear momentum of the particle. 
It is in this form that the second law of motion was originally stated 
by Newton. Denoting by L the linear momentum of the particle,

 L 5 mv (12.4)

and by L
.

 its derivative with respect to t, we can write Eq. (12.3) in 
the alternative form

 oF 5 L
.

 (12.5)

†Since stars are not actually fixed, a more rigorous definition of a newtonian frame of 
reference (also called an inertial system) is one with respect to which Eq. (12.2) holds.

Fig. 12.3

v

m
mv
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695 It should be noted that the mass m of the particle is assumed 
to be constant in Eqs. (12.3) to (12.5). Equation (12.3) or (12.5) 
should therefore not be used to solve problems involving the motion 
of bodies, such as rockets, which gain or lose mass. Problems of that 
type will be considered in Sec. 14.12.†
 It follows from Eq. (12.3) that the rate of change of the linear 
momentum mv is zero when oF 5 0. Thus, if the resultant force act-
ing on a particle is zero, the linear momentum of the particle remains 
constant, in both magnitude and direction. This is the  principle of 
conservation of linear momentum for a particle, which can be recog-
nized as an alternative statement of Newton’s first law (Sec. 2.10).

12.4 SYSTEMS OF UNITS
In using the fundamental equation F 5 ma, the units of force, mass, 
length, and time cannot be chosen arbitrarily. If they are, the mag-
nitude of the force F required to give an acceleration a to the mass 
m will not be numerically equal to the product ma; it will be only 
proportional to this product. Thus, we can choose three of the four 
units arbitrarily but must choose the fourth unit so that the equation 
F 5 ma is satisfied. The units are then said to form a system of 
consistent kinetic units.
 Two systems of consistent kinetic units are currently used by 
American engineers, the International System of Units (SI units‡) 
and the system of U.S. customary units. Both systems were discussed 
in detail in Sec. 1.3 and are described only briefly in this section.

International System of Units (SI Units). In this system, the 
base units are the units of length, mass, and time, and are called, 
respectively, the meter (m), the kilogram (kg), and the second (s). All 
three are arbitrarily defined (Sec. 1.3). The unit of force is a derived 
unit. It is called the newton (N) and is defined as the force which 
gives an acceleration of 1 m/s2 to a mass of 1 kg (Fig. 12.4). From 
Eq. (12.1) we write

1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2

The SI units are said to form an absolute system of units. This means 
that the three base units chosen are independent of the location 
where measurements are made. The meter, the kilogram, and the 
second may be used anywhere on the earth; they may even be used 
on another planet. They will always have the same significance.
 The weight W of a body, or force of gravity exerted on that 
body, should, like any other force, be expressed in newtons. Since a 
body subjected to its own weight acquires an acceleration equal to 
the acceleration of gravity g, it follows from Newton’s second law 
that the magnitude W of the weight of a body of mass m is

 W 5 mg (12.6)

†On the other hand, Eqs. (12.3) and (12.5) do hold in relativistic mechanics, where the 
mass m of the particle is assumed to vary with the speed of the particle.

‡SI stands for Système International d’Unités (French).

Fig. 12.4

a = 1 m/s2

m = 1 kg
F = 1 N

12.4 Systems of Units
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696 Kinetics of Particles: Newton’s Second Law Recalling that g 5 9.81 m/s2, we find that the weight of a body of 
mass 1 kg (Fig. 12.5) is

W 5 (1 kg)(9.81 m/s2) 5 9.81 N

 Multiples and submultiples of the units of length, mass, and 
force are frequently used in engineering practice. They are, respec-
tively, the kilometer (km) and the millimeter (mm); the megagram†  
(Mg) and the gram (g); and the kilonewton (kN). By definition,

1 km 5 1000 m  1 mm 5 0.001 m
1 Mg 5 1000 kg   1 g 5 0.001 kg

1 kN 5 1000 N

The conversion of these units to meters, kilograms, and newtons, 
respectively, can be effected simply by moving the decimal point 
three places to the right or to the left.
 Units other than the units of mass, length, and time can all be 
expressed in terms of these three base units. For example, the unit 
of linear momentum can be obtained by recalling the definition of 
linear momentum and writing

mv 5 (kg)(m/s) 5 kg ? m/s

U.S. Customary Units. Most practicing American engineers still 
commonly use a system in which the base units are the units of 
length, force, and time. These units are, respectively, the foot (ft), the 
pound (lb), and the second (s). The second is the same as the corre-
sponding SI unit. The foot is defined as 0.3048 m. The pound is 
defined as the weight of a platinum standard, called the standard 
pound, which is kept at the National Institute of Standards and Tech-
nology outside Washington and the mass of which is 0.453 592 43 kg. 
Since the weight of a body depends upon the gravitational attraction 
of the earth, which varies with location, it is specified that the stan-
dard pound should be placed at sea level and at a latitude of 45° to 
properly define a force of 1 lb. Clearly, the U.S. customary units do 
not form an absolute system of units. Because of their dependence 
upon the gravitational attraction of the earth, they are said to form 
a gravitational system of units.
 While the standard pound also serves as the unit of mass in 
commercial transactions in the United States, it cannot be so used 
in engineering computations since such a unit would not be consis-
tent with the base units defined in the preceding paragraph. Indeed, 
when acted upon by a force of 1 lb, that is, when subjected to its 
own weight, the standard pound receives the acceleration of gravity, 
g 5 32.2 ft/s2 (Fig. 12.6), and not the unit acceleration required by 
Eq. (12.1). The unit of mass consistent with the foot, the pound, and 
the second is the mass which receives an acceleration of 1 ft/s2 when 
a force of 1 lb is applied to it (Fig. 12.7). This unit, sometimes called 
a slug, can be derived from the equation F 5 ma after substituting 
1 lb and 1 ft/s2 for F and a, respectively. We write

F 5 ma  1 lb 5 (1 slug)(1 ft/s2)

†Also known as a metric ton.

Fig. 12.5

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

Fig. 12.7

a = 1 ft/s2

m = 1 slug
(= 1 lb⋅s2/ft)

F = 1 lb

Fig. 12.6

a = 32.2 ft/s2

m = 1 lb

F = 1 lb
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697and obtain

1 slug 5
1 lb

1 ft/s2 5 1 lb ? s2/ft

Comparing Figs. 12.6 and 12.7, we conclude that the slug is a mass 
32.2 times larger than the mass of the standard pound.
 The fact that bodies are characterized in the U.S. customary 
system of units by their weight in pounds rather than by their mass 
in slugs was a convenience in the study of statics, where we were 
dealing for the most part with weights and other forces and only 
seldom with masses. However, in the study of kinetics, which involves 
forces, masses, and accelerations, it will be repeatedly necessary to 
express in slugs the mass m of a body, the weight W of which has 
been given in pounds. Recalling Eq. (12.6), we will write

 
m 5

W
g  

(12.7)

where g is the acceleration of gravity (g 5 32.2 ft/s2).
 Units other than the units of force, length, and time can all be 
expressed in terms of these three base units. For example, the unit 
of linear momentum can be obtained by using the definition of linear 
momentum to write

mv 5 (lb ? s2/ft)(ft/s) 5 lb ? s

Conversion from One System of Units to Another. The con-
version from U.S. customary units to SI units, and vice versa, was 
discussed in Sec. 1.4. You will recall that the conversion factors 
obtained for the units of length, force, and mass are, respectively,

 Length: 1 ft 5 0.3048 m
 Force: 1 lb 5 4.448 N
 Mass: 1 slug 5 1 lb ? s2/ft 5 14.59 kg

Although it cannot be used as a consistent unit of mass, the mass of 
the standard pound is, by definition,

1 pound-mass 5 0.4536 kg

This constant can be used to determine the mass in SI units (kilo-
grams) of a body which has been characterized by its weight in U.S. 
customary units (pounds).

12.5 EQUATIONS OF MOTION
Consider a particle of mass m acted upon by several forces. We 
recall from Sec. 12.2 that Newton’s second law can be expressed by 
the equation

 oF 5 ma (12.2)

which relates the forces acting on the particle and the vector ma 
(Fig. 12.8). In order to solve problems involving the motion of a 
particle, however, it will be found more convenient to replace 
Eq. (12.2) by equivalent equations involving scalar quantities.

= 
m m

ma

F1

F2

Fig. 12.8

12.5 Equations of Motion
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698 Kinetics of Particles: Newton’s Second Law Rectangular Components. Resolving each force F and the 
acceleration a into rectangular components, we write

o(Fxi 1 Fyj 1 Fzk) 5 m(axi 1 ayj 1 azk)

from which it follows that

 oFx 5 max  oFy 5 may  oFz 5 maz (12.8)

Recalling from Sec. 11.11 that the components of the acceleration 
are equal to the second derivatives of the coordinates of the particle, 
we have
 oFx 5 mẍ  oFy 5 mÿ  oFz 5 mz̈ (12.89)

 Consider, as an example, the motion of a projectile. If the resis-
tance of the air is neglected, the only force acting on the projectile 
after it has been fired is its weight W 5 2Wj. The equations defin-
ing the motion of the projectile are therefore

mẍ 5 0  mÿ 5 2W  mz̈ 5 0

and the components of the acceleration of the projectile are

ẍ 5 0   ÿ 5 2
W
m

5 2g   z̈ 5 0

where g is 9.81 m/s2 or 32.2 ft/s2. The equations obtained can be 
integrated independently, as shown in Sec. 11.11, to obtain the veloc-
ity and displacement of the projectile at any instant.
 When a problem involves two or more bodies, equations of 
motion should be written for each of the bodies (see Sample 
Probs. 12.3 and 12.4). You will recall from Sec. 12.2 that all accelerations 
should be measured with respect to a newtonian frame of reference. 
In most engineering applications, accelerations can be determined with 
respect to axes attached to the earth, but relative accelerations mea-
sured with respect to moving axes, such as axes attached to an acceler-
ated body, cannot be substituted for a in the equations of motion.

Tangential and Normal Components. Resolving the forces and the 
acceleration of the particle into components along the tangent to the 
path (in the direction of motion) and the normal (toward the inside of 

Photo 12.2 The pilot of a fighter aircraft will 
experience very large normal forces when taking 
a sharp turn.

Fig. 12.9

=
man

ma t

n

m

t

n

m

t
ΣFn

ΣFt

the path) (Fig. 12.9), and substituting into Eq. (12.2), we obtain the 
two scalar equations
 oFt 5 mat  oFn 5 man (12.9)

Substituting for at and an from Eqs. (11.40), we have

 
oFt 5 m

dv
dt

  oFn 5 m
v2

r  
(12.99)

The equations obtained may be solved for two unknowns.
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69912.6 DYNAMIC EQUILIBRIUM
Returning to Eq. (12.2) and transposing the right-hand member, we 
write Newton’s second law in the alternative form

 oF 2 ma 5 0 (12.10)

which expresses that if we add the vector 2ma to the forces acting 
on the particle, we obtain a system of vectors equivalent to zero 
(Fig. 12.10). The vector 2ma, of magnitude ma and of direction 
opposite to that of the acceleration, is called an inertia vector. The 
particle may thus be considered to be in equilibrium under the given 
forces and the inertia vector. The particle is said to be in dynamic 
equilibrium, and the problem under consideration can be solved by 
the methods developed earlier in statics.
 In the case of coplanar forces, all the vectors shown in Fig. 12.10, 
including the inertia vector, can be drawn tip-to-tail to form a closed-
vector polygon. Or the sums of the components of all the vectors in 
Fig. 12.10, again including the inertia vector, can be equated to zero. 
Using rectangular components, we therefore write

 oFx 5 0  oFy 5 0  including inertia vector (12.11)

When tangential and normal components are used, it is more conve-
nient to represent the inertia vector by its two components 2mat and 
2man in the sketch itself (Fig. 12.11). The tangential component of 
the inertia vector provides a measure of the resistance the particle 
offers to a change in speed, while its normal component (also called 
centrifugal force) represents the tendency of the particle to leave its 
curved path. We should note that either of these two components may 
be zero under special conditions: (1) if the particle starts from rest, its 
initial velocity is zero and the normal component of the inertia vector 
is zero at t 5 0; (2) if the particle moves at constant speed along its 
path, the tangential component of the inertia vector is zero and only 
its normal component needs to be considered.
 Because they measure the resistance that particles offer when 
we try to set them in motion or when we try to change the conditions 
of their motion, inertia vectors are often called inertia forces. The 
inertia forces, however, are not forces like the forces found in statics, 
which are either contact forces or gravitational forces (weights). 
Many people, therefore, object to the use of the word “force” when 
referring to the vector 2ma or even avoid altogether the concept of 
dynamic equilibrium. Others point out that inertia forces and actual 
forces, such as gravitational forces, affect our senses in the same way 
and cannot be distinguished by physical measurements. A man riding 
in an elevator which is accelerated upward will have the feeling that 
his weight has suddenly increased; and no measurement made 
within the elevator could establish whether the elevator is truly accel-
erated or whether the force of attraction exerted by the earth has 
suddenly increased.
 Sample problems have been solved in this text by the direct 
application of Newton’s second law, as illustrated in Figs. 12.8 and 
12.9, rather than by the method of dynamic equilibrium.

12.6 Dynamic Equilibrium

Fig. 12.10

= 0

–ma

F1

F2

m

= 0
–ma t

–ma n

F1

F2

F3

n

m

t

Fig. 12.11

Photo 12.3 The angle each rider is with respect 
to the horizontal will depend on the weight of the 
rider and the speed of rotation.
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SAMPLE PROBLEM 12.1

A 200-lb block rests on a horizontal plane. Find the magnitude of the force P 
required to give the block an acceleration of 10 ft/s2 to the right. The coeffi-
cient of kinetic friction between the block and the plane is mk 5 0.25.

SOLUTION

The mass of the block is

m 5
W
g

5
200 lb

32.2 ft/s2 
5 6.21 lb ? s2/ft

We note that F 5 mkN 5 0.25N and that a 5 10 ft/s2. Expressing that the 
forces acting on the block are equivalent to the vector ma, we write

y
1  oFx 5 ma:  P cos 30° 2 0.25N 5 (6.21 lb ? s2/ft)(10 ft/s2)
 P cos 30° 2 0.25N 5 62.1 lb (1)
1xoFy 5 0:   N 2 P sin 30° 2 200 lb 5 0 (2)

Solving (2) for N and substituting the result into (1), we obtain

N 5 P sin 30° 1 200 lb
 P cos 30° 2 0.25(P sin 30° 1 200 lb) 5 62.1 lb P 5 151 lb ◀

=

P
30°

N
F

W = 200 lb

ma

m = 6.21 lb⋅s2/ft

P

30°

200 lb

SAMPLE PROBLEM 12.2

An 80-kg block rests on a horizontal plane. Find the magnitude of the force P 
required to give the block an acceleration of 2.5 m/s2 to the right. The coeffi-
cient of kinetic friction between the block and the plane is mk 5 0.25.

SOLUTION

The weight of the block is

W 5 mg 5 (80 kg)(9.81 m/s2) 5 785 N

We note that F 5 mkN 5 0.25N and that a 5 2.5 m/s2. Expressing that the 
forces acting on the block are equivalent to the vector ma, we write

y
1  oFx 5 ma:  P cos 30° 2 0.25N 5 (80 kg)(2.5 m/s2)
 P cos 30° 2 0.25N 5 200 N (1)
1xoFy 5 0:   N 2 P sin 30° 2 785 N 5 0 (2)

Solving (2) for N and substituting the result into (1), we obtain

N 5 P sin 30° 1 785 N
P cos 30° 2 0.25(P sin 30° 1 785 N) 5 200 N   P 5 535 N ◀

=

P

30°

N
F

W = 785 N

ma

m = 80 kg 

P

30°

80 kg
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SAMPLE PROBLEM 12.3

The two blocks shown start from rest. The horizontal plane and the pulley 
are frictionless, and the pulley is assumed to be of negligible mass. Deter-
mine the acceleration of each block and the tension in each cord.

SOLUTION

Kinematics. We note that if block A moves through xA to the right, block 
B moves down through

xB 5 1
2 xA

Differentiating twice with respect to t, we have

 aB 5 1
2 aA (1)

Kinetics. We apply Newton’s second law successively to block A, block B, 
and pulley C.

Block A. Denoting by T1 the tension in cord ACD, we write

y
1  oFx 5 mAaA: T1 5 100aA (2)

Block B. Observing that the weight of block B is

WB 5 mBg 5 (300 kg)(9.81 m/s2) 5 2940 N

and denoting by T2 the tension in cord BC, we write

1woFy 5 mBaB:     2940 2 T2 5 300aB

or, substituting for aB from (1),

2940 2 T2 5 300(1
2 aA)

 T2 5 2940 2 150aA (3)

Pulley C. Since mC is assumed to be zero, we have

1woFy 5 mCaC 5 0: T2 2 2T1 5 0 (4)

Substituting for T1 and T2 from (2) and (3), respectively, into (4) we write

 2940 2 150aA 2 2(100aA) 5 0
 2940 2 350aA 5 0 aA 5 8.40 m/s2 ◀

Substituting the value obtained for aA into (1) and (2), we have

 aB 5 1
2 aA 5 1

2 (8.40 m/s2) aB 5 4.20 m/s2 ◀

 T1 5 100aA 5 (100 kg)(8.40 m/s2) T1 5 840 N ◀

Recalling (4), we write

 T2 5 2T1  T2 5 2(840 N) T2 5 1680 N ◀

We note that the value obtained for T2 is not equal to the weight of block B.

=

=

=

B

A

WA

WB = 2940 N

T1

T1 T1

T2

T2

N

 0

mAaA

mBaB

mA = 100 kg

mB = 300 kg

C

100 kg

300 kg

A

B

D

C
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SAMPLE PROBLEM 12.4

The 12-lb block B starts from rest and slides on the 30-lb wedge A, which 
is supported by a horizontal surface. Neglecting friction, determine (a) the 
acceleration of the wedge, (b) the acceleration of the block relative to the 
wedge.

SOLUTION

Kinematics. We first examine the acceleration of the wedge and the accel-
eration of the block.

Wedge A. Since the wedge is constrained to move on the horizontal sur-
face, its acceleration aA is horizontal. We will assume that it is directed to 
the right.

Block B. The acceleration aB of block B can be expressed as the sum of 
the acceleration of A and the acceleration of B relative to A. We have

aB 5 aA 1 aB/A

where aB/A is directed along the inclined surface of the wedge.

Kinetics. We draw the free-body diagrams of the wedge and of the block 
and apply Newton’s second law.

Wedge A. We denote the forces exerted by the block and the horizontal 
surface on wedge A by N1 and N2, respectively.

y
1  oFx 5 mAaA:     N1 sin 30° 5 mAaA

 0.5N1 5 (WA/g)aA (1)

Block B. Using the coordinate axes shown and resolving aB into its com-
ponents aA and aB/A, we write

1poFx 5 mBax:    2WB sin 30° 5 mBaA cos 30° 2 mBaB/A

 2WB sin 30° 5 (WB/g)(aA cos 30° 2 aB/A)
   aB/A 5 aA cos 30° 1 g sin 30° (2)
1roFy 5 mBay:  N1 2 WB cos 30° 5 2mBaA sin 30°
 N1 2 WB cos 30° 5 2(WB/g)aA sin 30° (3)

a. Acceleration of Wedge A. Substituting for N1 from Eq. (1) into Eq. (3), 
we have

2(WA/g)aA 2 WB cos 30° 5 2(WB/g)aA sin 30°

Solving for aA and substituting the numerical data, we write

aA 5
WB cos 30°

2WA 1 WB sin 30°
 g 5

(12 lb) cos 30°
2(30 lb) 1 (12 lb) sin 30°

 (32.2 ft/s2)

 aA 5 15.07 ft/s2 aA 5 5.07 ft/s2 
y ◀

b. Acceleration of Block B Relative to A. Substituting the value obtained 
for aA into Eq. (2), we have

aB/A 5 (5.07 ft/s2) cos 30° 1 (32.2 ft/s2) sin 30°
 aB/A 5 120.5 ft/s2 aB/A 5 20.5 ft/s2 d30° ◀

30°
A

B

=

=

30°

30°

30°

30°

A

B

WA

WB

N1

N1

N2

mAaA

aA

aA

aB/A

mBaA

mBaB/A

y y

x x
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SAMPLE PROBLEM 12.6

Determine the rated speed of a highway curve of radius r 5 400 ft banked 
through an angle u 5 18°. The rated speed of a banked highway curve is 
the speed at which a car should travel if no lateral friction force is to be 
exerted on its wheels.

SOLUTION

The car travels in a horizontal circular path of radius r. The normal com-
ponent an of the acceleration is directed toward the center of the path; its 
magnitude is an 5 v2/r, where v is the speed of the car in ft/s. The mass m 
of the car is W/g, where W is the weight of the car. Since no lateral friction 
force is to be exerted on the car, the reaction R of the road is shown per-
pendicular to the roadway. Applying Newton’s second law, we write

 1hoFy 5 0: R cos u 2 W 5 0 
  

R 5
W

 cos u  
(1)

z
1  oFn 5 man:

 
R sin u 5

W
g

 an 
(2)

Substituting for R from (1) into (2), and recalling that an 5 v2/r,

W
 cos u

 sin u 5
W
g

 
v2

r
  v2 5 g r tan u

Substituting r 5 400 ft and u 5 18° into this equation, we obtain

v2 5 (32.2 ft/s2)(400 ft) tan 18°
 v 5 64.7 ft/s v 5 44.1 mi/h ◀

SAMPLE PROBLEM 12.5

The bob of a 2-m pendulum describes an arc of circle in a vertical plane. If 
the tension in the cord is 2.5 times the weight of the bob for the position 
shown, find the velocity and the acceleration of the bob in that position.

SOLUTION

The weight of the bob is W 5 mg; the tension in the cord is thus 2.5 mg. 
Recalling that an is directed toward O and assuming a t as shown, we apply 
Newton’s second law and obtain

 1 ooFt 5 mat: mg sin 30° 5 mat

 at 5 g sin 30° 5 14.90 m/s2 at 5 4.90 m/s2o ◀

 1 roFn 5 man: 2.5  mg 2 mg cos 30° 5 man

 an 5 1.634 g 5 116.03 m/s2  an 5 16.03 m/s2r ◀

Since an 5 v2/r, we have v2 5 ran 5 (2 m)(16.03 m/s2)

 v 5 65.66 m/s  v 5 5.66 m/s
G
 (up or down) ◀

=
T = 2.5 mg

W = mg

man

n

t

mat

30°

30°
2 m

O

m

n

y

W

R

man

 = 18° 90°

 = 18°

 = 18°

=

q

q

q

bee29400_ch12_690-726.indd Page 703  11/26/08  6:36:52 PM user-s173bee29400_ch12_690-726.indd Page 703  11/26/08  6:36:52 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



704

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will apply Newton’s second law of motion, 
oF 5 ma, to relate the forces acting on a particle to the motion of the 

particle.

1. Writing the equations of motion. When applying Newton’s second law to the 
types of motion discussed in this lesson, you will find it most convenient to express 
the vectors F and a in terms of either their rectangular components or their tan-
gential and normal components.
 a. When using rectangular components, and recalling from Sec. 11.11 the 
expressions found for ax, ay, and az, you will write

oFx 5 mẍ  oFy 5 mÿ  oFz 5 mz̈

 b. When using tangential and normal components, and recalling from 
Sec. 11.13 the expressions found for at and an, you will write

oFt 5 m  

dv
dt

  oFn 5 m  

v2

r

2. Drawing a free-body diagram showing the applied forces and an equivalent 
diagram showing the vector ma or its components will provide you with a pictorial 
representation of Newton’s second law [Sample Probs. 12.1 through 12.6]. These 
diagrams will be of great help to you when writing the equations of motion. Note 
that when a problem involves two or more bodies, it is usually best to consider 
each body separately.

3. Applying Newton’s second law. As we observed in Sec. 12.2, the acceleration 
used in the equation oF 5 ma should always be the absolute acceleration of the 
particle (that is, it should be measured with respect to a newtonian frame of refer-
ence). Also, if the sense of the acceleration a is unknown or is not easily deduced, 
assume an arbitrary sense for a (usually the positive direction of a coordinate axis) 
and then let the solution provide the correct sense. Finally, note how the solutions 
of Sample Probs. 12.3 and 12.4 were divided into a kinematics portion and a kinet-
ics portion, and how in Sample Prob. 12.4 we used two systems of coordinate axes 
to simplify the equations of motion.

4. When a problem involves dry friction, be sure to review the relevant sections 
of Statics [Secs. 8.1 to 8.3] before attempting to solve that problem. In particular, 
you should know when each of the equations F 5 msN and F 5 mkN may be used. 
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You should also recognize that if the motion of a system is not specified, it is nec-
essary first to assume a possible motion and then to check the validity of that 
assumption.

5. Solving problems involving relative motion. When a body B moves with 
respect to a body A, as in Sample Prob. 12.4, it is often convenient to express the 
acceleration of B as

aB 5 aA 1 aB/A 

where aB/A is the acceleration of B relative to A, that is, the acceleration of B as 
observed from a frame of reference attached to A and in translation. If B is 
observed to move in a straight line, aB/A will be directed along that line. On the 
other hand, if B is observed to move along a circular path, the relative acceleration 
aB/A should be resolved into components tangential and normal to that path.

6. Finally, always consider the implications of any assumption you make. 
Thus, in a problem involving two cords, if you assume that the tension in one of 
the cords is equal to its maximum allowable value, check whether any require-
ments set for the other cord will then be satisfied. For instance, will the tension 
T in that cord satisfy the relation 0 # T # Tmax? That is, will the cord remain taut 
and will its tension be less than its maximum allowable value?
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PROBLEMS
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 12.1 The value of g at any latitude f may be obtained from the formula

g 5 32.09(1 1 0.0053 sin2 f)ft/s2

  which takes into account the effect of the rotation of the earth, 
as well as the fact that the earth is not truly spherical. Determine 
to four significant figures (a) the weight in pounds, (b) the mass 
in pounds, (c) the mass in lb ? s2/ft, at the latitudes of 0°, 45°, 60°, 
of a silver bar, the mass of which has been officially designated 
as 5 lb.

 12.2 The acceleration due to gravity on the moon is 1.62 m/s2. Deter-
mine (a) the weight in newtons, (b) the mass in kilograms, on the 
moon, of a gold bar, the mass of which has been officially desig-
nated as 2 kg.

 12.3 A 200-kg satellite is in a circular orbit 1500 km above the surface 
of Venus. The acceleration due to the gravitational attraction of 
Venus at this altitude is 5.52 m/s2. Determine the magnitude of the 
linear momentum of the satellite knowing that its orbital speed is 
23.4 3 103 km/h.

 12.4 A spring scale A and a lever scale B having equal lever arms are 
fastened to the roof of an elevator, and identical packages are 
attached to the scales as shown. Knowing that when the elevator 
moves downward with an acceleration of 4 ft/s2 the spring scale 
indicates a load of 14.1 lb, determine (a) the weight of the pack-
ages, (b) the load indicated by the spring scale and the mass 
needed to balance the lever scale when the elevator moves upward 
with an acceleration of 4 ft/s2.

A

B

 Fig. P12.4

 12.5 A hockey player hits a puck so that it comes to rest in 9 s after 
sliding 30 m on the ice. Determine (a) the initial velocity of the 
puck, (b) the coefficient of friction between the puck and the ice.
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707Problems 12.6 Determine the maximum theoretical speed that an automobile 
starting from rest can reach after traveling 400 m. Assume that 
the coefficient of static friction is 0.80 between the tires and the 
pavement and that (a) the automobile has front-wheel drive and 
the front wheels support 62 percent of the automobile’s weight, 
(b) the automobile has rear-wheel drive and the rear wheels sup-
port 43 percent of the automobile’s weight.

 12.7 In anticipation of a long 7° upgrade, a bus driver accelerates at a 
constant rate of 3 ft/s2 while still on a level section of the highway. 
Knowing that the speed of the bus is 60 mi/h as it begins to climb 
the grade and that the driver does not change the setting of his 
throttle or shift gears, determine the distance traveled by the bus 
up the grade when its speed has decreased to 50 mi/h.

 12.8 If an automobile’s braking distance from 60 mph is 150 ft on level 
pavement, determine the automobile’s braking distance from 60 mph 
when it is (a) going up a 5° incline, (b) going down a 3-percent 
incline. Assume the braking force is independent of grade.

 12.9 A 20-kg package is at rest on an incline when a force P is applied 
to it. Determine the magnitude of P if 10 s is required for the 
package to travel 5 m up the incline. The static and kinetic coef-
ficients of friction between the package and the incline are both 
equal to 0.3.

 12.10 The acceleration of a package sliding at point A is 3 m/s2. Assuming 
that the coefficient of kinetic friction is the same for each section, 
determine the acceleration of the package at point B.

30°

20°

P

 Fig. P12.9

15°

A

B

30°

 Fig. P12.10

A

30 kg

25 kg
B

 Fig. P12.11 and P12.12

 12.11 The two blocks shown are originally at rest. Neglecting the masses 
of the pulleys and the effect of friction in the pulleys and between 
block A and the horizontal surface, determine (a) the acceleration 
of each block, (b) the tension in the cable.

 12.12 The two blocks shown are originally at rest. Neglecting the masses 
of the pulleys and the effect of friction in the pulleys and assuming 
that the coefficients of friction between block A and the horizontal 
surface are ms 5 0.25 and mk 5 0.20, determine (a) the accelera-
tion of each block, (b) the tension in the cable.
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708 Kinetics of Particles: Newton’s Second Law  12.13 The coefficients of friction between the load and the flat-bed 
trailer shown are ms 5 0.40 and mk 5 0.30. Knowing that the speed 
of the rig is 45 mi/h, determine the shortest distance in which the 
rig can be brought to a stop if the load is not to shift.

10 ft

 Fig. P12.13

 12.14 A tractor-trailer is traveling at 60 mi/h when the driver applies his 
brakes. Knowing that the braking forces of the tractor and the 
trailer are 3600 lb and 13,700 lb, respectively, determine (a) the 
distance traveled by the tractor-trailer before it comes to a stop, 
(b) the horizontal component of the force in the hitch between the 
tractor and the trailer while they are slowing down.

17,400 lb
15,000 lb

CROSS COUNTRY MOVERS

 Fig. P12.14

B

A

P

25°

 Fig. P12.15 and P12.16

A B

100 lb

80 lb

15°

 Fig. P12.17

 12.15 Block A has a mass of 40 kg, and block B has a mass of 8 kg. The 
coefficients of friction between all surfaces of contact are ms 5 
0.20 and mk 5 0.15. If P 5 0, determine (a) the acceleration of 
block B, (b) the tension in the cord.

 12.16 Block A has a mass of 40 kg, and block B has a mass of 8 kg. The 
coefficients of friction between all surfaces of contact are ms 5 
0.20 and mk 5 0.15. If P 5 40 N y, determine (a) the acceleration 
of block B, (b) the tension in the cord.

 12.17 Boxes A and B are at rest on a conveyor belt that is initially at 
rest. The belt is suddenly started in an upward direction so that 
slipping occurs between the belt and the boxes. Knowing that the 
coefficients of kinetic friction between the belt and the boxes are 
(mk)A 5 0.30 and (mk)B 5 0.32, determine the initial acceleration 
of each box.
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709Problems 12.18 Knowing that the system shown starts from rest, find the velocity 
at t 5 1.2 s of (a) collar A, (b) collar B. Neglect the masses of the 
pulleys and the effect of friction.

 Fig. P12.21

A B C

 Fig. P12.20

AA A
100 lb 100 lb

2100 lb

2200 lb200 lb200 lb

(1) (2) (3)

 Fig. P12.19

10 kg

A

B

15 kg

25 N

 Fig. P12.18

 12.19 Each of the systems shown is initially at rest. Neglecting axle fric-
tion and the masses of the pulleys, determine for each system 
(a) the acceleration of block A, (b) the velocity of block A after it 
has moved through 10 ft, (c) the time required for block A to reach 
a velocity of 20 ft/s.

 12.20 A man standing in an elevator that is moving with a constant accel-
eration holds a 3-kg block B between two other blocks in such a 
way that the motion of B relative to A and C is impending. Know-
ing that the coefficients of friction between all surfaces are ms 5 
0.30 and mk 5 0.25, determine (a) the acceleration of the elevator 
if it is moving upward and each of the forces exerted by the man 
on blocks A and C has a horizontal component equal to twice the 
weight of B, (b) the horizontal components of the forces exerted 
by the man on blocks A and C if the acceleration of the elevator 
is 2.0 m/s2 downward.

 12.21 A package is at rest on a conveyor belt which is initially at rest. 
The belt is started and moves to the right for 1.3 s with a constant 
acceleration of 2 m/s2. The belt then moves with a constant decel-
eration a2 and comes to a stop after a total displacement of 2.2 m. 
Knowing that the coefficients of friction between the package and 
the belt are ms 5 0.35 and mk 5 0.25, determine (a) the decelera-
tion a2 of the belt, (b) the displacement of the package relative to 
the belt as the belt comes to a stop.
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710 Kinetics of Particles: Newton’s Second Law  12.22 To transport a series of bundles of shingles A to a roof, a contractor 
uses a motor-driven lift consisting of a horizontal platform BC 
which rides on rails attached to the sides of a ladder. The lift starts 
from rest and initially moves with a constant acceleration a1 as 
shown. The lift then decelerates at a constant rate a2 and comes 
to rest at D, near the top of the ladder. Knowing that the coeffi-
cient of static friction between a bundle of shingles and the hori-
zontal platform is 0.30, determine the largest allowable acceleration 
a1 and the largest allowable deceleration a2 if the bundle is not to 
slide on the platform.

A

B C

4.4 m

65°

0.8 m

a1

D

 Fig. P12.22

2 m 20°
A

 Fig. P12.23

 12.23 To unload a bound stack of plywood from a truck, the driver 
first tilts the bed of the truck and then accelerates from rest. 
Knowing that the coefficients of friction between the bottom 
sheet of plywood and the bed are ms 5 0.40 and mk 5 0.30, 
determine (a) the smallest acceleration of the truck which will 
cause the stack of plywood to slide, (b) the acceleration of the 
truck which causes corner A of the stack to reach the end of the 
bed in 0.9 s.

 12.24 The propellers of a ship of weight W can produce a propulsive 
force F0; they produce a force of the same magnitude but of 
opposite direction when the engines are reversed. Knowing that 
the ship was proceeding forward at its maximum speed v0 when 
the engines were put into reverse, determine the distance the 
ship travels before coming to a stop. Assume that the frictional 
resistance of the water varies directly with the square of the 
velocity.
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711Problems 12.25 A constant force P is applied to a piston and rod of total mass m 
to make them move in a cylinder filled with oil. As the piston 
moves, the oil is forced through orifices in the piston and exerts 
on the piston a force of magnitude kv in a direction opposite to 
the motion of the piston. Knowing that the piston starts from rest 
at t 5 0 and x 5 0, show that the equation relating x, v, and t, 
where x is the distance traveled by the piston and v is the speed 
of the piston, is linear in each of these variables.

 12.26 A spring AB of constant k is attached to a support at A and to 
a collar of mass m. The unstretched length of the spring is l. 
Knowing that the collar is released from rest at x 5 x0 and neglect-
ing friction between the collar and the horizontal rod, determine 
the magnitude of the velocity of the collar as it passes through 
point C.

P

 Fig. P12.25

B

A C

 Fig. P12.28

A

BC
l

x0

 Fig. P12.26

 12.27 Determine the maximum theoretical speed that a 2700-lb automo-
bile starting from rest can reach after traveling a quarter of a mile 
if air resistance is considered. Assume that the coefficient of static 
friction between the tires and the pavement is 0.70, that the auto-
mobile has front-wheel drive, that the front wheels support 62 per-
cent of the automobile’s weight, and that the aerodynamic drag D 
has a magnitude D 5 0.012v2, where D and v are expressed in 
pounds and ft/s, respectively.

 12.28 The coefficients of friction between blocks A and C and the hori-
zontal surfaces are ms 5 0.24 and mk 5 0.20. Knowing that mA 5 
5 kg, mB 5 10 kg, and mC 5 10 kg, determine (a) the  tension in 
the cord, (b) the acceleration of each block.

 12.29 Solve Prob. 12.28, assuming mA 5 5 kg, mB 5 10 kg, and mC 5 
20 kg.
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712 Kinetics of Particles: Newton’s Second Law  12.30 Blocks A and B weigh 20 lb each, block C weighs 14 lb, and 
block D weighs 16 lb. Knowing that a downward force of magni-
tude 24 lb is applied to block D, determine (a) the acceleration of 
each block, (b) the tension in cord ABC. Neglect the weights of 
the pulleys and the effect of friction.

 12.31 Blocks A and B weigh 20 lb each, block C weighs 14 lb, and 
block D weighs 16 lb. Knowing that a downward force of magni-
tude 10 lb is applied to block B and that the system starts from 
rest, determine at t 5 3 s the velocity (a) of D relative to A, (b) of 
C relative to D. Neglect the weights of the pulleys and the effect 
of friction.

 12.32 The 15-kg block B is supported by the 25-kg block A and is 
attached to a cord to which a 225-N horizontal force is applied 
as shown. Neglecting friction, determine (a) the acceleration of 
block A, (b) the acceleration of block B relative to A.

B

30°

A

20°

 Fig. P12.33

CBCB

A A

CB

(a) (b) (c)

A

 Fig. P12.34

A

B

15 kg

25 kg

25°

225 N

 Fig. P12.32

D

A  

B  

C  

 Fig. P12.30 and P12.31

 12.33 Block B of mass 10 kg rests as shown on the upper surface of a 
22-kg wedge A. Knowing that the system is released from rest and 
neglecting friction, determine (a) the acceleration of B, (b) the 
velocity of B relative to A at t 5 0.5 s.

 12.34 A 40-lb sliding panel is supported by rollers at B and C. A 25-lb 
counterweight A is attached to a cable as shown and, in cases a 
and c, is initially in contact with a vertical edge of the panel. 
Neglecting friction, determine in each case shown the acceleration 
of the panel and the tension in the cord immediately after the 
system is released from rest.
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713Problems 12.35 A 500-lb crate B is suspended from a cable attached to a 40-lb 
trolley A which rides on an inclined I-beam as shown. Knowing 
that at the instant shown the trolley has an acceleration of 1.2 ft/s2 up 
and to the right, determine (a) the acceleration of B relative to A, 
(b) the tension in cable CD.

 12.36 During a hammer thrower’s practice swings, the 7.1-kg head A of 
the hammer revolves at a constant speed v in a horizontal  circle 
as shown. If r 5 0.93 m and u 5 60°, determine (a) the tension 
in wire BC, (b) the speed of the hammer’s head.

A

C

1.8 m

B

q

 Fig. P12.37

A

B

C D

T

25°

 Fig. P12.35

A

C

B

q
r

 Fig. P12.36

 12.37 A 450-g tetherball A is moving along a horizontal circular path at 
a constant speed of 4 m/s. Determine (a) the angle u that the cord 
forms with pole BC, (b) the tension in the cord.

bee29400_ch12_690-726.indd Page 713  11/27/08  11:40:43 PM user-s172bee29400_ch12_690-726.indd Page 713  11/27/08  11:40:43 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



714 Kinetics of Particles: Newton’s Second Law  12.38 A single wire ACB of length 80 in. passes through a ring at C that 
is attached to a sphere which revolves at a constant speed v in the 
horizontal circle shown. Knowing the u1 5 60° and u2 5 30° and that 
the tension is the same in both portions of the wire, determine 
the speed v.

B

A

C

d

1

2q

q

 Fig. P12.38, P12.39, and P12.40

A C
D

30°

0.2 m

B

70°

 Fig. P12.41

 12.39 A single wire ACB passes through a ring at C that is attached to 
a 12-lb sphere which revolves at a constant speed v in the hori-
zontal circle shown. Knowing that u1 5 50° and d 5 30 in. and 
that the tension in both portions of the wire is 7.6 lb, determine 
(a) the angle u2 (b) the speed v.

 12.40 Two wires AC and BC are tied at C to a 7-kg sphere which revolves 
at a constant speed v in the horizontal circle shown. Knowing that 
u1 5 55° and u2 5 30° and that d 5 1.4 m, determine the range 
of values of v for which both wires remain taut.

 12.41 A 100-g sphere D is at rest relative to drum ABC which rotates at 
a constant rate. Neglecting friction, determine the range of the 
allowable values of the velocity v of the sphere if neither of the 
normal forces exerted by the sphere on the inclined surfaces of 
the drum is to exceed 1.1 N.

bee29400_ch12_690-726.indd Page 714  11/26/08  6:37:12 PM user-s173bee29400_ch12_690-726.indd Page 714  11/26/08  6:37:12 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



715Problems

 *12.43 The 1.2-lb flyballs of a centrifugal governor revolve at a constant 
speed v in the horizontal circle of 6-in. radius shown. Neglecting 
the weights of links AB, BC, AD, and DE and requiring that the 
links support only tensile forces, determine the range of the allow-
able values of v so that the magnitudes of the forces in the links 
do not exceed 17 lb.

 12.44 A child having a mass of 22 kg sits on a swing and is held in the 
position shown by a second child. Neglecting the mass of the 
swing, determine the tension in rope AB (a) while the second child 
holds the swing with his arms outstretched horizontally, (b) imme-
diately after the swing is released.

B

A

C

15°

40°
3 ft

 Fig. P12.42

A

B

35°

 Fig. P12.44

A

B

C

D

E

20°

1.2 lb 1.2 lb30°

 Fig. P12.43

 *12.42 As part of an outdoor display, a 12-lb model C of the earth is 
attached to wires AC and BC and revolves at a constant speed v 
in the horizontal circle shown. Determine the range of the allow-
able values of v if both wires are to remain taut and if the tension 
in either of the wires is not to exceed 26 lb.
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716 Kinetics of Particles: Newton’s Second Law

A

D

60 ft

140 ft

B

C

40 ft

 Fig. P12.47

 12.47 The portion of a toboggan run shown is contained in a vertical 
plane. Sections AB and CD have radii of curvature as indicated, 
and section BC is straight and forms an angle of 20° with the 
horizontal. Knowing that the coefficient of kinetic friction between 
a sled and the run is 0.10 and that the speed of the sled is 25 ft/s 
at B, determine the tangential component of the acceleration of 
the sled (a) just before it reaches B, (b) just after it passes C.

A

r

 Fig. P12.46

A

BC

D

20°

 Fig. P12.45

 12.45 A 60-kg wrecking ball B is attached to a 15-m-long steel cable AB 
and swings in the vertical arc shown. Determine the tension in the 
cable (a) at the top C of the swing, (b) at the bottom D of the 
swing, where the speed of B is 4.2 m/s.

 12.46 During a high-speed chase, a 2400-lb sports car traveling at a 
speed of 100 mi/h just loses contact with the road as it reaches the 
crest A of a hill. (a) Determine the radius of curvature r of the 
vertical profile of the road at A. (b) Using the value of r found in 
part a, determine the force exerted on a 160-lb driver by the seat of 
his 3100-lb car as the car, traveling at a constant speed of 50 mi/h, 
passes through A.

bee29400_ch12_690-726.indd Page 716  11/26/08  6:37:13 PM user-s173bee29400_ch12_690-726.indd Page 716  11/26/08  6:37:13 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



717Problems

A

B

C

1200 m

 Fig. P12.49

A

B

O

v

q

900 mm

 Fig. P12.50

250 mm

1 m/s
A

B

θ

 Fig. P12.48

 12.48 A series of small packages, each with a mass of 0.5 kg, are dis-
charged from a conveyor belt as shown. Knowing that the coeffi-
cient of static friction between each package and the conveyor belt 
is 0.4, determine (a) the force exerted by the belt on the package 
just after it has passed point A, (b) the angle u defining the point 
B where the packages first slip relative to the belt.

 12.49 A 54-kg pilot flies a jet trainer in a half vertical loop of 1200-m 
radius so that the speed of the trainer decreases at a constant rate. 
Knowing that the pilot’s apparent weights at points A and C are 
1680 N and 350 N, respectively, determine the force exerted on 
her by the seat of the trainer when the trainer is at point B.

θ

 Fig. P12.51

 12.50 A 250-g block fits inside a small cavity cut in arm OA, which 
rotates in the vertical plane at a constant rate such that v 5 3 m/s. 
Knowing that the spring exerts on block B a force of magnitude 
P 5 1.5 N and neglecting the effect of friction, determine the range 
of values of u for which block B is in contact with the face of the 
cavity closest to the axis of rotation O.

 12.51 A curve in a speed track has a radius of 1000-ft and a rated speed 
of 120 mi/h. (See Sample Prob. 12.6 for the definition of rated 
speed.) Knowing that a racing car starts skidding on the curve 
when traveling at a speed of 180 mi/h, determine (a) the banking 
angle u, (b) the coefficient of static friction between the tires and 
the track under the prevailing conditions, (c) the minimum speed 
at which the same car could negotiate the curve.
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718 Kinetics of Particles: Newton’s Second Law  12.52 A car is traveling on a banked road at a constant speed v. Deter-
mine the range of values of v for which the car does not skid. 
Express your answer in terms of the radius r of the curve, the 
banking angle u, and the angle of static friction fs between the 
tires and the pavement.

 12.53 Tilting trains, such as the American Flyer which will run from 
Washington to New York and Boston, are designed to travel 
safely at high speeds on curved sections of track which were 
built for slower, conventional trains. As it enters a curve, each 
car is tilted by hydraulic actuators mounted on its trucks. The 
tilting feature of the cars also increases passenger comfort by 
eliminating or greatly reducing the side force Fs (parallel to the 
floor of the car) to which passengers feel subjected. For a train 
traveling at 100 mi/h on a curved section of track banked through 
an angle u 5 6° and with a rated speed of 60 mi/h, determine 
(a) the magnitude of the side force felt by a passenger of weight W 
in a standard car with no tilt (f 5 0), (b) the required angle 
of tilt f if the passenger is to feel no side force. (See Sample 
Prob. 12.6 for the definition of rated speed.)

 12.54 Tests carried out with the tilting trains described in Prob. 12.53 
revealed that passengers feel queasy when they see through the 
car windows that the train is rounding a curve at high speed, yet 
do not feel any side force. Designers, therefore, prefer to reduce, 
but not eliminate that force. For the train of Prob. 12.53, deter-
mine the required angle of tilt f if passengers are to feel side 
forces equal to 10% of their weights.

q

f

 Fig. P12.53 and P12.54
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719Problems 12.55 A small, 300-g collar D can slide on portion AB of a rod which is 
bent as shown. Knowing that a 5 40° and that the rod rotates 
about the vertical AC at a constant rate of 5 rad/s, determine the 
value of r for which the collar will not slide on the rod if the effect 
of friction between the rod and the collar is neglected.

 12.56 A small, 200-g collar D can slide on portion AB of a rod which is 
bent as shown. Knowing that the rod rotates about the vertical AC 
at a constant rate and that a 5 30° and r 5 600 mm, determine 
the range of values of the speed v for which the collar will not 
slide on the rod if the coefficient of static friction between the rod 
and the collar is 0.30.

 12.57 A small, 0.6-lb collar D can slide on portion AB of a rod which is 
bent as shown. Knowing that r 5 8 in. and that the rod rotates 
about the vertical AC at a constant rate of 10 rad/s, determine the 
smallest allowable value of the coefficient of static friction between 
the collar and the rod if the collar is not to slide when (a) a 5 
15°, (b) a 5 45°. Indicate for each case the direction of the impend-
ing motion.

 12.58 A semicircular slot of 10-in. radius is cut in a flat plate which rotates 
about the vertical AD at a constant rate of 14 rad/s. A small, 0.8-lb 
block E is designed to slide in the slot as the plate rotates. Knowing 
that the coefficients of friction are ms 5 0.35 and mk 5 0.25, deter-
mine whether the block will slide in the slot if it is released in the 
position corresponding to (a) u 5 80°, (b) u 5 40°. Also determine 
the magnitude and the direction of the friction force exerted on the 
block immediately after it is released.

 12.59 Three seconds after a polisher is started from rest, small tufts of 
fleece from along the circumference of the 225-mm-diameter pol-
ishing pad are observed to fly free of the pad. If the polisher is 
started so that the fleece along the circumference undergoes a con-
stant tangential acceleration of 4 m/s2, determine (a) the speed v of 
a tuft as it leaves the pad, (b) the magnitude of the force required 
to free a tuft if the average mass of a tuft is 1.6 mg.

A

B

D

C

a

v

r

 Fig. P12.55, P12.56, 
and P12.57

A
B

C
D

q
E

26 in.

 Fig. P12.58

v
 Fig. P12.59

 12.60 A turntable A is built into a stage for use in a theatrical production. 
It is observed during a rehearsal that a trunk B starts to slide on 
the turntable 10 s after the turntable begins to rotate. Knowing that 
the trunk undergoes a constant tangential acceleration of 0.24 m/s2, 
determine the coefficient of static friction between the trunk and 
the turntable.

A B2.5 m

 Fig. P12.60
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720 Kinetics of Particles: Newton’s Second Law  12.61 The parallel-link mechanism ABCD is used to transport a compo-
nent I between manufacturing processes at stations E, F, and G 
by picking it up at a station when u 5 0 and depositing it at the 
next station when u 5 180°. Knowing that member BC remains 
horizontal throughout its motion and that links AB and CD rotate 
at a constant rate in a vertical plane in such a way that vB 5 2.2 ft/s, 
determine (a) the minimum value of the coefficient of static fric-
tion between the component and BC if the component is not to 
slide on BC while being transferred, (b) the values of u for which 
sliding is impending.

I

B
E F G

C

DA

10 in. 10 in.

10 in. 10 in.

q

vB

20 in. 20 in.

 Fig. P12.61

A

B

x

y

V
l

d

Anode

Cathode

Screen

d

L

 Fig. P12.63

 12.62 Knowing that the coefficients of friction between the component 
I and member BC of the mechanism of Prob. 12.61 are mS 5 0.35 
and mk 5 0.25, determine (a) the maximum allowable constant 
speed vB if the component is not to slide on BC while being trans-
ferred, (b) the values of u for which sliding is impending.

 12.63 In the cathode-ray tube shown, electrons emitted by the cathode 
and attracted by the anode pass through a small hole in the anode 
and then travel in a straight line with a speed v0 until they strike 
the screen at A. However, if a difference of potential V is established 
between the two parallel plates, the electrons will be subjected to 
a force F perpendicular to the plates while they travel between the 
plates and will strike the screen at point B, which is at a distance 
d from A. The magnitude of the force F is F 5 eV/d, where 2e is 
the charge of an electron and d is the distance between the plates. 
Derive an expression for the deflection d in terms of V, v0, the 
charge 2e and the mass m of an electron, and the dimensions d, 
l, and L.

 12.64 In Prob. 12.63, determine the smallest allowable value of the ratio 
d/l in terms of e, m, v0, and V if at x 5 l the minimum permissible 
distance between the path of the electrons and the positive plate 
is 0.05d.

 12.65 The current model of a cathode-ray tube is to be modified so that 
the length of the tube and the spacing between the plates are 
reduced by 40 percent and 20 percent, respectively. If the size of 
the screen is to remain the same, determine the new length l9 of 
the plates assuming that all of the other characteristics of the tube 
are to remain unchanged. (See Prob. 12.63 for a description of a 
cathode-ray tube.)
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72112.7  ANGULAR MOMENTUM OF A PARTICLE. RATE 
OF CHANGE OF ANGULAR MOMENTUM

Consider a particle P of mass m moving with respect to a newtonian 
frame of reference Oxyz. As we saw in Sec. 12.3, the linear momen-
tum of the particle at a given instant is defined as the vector mv 
obtained by multiplying the velocity v of the particle by its mass m. 
The moment about O of the vector mv is called the moment of 
momentum, or the angular momentum, of the particle about O at 
that instant and is denoted by HO. Recalling the definition of the 
moment of a vector (Sec. 3.6) and denoting by r the position vector 
of P, we write

 HO 5 r 3 mv (12.12)

and note that HO is a vector perpendicular to the plane containing 
r and mv and of magnitude

 HO 5 rmv sin f (12.13)

where f is the angle between r and mv (Fig. 12.12). The sense of HO 
can be determined from the sense of mv by applying the right-hand 
rule. The unit of angular momentum is obtained by multiplying the 
units of length and of linear momentum (Sec. 12.4). With SI units, 
we have

(m)(kg ? m/s) 5 kg ? m2/s

With U.S. customary units, we write

(ft)(lb ? s) 5 ft ? lb ? s

 Resolving the vectors r and mv into components and applying 
formula (3.10), we write

 
HO 5 †

i
x

mvx 

j
y

mvy 

k
z

mvz

†
 

(12.14)

The components of HO, which also represent the moments of the 
linear momentum mv about the coordinate axes, can be obtained by 
expanding the determinant in (12.14). We have

 Hx 5 m(yvz 2 zvy)
 Hy 5 m(zvx 2 xvz) (12.15)
 Hz 5 m(xvy 2 yvx)

 In the case of a particle moving in the xy plane, we have z 5 
vz 5 0 and the components Hx and Hy reduce to zero. The angular 
momentum is thus perpendicular to the xy plane; it is then com-
pletely defined by the scalar

 HO 5 Hz 5 m(xvy 2 yvx) (12.16)

12.7 Angular Momentum of a Particle. Rate of 
Change of Angular Momentum

Fig. 12.12

P

HO

r
O

z

x

y

mv

f
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722 Kinetics of Particles: Newton’s Second Law which will be positive or negative according to the sense in which 
the particle is observed to move from O. If polar coordinates are 
used, we resolve the linear momentum of the particle into radial and 
transverse components (Fig. 12.13) and write

 HO 5 rmv sin f 5 rmvu (12.17)

or, recalling from (11.45) that vu 5 ru
.
,

 HO 5 mr2u
.
 (12.18)

 Let us now compute the derivative with respect to t of the 
angular momentum HO of a particle P moving in space. Differentiat-
ing both members of Eq. (12.12), and recalling the rule for the dif-
ferentiation of a vector product (Sec. 11.10), we write

H
.

O 5 ṙ 3 mv 1 r 3 mv̇ 5 v 3 mv 1 r 3 ma

Since the vectors v and mv are collinear, the first term of the 
expression obtained is zero; and, by Newton’s second law, ma is 
equal to the sum oF of the forces acting on P. Noting that r 3 oF 
represents the sum oMO of the moments about O of these forces, 
we write

 ©MO 5 H
.

O (12.19)

 Equation (12.19), which results directly from Newton’s second 
law, states that the sum of the moments about O of the forces acting 
on the particle is equal to the rate of change of the moment of momen-
tum, or angular momentum, of the particle about O.

12.8  EQUATIONS OF MOTION IN TERMS OF RADIAL 
AND TRANSVERSE COMPONENTS

Consider a particle P, of polar coordinates r and u, which moves in 
a plane under the action of several forces. Resolving the forces and 
the acceleration of the particle into radial and transverse components 
(Fig. 12.14) and substituting into Eq. (12.2), we obtain the two scalar 
equations

 oFr 5 mar  oFu 5 mau (12.20)

Substituting for ar and au from Eqs. (11.46), we have

  oFr 5 m( r̈ 2 ru
.

2)  (12.21)

  oFu 5 m(rü 1 2r
.
u
.
) (12.22)

The equations obtained can be solved for two unknowns.

Fig. 12.13
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Photo 12.4 The forces on the specimens used 
in a high speed centrifuge can be described in 
terms of radial and transverse components.
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 Equation (12.22) could have been derived from Eq. (12.19). 
Recalling (12.18) and noting that oMO 5 roFu, Eq. (12.19) yields

 roFu 5
d
dt

 (mr2u
.
)

 5 m(r2ü 1 2rr
.
u
.
)

and, after dividing both members by r,

 oFu 5 m(rü 1 2r
.
u
.
) (12.22)

12.9  MOTION UNDER A CENTRAL FORCE. 
CONSERVATION OF ANGULAR MOMENTUM

When the only force acting on a particle P is a force F directed 
toward or away from a fixed point O, the particle is said to be moving 
under a central force, and the point O is referred to as the center of 
force (Fig. 12.15). Since the line of action of F passes through O, 
we must have oMO 5 0 at any given instant. Substituting into 
Eq. (12.19), we therefore obtain

H
.

O 5 0

for all values of t and, integrating in t,

 HO 5 constant  (12.23)

We thus conclude that the angular momentum of a particle moving 
under a central force is constant, in both magnitude and direction.
 Recalling the definition of the angular momentum of a particle 
(Sec. 12.7), we write

 r 3 mv 5 HO 5 constant (12.24)

from which it follows that the position vector r of the particle P must 
be perpendicular to the constant vector HO. Thus, a particle under 

12.9 Motion Under a Central Force. 
Conservation of Angular Momentum

Fig. 12.15

P

F

O

z

x

y

Fig. 12.14

P

O

r
m P

O

r
m=

mar

ma
ΣF ΣFrq

q

q q

bee29400_ch12_690-726.indd Page 723  11/26/08  6:37:20 PM user-s173bee29400_ch12_690-726.indd Page 723  11/26/08  6:37:20 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



724 Kinetics of Particles: Newton’s Second Law a central force moves in a fixed plane perpendicular to HO. The vector 
HO and the fixed plane are defined by the initial position vector r0 
and the initial velocity v0 of the particle. For convenience, let us 
assume that the plane of the figure coincides with the fixed plane of 
motion (Fig. 12.16).
 Since the magnitude HO of the angular momentum of the par-
ticle P is constant, the right-hand member in Eq. (12.13) must be 
constant. We therefore write

 rmv sin f 5 r0mv0 sin f0 (12.25)

This relation applies to the motion of any particle under a central 
force. Since the gravitational force exerted by the sun on a planet is 
a central force directed toward the center of the sun, Eq. (12.25) is 
fundamental to the study of planetary motion. For a similar reason, 
it is also fundamental to the study of the motion of space vehicles in 
orbit about the earth.
 Alternatively, recalling Eq. (12.18), we can express the fact that 
the magnitude HO of the angular momentum of the particle P is 
constant by writing

 mr2u
.

5 HO 5 constant (12.26)

or, dividing by m and denoting by h the angular momentum per unit 
mass HO/m,

 r2u
.

5 h (12.27)

Equation (12.27) can be given an interesting geometric interpreta-
tion. Observing from Fig. 12.17 that the radius vector OP sweeps 
an infinitesimal area dA 5 1

2 
r2 du as it rotates through an angle du, 

and defining the areal velocity of the particle as the quotient 
dA/dt, we note that the left-hand member of Eq. (12.27) repre-
sents twice the areal velocity of the particle. We thus conclude that 
when a particle moves under a central force, its areal velocity is 
constant.

12.10 NEWTON’S LAW OF GRAVITATION
As you saw in the preceding section, the gravitational force exerted 
by the sun on a planet or by the earth on an orbiting satellite is an 
important example of a central force. In this section, you will learn 
how to determine the magnitude of a gravitational force.
 In his law of universal gravitation, Newton states that two par-
ticles of masses M and m at a distance r from each other attract each 
other with equal and opposite forces F and 2F directed along the 
line joining the particles (Fig. 12.18). The common magnitude F of 
the two forces is

 
F 5 G  

Mm

r2  
(12.28)

Fig. 12.16
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725where G is a universal constant, called the constant of gravitation. 
Experiments show that the value of G is (66.73 6 0.03) 3 
10212 m3/kg ? s2 in SI units or approximately 34.4 3 1029 ft4/lb ? s4 in 
U.S. customary units. Gravitational forces exist between any pair of 
bodies, but their effect is appreciable only when one of the bodies 
has a very large mass. The effect of gravitational forces is apparent in 
the cases of the motion of a planet about the sun, of satellites orbiting 
about the earth, or of bodies falling on the surface of the earth.
 Since the force exerted by the earth on a body of mass m 
located on or near its surface is defined as the weight W of the body, 
we can substitute the magnitude W 5 mg of the weight for F, and 
the radius R of the earth for r, in Eq. (12.28). We obtain

 
W 5 mg 5

GM

R2  m   or   g 5
GM

R2  
(12.29)

where M is the mass of the earth. Since the earth is not truly spheri-
cal, the distance R from the center of the earth depends upon the 
point selected on its surface, and the values of W and g will thus 
vary with the altitude and latitude of the point considered. Another 
reason for the variation of W and g with latitude is that a system of 
axes attached to the earth does not constitute a newtonian frame of 
reference (see Sec. 12.2). A more accurate definition of the weight 
of a body should therefore include a component representing the 
centrifugal force due to the rotation of the earth. Values of g at sea 
level vary from 9.781 m/s2, or 32.09 ft/s2, at the equator to 9.833 m/s2, 
or 32.26 ft/s2, at the poles.†
 The force exerted by the earth on a body of mass m located in 
space at a distance r from its center can be found from Eq. (12.28). 
The computations will be somewhat simplified if we note that accord-
ing to Eq. (12.29), the product of the constant of gravitation G and 
the mass M of the earth can be expressed as

 GM 5 gR2 (12.30)

where g and the radius R of the earth will be given their average 
values g 5 9.81 m/s2 and R 5 6.37 3 106 m in SI units‡ and g 5 
32.2 ft/s2 and R 5 (3960 mi)(5280 ft/mi) in U.S. customary units.
 The discovery of the law of universal gravitation has often been 
attributed to the belief that, after observing an apple falling from a 
tree, Newton had reflected that the earth must attract an apple and 
the moon in much the same way. While it is doubtful that this inci-
dent actually took place, it may be said that Newton would not have 
formulated his law if he had not first perceived that the acceleration 
of a falling body must have the same cause as the acceleration which 
keeps the moon in its orbit. This basic concept of the continuity of 
gravitational attraction is more easily understood today, when the gap 
between the apple and the moon is being filled with artificial earth 
satellites.

†A formula expressing g in terms of the latitude f was given in Prob. 12.1.

‡The value of R is easily found if one recalls that the circumference of the earth is 
2πR 5 40 3 106 m.

12.10 Newton’s Law of Gravitation
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SAMPLE PROBLEM 12.8

A satellite is launched in a direction parallel to the surface of the earth with 
a velocity of 18,820 mi/h from an altitude of 240 mi. Determine the velocity 
of the satellite as it reaches its maximum altitude of 2340 mi. It is recalled 
that the radius of the earth is 3960 mi.

SOLUTION

Since the satellite is moving under a central force directed toward the center O 
of the earth, its angular momentum HO is constant. From Eq. (12.13) we have

rmv sin f 5 HO 5 constant

which shows that v is minimum at B, where both r and sin f are maximum. 
Expressing conservation of angular momentum between A and B,

rAmvA 5 rBmvB

vB 5 vA 

rA

rB
5 (18,820 mi/h) 

3960 mi 1 240 mi
3960 mi 1 2340 mi

vB 5 12,550 mi/h ◀

SAMPLE PROBLEM 12.7

A block B of mass m can slide freely on a frictionless arm OA which rotates 
in a horizontal plane at a constant rate u

.
0. Knowing that B is released at a 

distance r0 from O, express as a function of r, (a) the component vr of the 
velocity of B along OA, (b) the magnitude of the horizontal force F exerted 
on B by the arm OA.

SOLUTION

Since all other forces are perpendicular to the plane of the figure, the only 
force shown acting on B is the force F perpendicular to OA.

Equations of Motion. Using radial and transverse components,

 1p  oFr 5 mar: 0 5 m(r̈ 2 r u̇2) (1)
 1r oFu 5 mau: F 5 m(r ü 1 2ṙ u̇) (2)

a. Component vr of Velocity. Since vr 5 ṙ , we have

r̈ 5 v
.

r 5
dvr

dt
5

dvr

dr
 
dr
dt

5 vr 

dvr

dr

Substituting for r̈ in (1), recalling that u̇ 5  u̇0, and separating the variables,

vr
 dvr 5 u̇2

0r dr

Multiplying by 2, and integrating from 0 to vr and from r0 to r,

 vr
2 5  u̇2

0(r
2 2 r 2

0) vr 5  u̇0(r
2 2 r2

0)
1/2 ◀

b. Horizontal Force F. Setting u̇ 5  u̇0,  ü 5 0, ṙ 5 vr in Eq. (2), and sub-
stituting for vr the expression obtained in part a,

 F 5 2m u̇0(r
2 2 r2

0)
1/2u̇0 F 5 2mu̇2

0(r
2 2 r2

0)
1/2 ◀

q

ma

mar

O

F

=
q

mvA

mvB

rB rA

mv

O
AB

f

q

vr
r

B

A

O

q    q⋅     ⋅
0=

2340 mi

18,820 mi /h

Earth

240 mi
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In this lesson we continued our study of Newton’s second law by expressing the 
force and the acceleration in terms of their radial and transverse components, 

where the corresponding equations of motion are

oFr 5 mar: oFr 5 m(r̈ 2 ru̇2)
oFu 5 mau: oFu 5 m(rü 1 2ṙu̇)

We introduced the moment of the momentum, or the angular momentum, HO of 
a particle about O:

 HO 5 r 3 mv (12.12)

and found that HO is constant when the particle moves under a central force with 
its center located at O.

1. Using radial and transverse components. Radial and transverse components 
were introduced in the last lesson of Chap. 11 [Sec. 11.14]; you should review that 
material before attempting to solve the following problems. Also, our comments 
in the preceding lesson regarding the application of Newton’s second law (drawing 
a free-body diagram and a ma diagram, etc.) still apply [Sample Prob. 12.7]. Finally, 
note that the solution of that sample problem depends on the application of tech-
niques developed in Chap. 11—you will need to use similar techniques to solve 
some of the problems of this lesson.

2. Solving problems involving the motion of a particle under a central force. 
In problems of this type, the angular momentum HO of the particle about the 
center of force O is conserved. You will find it convenient to introduce the constant 
h 5 HO/m representing the angular momentum per unit mass. Conservation of 
the angular momentum of the particle P about O can then be expressed by either 
of the following equations

rv sin f 5 h  or  r 2u̇ 5 h

where r and u are the polar coordinates of P, and f is the angle that the velocity 
v of the particle forms with the line OP (Fig. 12.16). The constant h can be deter-
mined from the initial conditions and either of the above equations can be solved 
for one unknown.

SOLVING PROBLEMS
ON YOUR OWN

(continued)
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3. In space-mechanics problems involving the orbital motion of a planet about 
the sun, or a satellite about the earth, the moon, or some other planet, the central 
force F is the force of gravitational attraction; it is directed toward the center of 
force O and has the magnitude

 
F 5 G  

Mm

r2  
(12.28)

Note that in the particular case of the gravitational force exerted by the earth, 
the product GM can be replaced by gR2, where R is the radius of the earth 
[Eq. 12.30].

The following two cases of orbital motion are frequently encountered:

 a. For a satellite in a circular orbit, the force F is normal to the orbit and 
you can write F 5 man; substituting for F from Eq. (12.28) and observing that 
an 5 v2/r 5 v2/r, you will obtain

G  

Mm

r2 5 m  

v2

r
  or   v2 5

GM
r

 b. For a satellite in an elliptic orbit, the radius vector r and the velocity v of 
the satellite are perpendicular to each other at the points A and B which are, 
respectively, farthest and closest to the center of force O [Sample Prob. 12.8]. 
Thus, conservation of angular momentum of the satellite between these two points 
can be expressed as

rAmvA 5 rBmvB
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 12.66 Rod OA rotates about O in a horizontal plane. The motion of the 
300-g collar B is defined by the relations r 5 300 1 100 cos (0.5 pt) 
and u 5 p(t2 2 3t), where r is expressed in millimeters, t in seconds, 
and u in radians. Determine the radial and transverse components 
of the force exerted on the collar when (a) t 5 0, (b) t 5 0.5 s.

 12.67 For the motion defined in Prob. 12.66, determine the radial and 
transverse components of the force exerted on the collar when 
t 5 1.5 s.

 12.68 Rod OA oscillates about O in a horizontal plane. The motion of 
the 5-lb collar B is defined by the relations r 5 10/(t 1 4) and 
u 5 (2/p) sin pt, where r is expressed in feet, t in seconds, and 
u in radians. Determine the radial and transverse components of 
the force exerted on the collar when (a) t 5 1 s, (b) t 5 6 s.

 12.69 A collar B of mass m slides on the frictionless arm AA9. The arm 
is attached to drum D and rotates about O in a horizontal plane 
at the rate  u̇ 5 ct, where c is a constant. As the arm-drum assembly 
rotates, a mechanism within the drum winds in the cord so that 
the collar moves toward O with a constant speed k. Knowing that 
at t 5 0, r 5 r0, express as a function of m, c, k, r0, and t, (a) the 
tension T in the cord, (b) the magnitude of the horizontal force Q 
exerted on B by arm AA9.

A

r

q
B

A'

O

D

Fig. P12.69 and P12.70

q

O

B A

r

Fig. P12.66 and P12.68

B

O

E

D
C

r

q

0.2 m

Fig. P12.71

 12.70 The 3-kg collar B slides on the frictionless arm AA9. The arm is 
attached to drum D and rotates about O in a horizontal plane at the 
rate  u̇ 5 0.75t, where  u̇ and t are expressed in rad/s and seconds, 
respectively. As the arm-drum assembly rotates, a mechanism within 
the drum releases cord so that the collar moves outward from O with 
a constant speed of 0.5 m/s. Knowing that at t 5 0, r 5 0, determine 
the time at which the tension in the cord is equal to the magnitude 
of the horizontal force exerted on B by arm AA9.

 12.71 The 100-g pin B slides along the slot in the rotating arm OC and 
along the slot DE which is cut in a fixed horizontal plate. Neglect-
ing friction and knowing that rod OC rotates at the  constant rate   
u̇0 5 12 rad/s, determine for any given value of u (a) the radial and 
transverse components of the resultant force F exerted on pin B, 
(b) the forces P and Q exerted on pin B by rod OC and the wall 
of slot DE, respectively.
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730 Kinetics of Particles: Newton’s Second Law  *12.72 Slider C has a weight of 0.5 lb and may move in a slot cut in arm 
AB, which rotates at the constant rate  u̇0 5 10 rad/s in a horizontal 
plane. The slider is attached to a spring of constant k 5 2.5 lb/ft, 
which is unstretched when r 5 0. Knowing that the slider is released 
from rest with no radial velocity in the position r 5 18 in. and 
neglecting friction, determine for the position r 5 12 in. (a) the 
radial and transverse components of the velocity of the slider, (b) the 
radial and transverse components of its acceleration, (c) the horizon-
tal force exerted on the slider by arm AB.

 *12.73 Solve Prob. 12.72, assuming that the spring is unstretched when 
slider C is located 2 in. to the left of the midpoint O of arm AB 
(r 5 22 in.).

 12.74 A particle of mass m is projected from point A with an initial 
velocity v0 perpendicular to line OA and moves under a central 
force F along a semicircular path of diameter OA. Observing that 
r 5 r0 cos u and using Eq. (12.27), show that the speed of the 
particle is v 5 v0/cos2 u.

O
q

F

A

v

v0

r0

m

r

Fig. P12.74

A B

C
r

  0 = 10 rad/s⋅ 
q

O

Fig. P12.72

r0
AO

F

mr

θ v0

v

Fig. P12.76

 12.75 For the particle of Prob. 12.74, determine the tangential compo-
nent Ft of the central force F along the tangent to the path of the 
particle for (a) u 5 0, (b) u 5 45°.

 12.76 A particle of mass m is projected from point A with an initial 
velocity v0 perpendicular to line OA and moves under a central 
force F directed away from the center of force O. Knowing that the 
particle follows a path defined by the equation r 5 r01cos 2u 
and using Eq. (12.27), express the radial and transverse components 
of the velocity v of the particle as functions of u.

 12.77 For the particle of Prob. 12.76, show (a) that the velocity of the 
particle and the central force F are proportional to the distance r 
from the particle to the center of force O, (b) that the radius of 
curvature of the path is proportional to r3.

 12.78 The radius of the orbit of a moon of a given planet is equal to 
twice the radius of that planet. Denoting by r the mean density 
of the planet, show that the time required by the moon to com-
plete one full revolution about the planet is (24p/Gr)1/2, where 
G is the constant of gravitation.
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731Problems 12.79 Show that the radius r of the orbit of a moon of a given planet can 
be determined from the radius R of the planet, the acceleration 
of gravity at the surface of the planet, and the time t required by 
the moon to complete one full revolution about the planet. Deter-
mine the acceleration of gravity at the surface of the planet Jupiter 
knowing that R 5 71 492 km and that t 5 3.551 days and r 5 
670.9 3 103 km for its moon Europa.

 12.80 Communication satellites are placed in a geosynchronous orbit, 
i.e., in a circular orbit such that they complete one full revolution 
about the earth in one sidereal day (23.934 h), and thus appear 
stationary with respect to the ground. Determine (a) the altitude 
of these satellites above the surface of the earth, (b) the velocity 
with which they describe their orbit. Give the answers in both SI 
and U.S. customary units.

 12.81 Determine the mass of the earth knowing that the mean radius 
of the moon’s orbit about the earth is 238,910 mi and that the 
moon requires 27.32 days to complete one full revolution about 
the earth.

 12.82 A spacecraft is placed into a polar orbit about the planet Mars at 
an altitude of 380 km. Knowing that the mean density of Mars is 
3.94 Mg/m3 and that the radius of Mars is 3397 km, determine 
(a) the time t required for the spacecraft to complete one full 
revolution about Mars, (b) the velocity with which the spacecraft 
describes its orbit.

 12.83 A satellite is placed into a circular orbit about the planet Saturn 
at an altitude of 2100 mi. The satellite describes its orbit with a 
velocity of 54.7 3 103 mi/h. Knowing that the radius of the orbit 
about Saturn and the periodic time of Atlas, one of Saturn’s moons, 
are 85.54 3 103 mi and 0.6017 days, respectively, determine (a) the 
radius of Saturn, (b) the mass of Saturn. (The periodic time of a 
satellite is the time it requires to complete one full revolution 
about the planet.)

 12.84 The periodic times (see Prob. 12.83) of the planet Uranus’s moons 
Juliet and Titania have been observed to be 0.4931 days and 
8.706 days, respectively. Knowing that the radius of Juliet’s orbit 
is 64 360 km, determine (a) the mass of Uranus, (b) the radius of 
Titania’s orbit.

 12.85 A 1200-lb spacecraft first is placed into a circular orbit about the 
earth at an altitude of 2800 mi and then is transferred to a circu-
lar orbit about the moon. Knowing that the mass of the moon is 
0.01230 times the mass of the earth and that the radius of the 
moon is 1080 mi, determine (a) the gravitational force exerted on 
the spacecraft as it was orbiting the earth, (b) the required radius 
of the orbit of the spacecraft about the moon if the periodic times 
(see Prob. 12.83) of the two orbits are to be equal, (c) the accel-
eration of gravity at the surface of the moon.
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732 Kinetics of Particles: Newton’s Second Law  12.86 To place a communications satellite into a geosynchronous orbit (see 
Prob. 12.80) at an altitude of 22,240 mi above the surface of the 
earth, the satellite first is released from a space shuttle, which is in 
a circular orbit at an altitude of 185 mi, and then is propelled by an 
upper-stage booster to its final altitude. As the satellite passes through 
A, the booster’s motor is fired to insert the satellite into an elliptic 
transfer orbit. The booster is again fired at B to insert the satellite 
into a geosynchronous orbit. Knowing that the second firing increases 
the speed of the satellite by 4810 ft/s, determine (a) the speed of the 
satellite as it approaches B on the elliptic transfer orbit, (b) the 
increase in speed resulting from the first firing at A.

185 mi

A B
R = 3960 mi

22,240 mi

Fig. P12.862080 km

2200 km

A B

Fig. P12.87

C BA

Circular orbit

Second transfer orbit

Return trajectory 
First transfer orbit

O

R

Fig. P12.88

 12.87 A space vehicle is in a circular orbit of 2200-km radius around the 
moon. To transfer it to a smaller circular orbit of 2080-km radius, 
the vehicle is first placed on an elliptic path AB by reducing its 
speed by 26.3 m/s as it passes through A. Knowing that the mass 
of the moon is 73.49 3 1021 kg, determine (a) the speed of the 
vehicle as it approaches B on the elliptic path, (b) the amount by 
which its speed should be reduced as it approaches B to insert it 
into the smaller circular orbit.

 12.88 Plans for an unmanned landing mission on the planet Mars called 
for the earth-return vehicle to first describe a circular orbit at an 
altitude dA 5 2200 km above the surface of the planet with a velocity 
of 2771 m/s. As it passed through point A, the vehicle was to be 
inserted into an elliptic transfer orbit by firing its engine and increas-
ing its speed by DvA 5 1046 m/s. As it passed through point B, at 
an altitude dB 5 100 000 km, the vehicle was to be inserted into 
a second transfer orbit located in a slightly different plane, by chang-
ing the direction of its velocity and reducing its speed by DvB 5 
222.0 m/s. Finally, as the vehicle passed through point C, at an 
altitude dC 5 1000 km, its speed was to be increased by DvC 5 
660 m/s to insert it into its return trajectory. Knowing that the radius 
of the planet Mars is R 5 3400 km, determine the velocity of the 
vehicle after completion of the last maneuver.
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733Problems 12.89 A space shuttle S and a satellite A are in the circular orbits 
shown. In order for the shuttle to recover the satellite, the shuttle 
is first placed in an elliptic path BC by increasing its speed by 
DvB 5 280 ft/s as it passes through B. As the shuttle approaches 
C, its speed is increased by DvC 5 260 ft/s to insert it into a 
second elliptic transfer orbit CD. Knowing that the distance from 
O to C is 4289 mi, determine the amount by which the speed of 
the shuttle should be increased as it approaches D to insert it 
into the circular orbit of the satellite.

 12.90 A 3-lb collar can slide on a horizontal rod which is free to rotate 
about a vertical shaft. The collar is initially held at A by a cord 
attached to the shaft. A spring of constant 2 lb/ft is attached to the 
collar and to the shaft and is undeformed when the collar is at A. 
As the rod rotates at the rate  u̇ 5 16 rad/s, the cord is cut and the 
collar moves out along the rod. Neglecting friction and the mass 
of the rod, determine (a) the radial and transverse components of 
the acceleration of the collar at A, (b) the acceleration of the collar 
relative to the rod at A, (c) the transverse component of the velocity 
of the collar at B.

 12.91 For the collar of Prob. 12.90, assuming that the rod initially rotates 
at the rate  u̇ 5 12 rad/s, determine for position B of the collar 
(a) the transverse component of the velocity of the collar, (b) the 
radial and transverse components of its acceleration, (c) the accel-
eration of the collar relative to the rod.

 12.92 A 200-g ball A and a 400-g ball B are mounted on a horizontal 
rod which rotates freely about a vertical shaft. The balls are held 
in the positions shown by pins. The pin holding B is suddenly 
removed and the ball moves to position C as the rod rotates. 
Neglecting friction and the mass of the rod and knowing that the 
initial speed of A is vA 5 2.5 m/s, determine (a) the radial and 
transverse components of the acceleration of ball B immediately 
after the pin is removed, (b) the acceleration of ball B relative to 
the rod at that instant, (c) the speed of ball A after ball B has 
reached the stop at C.

D COB

A

S

380 mi

180 mi

Fig. P12.89

 12.93 A small ball swings in a horizontal circle at the end of a cord of 
length l1, which forms an angle u1 with the vertical. The cord is then 
slowly drawn through the support at O until the length of the free 
end is l2. (a) Derive a relation among l1, l2, u1, and u2. (b) If the ball 
is set in motion so that initially l1 5 0.8 m and u1 5 35°, determine 
the angle u2 when l2 5 0.6 m.

BA

18 in.

6 in.

Fig. P12.90

A B

C

0.4 m 0.4 m

0.2 m0.25 m
vB

vA

Fig. P12.92

1

2

O

l1
l2

q

q

Fig. P12.93
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734 Kinetics of Particles: Newton’s Second Law *12.11  TRAJECTORY OF A PARTICLE 
UNDER A CENTRAL FORCE

Consider a particle P moving under a central force F. We propose 
to obtain the differential equation which defines its trajectory.
 Assuming that the force F is directed toward the center of force 
O, we note that oFr and oFu reduce, respectively, to 2F and zero 
in Eqs. (12.21) and (12.22). We therefore write

  m( r̈ 2 ru
.

2) 5 2F (12.31)
  m(rü 1 2r

.
u
.
) 5 0  (12.32)

These equations define the motion of P. We will, however, replace 
Eq. (12.32) by Eq. (12.27), which is equivalent to Eq. (12.32), as can 
easily be checked by differentiating it with respect to t, but which is 
more convenient to use. We write

 
r2u

.
5 h   or   r2

 

du
dt

5 h
 

(12.33)

 Equation (12.33) can be used to eliminate the independent vari-
able t from Eq. (12.31). Solving Eq. (12.33) for u

.
 or du/dt, we have

 
u
.

5
du
dt

5
h

r2 
(12.34)

from which it follows that

 
 r. 5

dr
dt

5
dr
du

 
du
dt

5
h

r2 
dr
du

5 2h
d

du
 a1

r
b

 
(12.35)

 
 r̈ 5

dr
.

dt
5

dr
.

du
 
du
dt

5
h

r2 
dr

.

du  

or, substituting for r.  from (12.35),

 r̈ 5
h

r2 
d

du
c2h 

d
du

 a1
r
b d

 
 r̈ 5 2

h2

r2  
d2

du2 a1
r
b

 
(12.36)

Substituting for u and r̈  from (12.34) and (12.36), respectively, in 
Eq. (12.31) and introducing the function u 5 1/r, we obtain after 
reductions

 
d2u

du2 1 u 5
F

mh2u2 
(12.37)

In deriving Eq. (12.37), the force F was assumed directed toward O. 
The magnitude F should therefore be positive if F is actually directed 
toward O (attractive force) and negative if F is directed away from 
O (repulsive force). If F is a known function of r and thus of u, 
Eq. (12.37) is a differential equation in u and u. This differential 
equation defines the trajectory followed by the particle under the 
central force F. The equation of the trajectory can be obtained by 
solving the differential equation (12.37) for u as a function of u and 
determining the constants of integration from the initial conditions.
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73512.12 Application to Space Mechanics*12.12 APPLICATION TO SPACE MECHANICS
After the last stages of their launching rockets have burned out, earth 
satellites and other space vehicles are subjected to only the gravitational 
pull of the earth. Their motion can therefore be determined from 
Eqs. (12.33) and (12.37), which govern the motion of a particle under 
a central force, after F has been replaced by the expression obtained 
for the force of gravitational attraction.† Setting in Eq. (12.37)

  F 5
GMm

r2 5 GMmu2

 where M 5 mass of earth
 m 5 mass of space vehicle
 r 5 distance from center of earth to vehicle
 u 5 1/r

we obtain the differential equation

 
d2u

du2 1 u 5
GM

h2  
(12.38)

where the right-hand member is observed to be a constant.
 The solution of the differential equation (12.38) is obtained by 
adding the particular solution u 5 GM/h2 to the general solution u 5 
C cos (u 2 u0) of the corresponding homogeneous equation (i.e., the 
equation obtained by setting the right-hand member equal to zero). 
Choosing the polar axis so that u0 5 0, we write

 
1
r

5 u 5
GM

h2 1 C cos u
 

(12.39)

Equation (12.39) is the equation of a conic section (ellipse, parabola, 
or hyperbola) in the polar coordinates r and u. The origin O of the 
coordinates, which is located at the center of the earth, is a focus of 
this conic section, and the polar axis is one of its axes of symmetry 
(Fig. 12.19).
 The ratio of the constants C and GM/h2 defines the eccentricity ´ 
of the conic section; letting

 
e 5

C

GM/h2 5
Ch2

GM  
(12.40)

we can write Eq. (12.39) in the form

 
1
r

5
GM

h2 (1 1 e cos u)
 

(12.399)

This equation represents three possible trajectories.

 1. ´ . 1, or C . GM/h2: There are two values u1 and 2u1 of 
the polar angle, defined by cos u1 5 2GM/Ch2, for which the 

†It is assumed that the space vehicles considered here are attracted by the earth only 
and that their mass is negligible compared with the mass of the earth. If a vehicle moves 
very far from the earth, its path may be affected by the attraction of the sun, the moon, 
or another planet.

Photo 12.5 The Hubble telescope was carried 
into orbit by the space shuttle in 1990 (first 
geosynchronous from NASA).

Fig. 12.19

A

r

O

q
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736 Kinetics of Particles: Newton’s Second Law right-hand member of Eq. (12.39) becomes zero. For both 
these values, the radius vector r becomes infinite; the conic 
section is a hyperbola (Fig. 12.20).

 2. ´ 5 1, or C 5 GM/h2: The radius vector becomes infinite for 
u 5 180°; the conic section is a parabola.

 3. ´ , 1, or C , GM/h2: The radius vector remains finite for 
every value of u; the conic section is an ellipse. In the particular 
case when ´ 5 C 5 0, the length of the radius vector is con-
stant; the conic section is a circle.

 Let us now see how the constants C and GM/h2, which character-
ize the trajectory of a space vehicle, can be determined from the 
 vehicle’s position and velocity at the beginning of its free flight. We will 
assume that, as is generally the case, the powered phase of its flight 
has been programmed in such a way that as the last stage of the launch-
ing rocket burns out, the vehicle has a velocity parallel to the surface 
of the earth (Fig. 12.21). In other words, we will assume that the space 
vehicle begins its free flight at the vertex A of its trajectory.†
 Denoting the radius vector and speed of the vehicle at the 
beginning of its free flight by r0 and v0, respectively, we observe 
that the velocity reduces to its transverse component and, thus, that 
v0 5 r0u

.
0. Recalling Eq. (12.27), we express the angular momentum 

per unit mass h as

 h 5 r2
0u

.
0 5 r0v0 (12.41)

The value obtained for h can be used to determine the constant 
GM/h2. We also note that the computation of this constant will be 
simplified if we use the relation obtained in Sec. 12.10.

 GM 5 gR2 (12.30)

where R is the radius of the earth (R 5 6.37 3 106 m or 3960 mi) 
and g is the acceleration of gravity at the surface of the earth.
 The constant C is obtained by setting u 5 0, r 5 r0 in (12.39):

 
C 5

1
r0

2
GM

h2  
(12.42)

Substituting for h from (12.41), we can then easily express C in terms 
of r0 and v0.
 Let us now determine the initial conditions corresponding to 
each of the three fundamental trajectories indicated above. Consid-
ering first the parabolic trajectory, we set C equal to GM/h2 in 
Eq. (12.42) and eliminate h between Eqs. (12.41) and (12.42). Solv-
ing for v0, we obtain

v0 5
A

2GM
r0

We can easily check that a larger value of the initial velocity corre-
sponds to a hyperbolic trajectory and a smaller value corresponds to an 
elliptic orbit. Since the value of v0 obtained for the parabolic trajectory 

†Problems involving oblique launchings will be considered in Sec. 13.9.

Fig. 12.20
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e

Fig. 12.21
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73712.12 Application to Space Mechanicsis the smallest value for which the space vehicle does not return to its 
starting point, it is called the escape velocity. We write therefore

 
vesc 5

A
2GM

r0
  or   vesc 5

B

2gR2

r0  
(12.43)

if we make use of Eq. (12.30). We note that the trajectory will be 
(1) hyperbolic if v0 . vesc, (2) parabolic if v0 5 vesc, and (3) elliptic 
if v0 , vesc.
 Among the various possible elliptic orbits, the one obtained 
when C 5 0, the circular orbit, is of special interest. The value of the 
initial velocity corresponding to a circular orbit is easily found to be

 
vcirc 5

A
GM
r0

  or   vcirc 5 B

gR2

r0  
(12.44)

if Eq. (12.30) is taken into account. We note from Fig. 12.22 that 
for values of v0 larger than vcirc but smaller than vesc, point A where 
free flight begins is the point of the orbit closest to the earth; this 
point is called the perigee, while point A9, which is farthest away 
from the earth, is known as the apogee. For values of v0 smaller than 
vcirc, point A is the apogee, while point A0, on the other side of the 
orbit, is the perigee. For values of v0 much smaller than vcirc, the 
trajectory of the space vehicle intersects the surface of the earth; in 
such a case, the vehicle does not go into orbit.
 Ballistic missiles, which were designed to hit the surface of the 
earth, also travel along elliptic trajectories. In fact, we should now 
realize that any object projected in vacuum with an initial velocity v0 
smaller than vesc will move along an elliptic path. It is only when the 
distances involved are small that the gravitational field of the earth 
can be assumed uniform and that the elliptic path can be approxi-
mated by a parabolic path, as was done earlier (Sec. 11.11) in the 
case of conventional projectiles.

Periodic Time. An important characteristic of the motion of an 
earth satellite is the time required by the satellite to describe its 
orbit. This time, known as the periodic time of the satellite, is denoted 
by t. We first observe, in view of the definition of areal velocity 
(Sec. 12.9), that t can be obtained by dividing the area inside the 
orbit by the areal velocity. Noting that the area of an ellipse is equal 
to pab, where a and b denote the semimajor and semiminor axes, 
respectively, and that the areal velocity is equal to h/2, we write

 
t 5

2pab
h  

(12.45)

 While h can be readily determined from r0 and v0 in the case of 
a satellite launched in a direction parallel to the surface of the earth, 
the semiaxes a and b are not directly related to the initial conditions. 
Since, on the other hand, the values r0 and r1 of r corresponding to 
the perigee and apogee of the orbit can easily be determined from 
Eq. (12.39), we will express the semiaxes a and b in terms of r0 and r1.
 Consider the elliptic orbit shown in Fig. 12.23. The earth’s cen-
ter is located at O and coincides with one of the two foci of the 

Fig. 12.22

O

v0 < vcirc

vcirc < v0 < vesc

v0 = vcirc

A' A" A

Fig. 12.23

b

a

r1 r0

CA' AO'

B

O
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738 Kinetics of Particles: Newton’s Second Law ellipse, while the points A and A9 represent, respectively, the perigee 
and apogee of the orbit. We easily check that

r0 1 r1 5 2a

and thus
 a 5 1

2(r0 1 r1) (12.46)

Recalling that the sum of the distances from each of the foci to any 
point of the ellipse is constant, we write

O9B 1 BO 5 O 9A 1 OA 5 2a  or  BO 5 a

On the other hand, we have CO 5 a 2 r0. We can therefore write

b2 5 (BC)2 5 (BO)2 2 (CO)2 5 a2 2 (a 2 r0)
2

b2 5 r0(2a 2 r0) 5 r0r1
and thus
 b 5 1r0r1 (12.47)

Formulas (12.46) and (12.47) indicate that the semimajor and semi-
minor axes of the orbit are equal, respectively, to the arithmetic and 
geometric means of the maximum and minimum values of the radius 
vector. Once r0 and r1 have been determined, the lengths of the 
semiaxes can be easily computed and substituted for a and b in for-
mula (12.45).

*12.13 KEPLER’S LAWS OF PLANETARY MOTION
The equations governing the motion of an earth satellite can be used 
to describe the motion of the moon around the earth. In that case, 
however, the mass of the moon is not negligible compared with the 
mass of the earth, and the results obtained are not entirely accurate.
 The theory developed in the preceding sections can also be 
applied to the study of the motion of the planets around the sun. 
Although another error is introduced by neglecting the forces exerted 
by the planets on one another, the approximation obtained is excel-
lent. Indeed, even before Newton had formulated his fundamental 
theory, the properties expressed by Eq. (12.39), where M now rep-
resents the mass of the sun, and by Eq. (12.33) had been discovered 
by the German astronomer Johann Kepler (1571–1630) from astro-
nomical observations of the motion of the planets.
 Kepler’s three laws of planetary motion can be stated as follows:

 1. Each planet describes an ellipse, with the sun located at one 
of its foci.

 2. The radius vector drawn from the sun to a planet sweeps equal 
areas in equal times.

 3. The squares of the periodic times of the planets are propor-
tional to the cubes of the semimajor axes of their orbits.

 The first law states a particular case of the result established in 
Sec. 12.12, and the second law expresses that the areal velocity of 
each planet is constant (see Sec. 12.9). Kepler’s third law can also be 
derived from the results obtained in Sec. 12.12.†

†See Prob. 12.121.

Fig. 12.23 (repeated)
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739

SAMPLE PROBLEM 12.9

A satellite is launched in a direction parallel to the surface of the earth with a 
velocity of 36 900 km/h from an altitude of 500 km. Determine (a) the maxi-
mum altitude reached by the satellite, (b) the periodic time of the satellite.

SOLUTION

a. Maximum Altitude. After the satellite is launched, it is subjected only 
to the gravitational attraction of the earth; its motion is thus governed by 
Eq. (12.39),

 
1
r

5
GM

h2 1 C cos u
 

(1)

Since the radial component of the velocity is zero at the point of launching A, 
we have h 5 r0v0. Recalling that for the earth R 5 6370 km, we compute

 r0 5 6370 km 1 500 km 5 6870 km 5 6.87 3 106 m

 v0 5 36 900 km/h 5
36.9 3 106 m
3.6 3 103 s

5 10.25 3 103 m/s

 h 5 r0v0 5 (6.87 3 106 m) (10.25 3 103 m/s) 5 70.4 3 109 m2/s
 h2 5 4.96 3 1021 m4/s2

Since GM 5 gR2, where R is the radius of the earth, we have

 GM 5 gR2 5 (9.81 m/s2) (6.37 3 106 m)2 5 398 3 1012 m3/s2

 
GM

h2 5
398 3 1012 m3/s2

4.96 3 1021 m4/s2 5 80.3 3 1029 m21

 Substituting this value into (1), we obtain

 
1
r

5 80.3 3 1029 m21 1 C cos u
 

(2)

Noting that at point A we have u 5 0 and r 5 r0 5 6.87 3 106 m, we 
compute the constant C:

1
6.87 3 106 m

5 80.3 3 1029 m21 1 C cos 0°
  

C 5 65.3 3 1029 m21

At A9, the point on the orbit farthest from the earth, we have u 5 180°. 
Using (2), we compute the corresponding distance r1:

1
r1 

5 80.3 3 1029 m21 1 (65.3 3 1029 m21) cos 180°

 r1 5 66.7 3 106 m 5 66 700 km
Maximum altitude 5 66 700 km 2 6370 km 5 60 300 km ◀

b. Periodic Time. Since A and A9 are the perigee and apogee, respectively, 
of the elliptic orbit, we use Eqs. (12.46) and (12.47) and compute the semi-
major and semiminor axes of the orbit:

 a 5 1
2(r0 1 r1) 5 1

2(6.87 1 66.7)(106) m 5 36.8 3 106 m

 b 5 1r0r1 5 1(6.87)(66.7) 3 106 m 5 21.4 3 106 m

 t 5
2pab

h
5

2p(36.8 3 106m)(21.4 3 106m)

70.4 3 109 m2/s
t 5 70.3 3 103 s 5 1171 min 5 19 h 31 min ◀

R
A' A

r1

v0

r0

r
q

OA' A
C

B

r1 r0

a

b

Maximum altitude

36,900 km/h

Earth

500 km
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740

SOLVING PROBLEMS
ON YOUR OWN

In this lesson, we continued our study of the motion of a particle under a central 
force and applied the results to problems in space mechanics. We found that the 

trajectory of a particle under a central force is defined by the differential equation

d2u

d u2 1 u 5
F

mh2u2 
(12.37)

where u is the reciprocal of the distance r of the particle to the center of force 
(u 5 1/r), F is the magnitude of the central force F, and h is a constant equal to the 
angular momentum per unit mass of the particle. In space-mechanics problems, F
is the force of gravitational attraction exerted on the satellite or spacecraft by the 
sun, earth, or other planet about which it travels. Substituting F 5 GMm/r2 5 
GMmu2 into Eq. (12.37), we obtain for that case

d2u

d u2 1 u 5
GM

h2  (12.38)

where the right-hand member is a constant.

1. Analyzing the motion of satellites and spacecraft. The solution of the 
 differential equation (12.38) defines the trajectory of a satellite or spacecraft. It 
was obtained in Sec. 12.12 and was given in the alternative forms

1
r

5
GM

h2  1 C cos u   or   1
r

5  
GM

h2  (1 1 e cos u)
 

(12.39, 12.399)

Remember when applying these equations that u 5 0 always corresponds to the 
perigee (the point of closest approach) of the trajectory (Fig. 12.19) and that h is 
a constant for a given trajectory. Depending on the value of the eccentricity ´, the 
trajectory will be a hyperbola, a parabola, or an ellipse.
 a. E . 1: The trajectory is a hyperbola, so that for this case the spacecraft 
never returns to its starting point.
 b. E 5 1: The trajectory is a parabola. This is the limiting case between 
open (hyperbolic) and closed (elliptic) trajectories. We had observed for this case 
that the velocity v0 at the perigee is equal to the escape velocity vesc,

v0 5 vesc 5
A

2GM
r0

 (12.43)

Note that the escape velocity is the smallest velocity for which the spacecraft does 
not return to its starting point.
 c. E , 1: The trajectory is an elliptic orbit. For problems involving elliptic 
orbits, you may find that the relation derived in Prob. 12.102,

1
r0

1
1
r1

5
2GM

h2
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741

will be useful in the solution of subsequent problems. When you apply this equa-
tion, remember that r0 and r1 are the distances from the center of force to the 
perigee (u 5 0) and apogee (u 5 180°), respectively; that h 5 r0v0 5 r1v1; and 
that, for a satellite orbiting the earth, GMearth 5 gR2, where R is the radius of the 
earth. Also recall that the trajectory is a circle when ´ 5 0.

2. Determining the point of impact of a descending spacecraft. For problems 
of this type, you may assume that the trajectory is elliptic and that the initial point 
of the descent trajectory is the apogee of the path (Fig. 12.22). Note that at the 
point of impact, the distance r in Eqs. (12.39) and (12.399) is equal to the radius 
R of the body on which the spacecraft lands or crashes. In addition, we have h 5 
RvI sin fI, where vI is the speed of the spacecraft at impact and fI is the angle 
that its path forms with the vertical at the point of impact.

3. Calculating the time to travel between two points on a trajectory. For 
central force motion, the time t required for a particle to travel along a portion of 
its trajectory can be determined by recalling from Sec. 12.9 that the rate at which 
area is swept per unit time by the position vector r is equal to one-half of the 
angular momentum per unit mass h of the particle: dA/dt 5 h/2. It follows, since h 
is a constant for a given trajectory, that

t 5
2A
h

where A is the total area swept in the time t.
 a. In the case of an elliptic trajectory, the time required to complete one 
orbit is called the periodic time and is expressed as

 
t 5

2(pab)
h  

(12.45)

where a and b are the semimajor and semiminor axes, respectively, of the ellipse 
and are related to the distances r0 and r1 by

 a 5 1
2(r0 1 r1)  and  b 5 1r0r1 (12.46, 12.47)

 b. Kepler’s third law provides a convenient relation between the periodic 
times of two satellites describing elliptic orbits about the same body [Sec. 12.13]. 
Denoting the semimajor axes of the two orbits by a1 and a2, respectively, and the 
corresponding periodic times by t1 and t2, we have

t2
1

t2
2

5
a3

1

a3
2

 c. In the case of a parabolic trajectory, you may be able to use the expres-
sion given on the inside of the front cover of the book for a parabolic or a 
semiparabolic area to calculate the time required to travel between two points of 
the trajectory.
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PROBLEMS

742

 12.94 A particle of mass m describes the cardioid r 5 r0 (1 1 cos u)/2 
under a central force F directed toward the center of force O. 
Using Eq. (12.37), show that F is inversely proportional to the 
fourth power of the distance r from the particle to O.

 12.95 A particle of mass m is projected from point A with an initial 
velocity v0 perpendicular to OA and moves under a central force 
F along an elliptic path defined by the equation r 5 r0/(2 2 cos u). 
Using Eq. (12.37), show that F is inversely proportional to the 
square of the distance r from the particle to the center of force O.

 12.96 A particle of mass m describes the path defined by the equation 
r 5 r0 sin u under a central force F directed toward the center of 
force O. Using Eq. (12.37), show that F is inversely proportional 
to the fifth power of the distance r from the particle to O.

 12.97 For the particle of Prob. 12.76, and using Eq. (12.37), show that 
the central force F is proportional to the distance r from the par-
ticle to the center of force O.

12.98 It was observed that during the Galileo spacecraft’s first flyby of 
the earth, its minimum altitude was 960 km above the surface of 
the earth. Assuming that the trajectory of the spacecraft was para-
bolic, determine the maximum velocity of Galileo during its first 
flyby of the earth.

12.99 As a space probe approaching the planet Venus on a parabolic tra-
jectory reaches point A closest to the planet, its velocity is decreased 
to insert it into a circular orbit. Knowing that the mass and the 
radius of Venus are 4.87 3 1024 kg and 6052 km, respectively, 
determine (a) the velocity of the probe as it approaches A, (b) the 
decrease in velocity required to insert it into the circular orbit.

12.100 It was observed that during its second flyby of the earth, the Galileo 
spacecraft had a velocity of 46.2 3 103 ft/s as it reached its 
 minimum altitude of 188.3 mi above the surface of the earth. 
Determine the eccentricity of the trajectory of the spacecraft dur-
ing this portion of its flight.

12.101 It was observed that as the Galileo spacecraft reached the point 
on its trajectory closest to Io, a moon of the planet Jupiter, it was 
at a distance of 1750 mi from the center of Io and had a velocity 
of 49.4 3 103 ft/s. Knowing that the mass of Io is 0.01496 times 
the mass of the earth, determine the eccentricity of the trajectory 
of the spacecraft as it approached Io.

m

q
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v
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743Problems 12.102 A satellite describes an elliptic orbit about a planet of mass M. 
Denoting by r0 and r1, respectively, the minimum and maximum 
values of the distance r from the satellite to the center of the 
planet, derive the relation

1
r0

1
1
r1

5
2GM

h2

  where h is the angular momentum per unit mass of the satellite.

 12.103 At main engine cutoff of its thirteenth flight, the space shuttle 
Discovery was in an elliptic orbit of minimum altitude 40.3 mi and 
maximum altitude 336 mi above the surface of the earth. Knowing 
that at point A the shuttle had a velocity v0 parallel to the surface 
of the earth and that the shuttle was transferred to a circular orbit 
as it passed through point B, determine (a) the speed v0 of the 
shuttle at A, (b) the increase in speed required at B to insert the 
shuttle into the circular orbit.

 12.104 A space probe is describing a circular orbit about a planet of radius 
R. The altitude of the probe above the surface of the planet is aR 
and its speed is v0. To place the probe in an elliptic orbit which 
will bring it closer to the planet, its speed is reduced from v0 to 
bv0, where b , 1, by firing its engine for a short interval of time. 
Determine the smallest permissible value of b if the probe is not 
to crash on the surface of the planet.

 12.105 As it describes an elliptic orbit about the sun, a spacecraft reaches 
a maximum distance of 202 3 106 mi from the center of the sun at 
point A (called the aphelion) and a minimum distance of 92 3 106 mi 
at point B (called the perihelion). To place the spacecraft in a 
smaller elliptic orbit with aphelion at A9 and perihelion at B9, 
where A9 and B9 are located 164.5 3 106 mi and 85.5 3 106 mi, 
respectively, from the center of the sun, the speed of the space-
craft is first reduced as it passes through A and then is further 
reduced as it passes through B9. Knowing that the mass of the sun 
is 332.8 3 103 times the mass of the earth, determine (a) the speed 
of the spacecraft at A, (b) the amounts by which the speed of the 
spacecraft should be reduced at A and B9 to insert it into the 
desired elliptic orbit.

Fig. P12.102

A B
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744 Kinetics of Particles: Newton’s Second Law  12.106 A space probe is to be placed in a circular orbit of 5600-mi radius 
about the planet Venus in a specified plane. As the probe reaches 
A, the point of its original trajectory closest to Venus, it is inserted 
in a first elliptic transfer orbit by reducing its speed of DvA. This 
orbit brings it to point B with a much reduced velocity. There the 
probe is inserted in a second transfer orbit located in the specified 
plane by changing the direction of its velocity and further reduc-
ing its speed by DvB. Finally, as the probe reaches point C, it is 
inserted in the desired circular orbit by reducing its speed by DvC. 
Knowing that the mass of Venus is 0.82 times the mass of the 
earth, that rA 5 9.3 3 103 mi and rB 5 190 3 103 mi, and that 
the probe approaches A on a parabolic trajectory, determine by 
how much the velocity of the probe should be reduced (a) at A, 
(b) at B, (c) at C.

 12.107 For the space probe of Prob. 12.106, it is known that rA 5 9.3 3 103 mi 
and that the velocity of the probe is reduced to 20,000 ft/s as it 
passes through A. Determine (a) the distance from the center of 
Venus to point B, (b) the amounts by which the velocity of the probe 
should be reduced at B and C, respectively.

 12.108 Determine the time needed for the probe of 12.106 to travel from 
A to B on its first transfer orbit.

 12.109 The Clementine spacecraft described an elliptic orbit of minimum 
altitude hA 5 400 km and maximum altitude hB 5 2940 km above 
the surface of the moon. Knowing that the radius of the moon is 
1737 km and that the mass of the moon is 0.01230 times the mass 
of the earth, determine the periodic time of the spacecraft.

 12.110 A space probe in a low earth orbit is inserted into an elliptic trans-
fer orbit to the planet Venus. Knowing that the mass of the sun is 
332.8 3 103 times the mass of the earth and assuming that the 
probe is subjected only to the gravitational attraction of the sun, 
determine the value of f, which defines the relative position of 
Venus with respect to the earth at the time the probe is inserted 
into the transfer orbit.

 12.111 Based on observations made during the 1996 sighting of comet 
Hyakutake, it was concluded that the trajectory of the comet is a 
highly elongated ellipse for which the eccentricity is approximately 
e 5 0.999887. Knowing that for the 1996 sighting the minimum 
distance between the comet and the sun was 0.230RE, where RE 
is the mean distance from the sun to the earth, determine the 
periodic time of the comet.

 12.112 Halley’s comet travels in an elongated elliptic orbit for which the 
minimum distance from the sun is approximately 1

2 rE, where 
rE 5 150 3 106 km is the mean distance from the sun to the earth. 
Knowing that the periodic time of Halley’s comet is about 76 years, 
determine the maximum distance from the sun reached by 
the comet.

 12.113 Determine the time needed for the space probe of Prob. 12.99 to 
travel from B to C.
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Second transfer orbit

First transfer orbit

B

rB rA

Approach trajectory
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f
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745Problems 12.114 A space probe is describing a circular orbit of radius nR with a 
velocity v0 about a planet of radius R and center O. As the probe 
passes through point A, its velocity is reduced from v0 to bv0, 
where b , 1, to place the probe on a crash trajectory. Express in 
terms of n and b the angle AOB, where B denotes the point of 
impact of the probe on the planet.

 12.115 Prior to the Apollo missions to the moon, several Lunar Orbiter 
spacecraft were used to photograph the lunar surface to obtain 
information regarding possible landing sites. At the conclusion of 
each mission, the trajectory of the spacecraft was adjusted so that 
the spacecraft would crash on the moon to further study the char-
acteristics of the lunar surface. Shown is the elliptic orbit of Lunar 
Orbiter 2. Knowing that the mass of the moon is 0.01230 times 
the mass of the earth, determine the amount by which the speed 
of the orbiter should be reduced at point B so that it impacts the 
lunar surface at point C. (Hint: Point B is the apogee of the elliptic 
impact trajectory.)

 12.116 As a spacecraft approaches the planet Jupiter, it releases a probe 
which is to enter the planet’s atmosphere at point B at an altitude of 
450 km above the surface of the planet. The trajectory of the probe 
is a hyperbola of eccentricity e 5 1.031. Knowing that the radius and 
the mass of Jupiter are 71.492 3 103 km and 1.9 3 1027 kg, respec-
tively, and that the velocity vB of the probe at B forms an angle 
of 82.9° with the direction of OA, determine (a) the angle AOB, 
(b) the speed vB of the probe at B.

 12.117 A space shuttle is describing a circular orbit at an altitude of 350 mi 
above the surface of the earth. As it passes through point A, it fires 
its engine for a short interval of time to reduce its speed by 500 ft/s 
and begin its descent toward the earth. Determine the angle AOB so 
that the altitude of the shuttle at point B is 75 mi. (Hint: Point A is 
the apogee of the elliptic descent trajectory.)

 12.118 A satellite describes an elliptic orbit about a planet. Denoting by 
r0 and r1 the distances corresponding, respectively, to the perigee 
and apogee of the orbit, show that the curvature of the orbit at 
each of these two points can be expressed as

1
r

5
1
2

 a 1
r0

1
1
r1
b

 12.119 (a) Express the eccentricity ´ of the elliptic orbit described by a satel-
lite about a planet in terms of the distances r0 and r1 corresponding, 
respectively, to the perigee and apogee of the orbit. (b) Use the result 
obtained in part a and the data given in Prob. 12.111, where RE 5 
149.6 3 106 km, to determine the approximate maximum distance 
from the sun reached by comet Hyakutake.

 12.120 Show that the angular momentum per unit mass h of a satellite 
describing an elliptic orbit of semimajor axis a and eccentricity e 
about a planet of mass M can be expressed as

h 5 2GMa(1 2 e2)

 12.121 Derive Kepler’s third law of planetary motion from Eqs. (12.39) 
and (12.45).
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746

REVIEW AND SUMMARY

This chapter was devoted to Newton’s second law and its application 
to the analysis of the motion of particles.

Denoting by m the mass of a particle, by oF the sum, or resultant, 
of the forces acting on the particle, and by a the acceleration of the 
particle relative to a newtonian frame of reference [Sec. 12.2], we 
wrote

oF 5 ma (12.2)

Introducing the linear momentum of a particle, L 5 mv [Sec. 12.3], 
we saw that Newton’s second law can also be written in the form

oF 5 L̇ (12.5)

which expresses that the resultant of the forces acting on a particle is 
equal to the rate of change of the linear momentum of the particle.

Equation (12.2) holds only if a consistent system of units is used. With 
SI units, the forces should be expressed in newtons, the masses in 
kilograms, and the accelerations in m/s2; with U.S. customary units, 
the forces should be expressed in pounds, the masses in lb · s2/ft (also 
referred to as slugs), and the accelerations in ft/s2 [Sec. 12.4].

To solve a problem involving the motion of a particle, Eq. (12.2) should 
be replaced by equations containing scalar quantities [Sec. 12.5]. Using 
rectangular components of F and a, we wrote

 oFx 5 max  oFy 5 may  oFz 5 maz (12.8)

Using tangential and normal components, we had

 ©Ft 5 m  

dv
dt

    ©Fn 5 m  

v2

r
 (12.99)

We also noted [Sec. 12.6] that the equations of motion of a particle 
can be replaced by equations similar to the equilibrium equations 
used in statics if a vector 2ma of magnitude ma but of sense oppo-
site to that of the acceleration is added to the forces applied to the 
particle; the particle is then said to be in dynamic equilibrium. For 
the sake of uniformity, however, all the Sample Problems were solved 
by using the equations of motion, first with rectangular components 
[Sample Probs. 12.1 through 12.4], then with tangential and normal 
components [Sample Probs. 12.5 and 12.6].

Newton’s second lawNewton’s second law

Linear momentumLinear momentum

Consistent systems of unitsConsistent systems of units

Equations of motion for a particleEquations of motion for a particle

Dynamic equilibriumDynamic equilibrium
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747In the second part of the chapter, we defined the angular momentum 
HO of a particle about a point O as the moment about O of the linear 
momentum mv of that particle [Sec. 12.7]. We wrote

 HO 5 r 3 mv (12.12)

and noted that HO is a vector perpendicular to the plane containing 
r and mv (Fig. 12.24) and of magnitude

 HO 5 rmv sin f (12.13)

Resolving the vectors r and mv into rectangular components, we 
expressed the angular momentum HO in the determinant form

 
HO 5 † i j k

x y z
mvx mvy mvz

†
 

(12.14)

In the case of a particle moving in the xy plane, we have z 5 
vz 5 0. The angular momentum is perpendicular to the xy plane and 
is completely defined by its magnitude. We wrote

 HO 5 Hz 5 m(xvy 2 yvx) (12.16)

Computing the rate of change H
.

O of the angular momentum HO, 
and applying Newton’s second law, we wrote the equation

 oMO 5 H
.

O (12.19)

which states that the sum of the moments about O of the forces acting 
on a particle is equal to the rate of change of the angular momentum 
of the particle about O.

In many problems involving the plane motion of a particle, it is found 
convenient to use radial and transverse components [Sec. 12.8, Sam-
ple Prob. 12.7] and to write the equations

 oFr 5 m(r̈ 2 ru̇2) (12.21)
 oFu 5 m(rü  1 2ṙu̇) (12.22)

When the only force acting on a particle P is a force F directed 
toward or away from a fixed point O, the particle is said to be moving 
under a central force [Sec. 12.9]. Since oMO 5 0 at any given instant, 
it follows from Eq. (12.19) that H

.
O 5 0 for all values of t and, thus, 

that

 HO 5 constant (12.23)

We concluded that the angular momentum of a particle moving under 
a central force is constant, both in magnitude and direction, and that 
the particle moves in a plane perpendicular to the vector HO.

Angular momentumAngular momentum

Rate of change of angular 
momentum
Rate of change of angular 
momentum

Radial and transverse componentsRadial and transverse components

Motion under a central forceMotion under a central force

P

HO

r
O

z

x

y

mv

f

Fig. 12.24
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748 Kinetics of Particles: Newton’s Second Law  Recalling Eq. (12.13), we wrote the relation

 rmv sin f 5 r0mv0 sin f0 (12.25)

for the motion of any particle under a central force (Fig. 12.25). 
Using polar coordinates and recalling Eq. (12.18), we also had

 r2u̇ 5 h (12.27)

where h is a constant representing the angular momentum per unit 
mass, HO/m, of the particle. We observed (Fig. 12.26) that the in -
finitesimal area dA swept by the radius vector OP as it rotates 
through du is equal to 1

2r2du and, thus, that the left-hand mem -
ber of Eq. (12.27) represents twice the areal velocity dA/dt of the 
particle. Therefore, the areal velocity of a particle moving under a 
central force is constant.

O

P

r

mv

mv0

P0r0

0

f

f

Fig. 12.25

An important application of the motion under a central force is pro-
vided by the orbital motion of bodies under gravitational attraction 
[Sec. 12.10]. According to Newton’s law of universal gravitation, two 
particles at a distance r from each other and of masses M and m, 
respectively, attract each other with equal and opposite forces F and 
2F directed along the line joining the particles (Fig. 12.27). The 
common magnitude F of the two forces is

 
F 5 G

Mm

r2  
(12.28)

where G is the constant of gravitation. In the case of a body of mass m 
subjected to the gravitational attraction of the earth, the product GM, 
where M is the mass of the earth, can be expressed as

 GM 5 gR2 (12.30)

where g 5 9.81 m/s2 5 32.2 ft/s2 and R is the radius of the earth.

It was shown in Sec. 12.11 that a particle moving under a central 
force describes a trajectory defined by the differential equation

 
d2u

du2 1 u 5
F

mh2u2 
(12.37)

Newton’s law of universal 
gravitation

Newton’s law of universal 
gravitation

Orbital motionOrbital motion
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749Review and Summarywhere F . 0 corresponds to an attractive force and u 5 1/r. In the 
case of a particle moving under a force of gravitational attraction 
[Sec. 12.12], we substituted for F the expression given in Eq. (12.28). 
Measuring u from the axis OA joining the focus O to the point A of 
the trajectory closest to O (Fig. 12.28), we found that the solution 
to Eq. (12.37) was

 
1
r

5 u 5
GM

h2 1 C  cos u
 

(12.39)

This is the equation of a conic of eccentricity ´ 5 Ch2/GM. The 
conic is an ellipse if ´ , 1, a parabola if ´ 5 1, and a hyperbola if 
´ . 1. The constants C and h can be determined from the initial 
conditions; if the particle is projected from point A (u 5 0, r 5 r0) 
with an initial velocity v0 perpendicular to OA, we have h 5 r0v0 
[Sample Prob. 12.9].

It was also shown that the values of the initial velocity corresponding, 
respectively, to a parabolic and a circular trajectory were

 
vesc 5

A
2GM

r0  
(12.43)

 
vcirc 5

A
GM
r0  

(12.44)

and that the first of these values, called the escape velocity, is the 
smallest value of v0 for which the particle will not return to its starting 
point.

The periodic time t of a planet or satellite was defined as the time 
required by that body to describe its orbit. It was shown that

 
t 5

2pab
h

 (12.45)

where h 5 r0v0 and where a and b represent the semimajor and 
semiminor axes of the orbit. It was further shown that these semiaxes 
are respectively equal to the arithmetic and geometric means of the 
maximum and minimum values of the radius vector r.

The last section of the chapter [Sec. 12.13] presented Kepler’s laws 
of planetary motion and showed that these empirical laws, obtained 
from early astronomical observations, confirm Newton’s laws of 
motion as well as his law of gravitation.

Escape velocityEscape velocity

Periodic timePeriodic time

Kepler’s lawsKepler’s laws
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Fig. 12.28
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750

REVIEW PROBLEMS

 12.122 A 3000-lb automobile is being driven down a 5° incline at a speed 
of 50 mi/h when the brakes are applied, causing a total braking force 
of 1200 lb to be applied to the automobile. Determine the distance 
traveled by the automobile before it comes to a stop.

 12.123 A 6-kg block B rests as shown on a 10-kg bracket A. The coeffi-
cients of friction are ms 5 0.30 and mk 5 0.25 between block B
and bracket A, and there is no friction in the pulley or between 
the bracket and the horizontal surface. (a) Determine the maximum 
mass of block C if block B is not to slide on bracket A. (b) If the 
mass of block C is 10% larger than the answer found in a deter-
mine the accelerations of A, B, and C.

 12.124 Block A weighs 20 lb, and blocks B and C weigh 10 lb each. Know-
ing that the blocks are initially at rest and that B moves through 
8 ft in 2 s, determine (a) the magnitude of the force P, (b) the 
tension in the cord AD. Neglect the masses of the pulleys and 
axle friction.

 12.125 A 12-lb block B rests as shown on the upper surface of a 30-lb 
wedge A. Neglecting friction, determine immediately after the 
 system is released from rest (a) the acceleration of A, (b) the accel-
eration of B relative to A.

 12.126 The roller-coaster track shown is contained in a vertical plane. The 
portion of track between A and B is straight and horizontal, while 
the portions to the left of A and to the right of B have radii of 
curvature as indicated. A car is traveling at a speed of 72 km/h 
when the brakes are suddenly applied, causing the wheels of the 
car to slide on the track (mk 5 0.25). Determine the initial decel-
eration of the car if the brakes are applied as the car (a) has almost 
reached A, (b) is traveling between A and B, (c) has just passed B.

Fig. P12.123
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751Review Problems 12.127 A small 200-g collar C can slide on a semicircular rod which is 
made to rotate about the vertical AB at the constant rate of 6 rad/s. 
Determine the minimum required value of the coefficient of static 
friction between the collar and the rod if the collar is not to slide 
when (a) u 5 90°, (b) u 5 75°, (c) u 5 45°. Indicate in each case 
the direction of the impending motion.

 12.128 Pin B weighs 4 oz and is free to slide in a horizontal plane along 
the rotating arm OC and along the circular slot DE of radius 
b 5 20 in. Neglecting friction and assuming that u̇ 5 15 rad/s and 
ü 5 250 rad/s2 for the position u 5 20°, determine for that position 
(a) the radial and transverse components of the resultant force 
exerted on pin B, (b) the forces P and Q exerted on pin B, respec-
tively, by rod OC and the wall of slot DE.

A

B

O

C
200 g

r = 600 mm

q

Fig. P12.127
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q

b

b

Fig. P12.128

 12.129 A particle of mass m is projected from point A with an initial 
velocity v0 perpendicular to OA and moves under a central force 
F directed away from the center of force O. Knowing that the 
particle follows a path defined by the equation r 5 r0/cos 2u, and 
using Eq. (12.27), express the radial and transverse components of 
the velocity v of the particle as functions of the angle u.

r0
AO

F

mr

θ v0

v

Fig. P12.129 

 12.130 Show that the radius r of the moon’s orbit can be determined 
from the radius R of the earth, the acceleration of gravity g at the 
surface of the earth, and the time t required for the moon to 
complete one full revolution about the earth. Compute r knowing 
that t 5 27.3 days, giving the answer in both SI and U.S. custom-
ary units.
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752 Kinetics of Particles: Newton’s Second Law   *12.131 Disk A rotates in a horizontal plane about a vertical axis at the 
constant rate u̇0 5 12 rad/s. Slider B weighs 8.05 oz and moves 
in a frictionless slot cut in the disk. The slider is attached to a 
spring of constant k, which is undeformed when r 5 0. Knowing 
that the slider is released with no radial velocity in the position 
r 5 15 in., determine the position of the slider and the horizontal 
force exerted on it by the disk at t 5 0.1 s for (a) k 5 2.25 lb/ft, 
(b) k 5 3.25 lb/ft.

 12.132 It was observed that as the Voyager I spacecraft reached the point 
of its trajectory closest to the planet Saturn, it was at a distance of 
185 3 103 km from the center of the planet and had a velocity of 
21.0 km/s. Knowing that Tethys, one of Saturn’s moons, describes a 
circular orbit of radius 295 3 103 km at a speed of 11.35 km/s, 
determine the eccentricity of the trajectory of Voyager I on its 
approach to Saturn.

 12.133 At engine burnout on a mission, a shuttle had reached point A at an 
altitude of 40 mi above the surface of the earth and had a horizontal 
velocity v0. Knowing that its first orbit was elliptic and that the 
shuttle was transferred to a circular orbit as it passed through point B 
at an altitude of 170 mi, determine (a) the time needed for the 
shuttle to travel from A to B on its original elliptic orbit, (b) the 
periodic time of the shuttle on its final circular orbit.

  0
⋅ 

B

A

O

Spring

r

q

Fig. P12.131

A O B

v0

50 mi 170 mi

R = 3960 mi

Fig. P12.133
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753

COMPUTER PROBLEMS

 12.C1 Block B of mass 10 kg is initially at rest as shown on the upper 
surface of a 20-kg wedge A which is supported by a horizontal surface. A 
2-kg block C is connected to block B by a cord which passes over a pulley 
of negligible mass. Using computational software and denoting by m the 
coefficient of friction at all surfaces, use this program to determine the accel-
erations for values of m $ 0. Use 0.01 increments for m until the wedge does 
not move and then use 0.1 increments until no motion occurs.

 12.C2 A small, 1-lb block is at rest at the top of a cylindrical surface. The 
block is given an initial velocity v0 to the right of magnitude 10 ft/s, which 
causes it to slide on the cylindrical surface. Using computational software 
calculate and plot the values of u at which the block leaves the surface for 
values of mk, the coefficient of kinetic friction between the block and the 
surface, from 0 to 0.4.

 12.C3 A block of mass m is attached to a spring of constant k. The block is 
released from rest when the spring is in a horizontal and undeformed position. 
Use computational software to determine, for various selected values of k/m 
and r0, (a) the length of the spring and the magnitude and direction of the 
velocity of the block as the block passes directly under the point of suspension 
of the spring, (b) the value of k/m when r0 5 1 m for which that velocity is 
horizontal.

5 ft

v0

q

Fig. P12.C2
r0

Fig. P12.C3

 12.C4 Use computational software to determine the ranges of values of u
for which the block E of Prob. 12.58 will not slide in the semicircular slot of 
the flat plate. Assuming a coefficient of static friction of 0.35, determine the 
ranges of values when the constant rate of rotation of the plate is (a) 14 rad/s, 
(b) 2 rad/s.

 12.C5 Use computational software to determine the time required by a 
spacecraft to travel between two points on its trajectory, given the distance 
to either the apogee or the perigee of the trajectory and the speed of the 
spacecraft at that point. Use this program to determine (a) the time required 
by Lunar Orbiter 2 in Prob. 12.115 to travel between points B and C on its 
impact trajectory, knowing that the speed of the orbiter is 869.4 m/s as it 
begins its descent at B, (b) the time required by the space shuttle in Prob. 
12.117 to travel between points A and B on its landing trajectory, knowing 
that the speed of the shuttle is 24,371 ft/s as it begins its descent at A.

A

30°

C

B

Fig. P12.C1
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A golf ball will deform upon impact as 

shown by this high speed photo. The 

maximum deformation will occur when 

the club head velocity and the ball

 velocity are the same. In this chapter 

impacts will be analyzed using the 

coefficient of restitution and 

conservation of linear  momentum. 

The kinetics of particles  using energy 

and momentum methods is the subject 

of this chapter.
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13.1 INTRODUCTION
In the preceding chapter, most problems dealing with the motion of 
particles were solved through the use of the fundamental equation 
of motion F 5 ma. Given a particle acted upon by a force F, we 
could solve this equation for the acceleration a; then, by applying 
the principles of kinematics, we could determine from a the velocity 
and position of the particle at any time.
 Using the equation F 5 ma together with the principles of 
kinematics allows us to obtain two additional methods of analysis, the 
method of work and energy and the method of impulse and momen-
tum. The advantage of these methods lies in the fact that they make 
the determination of the acceleration unnecessary. Indeed, the 
method of work and energy directly relates force, mass, velocity, and 
displacement, while the method of impulse and momentum relates 
force, mass, velocity, and time.
 The method of work and energy will be considered first. In 
Secs. 13.2 through 13.4, the work of a force and the kinetic energy 
of a particle are discussed and the principle of work and energy is 
applied to the solution of engineering problems. The concepts of 
power and efficiency of a machine are introduced in Sec. 13.5.
 Sections 13.6 through 13.8 are devoted to the concept of poten-
tial energy of a conservative force and to the application of the prin-
ciple of conservation of energy to various problems of practical 
interest. In Sec. 13.9, the principles of conservation of energy and 
of conservation of angular momentum are used jointly to solve prob-
lems of space mechanics.
 The second part of the chapter is devoted to the principle of 
impulse and momentum and to its application to the study of the 
motion of a particle. As you will see in Sec. 13.11, this principle is 
particularly effective in the study of the impulsive motion of a particle, 
where very large forces are applied for a very short time interval.
 In Secs. 13.12 through 13.14, the central impact of two bodies 
will be considered. It will be shown that a certain relation exists 
between the relative velocities of the two colliding bodies before and 
after impact. This relation, together with the fact that the total 
momentum of the two bodies is conserved, can be used to solve a 
number of problems of practical interest.
 Finally, in Sec. 13.15, you will learn to select from the three 
fundamental methods presented in Chaps. 12 and 13 the method 
best suited for the solution of a given problem. You will also see how 
the principle of conservation of energy and the method of impulse 
and momentum can be combined to solve problems involving only 
conservative forces, except for a short impact phase during which 
impulsive forces must also be taken into consideration.

13.2 WORK OF A FORCE
We will first define the terms displacement and work as they are 
used in mechanics.† Consider a particle which moves from a point 

Chapter 13 Kinetics of Particles: 
Energy and Momentum Methods

 13.1 Introduction
 13.2 Work of a Force
 13.3 Kinetic Energy of a Particle. 

Principle of Work and Energy
 13.4 Applications of the Principle of 

Work and Energy
 13.5 Power and Efficiency
 13.6 Potential Energy
 13.7 Conservative Forces
 13.8 Conservation of Energy
 13.9 Motion Under a Conservative 

Central Force. Application to 
Space Mechanics

 13.10 Principle of Impulse and 
Momentum

 13.11 Impulsive Motion
 13.12 Impact
 13.13 Direct Central Impact
 13.14 Oblique Central Impact
 13.15 Problems Involving Energy and 

Momentum

†The definition of work was given in Sec. 10.2, and the basic properties of the work of 
a force were outlined in Secs. 10.2 and 10.6. For convenience, we repeat here the 
 portions of this material which relate to the kinetics of particles.
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A to a neighboring point A9 (Fig. 13.1). If r denotes the position 
vector corresponding to point A, the small vector joining A and A9 
can be denoted by the differential dr; the vector dr is called the 
displacement of the particle. Now, let us assume that a force F is 
acting on the particle. The work of the force F corresponding to the 
displacement dr is defined as the quantity

 dU 5 F ? dr (13.1)

obtained by forming the scalar product of the force F and the dis-
placement dr. Denoting by F and ds respectively, the magnitudes of 
the force and of the displacement, and by a the angle formed by F 
and dr, and recalling the definition of the scalar product of two vec-
tors (Sec. 3.9), we write

 dU 5 F ds cos a (13.19)

Using formula (3.30), we can also express the work dU in terms of 
the rectangular components of the force and of the displacement:

 dU 5 Fx dx 1 Fy dy 1 Fz dz (13.10)

Being a scalar quantity, work has a magnitude and a sign but no 
direction. We also note that work should be expressed in units 
obtained by multiplying units of length by units of force. Thus, if 
U.S. customary units are used, work should be expressed in ft ? lb 
or in ? lb. If SI units are used, work should be expressed in N ? m. 
The unit of work N ? m is called a joule (J).† Recalling the conver-
sion factors indicated in Sec. 12.4, we write

1 ft ? lb 5 (1 ft)(1 lb) 5 (0.3048 m)(4.448 N) 5 1.356 J

It follows from (13.19) that the work dU is positive if the angle a is 
acute and negative if a is obtuse. Three particular cases are of special 

13.2 Work of a Force

O

A
A'

F

r

dr

a

r + dr 

Fig. 13.1

†The joule (J) is the SI unit of energy, whether in mechanical form (work, potential 
energy, kinetic energy) or in chemical, electrical, or thermal form. We should note that 
even though N ? m 5 J, the moment of a force must be expressed in N ? m and not in 
joules, since the moment of a force is not a form of energy. 
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758 Kinetics of Particles: Energy and Momentum 
Methods

interest. If the force F has the same direction as dr, the work dU 
reduces to F ds. If F has a direction opposite to that of dr, the work is 
dU 5 2F ds. Finally, if F is perpendicular to dr, the work dU is zero.
 The work of F during a finite displacement of the particle from 
A1 to A2 (Fig. 13.2a) is obtained by integrating Eq. (13.1) along the 
path described by the particle. This work, denoted by U1y2, is

 
U1y2 5 #

A2

A1

 
F ? dr

 
(13.2)

Using the alternative expression (13.19) for the elementary work dU, 
and observing that F cos a represents the tangential component Ft 
of the force, we can also express the work U1y2 as

 
U1y2 5 #

s2

s1

 
(F cos a) ds 5 #

s2

s1

 
Ft ds

 
(13.29)

where the variable of integration s measures the distance traveled by 
the particle along the path. The work U1y2 is represented by the 
area under the curve obtained by plotting Ft 5 F cos a against s 
(Fig. 13.2b).
 When the force F is defined by its rectangular components, 
the expression (13.10) can be used for the elementary work. We 
then write

 
U1y2 5 #

A2

A1

 
(Fx dx 1 Fy dy 1 Fz dz)

 
(13.20)

where the integration is to be performed along the path described 
by the particle.

Work of a Constant Force in Rectilinear Motion. When a particle 
moving in a straight line is acted upon by a force F of constant mag-
nitude and of constant direction (Fig. 13.3), formula (13.29) yields

 U1y2 5 (F cos a) Dx (13.3)

where a 5 angle the force forms with direction of motion
 Dx 5 displacement from A1 to A2

Work of the Force of Gravity. The work of the weight W of a 
body, i.e., of the force of gravity exerted on that body, is obtained by 
substituting the components of W into (13.10) and (13.20). With the 
y axis chosen upward (Fig. 13.4), we have Fx 5 0, Fy 5 2W, and 
Fz 5 0, and we write

 dU 5 2W dy

 
 U1y2 5 2 #

y2

y1

  
W dy 5 Wy1 2 Wy2 

(13.4)

or
 U1y2 5 2W(y2 2 y1) 5 2W Dy (13.49)

where Dy is the vertical displacement from A1 to A2. The work of 
the weight W is thus equal to the product of W and the vertical 

O

O

A

F

dr

ds

s

s

s1

s1

s2

s2

A2

A1

Ft

a

(a)

(b)

Fig. 13.2

O

A2

A1

x

A

F

a

Δx

Fig. 13.3
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A1

y2

y1

dy

y

W

Fig. 13.4
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759displacement of the center of gravity of the body. The work is posi-
tive when Dy , 0, that is, when the body moves down.

Work of the Force Exerted by a Spring. Consider a body A 
attached to a fixed point B by a spring; it is assumed that the spring 
is undeformed when the body is at A0 (Fig. 13.5a). Experimental 
evidence shows that the magnitude of the force F exerted by the 
spring on body A is proportional to the deflection x of the spring 
measured from the position A0. We have

 F 5 kx (13.5)

where k is the spring constant, expressed in N/m or kN/m if SI units 
are used and in lb/ft or lb/in. if U.S. customary units are used.†
 The work of the force F exerted by the spring during a finite 
displacement of the body from A1(x 5 x1) to A2(x 5 x2) is obtained 
by writing

 dU 5 2F dx 5 2kx dx

 
U1y2 5 2 #

x2

x1

 
kx dx 5 1

2 kx2
1 2 1

2 kx2
2 

(13.6)

Care should be taken to express k and x in consistent units. For 
example, if U.S. customary units are used, k should be expressed in 
lb/ft and x in feet, or k in lb/in. and x in inches; in the first case, the 
work is obtained in ft ? lb, in the second case, in in ? lb. We note 
that the work of the force F exerted by the spring on the body is 
positive when x2 , x1, that is, when the spring is returning to its 
undeformed position.
 Since Eq. (13.5) is the equation of a straight line of slope k 
passing through the origin, the work U1y2 of F during the displace-
ment from A1 to A2 can be obtained by evaluating the area of the 
trapezoid shown in Fig. 13.5b. This is done by computing F1 and F2 
and multiplying the base Dx of the trapezoid by its mean height 
1
2(F1 1 F2). Since the work of the force F exerted by the spring is 
positive for a negative value of Dx, we write

 U1y2 5 21
2(F1 1 F2) ¢x (13.69)

Formula (13.69) is usually more convenient to use than (13.6) and 
affords fewer chances of confusing the units involved.

Work of a Gravitational Force. We saw in Sec. 12.10 that two 
particles of mass M and m at a distance r from each other attract 
each other with equal and opposite forces F and 2F, directed along 
the line joining the particles and of magnitude

F 5 G 
Mm

r2

†The relation F 5 kx is correct under static conditions only. Under dynamic condi-
tions, formula (13.5) should be modified to take the inertia of the spring into account. 
However, the error introduced by using the relation F 5 kx in the solution of kinetics 
problems is small if the mass of the spring is small compared with the other masses in 
motion.

F

x

A0

A1

F2

F1

Spring undeformed

B

B

B

F

(a)

(b)

F = kx

A

A2

x1

x

x2

x2x1

Δ x

Fig. 13.5

13.2 Work of a Force
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760 Kinetics of Particles: Energy and Momentum 
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Let us assume that the particle M occupies a fixed position O while the 
particle m moves along the path shown in Fig. 13.6. The work of the 
force F exerted on the particle m during an infinitesimal displacement 
of the particle from A to A9 can be obtained by multiplying the magni-
tude F of the force by the radial component dr of the displacement. 
Since F is directed toward O, the work is negative and we write

dU 5 2F dr 5 2G 
Mm

r2  dr

The work of the gravitational force F during a finite displacement 
from A1(r 5 r1) to A2(r 5 r2) is therefore

 
U1y2 5 2 #

r2

r1

 
GMm

r2  dr 5
GMm

r2
2

GMm
r1  

(13.7)

where M is the mass of the earth. This formula can be used to 
determine the work of the force exerted by the earth on a body of 
mass m at a distance r from the center of the earth, when r is larger 
than the radius R of the earth. Recalling the first of the relations 
(12.29), we can replace the product GMm in Eq. (13.7) by WR2, 
where R is the radius of the earth (R 5 6.37 3 106 m or 3960 mi) 
and W is the weight of the body at the surface of the earth.
 A number of forces frequently encountered in problems of kinet-
ics do no work. They are forces applied to fixed points (ds 5 0) or 
acting in a direction perpendicular to the displacement (cos a 5 0). 
Among the forces which do no work are the following: the reaction at 
a frictionless pin when the body supported rotates about the pin, the 
reaction at a frictionless surface when the body in contact moves along 
the surface, the reaction at a roller moving along its track, and the 
weight of a body when its center of gravity moves horizontally.

13.3  KINETIC ENERGY OF A PARTICLE. PRINCIPLE 
OF WORK AND ENERGY

Consider a particle of mass m acted upon by a force F and moving 
along a path which is either rectilinear or curved (Fig. 13.7). Express-
ing Newton’s second law in terms of the tangential components of 
the force and of the acceleration (see Sec. 12.5), we write

Ft 5 mat   or   Ft 5 m 
dv
dt

where v is the speed of the particle. Recalling from Sec. 11.9 that 
v 5 ds/dt, we obtain

Ft 5 m 
dv
ds

 
ds
dt

5 mv 
dv
ds

 Ft ds 5 mv dv

Integrating from A1, where s 5 s1 and v 5 v1, to A2, where s 5 s2 
and v 5 v2, we write

 #
s2

s1

 
Ft ds 5 m #

v2

v1

 
v dv 5 1

2 mv2
2 2 1

2 mv2
1 

(13.8)

The left-hand member of Eq. (13.8) represents the work U1y2 of the 
force F exerted on the particle during the displacement from A1 to 

Fig. 13.6

O

A2

A1

r2

r1
q

dr

F

–F

M

r

A'

A
m

dq

A2

A1

F

Ft

Fn

m a

Fig. 13.7
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761A2; as indicated in Sec. 13.2, the work U1y2 is a scalar quantity. The 
expression 1

2 mv2 is also a scalar quantity; it is defined as the kinetic 
energy of the particle and is denoted by T. We write

 T 5 1
2 mv2 (13.9)

Substituting into (13.8), we have

 U1y2 5 T2 2 T1 (13.10)

which expresses that, when a particle moves from A1 to A2 under the 
action of a force F, the work of the force F is equal to the change 
in kinetic energy of the particle. This is known as the principle of 
work and energy. Rearranging the terms in (13.10), we write

 T1 1 U1y2 5 T2 (13.11)

Thus, the kinetic energy of the particle at A2 can be obtained by adding 
to its kinetic energy at A1 the work done during the displacement from 
A1 to A2 by the force F exerted on the particle. Like Newton’s second 
law from which it is derived, the principle of work and energy applies 
only with respect to a newtonian frame of reference (Sec. 12.2). The 
speed v used to determine the kinetic energy T should therefore be 
measured with respect to a newtonian frame of reference.
 Since both work and kinetic energy are scalar quantities, their 
sum can be computed as an ordinary algebraic sum, the work U1y2 
being considered as positive or negative according to the direction 
of F. When several forces act on the particle, the expression U1y2 
represents the total work of the forces acting on the particle; it is 
obtained by adding algebraically the work of the various forces.
 As noted above, the kinetic energy of a particle is a scalar quan-
tity. It further appears from the definition T 5 1

2 mv2 that regardless 
of the direction of motion of the particle the kinetic energy is always 
positive. Considering the particular case when v1 5 0 and v2 5 v, and 
substituting T1 5 0 and T2 5 T into (13.10), we observe that the work 
done by the forces acting on the particle is equal to T. Thus, the kinetic 
energy of a particle moving with a speed v represents the work which 
must be done to bring the particle from rest to the speed v. Substitut-
ing T1 5 T and T2 5 0 into (13.10), we also note that when a particle 
moving with a speed v is brought to rest, the work done by the forces 
acting on the particle is 2T. Assuming that no energy is dissipated 
into heat, we conclude that the work done by the forces exerted by 
the particle on the bodies which cause it to come to rest is equal to 
T. Thus, the kinetic energy of a particle also represents the capacity 
to do work associated with the speed of the particle.
 The kinetic energy is measured in the same units as work, i.e., 
in joules if SI units are used and in ft ? lb if U.S. customary units 
are used. We check that, in SI units,

T 5 1
2 mv2 5 kg(m/s)2 5 (kg ? m/s2)m 5 N ? m 5 J

while, in customary units,

T 5 1
2 mv2 5 (lb ? s2/ft)(ft/s)2 5 ft ? lb

13.3 Kinetic Energy of a Particle. Principle of 
Work and Energy
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762 Kinetics of Particles: Energy and Momentum 
Methods 13.4  APPLICATIONS OF THE PRINCIPLE

OF WORK AND ENERGY
The application of the principle of work and energy greatly simpli-
fies the solution of many problems involving forces, displacements, 
and velocities. Consider, for example, the pendulum OA consisting 
of a bob A of weight W attached to a cord of length l (Fig. 13.8a). 
The pendulum is released with no initial velocity from a horizontal 
position OA1 and allowed to swing in a vertical plane. We wish to 
determine the speed of the bob as it passes through A2, directly 
under O.
 We first determine the work done during the displacement 
from A1 to A2 by the forces acting on the bob. We draw a free-body 
diagram of the bob, showing all the actual forces acting on it, i.e., 
the weight W and the force P exerted by the cord (Fig. 13.8b). (An 
inertia vector is not an actual force and should not be included in 
the free-body diagram.) We note that the force P does no work, 
since it is normal to the path; the only force which does work is 
thus the weight W. The work of W is obtained by multiplying its 
magnitude W by the vertical displacement l (Sec. 13.2); since the 
displacement is downward, the work is positive. We therefore write 
U1y2 5 Wl.
 Now considering the kinetic energy of the bob, we find T1 5 0 
at A1 and T2 5 1

2(W/g)v2
2 at A2. We can now apply the principle of 

work and energy; recalling formula (13.11), we write

T1 1 U1y2 5 T2   0 1 Wl 5
1
2

 
W
g

 v2
2

Solving for v2, we find v2 5 12gl. We note that the speed obtained 
is that of a body falling freely from a height l.
 The example we have considered illustrates the following 
advantages of the method of work and energy:

 1. In order to find the speed at A2, there is no need to determine 
the acceleration in an intermediate position A and to integrate 
the expression obtained from A1 to A2.

 2. All quantities involved are scalars and can be added directly, 
without using x and y components.

 3. Forces which do no work are eliminated from the solution of 
the problem.

 What is an advantage in one problem, however, may be a dis-
advantage in another. It is evident, for instance, that the method of 
work and energy cannot be used to directly determine an accelera-
tion. It is also evident that in determining a force which is normal 
to the path of the particle, a force which does no work, the method 
of work and energy must be supplemented by the direct application 
of Newton’s second law. Suppose, for example, that we wish to deter-
mine the tension in the cord of the pendulum of Fig. 13.8a as the 
bob passes through A2. We draw a free-body diagram of the bob in 
that position (Fig. 13.9) and express Newton’s second law in terms 
of tangential and normal components. The equations oFt 5 mat and 
oFn 5 man yield, respectively,  at 5 0 and

(a) (b)

A2

A1

A

l

O

A

W

P

Fig. 13.8

=A2

W

A2 ma t

P

man

Fig. 13.9
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P 2 W 5 man 5

W
g

 
v2

2

l

But the speed at A2 was determined earlier by the method of work 
and energy. Substituting v2

2 5 2gl and solving for P, we write

P 5 W 1
W
g

 
2gl

l
5 3W

 When a problem involves two particles or more, the principle 
of work and energy can be applied to each particle separately. Adding 
the kinetic energies of the various particles, and considering the work 
of all the forces acting on them, we can also write a single equation 
of work and energy for all the particles involved. We have

 T1 1 U1y2 5 T2 (13.11)

where T represents the arithmetic sum of the kinetic energies of the 
particles involved (all terms are positive) and U1y2 is the work of all 
the forces acting on the particles, including the forces of action and 
reaction exerted by the particles on each other. In problems involving 
bodies connected by inextensible cords or links, however, the work 
of the forces exerted by a given cord or link on the two bodies it 
connects cancels out, since the points of application of these forces 
move through equal distances (see Sample Prob. 13.2).†
 Since friction forces have a direction opposite of that of the 
displacement of the body on which they act, the work of friction 
forces is always negative. This work represents energy dissipated into 
heat and always results in a decrease in the kinetic energy of the 
body involved (see Sample Prob. 13.3).

13.5 POWER AND EFFICIENCY
Power is defined as the time rate at which work is done. In the 
selection of a motor or engine, power is a much more important 
criterion than is the actual amount of work to be performed. Either 
a small motor or a large power plant can be used to do a given 
amount of work; but the small motor may require a month to do the 
work done by the power plant in a matter of minutes. If DU is the 
work done during the time interval Dt, then the average power dur-
ing that time interval is

Average power 5
¢U
¢t

Letting Dt approach zero, we obtain at the limit

 
Power 5

dU
dt  

(13.12)

†The application of the method of work and energy to a system of particles is discussed 
in detail in Chap. 14.

13.5 Power and Effi ciency
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Substituting the scalar product F ? dr for dU, we can also write

Power 5
dU
dt

5
F ? dr

dt

and, recalling that dr/dt represents the velocity v of the point of 
application of F,

 Power 5 F ? v (13.13)

 Since power was defined as the time rate at which work is 
done, it should be expressed in units obtained by dividing units of 
work by the unit of time. Thus, if SI units are used, power should 
be expressed in J/s; this unit is called a watt (W). We have

1 W 5 1 J/s 5 1 N ? m/s

If U.S. customary units are used, power should be expressed in 
ft ? lb/s or in horsepower (hp), with the latter defined as

1 hp 5 550 ft ? lb/s

Recalling from Sec. 13.2 that 1 ft ? lb 5 1.356 J, we verify that

1 ft ? lb/s 5 1.356 J/s 5 1.356 W
1 hp 5 550(1.356 W) 5 746 W 5 0.746 kW

 The mechanical efficiency of a machine was defined in Sec. 
10.5 as the ratio of the output work to the input work:

 
h 5

output work

input work  
(13.14)

This definition is based on the assumption that work is done at a 
constant rate. The ratio of the output to the input work is therefore 
equal to the ratio of the rates at which output and input work are 
done, and we have

 
h 5

power output

power input  
(13.15)

Because of energy losses due to friction, the output work is always 
smaller than the input work, and consequently the power output is 
always smaller than the power input. The mechanical efficiency of a 
machine is therefore always less than 1.
 When a machine is used to transform mechanical energy into 
electric energy, or thermal energy into mechanical energy, its overall 
efficiency can be obtained from formula (13.15). The overall effi-
ciency of a machine is always less than 1; it provides a measure of 
all the various energy losses involved (losses of electric or thermal 
energy as well as frictional losses). Note that it is necessary to express 
the power output and the power input in the same units before using 
formula (13.15).
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SAMPLE PROBLEM 13.1

An automobile weighing 4000 lb is driven down a 5° incline at a speed of 
60 mi/h when the brakes are applied, causing a constant total braking force 
(applied by the road on the tires) of 1500 lb. Determine the distance trav-
eled by the automobile as it comes to a stop.

SAMPLE PROBLEM 13.2

Two blocks are joined by an inextensible cable as shown. If the system is 
released from rest, determine the velocity of block A after it has moved 2 m. 
Assume that the coefficient of kinetic friction between block A and the plane 
is mk 5 0.25 and that the pulley is weightless and frictionless.

5°

300 kg

200 kg

A

B

v1 = 60 mi/h
v2 = 0

x

5°

5°

4000 lb

1500 lb

N

SOLUTION

Kinetic Energy

Position 1:
 

v1 5 a60 
mi
h
b a5280 ft

1 mi
ba 1 h

3600 s
b 5 88 ft/s

 T1 5 1
2 mv2

1 5 1
2(4000/32.2)(88)2 5 481,000 ft ? lb

Position 2: v2 5 0  T2 5 0

Work U1y2 5 21500x 1 (4000 sin 5°)x 5 21151x
Principle of Work and Energy

 T1 1 U1y2 5 T2
 481,000 2 1151x 5 0 x 5 418 ft ◀

2 mWB

WA

mB

mA

FC

FA

FC

NA
2 m

v1 = 0

v1 = 0

v2 = v

v2 = v
SOLUTION

Work and Energy for Block A. We denote the friction force by FA and 
the force exerted by the cable by FC, and write

mA 5 200 kg  WA 5 (200 kg)(9.81 m/s2) 5 1962 N
FA 5 mkNA 5 mkWA 5 0.25(1962 N) 5 490 N

T1 1 U1y2 5 T2:  0 1 FC(2 m) 2 FA(2 m) 5 1
2 mAv2

 FC(2 m) 2 (490 N)(2 m) 5 1
2(200 kg)v2 (1)

Work and Energy for Block B. We write

mB 5 300 kg  WB 5 (300 kg)(9.81 m/s2) 5 2940 N
T1 1 U1y2 5 T2:  0 1 WB(2 m) 2 FC(2 m) 5 1

2 mBv2

 (2940 N)(2 m) 2 FC(2 m) 5 1
2(300 kg)v2  (2)

 Adding the left-hand and right-hand members of (1) and (2), we observe 
that the work of the forces exerted by the cable on A and B cancels out:

  (2940 N)(2 m) 2 (490 N)(2 m) 5 1
2(200 kg 1 300 kg)v2

4900 J 5 1
2(500 kg)v2 v 5 4.43 m/s ◀
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SAMPLE PROBLEM 13.3

A spring is used to stop a 60-kg package which is sliding on a horizontal 
surface. The spring has a constant k 5 20 kN/m and is held by cables so 
that it is initially compressed 120 mm. Knowing that the package has a 
velocity of 2.5 m/s in the position shown and that the maximum additional 
deflection of the spring is 40 mm, determine (a) the coefficient of kinetic 
friction between the package and the surface, (b) the velocity of the package 
as it passes again through the position shown.

SOLUTION

a. Motion from Position 1 to Position 2
Kinetic Energy Position 1:  v1 5 2.5 m/s

T1 5 1
2 mv2

1 5 1
2(60 kg)(2.5 m/s)2 5 187.5 N ? m 5 187.5 J

Position 2: (maximum spring deflection):  v2 5 0  T2 5 0
Work
Friction Force F. We have

F 5 mkN 5 mkW 5 mkmg 5 mk(60 kg)(9.81 m/s2) 5 (588.6 N)mk

The work of F is negative and equal to

(U1y2)f 5 2Fx 5 2(588.6 N)mk(0.600 m 1 0.040 m) 5 2(377 J)mk

Spring Force P. The variable force P exerted by the spring does an amount 
of negative work equal to the area under the force-deflection curve of the 
spring force. We have

Pmin 5 kx0 5 (20 kN/m)(120 mm) 5 (20 000 N/m)(0.120 m) 5 2400 N
 Pmax 5 Pmin 1 k Dx 5 2400 N 1 (20 kN/m)(40 mm) 5 3200 N
(U1y2)e 5 21

2(Pmin 1 Pmax) Dx 5 21
2(2400 N 1 3200 N)(0.040 m) 5 2112.0 J

The total work is thus

U1y2 5 (U1y2)f 1 (U1y2)e 5 2(377 J)mk 2 112.0 J

Principle of Work and Energy

T1 1 U1y2 5 T2:  187.5 J 2 (377 J)mk 2 112.0 J 5 0 mk 5 0.20 ◀

b. Motion from Position 2 to Position 3
Kinetic Energy. Position 2:  v2 5 0  T2 5 0
Position 3: T3 5 1

2mv2
3 5 1

2(60 kg)v2
3

Work. Since the distances involved are the same, the numerical values of 
the work of the friction force F and of the spring force P are the same as 
above. However, while the work of F is still negative, the work of P is now 
positive.

U2y3 5 2(377 J)mk 1 112.0 J 5 275.5 J 1 112.0 J 5 136.5 J

Principle of Work and Energy

T2 1 U2y3 5 T3:    0 1 36.5 J 5 1
2(60 kg)v2

3
 v3 5 1.103 m/s v3 5 1.103 m/sz ◀

2.5 m/s Cable

60 kg

600 mm

N
F = mkN

P

Pmin

Pmax

x

Δx = 40 mm

P

v1

600 mm 40 mm

1

v2 = 0

2

W

v3

640 mm

3

v2 = 0

2

N
F = mkN

W

P
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SAMPLE PROBLEM 13.4

A 2000-lb car starts from rest at point 1 and moves without friction down 
the track shown. (a) Determine the force exerted by the track on the car 
at point 2, where the radius of curvature of the track is 20 ft. (b) Determine 
the minimum safe value of the radius of curvature at point 3.

SOLUTION

a. Force Exerted by the Track at Point 2. The principle of work and 
energy is used to determine the velocity of the car as it passes through 
point 2.

Kinetic Energy. T1 5 0
   

T2 5 1
2 mv2

2 5
1
2

 
W
g

 v2
2

Work. The only force which does work is the weight W. Since the vertical 
displacement from point 1 to point 2 is 40 ft downward, the work of the 
weight is

U1y2 5 1W(40 ft)

Principle of Work and Energy

T1 1 U1y2 5 T2      0 1 W(40 ft) 5
1
2

 
W
g

 v2
2

v2
2 5 80g 5 80(32.2)      v2 5 50.8 ft/s

Newton’s Second Law at Point 2. The acceleration an of the car at point 2 
has a magnitude an 5 v2

2yr and is directed upward. Since the external forces 
acting on the car are W and N, we write

 1xoFn 5 man:  2W 1 N 5 man

 
 5

W
g

 
v2

2

r

 
 5

W
g

 
80g

20
N 5 5W  N 5 10,000 lbx ◀

b. Minimum Value of R at Point 3. Principle of Work and Energy. Ap-
plying the principle of work and energy between point 1 and point 3, we 
obtain

T1 1 U1y3 5 T3      0 1 W(25 ft) 5
1
2

 
W
g

 v2
3

v2
3 5 50g 5 50(32.2)      v3 5 40.1 ft/s

Newton’s Second Law at Point 3. The minimum safe value of r occurs 
when N 5 0. In this case, the acceleration an, of magnitude an 5 v2

3yr, is 
directed downward, and we write

 1woFn 5 man:
 

 W 5
W
g

 
v2

3

r

 
 5

W
g

 
50g

r  
r 5 50 ft ◀

1

2

340 ft

15 ft
r2 = 20 ft

W

N

=

man

W

N = 0

=
man
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SOLUTION

Since the force F exerted by the motor cable has the same direction as the 
velocity vD of the dumbwaiter, the power is equal to FvD, where vD 5 8 ft/s. 
To obtain the power, we must first determine F in each of the two 
given situations.

a. Uniform Motion. We have aC 5 aD 5 0; both bodies are in equilibrium.

Free Body C:    1xoFy 5 0:    2T 2 800 lb 5 0    T 5 400 lb
Free Body D:    1xoFy 5 0:         F 1 T 2 600 lb 5 0

F 5 600 lb 2 T 5 600 lb 2 400 lb 5 200 lb
FvD 5 (200 lb)(8 ft/s) 5 1600 ft ? lb/s

Power 5 (1600 ft ? lb/s)  

1 hp

550 ft ? lb/s
5 2.91 hp ◀

b. Accelerated Motion. We have

aD 5 2.5 ft/s2
x    aC 5 21

2aD 5 1.25 ft/s2
w

The equations of motion are

Free Body C:     1woFy 5 mCaC:  800 2 2T 5 
800
32.2

 (1.25) T 5 384.5 lb

Free Body D:    1xoFy 5 mDaD:    F 1 T 2 600 5 
600
32.2  

(2.5)

F 1 384.5 2 600 5 46.6    F 5 262.1 lb
FvD 5 (262.1 lb)(8 ft/s) 5 2097 ft ? lb/s

Power 5 (2097 ft ? lb/s)  

1 hp

550 ft ? lb/s
5 3.81 hp ◀

SAMPLE PROBLEM 13.5

The dumbwaiter D and its load have a combined weight of 600 lb, while 
the counterweight C weighs 800 lb. Determine the power delivered by the 
electric motor M when the dumbwaiter (a) is moving up at a constant speed 
of 8 ft/s, (b) has an instantaneous velocity of 8 ft/s and an acceleration of 
2.5 ft/s2, both directed upward.

M

C D

C

C C

D

800 lb

800 lb

600 lb

T

vC

mCaC

mD aD

vD

2T

2T

F

D D

600 lb

T F

=

=
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SOLVING PROBLEMS
ON YOUR OWN

In the preceding chapter, you solved problems dealing with the motion of a 
particle by using the fundamental equation F 5 ma to determine the accelera-

tion a. By applying the principles of kinematics you were then able to determine 
from a the velocity and displacement of the particle at any time. In this lesson we 
combined F 5 ma and the principles of kinematics to obtain an additional method 
of analysis called the method of work and energy. This eliminates the need to cal-
culate the acceleration and will enable you to relate the velocities of the particle 
at two points along its path of motion. To solve a problem by the method of work 
and energy you will follow these steps:

1. Computing the work of each of the forces. The work U1y2 of a given force 
F during the finite displacement of the particle from A1 to A2 is defined as

U1y2 5 #  F ? dr   or   U1y2 5 #  (F cos a) ds (13.2, 13.29)

where a is the angle between F and the displacement dr. The work U1y2 is a 
scalar quantity and is expressed in ft ? lb or in ? lb in the U.S. customary system 
of units and in N ? m or joules (J) in the SI system of units. Note that the work 
done is zero for a force perpendicular to the displacement (a 5 90°). Negative 
work is done for 90° , a , 180° and in particular for a friction force, which is 
always opposite in direction to the displacement (a 5 180°).

The work U1y2 can be easily evaluated in the following cases that you will 
encounter:

 a. Work of a constant force in rectilinear motion

 U1y2 5 (F cos a) Dx (13.3)

 where a 5 angle the force forms with the direction of motion
 Dx 5 displacement from A1 to A2 (Fig. 13.3)

 b. Work of the force of gravity

 U1y2 5 2W Dy (13.49)

where Dy is the vertical displacement of the center of gravity of the body of 
weight W. Note that the work is positive when Dy is negative, that is, when the 
body moves down (Fig. 13.4).

 c. Work of the force exerted by a spring

 U1y2 5 1
2kx2

1 2 1
2kx2

2 (13.6)

where k is the spring constant and x1 and x2 are the elongations of the spring cor-
responding to the positions A1 and A2 (Fig. 13.5).

(continued)
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 d. Work of a gravitational force

 
U1y2 5

GMm
r2

2
GMm

r1  
(13.7)

for a displacement of the body from A1(r 5 r1) to A2(r 5 r2) (Fig. 13.6).

2. Calculate the kinetic energy at A1 and A2. The kinetic energy T is

 T 5 1
2mv2 (13.9)

where m is the mass of the particle and v is the magnitude of its velocity. The 
units of kinetic energy are the same as the units of work, that is, ft ? lb or in ? lb 
if U.S. customary units are used and N ? m or joules (J) if SI units are used.

3. Substitute the values for the work done U1y2 and the kinetic energies T1 
and T2 into the equation

 T1 1 U1y2 5 T2 (13.11)

You will now have one equation which you can solve for one unknown. Note that 
this equation does not yield the time of travel or the acceleration directly. How-
ever, if you know the radius of curvature r of the path of the particle at a point 
where you have obtained the velocity v, you can express the normal component 
of the acceleration as an 5 v2/r and obtain the normal component of the force 
exerted on the particle by writing Fn 5 mv2/r.

4. Power was introduced in this lesson as the time rate at which work is 
done, P 5 dU/dt. Power is measured in ft ? lb/s or horsepower (hp) in U.S. cus-
tomary units and in J/s or watts (W) in the SI system of units. To calculate the 
power, you can use the equivalent formula,

 P 5 F ? v (13.13)

where F and v denote the force and the velocity, respectively, at a given time 
[Sample Prob. 13.5]. In some problems [see, e.g., Prob. 13.50], you will be asked 
for the average power, which can be obtained by dividing the total work by the 
time interval during which the work is done.
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PROBLEMS
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13.1 A 1300-kg small hybrid car is traveling at 108 km/h. Determine 
(a) the kinetic energy of the vehicle, (b) the speed required for a 
9000-kg truck to have the same kinetic energy as the car.

 13.2 An 870-lb satellite is placed in a circular orbit 3973 mi above the 
surface of the earth. At this elevation the acceleration of gravity 
is 8.03 ft/s2. Determine the kinetic energy of the satellite, knowing 
that its orbital speed is 12,500 mi/h.

 13.3 A 2-lb stone is dropped from a height h and strikes the ground 
with a velocity of 50 ft/s. (a) Find the kinetic energy of the stone as 
it strikes the ground and the height h from which it was dropped. 
(b) Solve part a assuming that the same stone is dropped on the 
moon. (Acceleration of gravity on the moon 5 5.31 ft/s2.)

 13.4 A 4-kg stone is dropped from a height h and strikes the ground with 
a velocity of 25 m/s. (a) Find the kinetic energy of the stone as it 
strikes the ground and the height h from which it was dropped. 
(b) Solve part a, assuming that the same stone is dropped on the 
moon. (Acceleration of gravity on the moon 5 1.62 m/s2.)

 13.5 Determine the maximum theoretical speed that may be achieved 
over a distance of 360 ft by a car starting from rest assuming there 
is no slipping. The coefficient of static friction between the tires 
and pavement is 0.75, and 60 percent of the weight of the car is 
distributed over its front wheels and 40 percent over its rear 
wheels. Assume (a) front-wheel drive, (b) rear-wheel drive.

 13.6 Skid marks on a drag race track indicate that the rear (drive) 
wheels of a car slip for the first 60 ft of the 1320-ft track. (a) Know-
ing that the coefficient of kinetic friction is 0.60, determine the 
speed of the car at the end of the first 60-ft portion of the track 
if it starts from rest and the front wheels are just off the ground. 
(b) What is the maximum theoretical speed for the car at the finish 
line if, after skidding for 60 ft, it is driven without the wheels slip-
ping for the remainder of the race? Assume that while the car is 
rolling without slipping, 60 percent of the weight of the car is on 
the rear wheels and the coefficient of static friction is 0.85. Ignore 
air resistance and rolling resistance.

 13.7 In an ore-mixing operation, a bucket full of ore is suspended from 
a traveling crane which moves along a stationary bridge. The 
bucket is to swing no more than 4 m horizontally when the crane 
is brought to a sudden stop. Determine the maximum allowable 
speed v of the crane.

 13.8 In an ore-mixing operation, a bucket full of ore is suspended from 
a traveling crane which moves along a stationary bridge. The crane 
is traveling at a speed of 3 m/s when it is brought to a sudden stop. 
Determine the maximum horizontal distance through which the 
bucket will swing.

Fig. P13.6

B

A v

10 m

Fig. P13.7 and P13.8
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 13.9 A package is projected 10 m up a 15° incline so that it just reaches 
the top of the incline with zero velocity. Knowing that the coeffi-
cient of kinetic friction between the package and the incline is 
0.12, determine (a) the initial velocity of the package at A, (b) the 
velocity of the package as it returns to its original position.

A

C
B

10 m

d

15°

Fig. P13.9 and P13.10

30°

B

C

A

7 m

2 m/s

1 m/s

d

Fig. P13.13 and P13.14

15°B

A

v0

20 ft

Fig. P13.11 and P13.12

 13.10 A package is projected up a 15° incline at A with an initial velocity 
of 8 m/s. Knowing that the coefficient of kinetic friction between 
the package and the incline is 0.12, determine (a) the maximum 
distance d that the package will move up the incline, (b) the veloc-
ity of the package as it returns to its original position.

 13.11 Boxes are transported by a conveyor belt with a velocity v0 to a 
fixed incline at A where they slide and eventually fall off at B. 
Knowing that mk 5 0.40, determine the velocity of the conveyor 
belt if the boxes leave the incline at B with a velocity of 8 ft/s.

 13.12 Boxes are transported by a conveyor belt with a velocity v0 to a 
fixed incline at A where they slide and eventually fall off at B. 
Knowing that mk 5 0.40, determine the velocity of the conveyor 
belt if the boxes are to have zero velocity at B.

 13.13 Packages are thrown down an incline at A with a velocity of 1 m/s. 
The packages slide along the surface ABC to a conveyor belt which 
moves with a velocity of 2 m/s. Knowing that mk 5 0.25 between 
the packages and the surface ABC, determine the distance d if the 
packages are to arrive at C with a velocity of 2 m/s.

 13.14 Packages are thrown down an incline at A with a velocity of 1 m/s. 
The packages slide along the surface ABC to a conveyor belt which 
moves with a velocity of 2 m/s. Knowing that d 5 7.5 m and mk 5 0.25 
between the packages and all surfaces, determine (a) the speed of 
the package at C, (b) the distance a package will slide on the con-
veyor belt before it comes to rest relative to the belt.
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773Problems 13.15 The subway train shown is traveling at a speed of 30 mi/h when 
the brakes are fully applied on the wheels of cars B and C, causing 
them to slide on the track, but are not applied on the wheels of 
car A. Knowing that the coefficient of kinetic friction is 0.35 
between the wheels and the track, determine (a) the distance 
required to bring the train to a stop, (b) the force in each 
coupling.

CROSS COUNTRY MOVERS
CROSS COUNTRY MOVERS

72 km/h
108 km/h

2% down grade

300 m

Fig. P13.17

30 mi/h

40 tons50 tons40 tons
A CB

Fig. P13.15

CROSS COUNTRY MOVERS
CROSS COUNTRY MOVERS

108 km/h
72 km/h

2% up grade

300 m

Fig. P13.18

 13.16 Solve Prob. 13.15 assuming that the brakes are applied only on the 
wheels of car A.

 13.17 A trailer truck enters a 2 percent downhill grade traveling at 
108 km/h and must slow down to 72 km/h in 300 m. The cab has 
a mass of 1800 kg and the trailer 5400 kg. Determine (a) the aver-
age braking force that must be applied, (b) the  average force 
exerted on the coupling between cab and trailer if 70 percent 
of the braking force is supplied by the trailer and 30 percent by 
the cab.

 13.18 A trailer truck enters a 2 percent uphill grade traveling at 72 km/h 
and reaches a speed of 108 km/h in 300 m. The cab has a mass 
of 1800 kg and the trailer 5400 kg. Determine (a) the average force 
at the wheels of the cab, (b) the average force in the  coupling 
between the cab and the trailer.
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774 Kinetics of Particles: Energy and Momentum 
Methods

 13.19 Two identical blocks are released from rest. Neglecting the mass 
of the pulleys and the effect of friction, determine (a) the velocity 
of block B after it has moved 2 m, (b) the tension in the cable.

 13.20 Two identical blocks are released from rest. Neglecting the mass 
of the pulleys and knowing that the coefficients of static and 
kinetic friction are mS 5 0.30 and mk 5 0.20, determine (a) the 
velocity of block B after it has moved 2 m, (b) the tension in 
the cable.

 13.21 The system shown is at rest when a constant 150-N force is applied 
to collar B. (a) If the force acts through the entire motion, deter-
mine the speed of collar B as it strikes the support at C. (b) After 
what distance d should the 150-N force be removed if the collar 
is to reach support C with zero velocity?

 13.22 Blocks A and B have masses of 11 kg and 5 kg, respectively, and 
they are both at a height h 5 2 m above the ground when the 
system is released from rest. Just before hitting the ground block A 
is moving at a speed of 3 m/s. Determine (a) the amount of energy 
dissipated in friction by the pulley, (b) the tension in each portion 
of the cord during the motion.

Fig. P13.19 and P13.20

B
2 kg

2 kg
A

60°60°

Fig. P13.21

B

A

C
150 N

8 kg

3 kg

600 mm

Fig. P13.22

A B

h
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775Problems 13.23 The system shown, consisting of a 40-lb collar A and a 20-lb coun-
terweight B, is at rest when a constant 100-lb force is applied to 
collar A. (a) Determine the speed of A just before it hits the sup-
port at C. (b) Solve part a assuming that the counterweight B is 
replaced by a 20-lb downward force. Ignore friction and the mass 
of the pulleys.

A

B

C

D

0.3 m

0.6 m

1 m

Fig. P13.25

A B

C

100 lb

40 lb 20 lb

2 ft

Fig. P13.23

6 lb

6 ft

A

B

1

6 lb

6 lb

6 lb

5 ft

5 ft

5 ft
2

3
4

Fig. P13.24

 13.24 Four packages, each weighing 6 lb, are held in place by friction on 
a conveyor which is disengaged from its drive motor. When the 
system is released from rest, package 1 leaves the belt at A just as 
package 4 comes onto the inclined portion of the belt at B. Deter-
mine (a) the speed of package 2 as it leaves the belt at A, (b) the 
speed of package 3 as it leaves the belt at A. Neglect the mass of 
the belt and rollers.

 13.25 Two blocks A and B, of mass 4 kg and 5 kg, respectively, are con-
nected by a cord which passes over pulleys as shown. A 3-kg collar 
C is placed on block A and the system is released from rest. After 
the blocks have moved 0.9 m, collar C is removed and blocks A 
and B continue to move. Determine the speed of block A just 
before it strikes the ground.
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776 Kinetics of Particles: Energy and Momentum 
Methods

 13.26 A 10-lb block is attached to an unstretched spring of constant 
k 5 12 lb/in. The coefficients of static and kinetic friction between 
the block and the plane are 0.60 and 0.40, respectively. If a force 
F is slowly applied to the block until the tension in the spring 
reaches 20 lb and then suddenly removed, determine (a) the speed 
of the block as it returns to its initial position, (b) the maximum 
speed achieved by the block.

2 kg

3 kg

Fig. P13.28

6 lb

Fig. P13.31

6 in.A B

k = 18 lb/in. k = 12 lb/in.

C

16 in.

Fig. P13.30

F
k = 12 lb/in.

10 lb

Fig. P13.26 and P13.27

 13.31 A 6-lb block is attached to a cable and to a spring as shown. 
The constant of the spring is k 5 8 lb/in. and the tension in the 
cable is 3 lb. If the cable is cut, determine (a) the maximum dis-
placement of the block, (b) the maximum speed of the block.

 13.27 A 10-lb block is attached to an unstretched spring of constant k 5 
12 lb/in. The coefficients of static and kinetic friction between the 
block and the plane are 0.60 and 0.40, respectively. If a force F is 
applied to the block until the tension in the spring reaches 20 lb 
and then suddenly removed, determine (a) how far the block will 
move to the left before coming to a stop, (b) whether the block 
will then move back to the right.

 13.28 A 3-kg block rests on top of a 2-kg block supported by but not 
attached to a spring of constant 40 N/m. The upper block is  suddenly 
removed. Determine (a) the maximum speed reached by the 2-kg 
block, (b) the maximum height reached by the 2-kg block.

 13.29 Solve Prob. 13.28, assuming that the 2-kg block is attached to the 
spring.

 13.30 An 8-lb collar C slides on a horizontal rod between springs 
A and B. If the collar is pushed to the right until spring B is com-
pressed 2 in. and released, determine the distance through which 
the collar will travel assuming (a) no friction between the collar 
and the rod, (b) a coefficient of friction mk 5 0.35.
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777Problems 13.32 An uncontrolled automobile traveling at 65 mph strikes squarely a 
highway crash cushion of the type shown in which the automobile 
is brought to rest by successively crushing steel barrels. The mag-
nitude F of the force required to crush the barrels is shown as a 
function of the distance x the automobile has moved into the cush-
ion. Knowing that the weight of the automobile is 2250 lb and 
neglecting the effect of friction, determine (a) the distance the 
automobile will move into the cushion before it comes to rest, 
(b) the maximum deceleration of the automobile.

m pp

a a

Fig. P13.33

v0

y

x

z
145

F(kips)

x(ft)

36
27
18

Fig. P13.32

 13.33 A piston of mass m and cross-sectional area A is in equilibrium 
under the pressure p at the center of a cylinder closed at both 
ends. Assuming that the piston is moved to the left a distance a/2 
and released, and knowing that the pressure on each side of the 
piston varies inversely with the volume, determine the velocity of 
the piston as it again reaches the center of the cylinder. Neglect 
friction between the piston and the cylinder and express your 
answer in terms of m, a, p, and A.

 13.34 Express the acceleration of gravity gh at an altitude h above the 
surface of the earth in terms of the acceleration of gravity g0 at 
the surface of the earth, the altitude h, and the radius R of the 
earth. Determine the percent error if the weight that an object 
has on the surface of earth is used as its weight at an altitude of 
(a) 1 km, (b) 1000 km.

 13.35 A rocket is fired vertically from the surface of the moon with a 
speed v0. Derive a formula for the ratio hn/hu of heights reached 
with a speed v, if Newton’s law of gravitation is used to calculate 
hn and a uniform gravitational field is used to calculate hu. Express 
your answer in terms of the acceleration of gravity gm on the sur-
face of the moon, the radius Rm of the moon, and the speeds v 
and v0.
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778 Kinetics of Particles: Energy and Momentum 
Methods

 13.36 A golf ball struck on earth rises to a maximum height of 200 feet 
and hits the ground 250 yards away. How far will the same golf 
ball travel on the moon if the magnitude and direction of its 
velocity are the same as they were on earth immediately after the 
ball was hit? Assume that the ball is hit and lands at the same 
elevation in both cases and that the effect of the atmosphere on 
the earth is neglected, so that the trajectory in both cases is a 
parabola. The acceleration of gravity on the moon is 0.165 times 
that on earth.

hm

Rm

he = 200 ft

250 yd

Moon trajectory

Earth trajectory

v

Fig. P13.36

 13.37 A 300-g brass (nonmagnetic) block A and a 200-g steel magnet 
B are in equilibrium in a brass tube under the magnetic repel-
ling force of another steel magnet C located at a distance x 5 
4 mm from B. The force is inversely proportional to the square 
of the distance between B and C. If block A is suddenly removed, 
determine (a) the maximum velocity of B, (b) the maximum 
acceleration of B. Assume that air resistance and friction are 
negligible.

 13.38 Nonlinear springs are classified as hard or soft, depending upon 
the curvature of their force-deflection curve (see figure). If a 
delicate instrument having a mass of 5 kg is placed on a spring 
of length l so that its base is just touching the undeformed spring 
and then inadvertently released from that position, determine 
the maximum deflection xm of the spring and the maximum 
force Fm exerted by the spring, assuming (a) a linear spring of 
constant k 5 3 kN/m, (b) a hard, nonlinear spring, for which 
F 5 (3 kN/m)(x 1 160x3).

A

B

C

x

Fig. P13.37

F(lb)

x(in.)

Soft spring

x

l

Linear spring

Hard spring

Fig. P13.38
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779Problems 13.39 The sphere at A is given a downward velocity v0 and swings in a 
vertical circle of radius l and center O. Determine the smallest 
velocity v0 for which the sphere will reach point B as it swings 
about point O (a) if AO is a rope, (b) if AO is a slender rod of 
negligible mass.

 13.40 The sphere at A is given a downward velocity v0 of magnitude 
5 m/s and swings in a vertical plane at the end of a rope of length 
l 5 2 m attached to a support at O. Determine the angle u at 
which the rope will break, knowing that it can withstand a maxi-
mum tension equal to twice the weight of the sphere.

 13.41 A section of track for a roller coaster consists of two circular arcs 
AB and CD joined by a straight portion BC. The radius of AB is 
90 ft and the radius of CD is 240 ft. The car and its occupants, of 
total weight 560 lb reach point A with practically no velocity and 
then drop freely along the track. Determine the normal force 
exerted by the track on the car as the car reaches point B. Ignore 
air resistance and rolling resistance.

A

B

O
l

v0

q

Fig. P13.39 and P13.40

 13.42 A section of track for a roller coaster consists of two circular arcs 
AB and CD joined by a straight portion BC. The radius of AB is 
90 ft and the radius of CD is 240 ft. The car and its occupants, of 
total weight 560 lb, reach point A with practically no velocity and 
then drop freely along the track. Determine the maximum and 
minimum values of the normal force exerted by the track on the 
car as the car travels from A to D. Ignore air resistance and rolling 
resistance.

 13.43 A small sphere B of mass m is released from rest in the position 
shown and swings freely in a vertical plane, first about O and then 
about the peg A after the cord comes in contact with the peg. 
Determine the tension in the cord (a) just before the sphere 
comes in contact with the peg, (b) just after it comes in contact 
with the peg.

A

BO
30°

q

0.4 m

0.8 m

Fig. P13.43

90 ft

60 ft

B

C

D

A

r = 240 ft40°

Fig. P13.41 and P13.42
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780 Kinetics of Particles: Energy and Momentum 
Methods

5 ft/s 20 ft/s

(a) (b)

3% slope

Fig. P13.46

l

b

Fig. P13.47

q

B

C

D E

x

v

h

Fig. P13.44 and P13.45

 13.44 A small block slides at a speed v 5 8 ft/s on a horizontal surface 
at a height h 5 3 ft above the ground. Determine (a) the angle u 
at which it will leave the cylindrical surface BCD, (b) the distance 
x at which it will hit the ground. Neglect friction and air 
resistance.

 13.45 A small block slides at a speed v on a horizontal surface. Knowing 
that h 5 2.5 m, determine the required speed of the block if it is 
to leave the cylindrical surface BCD when u 5 40°.

 13.46 (a) A 120-lb woman rides a 15-lb bicycle up a 3-percent slope at 
a constant speed of 5 ft/s. How much power must be developed 
by the woman? (b) A 180-lb man on an 18-lb bicycle starts down 
the same slope and maintains a constant speed of 20 ft/s by brak-
ing. How much power is dissipated by the brakes? Ignore air resis-
tance and rolling resistance.

 13.47 A power specification formula is to be derived for electric motors 
which drive conveyor belts moving solid material at different 
rates to different heights and distances. Denoting the efficiency 
of a motor by h and neglecting the power needed to drive the 
belt itself, derive a formula (a) in the SI system of units for 
the power P in kW, in terms of the mass flow rate m in kg/h, 
the height b and horizontal distance l in meters and (b) in U.S. 
customary units, for the power in hp, in terms of the material 
flow rate w in tons/h, and the height b and horizontal distance 
l in feet.
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781Problems

v

Fig. P13.50

Fig. P13.49

2500 ft

1000 ft

B

A

Fig. P13.48

 13.48 A chair-lift is designed to transport 900 skiers per hour from the 
base A to the summit B. The average weight of a skier is 160 lb 
and the average speed of the lift is 250 ft/min. Determine (a) the 
average power required, (b) the required capacity of the motor if 
the mechanical efficiency is 85 percent and if a 300 percent over-
load is to be allowed.

 13.49 In an automobile drag race, the rear (drive) wheels of a l000-kg 
car skid for the first 20 m and roll with sliding impending during 
the remaining 380 m. The front wheels of the car are just off the 
ground for the first 20 m, and for the remainder of the race 
80 percent of the weight is on the rear wheels. Knowing that the 
coefficients of friction are ms 5 0.90 and mk 5 0.68, determine 
the power developed by the car at the drive wheels (a) at the end 
of the 20-m portion of the race, (b) at the end of the race. Give 
your answer in kW and in hp. Ignore the effect of air resistance 
and rolling friction.

 13.50 It takes 15 s to raise a 1200-kg car and the supporting 300-kg 
hydraulic car-lift platform to a height of 2.8 m. Determine 
(a) the average output power delivered by the hydraulic pump to 
lift the system, (b) the average electric power required, knowing 
that the overall conversion efficiency from electric to mechanical 
power for the system is 82 percent.

 13.51 The velocity of the lift of Prob. 13.50 increases uniformly from 
zero to its maximum value at mid-height in 7.5 s and then decreases 
uniformly to zero in 7.5 s. Knowing that the peak power output of 
the hydraulic pump is 6 kW when the velocity is maximum, deter-
mine the maximum lift force provided by the pump.

bee29400_ch13_754-853.indd Page 781  12/3/08  9:14:34 PM user-s172bee29400_ch13_754-853.indd Page 781  12/3/08  9:14:34 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



E

W

C

M

Fig. P13.54

 13.52 A 100-ton train traveling on a horizontal track requires 400 hp to 
maintain a constant speed of 50 mi/h. Determine (a) the total force 
needed to overcome axle friction, rolling resistance, and air resis-
tance, (b) the additional horsepower required if the train is to 
maintain the same speed going up a 1-percent grade.

 13.53 The frictional resistance of a ship is known to vary directly as the 
1.75 power of the speed v of the ship. A single tugboat at full 
power can tow the ship at a constant speed of 4.5 km/h by exerting 
a constant force of 300 kN. Determine (a) the power developed 
by the tugboat, (b) the maximum speed at which two tugboats, 
capable of delivering the same power, can tow the ship.

 13.54 The elevator E has a mass of 3000 kg when fully loaded and is 
connected as shown to a counterweight W of mass 1000 kg. Deter-
mine the power in kW delivered by the motor (a) when the elevator 
is moving down at a constant speed of 3 m/s, (b) when it has an 
upward velocity of 3 m/s and a deceleration of 0.5 m/s2.

13.6 POTENTIAL ENERGY†
Let us consider again a body of weight W which moves along a 
curved path from a point A1 of elevation y1 to a point A2 of elevation 
y2 (Fig. 13.4). We recall from Sec. 13.2 that the work of the force 
of gravity W during this displacement is

 U1y2 5 Wy1 2 Wy2 (13.4)

The work of W may thus be obtained by subtracting the value of the 
function Wy corresponding to the second position of the body from 
its value corresponding to the first position. The work of W is inde-
pendent of the actual path followed; it depends only upon the initial 
and final values of the function Wy. This function is called the poten-
tial energy of the body with respect to the force of gravity W and is 
denoted by Vg. We write

 U1y2 5 (Vg)1 2 (Vg)2    with Vg 5 Wy (13.16)

We note that if (Vg)2 . (Vg)1, that is, if the potential energy increases 
during the displacement (as in the case considered here), the work 
U1y2 is negative. If, on the other hand, the work of W is positive, 
the potential energy decreases. Therefore, the potential energy Vg of 
the body provides a measure of the work which can be done by its 
weight W. Since only the change in potential energy, and not the 
actual value of Vg, is involved in formula (13.16), an arbitrary con-
stant can be added to the expression obtained for Vg. In other words, 
the level, or datum, from which the elevation y is measured can be 
chosen arbitrarily. Note that potential energy is expressed in the 
same units as work, i.e., in joules if SI units are used and in ft ? lb 
or in ? lb if U.S. customary units are used.

A2

A

A1

y2

y1

dy

y

W

Fig. 13.4 (repeated )

†Some of the material in this section has already been considered in Sec. 10.7.

782 Kinetics of Particles: Energy and Momentum 
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783 It should be noted that the expression just obtained for the poten-
tial energy of a body with respect to gravity is valid only as long as the 
weight W of the body can be assumed to remain constant, i.e., as long 
as the displacements of the body are small compared with the radius 
of the earth. In the case of a space vehicle, however, we should take 
into consideration the variation of the force of gravity with the distance 
r from the center of the earth. Using the expression obtained in 
Sec. 13.2 for the work of a gravitational force, we write (Fig. 13.6)

 
U1y2 5

GMm
r2

2
GMm

r1  
(13.7)

The work of the force of gravity can therefore be obtained by sub-
tracting the value of the function 2GMm/r corresponding to the 
second position of the body from its value corresponding to the first 
position. Thus, the expression which should be used for the potential 
energy Vg when the variation in the force of gravity cannot be 
neglected is

 
Vg 5 2

GMm
r  

(13.17)

Taking the first of the relations (12.29) into account, we write Vg in 
the alternative form

 
Vg 5 2

WR2

r  
(13.179)

where R is the radius of the earth and W is the value of the weight 
of the body at the surface of the earth. When either of the relations 
(13.17) or (13.179) is used to express Vg, the distance r should, of 
course, be measured from the center of the earth.† Note that Vg is al-
ways negative and that it approaches zero for very large values of r.
 Consider now a body attached to a spring and moving from a 
position A1, corresponding to a deflection x1 of the spring, to a position 
A2, corresponding to a deflection x2 of the spring (Fig. 13.5). We recall 
from Sec. 13.2 that the work of the force F exerted by the spring on 
the body is
 U1y2 5 1

2kx2
1 2 1

2kx2
2 (13.6)

The work of the elastic force is thus obtained by subtracting the 
value of the function 1

2kx2 corresponding to the second position of 
the body from its value corresponding to the first position. This func-
tion is denoted by Ve and is called the potential energy of the body 
with respect to the elastic force F. We write

 U1y2 5 (Ve)1 2 (Ve)2   with Ve 5 1
2kx2 (13.18)

and observe that during the displacement considered, the work of 
the force F exerted by the spring on the body is negative and the 

†The expressions given for Vg in (13.17) and (13.179) are valid only when r $ R, that 
is, when the body considered is above the surface of the earth.

A0

A1

Spring undeformed

B

B

B

F

A

A2

x1

x

x2

Fig. 13.5 (repeated )

O

A2

A1

r2

r1
q

dr

F

–F

M

r

A'

A
m

dq

Fig. 13.6 (repeated )

13.6 Potential Energy
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784 Kinetics of Particles: Energy and Momentum 
Methods

potential energy Ve increases. You should note that the expression 
obtained for Ve is valid only if the deflection of the spring is mea-
sured from its undeformed position. On the other hand, formula 
(13.18) can be used even when the spring is rotated about its fixed 
end (Fig. 13.10a). The work of the elastic force depends only upon 
the initial and final deflections of the spring (Fig. 13.10b).

Fig. 13.11

(a)

(b)

x

y

z

O

x

y

z

O

F

F

A(x, y, z)

A2(x2, y2, z2)

A1(x1, y1, z1)

A(x, y, z)

A1(x1, y1, z1)

Fig. 13.10

Undeformed length

(a) (b)

O

A1 A2

x1

x2

F = kx

(Ve)1 =     kx1 21
2

(Ve)2 =     kx2 21
2

x

F

x2

x1

–U1     2

 The concept of potential energy can be used when forces other 
than gravity forces and elastic forces are involved. Indeed, it remains 
valid as long as the work of the force considered is independent of 
the path followed by its point of application as this point moves from 
a given position A1 to a given position A2. Such forces are said to be 
conservative forces; the general properties of conservative forces are 
studied in the following section.

*13.7 CONSERVATIVE FORCES
As indicated in the preceding section, a force F acting on a particle 
A is said to be conservative if its work U1y2 is independent of the 
path followed by the particle A as it moves from A1 to A2 (Fig. 13.11a). 
We can then write

 U1y2 5 V(x1, y1, z1) 2 V(x2, y2, z2) (13.19)

or, for short,
 U1y2 5 V1 2 V2 (13.199)

The function V(x, y, z) is called the potential energy, or potential 
function, of F.
 We note that if A2 is chosen to coincide with A1, that is, if the 
particle describes a closed path (Fig. 13.11b), we have V1 5 V2 and 
the work is zero. Thus for any conservative force F we can write

 C  F ? dr 5 0 (13.20)

where the circle on the integral sign indicates that the path is closed.
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785 Let us now apply (13.19) between two neighboring points 
A(x, y, z) and A9(x 1 dx, y 1 dy, z 1 dz). The elementary work dU 
corresponding to the displacement dr from A to A9 is

dU 5 V(x, y, z) 2 V(x 1 dx, y 1 dy, z 1 dz)

or

 dU 5 2dV(x, y, z) (13.21)

Thus, the elementary work of a conservative force is an exact 
differential.
 Substituting for dU in (13.21) the expression obtained in (13.10) 
and recalling the definition of the differential of a function of several 
variables, we write

Fx dx 1 Fy 
 dy 1 Fz dz 5 2a 0V

0x
 dx 1

0V
0y

 dy 1
0V
0z

 dzb
from which it follows that

 Fx 5 2
0V
0x

   Fy 5 2
0V
0y

   Fz 5 2
0V
0z

  (13.22)

It is clear that the components of F must be functions of the coordi-
nates x, y, and z. Thus, a necessary condition for a conservative force 
is that it depend only upon the position of its point of application. 
The relations (13.22) can be expressed more concisely if we write

F 5 Fx 
i 1 Fyj 1 Fzk 5 2a 0V

0x
  i 1

0V
0y

 j 1
0V
0z

 kb
The vector in parentheses is known as the gradient of the scalar function 
V and is denoted by grad V. We thus write for any conservative force

 F 5 2grad V (13.23)

 The relations (13.19) to (13.23) were shown to be satisfied by 
any conservative force. It can also be shown that if a force F satisfies 
one of these relations, F must be a conservative force.

13.8 CONSERVATION OF ENERGY
We saw in the preceding two sections that the work of a conservative 
force, such as the weight of a particle or the force exerted by a spring, 
can be expressed as a change in potential energy. When a particle 
moves under the action of conservative forces, the principle of work 
and energy stated in Sec. 13.3 can be expressed in a modified form. 
Substituting for U1y2 from (13.199) into (13.10), we write

V1 2 V2 5 T2 2 T1

 T1 1 V1 5 T2 1 V2 (13.24)

13.8 Conservation of Energy
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786 Kinetics of Particles: Energy and Momentum 
Methods

Formula (13.24) indicates that when a particle moves under the 
action of conservative forces, the sum of the kinetic energy and 
of the potential energy of the particle remains constant. The sum 
T 1 V is called the total mechanical energy of the particle and is 
denoted by E.
 Consider, for example, the pendulum analyzed in Sec. 13.4, 
which is released with no velocity from A1 and allowed to swing in 
a vertical plane (Fig. 13.12). Measuring the potential energy from 
the level of A2, we have, at A1,

T1 5 0  V1 5 Wl  T1 1 V1 5 Wl

Recalling that at A2 the speed of the pendulum is v2 512gl, we have

T2 5 1
2mv2

2 5
1
2

 
W
g

 (2gl) 5 Wl   V2 5 0

T2 1 V2 5 Wl

We thus check that the total mechanical energy E 5 T 1 V of the 
pendulum is the same at A1 and A2. Whereas the energy is entirely 
potential at A1, it becomes entirely kinetic at A2, and as the pendu-
lum keeps swinging to the right, the kinetic energy is transformed 
back into potential energy. At A3, T3 5 0 and V3 5 Wl.
 Since the total mechanical energy of the pendulum remains 
constant and since its potential energy depends only upon its ele-
vation, the kinetic energy of the pendulum will have the same 
value at any two points located on the same level. Thus, the speed 
of the pendulum is the same at A and at A9 (Fig. 13.12). This result 
can be extended to the case of a particle moving along any given 
path, regardless of the shape of the path, as long as the only forces 
acting on the particle are its weight and the normal reaction of the 
path. The particle of Fig. 13.13, for example, which slides in a 
vertical plane along a frictionless track, will have the same speed 
at A, A9, and A0.
 While the weight of a particle and the force exerted by a spring 
are conservative forces, friction forces are nonconservative forces. In 
other words, the work of a friction force cannot be expressed as a 
change in potential energy. The work of a friction force depends 
upon the path followed by its point of application; and while the 
work U1y2 defined by (13.19) is positive or negative according to the 
sense of motion, the work of a friction force, as we noted in 
Sec. 13.14, is always negative. It follows that when a mechanical 
system involves friction, its total mechanical energy does not remain 
constant but decreases. The energy of the system, however, is not 
lost; it is transformed into heat, and the sum of the mechanical 
energy and of the thermal energy of the system remains constant.
 Other forms of energy can also be involved in a system. For 
instance, a generator converts mechanical energy into electric energy; 
a gasoline engine converts chemical energy into mechanical energy; 
a nuclear reactor converts mass into thermal energy. If all forms of 
energy are considered, the energy of any system can be considered 
as constant and the principle of conservation of energy remains valid 
under all conditions.

Fig. 13.12
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A2

A3

A
A'
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l

Fig. 13.13
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v
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v
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78713.9  MOTION UNDER A CONSERVATIVE CENTRAL 
FORCE. APPLICATION TO SPACE MECHANICS

We saw in Sec. 12.9 that when a particle P moves under a central 
force F, the angular momentum HO of the particle about the center 
of force O is constant. If the force F is also conservative, there exists 
a potential energy V associated with F, and the total energy E 5 
T 1 V of the particle is constant (Sec. 13.8). Thus, when a particle 
moves under a conservative central force, both the principle of con-
servation of angular momentum and the principle of conservation of 
energy can be used to study its motion.
 Consider, for example, a space vehicle of mass m moving under 
the earth’s gravitational force. Let us assume that it begins its free 
flight at point P0 at a distance r0 from the center of the earth, with 
a velocity v0 forming an angle f0 with the radius vector OP0 
(Fig. 13.14). Let P be a point of the trajectory described by the 
vehicle; we denote by r the distance from O to P, by v the velocity 
of the vehicle at P, and by f the angle formed by v and the radius 
vector OP. Applying the principle of conservation of angular momen-
tum about O between P0 and P (Sec. 12.9), we write

 r0mv0 sin f0 5 rmv sin f (13.25)

Recalling the expression (13.17) obtained for the potential energy 
due to a gravitational force, we apply the principle of conservation 
of energy between P0 and P and write

T0 1 V0 5 T 1 V

 
1
2mv2

0 2
GMm

r0
5 1

2mv2 2
GMm

r  
(13.26)

where M is the mass of the earth.
 Equation (13.26) can be solved for the magnitude v of the 
velocity of the vehicle at P when the distance r from O to P is known; 
Eq. (13.25) can then be used to determine the angle f that the 
velocity forms with the radius vector OP.
 Equations (13.25) and (13.26) can also be used to determine 
the maximum and minimum values of r in the case of a satellite 
launched from P0 in a direction forming an angle f0 with the 
vertical OP0 (Fig. 13.15). The desired values of r are obtained by 
making f 5 90° in (13.25) and eliminating v between Eqs. (13.25) 
and (13.26).
 It should be noted that the application of the principles of 
conservation of energy and of conservation of angular momentum 
leads to a more fundamental formulation of the problems of space 
mechanics than does the method indicated in Sec. 12.12. In all cases 
involving oblique launchings, it will also result in much simpler com-
putations. And while the method of Sec. 12.12 must be used when 
the actual trajectory or the periodic time of a space vehicle is to be 
determined, the calculations will be simplified if the conservation 
principles are first used to compute the maximum and minimum 
values of the radius vector r.

Fig. 13.14
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13.9 Motion Under a Conservative Central 
Force. Application to Space Mechanics
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788

SAMPLE PROBLEM 13.6

A 20-lb collar slides without friction along a vertical rod as shown. The 
spring attached to the collar has an undeformed length of 4 in. and a con-
stant of 3 lb/in. If the collar is released from rest in position 1, determine 
its velocity after it has moved 6 in. to position 2.

1

2

6 in.

8 in.

SOLUTION

Position 1. Potential Energy. The elongation of the spring is

x1 5 8 in. 2 4 in. 5 4 in.

and we have

Ve 5 1
2kx2

1 5 1
2(3 lb/in.) (4 in.)2 5 24 in ? lb

Choosing the datum as shown, we have Vg 5 0. Therefore,

V1 5 Ve 1 Vg 5 24 in ? lb 5 2 ft ? lb

Kinetic Energy. Since the velocity in position 1 is zero, T1 5 0.

Position 2. Potential Energy. The elongation of the spring is

x2 5 10 in. 2 4 in. 5 6 in.

and we have

Ve 5 1
2kx2

2 5 1
2(3 lb/in .) (6 in .)2 5 54 in ? lb

 Vg 5 Wy 5 (20 lb)(26 in.) 5 2120 in ? lb

Therefore,

V2 5 Ve 1 Vg 5 54 2 120 5 266 in ? lb
 5 25.5 ft ? lb

Kinetic Energy

T2 5 1
2mv2

2 5
1
2

 
20

32.2
 v2

2 5 0.311v2
2

Conservation of Energy. Applying the principle of conservation of energy 
between positions 1 and 2, we write

 T1 1 V1 5 T2 1 V2

0 1 2 ft ? lb 5 0.311v2
2 2 5.5 ft ? lb

 v2 5 64.91 ft/s
v2 5 4.91 ft/sw ◀

1

2

6 in.

Datum8 in.

20 lb

20 lb

10 in.
v2

v1 = 0

F1

F2

x

F

x1 =  4 in.

x2 =  6 in.
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SAMPLE PROBLEM 13.7

The 0.5-lb pellet is pushed against the spring at A and released from rest. 
Neglecting friction, determine the smallest deflection of the spring for 
which the pellet will travel around the loop ABCDE and remain at all times 
in contact with the loop.

k = 3 lb/in.

W = 0.5 lb

EC

D

B

A

2 ft

SOLUTION

Required Speed at Point D. As the pellet passes through the highest point 
D, its potential energy will respect to gravity is maximum and thus, its 
kinetic energy and speed are minimum. Since the pellet must remain in 
contact with the loop, the force N exerted on the pellet by the loop must 
be equal to or greater than zero. Setting N 5 0, we compute the smallest 
possible speed vD.

1woFn 5 man:     W 5 man    mg 5 man    an 5 g

an 5
v2

D

r
:  v2

D 5 ran 5 rg 5 (2 ft)(32.2 ft/s2) 5 64.4 ft2/s2

Position 1. Potential Energy. Denoting by x the deflection of the spring 
and noting that k 5 3 lb/in. 5 36 lb/ft, we write

Ve 5 1
2kx2 5 1

2(36  lb/ft)x2 5 18x2

Choosing the datum at A, we have Vg 5 0; therefore

V1 5 Ve 1 Vg 5 18x2

Kinetic Energy. Since the pellet is released from rest, vA 5 0 and we 
have T1 5 0.

Position 2. Potential Energy. The spring is now undeformed; thus 
Ve 5 0. Since the pellet is 4 ft above the datum, we have

Vg 5 Wy 5 (0.5 lb)(4 ft) 5 2 ft ? lb
 V2 5 Ve 1 Vg 5 2 ft ? lb

Kinetic Energy. Using the value of v2
D obtained above, we write

T2 5 1
2mv2

D 5
1
2

 
0.5  lb

32 .2  ft/s2 (64.4  ft2/s2) 5 0.5 ft ? lb

Conservation of Energy. Applying the principle of conservation of energy 
between positions 1 and 2, we write

 T1 1 V1 5 T2 1 V2

0 1 18x2 5 0.5 ft ? lb 1 2 ft ? lb
 x 5 0.3727 ft x 5 4.47 in. ◀

=
manW

vD

vA = 0

EC

D

B A

Position 2

Datum
Position 1

4 ft
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SAMPLE PROBLEM 13.8

A sphere of mass m 5 0.6 kg is attached to an elastic cord of constant k 5 
100 N/m, which is undeformed when the sphere is located at the origin O. 
Knowing that the sphere may slide without friction on the horizontal surface 
and that in the position shown its velocity vA has a magnitude of 20 m/s, 
determine (a) the maximum and minimum distances from the sphere to the 
origin O, (b) the corresponding values of its speed.

vA

60°
A

O

0.5 m

SOLUTION

The force exerted by the cord on the sphere passes through the fixed point 
O, and its work can be expressed as a change in potential energy. It is 
therefore a conservative central force, and both the total energy of the 
sphere and its angular momentum about O are conserved.

Conservation of Angular Momentum about O. At point B, where the 
distance from O is maximum, the velocity of the sphere is perpendicular to 
OB and the angular momentum is rmmvm. A similar property holds at point 
C, where the distance from O is minimum. Expressing conservation of angu-
lar momentum between A and B, we write

 rAmvA sin 60° 5 rmmvm

(0.5 m)(0.6 kg)(20 m/s) sin 60° 5 rm(0.6 kg)vm

 
vm 5

8.66
rm  

(1)

Conservation of Energy

At point A:   TA 5 1
2 
mv2

A  5
1
2(0.6 kg) (20 m/s)2 5 120 J

  VA 5 1
2 kr2

A  5
1
2(100 N/m)(0.5 m)2 5 12.5 J

At point B:   TB 5 1
2 mv2

m 5
1
2(0.6 kg)v2

m 5 0.3v2
m

  VB 5 1
2 kr2

m  5
1
2(100 N/m)r2

m 5 50r2
m

Applying the principle of conservation of energy between points A and B, 
we write

 TA 1 VA 5 TB 1 VB

 120 1 12.5 5 0.3v2
m 1 50r2

m (2)

a. Maximum and Minimum Values of Distance. Substituting for vm from 
Eq. (1) into Eq. (2) and solving for r2

m, we obtain

r2
m 5 2.468 or 0.1824  rm 5 1.571 m, r9m 5 0.427 m ◀

b. Corresponding Values of Speed. Substituting the values obtained for 
rm and r9m into Eq. (1), we have

 
 vm 5

8.66
1.571 

vm 5 5.51 m/s ◀ 

 
 v¿m 5

8.66
0.427 

v9m 5 20.3 m/s ◀

Note. It can be shown that the path of the sphere is an ellipse of center O.

B
C

O

vm

rmr'm

rA
v'm

vA

60°
90°

90°

A
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SAMPLE PROBLEM 13.9

A satellite is launched in a direction parallel to the surface of the earth with 
a velocity of 36 900 km/h from an altitude of 500 km. Determine (a) the 
maximum altitude reached by the satellite, (b) the maximum allowable error 
in the direction of launching if the satellite is to go into orbit and come no 
closer than 200 km to the surface of the earth.

SOLUTION

a. Maximum Altitude. We denote by A9 the point of the orbit farthest 
from the earth and by r1 the corresponding distance from the center of the 
earth. Since the satellite is in free flight between A and A9, we apply the 
principle of conservation of energy:

 TA 1 VA 5 TA9 1 VA9

 
1
2mv2

0 2
GMm

r0
5 1

2mv2
1 2

GMm
r1  

(1)

Since the only force acting on the satellite is the force of gravity, which is 
a central force, the angular momentum of the satellite about O is conserved. 
Considering points A and A9, we write

 r0mv0 5 r1mv1      v1 5 v0 
r0

r1

 (2)

Substituting this expression for v1 into Eq. (1), dividing each term by the 
mass m, and rearranging the terms, we obtain

 
1
2v2

0 a1 2
r2

0

r2
1
b 5

GM
r0

 a1 2
r0

r1
b      1 1

r0

r1
5

2GM

r0v
2
0  

(3)

Recalling that the radius of the earth is R 5 6370 km, we compute

 r0 5 6370 km 1 500 km 5 6870 km 5 6.87 3 106 m
 v0 5 36 900 km/h 5 (36.9 3 106 m)y(3.6 3 103 s) 5 10.25 3 103 m/s
 GM 5 gR2 5 (9.81 m/s2)(6.37 3 106 m)2 5 398 3 1012 m3/s2

Substituting these values into (3), we obtain r1 5 66.8 3 106 m.

Maximum altitude 5 66.8 3 106 m 2 6.37 3 106 m 5 60.4 3 106 m 5 
60 400 km ◀

b. Allowable Error in Direction of Launching. The satellite is launched 
from P0 in a direction forming an angle f0 with the vertical OP0. The value 
of f0 corresponding to rmin 5 6370 km 1 200 km 5 6570 km is obtained 
by applying the principles of conservation of energy and of conservation of 
angular momentum between P0 and A:

 
1
2mv2

0 2
GMm

r0
5 1

2mv2
max 2

GMm
rmin  

(4)

 r0mv0 sin f0 5 rminmvmax (5)

Solving (5) for vmax and then substituting for vmax into (4), we can solve (4) 
for sin f0. Using the values of v0 and GM computed in part a and noting 
that r0/rmin 5 6870/6570 5 1.0457, we find

sin f0 5 0.9801    f0 5 90° 6 11.5°    Allowable error 5 6 11.5° ◀

r0

r1

v1

A
R

A'

v0

O

r0

P0
f0

f = 90°
rmin

vmax

A

A'

v0

O

Maximum altitude

Earth

500 km

36 900 km/h
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned that when the work done by a force F acting on a 
particle A is independent of the path followed by the particle as it moves from 

a given position A1 to a given position A2 (Fig. 13.11a), then a function V, called 
potential energy, can be defined for the force F. Such forces are said to be con-
servative forces, and you can write

 U1y2 5 V(x1, y1, z1) 2 V(x2, y2, z2) (13.19)

or, for short,

 U1y2 5 V1 2 V2 (13.199)

Note that the work is negative when the change in the potential energy is positive, 
i.e., when V2 . V1.

Substituting the above expression into the equation for work and energy, you can 
write

 T1 1 V1 5 T2 1 V2 (13.24)

which shows that when a particle moves under the action of a conservative force 
the sum of the kinetic and potential energies of the particle remains constant.

Your solution of problems using the above formula will consist of the following 
steps.

1. Determine whether all the forces involved are conservative. If some of the 
forces are not conservative, for example if friction is involved, you must use the 
method of work and energy from the previous lesson, since the work done by such 
forces depends upon the path followed by the particle and a potential function 
does not exist. If there is no friction and if all the forces are conservative, you can 
proceed as follows.

2. Determine the kinetic energy T 5 1
2mv 2 at each end of the path.
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3. Compute the potential energy for all the forces involved at each end of 
the path. You will recall that the following expressions for the potential energy 
were derived in this lesson.
 a. The potential energy of a weight W close to the surface of the earth and 
at a height y above a given datum,

 Vg 5 Wy (13.16)

 b. The potential energy of a mass m located at a distance r from the cen-
ter of the earth, large enough so that the variation of the force of gravity must be 
taken into account,

 
Vg 5 2

GMm
r  

(13.17)

where the distance r is measured from the center of the earth and Vg is equal to 
zero at r 5 `.
 c. The potential energy of a body with respect to an elastic force F 5 kx,

 Ve 5 1
2kx2 (13.18)

where the distance x is the deflection of the elastic spring measured from its 
undeformed position and k is the spring constant. Note that Ve depends only upon 
the deflection x and not upon the path of the body attached to the spring. Also, 
Ve is always positive, whether the spring is compressed or elongated.

4. Substitute your expressions for the kinetic and potential energies into 
Eq. (13.24). You will be able to solve this equation for one unknown, for example, 
for a velocity [Sample Prob. 13.6]. If more than one unknown is involved, you will 
have to search for another condition or equation, such as the minimum speed 
[Sample Prob. 13.7] or the minimum potential energy of the particle. For prob-
lems involving a central force, a second equation can be obtained by using con-
servation of angular momentum [Sample Prob. 13.8]. This is especially useful in 
applications to space mechanics [Sec. 13.9].

bee29400_ch13_754-853.indd Page 793  12/3/08  4:41:07 PM user-s172bee29400_ch13_754-853.indd Page 793  12/3/08  4:41:07 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



PROBLEMS
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13.55 A force P is slowly applied to a plate that is attached to two springs 
and causes a deflection x0. In each of the two cases shown, derive 
an expression for the constant ke, in terms of k1 and k2, of the single 
spring equivalent to the given system, that is, of the single spring 
which will undergo the same deflection x0 when subjected to the 
same force P.

k1 k2

(a) (b)

k1

k2

x0

P P

x0

Fig. P13.55

13.56 A block of mass m is attached to two springs as shown. Knowing 
that in each case the block is pulled through a distance x0 from its 
equilibrium position and released, determine the maximum speed 
of the block in the subsequent motion.

k1 k2

(a) (b)

x0x0

k1

k2

Fig. P13.56

13.57 A 1.2-kg collar C may slide without friction along a horizontal rod. 
It is attached to three springs, each of constant k 5 400 N/m and 
150-mm undeformed length. Knowing that the collar is released 
from rest in the position shown, determine the maximum speed it 
will reach in the ensuing motion.

13.58 A 10-lb collar B can slide without friction along a horizontal rod 
and is in equilibrium at A when it is pushed 5 in. to the right and 
released. The undeformed length of each spring is 12 in. and 
the constant of each spring is k 5 1.6 lb/in. Determine (a) the 
maximum speed of the collar (b) the maximum acceleration of 
the collar.

C

BDA

150 mm

150 mm 150 mm

Fig. P13.57

B

A

O

12 in.

12 in.

k = 1.6 lb/in.

Fig. P13.58
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795Problems 13.59 An elastic cord is stretched between two points A and B, located 
16 in. apart in the same horizontal plane. When stretched directly 
between A and B, the tension is 10 lb. The cord is then stretched 
as shown until its midpoint C has moved through 6 in. to C9; a force 
of 60 lb is required to hold the cord at C9. A 0.2-lb pellet is placed 
at C9, and the cord is released. Determine the speed of the pellet 
as it passes through C.

 13.60 A 1.5-kg collar is attached to a spring and slides without friction 
along a circular rod in a horizontal plane. The spring has an unde-
formed length of 150 mm and a constant k 5 400 N/m. Knowing 
that the collar is in equilibrium at A and is given a slight push to 
get it moving, determine the velocity of the collar (a) as it passes 
through B, (b) as it passes through C.

60 lb

8 in.

C

A

B

C�

8 in.

6 in.

Fig. P13.59

A

B

C O
125 mm

175 mm

Fig. P13.60

 13.61 A 500-g collar can slide without friction on the curved rod BC in 
a horizontal plane. Knowing that the undeformed length of the 
spring is 80 mm and that k 5 400 kN/m, determine (a) the velocity 
that the collar should be given at A to reach B with zero velocity, 
(b) the velocity of the collar when it eventually reaches C.

 13.62 A 3-kg collar can slide without friction on a vertical rod and is 
resting in equilibrium on a spring. It is pushed down, compressing 
the spring 150 mm, and released. Knowing that the spring con-
stant is k 5 2.6 kN/m, determine (a) the maximum height h 
reached by the collar above its equilibrium position, (b) the 
 maximum speed of the collar.

A

B

C

150 mm

k
100 mm

200 mm

Fig. P13.61

k = 2.6 kN/m

h

3 kg

Fig. P13.62
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796 Kinetics of Particles: Energy and Momentum 
Methods

 13.63 It is shown in mechanics of materials that when an elastic beam 
AB supports a block of weight W at a given point B, the deflection 
yst (called the static deflection) is proportional to W. Show that if 
the same block is dropped from a height h onto the end B of a 
cantilever beam AB and does not bounce off, the maximum deflec-
tion ym in the ensuing motion can be expressed as ym 5 yst 

(1 1 11 1 2h/yst). Note that this formula is approximate, since 
it is based on the assumption that there is no energy dissipated in 
the impact and that the weight of the beam is small compared to 
the weight of the block.

 13.64 A thin circular rod is supported in a vertical plane by a bracket at 
A. Attached to the bracket and loosely wound around the rod is a 
spring of constant k 5 3 lb/ft and undeformed length equal to the 
arc of circle AB. An 8-oz collar C, not attached to the spring, can 
slide without friction along the rod. Knowing that the collar is 
released from rest when u 5 30°, determine (a) the maximum 
height above point B reached by the collar, (b) the maximum speed 
of the collar.

 13.65 A thin circular rod is supported in a vertical plane by a bracket at 
A. Attached to the bracket and loosely wound around the rod is a 
spring of constant k 5 3 lb/ft and undeformed length equal to the 
arc of circle AB. An 8-oz collar C, not attached to the spring, can 
slide without friction along the rod. Knowing that the collar is 
released from rest at an angle u with the vertical, determine 
(a) the smallest value of u for which the collar will pass through 
D and reach point A, (b) the velocity of the collar as it reaches 
point A.

 13.66 A 2.7-lb collar can slide along the rod shown. It is attached to an 
elastic cord anchored at F, which has an undeformed length of 0.9 ft 
and spring constant of 5 lb/ft. Knowing that the collar is released 
from rest at A and neglecting friction, determine the speed of the 
collar (a) at B, (b) at E.

Fig. P13.63

W

A
B

h

ym

Fig. P13.64 and P13.65

A

BC

D

O

θ

12 in.

Fig. P13.66

AB

C

F

E

y

z

x

0.7 ft

1.6 ft

1.1 ft

1.4 ft
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797Problems 13.67 The system shown is in equilibrium when f 5 0. Knowing that 
initially f 5 90° and that block C is given a slight nudge when 
the system is in that position, determine the speed of the block as 
it passes through the equilibrium position f 5 0. Neglect the 
weight of the rod.

A

B

D

f

0.3 ft

25 lb

k = 600 lb/ft

2.1 ft

1.1 ft

C

Fig. P13.67

A

B
C

1.2 m

30°

r = 0.8 m

Fig. P13.70 and P13.71

8 m

20°

Cable

2 m/s

50 kg

Fig. P13.68

 13.68 A spring is used to stop a 50-kg package which is moving down a 
20° incline. The spring has a constant k 5 30 kN/m and is held by 
cables so that it is initially compressed 50 mm. Knowing that the 
velocity of the package is 2 m/s when it is 8 m from the spring and 
neglecting friction, determine the maximum additional deforma-
tion of the spring in bringing the package to rest.

 13.69 Solve Prob. 13.68 assuming the kinetic coefficient of friction 
between the package and the incline is 0.2.

 13.70 A 300-g pellet is released from rest at A and slides with friction 
along the surface shown. Determine the force exerted on the pel-
let by the surface (a) just before the pellet reaches B, (b) immedi-
ately after it has passed through B.

x

y

z

C

B

A

D

3 in.

r = 6 in.

12 in.

Fig. P13.72

 13.71 A 300-g pellet is released from rest at A and slides without friction 
along the surface shown. Determine the force exerted on the pel-
let by the surface (a) just before the pellet reaches C, (b) imme-
diately after it has passed through C.

 13.72 A 1.2-lb collar can slide without friction along the semicircular rod 
BCD. The spring is of constant 1.8 lb/in and its undeformed length 
is 8 in. Knowing that the collar is released from rest at B, deter-
mine (a) the speed of the collar as it passes through C, (b) the 
force exerted by the rod on the collar at C.
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798 Kinetics of Particles: Energy and Momentum 
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A

B

C O
5 in.

7 in.

Fig. P13.73

 13.73 A 1-lb collar is attached to a spring and slides without friction along 
a circular rod in a vertical plane. The spring has an undeformed 
length of 5 in. and a constant k 5 10 lb/ft. Knowing that the collar is 
released from being held at A determine the speed of the collar and 
the normal force between the collar and the rod as the collar passes 
through B.

 13.74 A 200-g package is projected upward with a velocity v0 by a spring 
at A; it moves around a frictionless loop and is deposited at C. For 
each of the two loops shown, determine (a) the smallest velocity 
v0 for which the package will reach C, (b) the corresponding force 
exerted by the package on the loop just before the package leaves 
the loop at C.

r = 0.5 m
B

A

v0

2.5 m

r = 0.5 m

CC

B

A

v0

2.5 m

Fig. P13.74

 13.75 If the package of Prob. 13.74 is not to hit the horizontal surface at 
C with a speed greater than 3.5 m/s, (a) show that this requirement 
can be satisfied only by the second loop, (b) determine the largest 
allowable initial velocity v0 when the second loop is used.

 13.76 The 2-lb ball at A is suspended by an inextensible cord and given 
an initial horizontal velocity of 16 ft/s. If l 5 2 ft and xB 5 0, 
determine yB so that the ball will enter the basket.

 *13.77 The 2-lb ball at A is suspended by an inextensible cord and given 
an initial horizontal velocity of v0. If l 5 2 ft, xB 5 0.3 ft and 
yB 5 0.4 ft determine the initial velocity v0 so that the ball will 
enter the basket.

 *13.78 Packages are moved from point A on the upper floor of a ware-
house to point B on the lower floor, 12 ft directly below A, by 
means of a chute, the centerline of which is in the shape of a helix 
of vertical axis y and radius R 5 8 ft. The cross section of the 
chute is to be banked in such a way that each package, after being 
released at A with no velocity, will slide along the centerline of the 
chute without ever touching its edges. Neglecting friction, 
(a) express as a function of the elevation y of a given point P of 
the centerline the angle f formed by the normal to the surface of 
the chute at P and the principal normal of the centerline at that 
point, (b) determine the magnitude and direction of the force 
exerted by the chute on a 20-lb package as it reaches point B. Hint: 
The principal normal to the helix at any point P is horizontal and 
directed toward the y axis, and the radius of curvature of the helix 
is r 5 R[1 1 (h/2pR)2].

l

yB

A

xB

v0

θ

Fig. P13.76 and P13.77

y

z

O

B

A

x

R = 8 ft

h = 12 ft

Fig. P13.78
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799Problems *13.79 Prove that a force F(x, y, z) is conservative if, and only if, the fol-
lowing relations are satisfied:

0Fx

0y
5

0Fy

0x   

0Fy

0z
5

0Fz

0y   
0Fz

0x
5

0Fx

0z

 13.80 The force F 5 (yzi 1 zxj 1 xyk)/xyz acts on the particle P(x, y, z) 
which moves in space. (a) Using the relation derived in Prob. 13.79, 
show that this force is a conservative force. (b) Determine the poten-
tial function associated with F.

 *13.81 A force F acts on a particle P(x, y) which moves in the xy plane. 
Determine whether F is a conservative force and compute the 
work of F when P describes in a clockwise sense the path A, B, C, 
A including the quarter circle x2 1 y2 5 a2, if (a) F 5 kyi, (b) F 5 
k(yi 1 xj).

 *13.82 The potential function associated with a force P in space is 
known to be V(x, y, z) 5 2(x2 1 y2 1 z2)1/2. (a) Determine the 
x, y, and z components of P. (b) Calculate the work done by 
P from O to D by integrating along the path OABD, and show 
that it is equal to the negative of the change in potential from 
O to D.

 *13.83 (a) Calculate the work done from D to O by the force P of 
Prob. 13.82 by integrating along the diagonal of the cube. (b) Using 
the result obtained and the answer to part b of Prob. 13.82, verify 
that the work done by a conservative force around the closed path 
OABDO is zero.

 *13.84 The force F 5 (xi 1 yj 1 zk)/(x2 1 y2 1 z2)3/2 acts on the particle 
P(x, y, z) which moves in space. (a) Using the relations derived in 
Prob. 13.79, prove that F is a conservative force. (b) Determine the 
potential function V(x, y, z) associated with F.

 13.85 While describing a circular orbit 300 km above the earth a space 
vehicle launches a 3600-kg communications satellite. Determine 
(a) the additional energy required to place the satellite in a geo-
synchronous orbit at an altitude of 35 770 km above the surface 
of the earth, (b) the energy required to place the satellite in the 
same orbit by launching it from the surface of the earth, excluding 
the energy needed to overcome air resistance. (A geosynchronous 
orbit is a circular orbit in which the satellite appears stationary 
with respect to the ground.)

 13.86 A satellite is to be placed in an elliptic orbit about the earth. 
Knowing that the ratio vA/vP of the velocity at the apogee A to the 
velocity at the perigee P is equal to the ratio rP/rA of the distance 
to the center of the earth at P to that at A, and that the distance 
between A and P is 80 000 km, determine the energy per unit 
mass required to place the satellite in its orbit by launching it from 
the surface of the earth. Exclude the additional energy needed to 
overcome the weight of the booster rocket, air resistance, and 
maneuvering.

a

y

x

B

C
A

Fig. P13.81

BA

C

EF

a

y

x

z

D

O

a

a

Fig. P13.82

A

80 000 km

rA

vA

rP

vP

O P

Fig. P13.86
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 13.87 Knowing that the velocity of an experimental space probe fired 
from the earth has a magnitude vA 5 20.2 3 103 mi/h at 
point A, determine the velocity of the probe as it passes 
through point B.

 13.88 A lunar excursion module (LEM) was used in the Apollo moon-
landing missions to save fuel by making it unnecessary to launch 
the entire Apollo spacecraft from the moon’s surface on its return 
trip to earth. Check the effectiveness of this approach by comput-
ing the energy per pound required for a spacecraft (as weighed 
on the earth) to escape the moon’s gravitational field if the space-
craft starts from (a) the moon’s surface, (b) a circular orbit 50 mi 
above the moon’s surface. Neglect the effect of the earth’s gravi-
tational field. (The radius of the moon is 1081 mi and its mass is 
0.0123 times the mass of the earth.)

 13.89 A satellite of mass m describes a circular orbit of radius r about 
the earth. Express (a) its potential energy, (b) its kinetic energy, 
(c) its total energy, as a function of r. Denote the radius of the 
earth by R and the acceleration of gravity at the surface of the 
earth by g, and assume that the potential energy of the satellite is 
zero on its launching pad.

 13.90 How much energy per kilogram should be imparted to a satellite in 
order to place it in a circular orbit at an altitude of (a) 600 km, 
(b) 6000 km?

 13.91 (a) Show that, by setting r 5 R 1 y in the right-hand member of 
Eq. (13.179) and expanding that member in a power series in y/R, 
the expression in Eq. (13.16) for the potential energy Vg due to 
gravity is a first-order approximation for the expression given in 
Eq. (13.179). (b) Using the same expansion, derive a second-order 
approximation for Vg.

 13.92 Observations show that a celestial body traveling at 1.2 3 106 mi/h 
appears to be describing about point B a circle of radius equal to 60 
light years. Point B is suspected of being a very dense concentration 
of mass called a black hole. Determine the ratio MB/MS of the mass 
at B to the mass of the sun. (The mass of the sun is 330,000 times 
the mass of the earth, and a light year is the distance traveled by light 
in one year at a 186,300 mi/s.)

 13.93 A 200-g ball may slide on a horizontal frictionless surface and is 
attached to a fixed point O by means of an elastic cord of con-
stant k 5 150 N/m and undeformed length equal to 600 mm. 
The ball is placed at point A, 900 mm from O, and is given an 
initial velocity vA in a direction perpendicular to OA. Knowing 
that the ball passes a distance d 5 100 m from O, determine 
(a) the initial speed vA of the ball, (b) its speed v after the cord 
has become slack.

 13.94 For the ball of Prob. 13.93, determine (a) the smallest magnitude 
of the initial velocity vA for which the elastic cord remains taut 
at all times, (b) the corresponding maximum speed reached by 
the ball.

A

B

R = 3960 mi

hA = 2700 mi

vA

vB

hB = 7900 mi

Fig. P13.87

Fig. P13.93

900 mm

600 mmd
AO

vA

v

bee29400_ch13_754-853.indd Page 800  12/3/08  9:15:06 PM user-s172bee29400_ch13_754-853.indd Page 800  12/3/08  9:15:06 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



801Problems 13.95 Collar A weighs 10 lb and is attached to a spring of constant 
50 lb/ft and of undeformed length equal to 18 in. The system is 
set in motion with r 5 12 in., vu 5 16 ft/s, and vr 5 0. Neglecting 
the mass of the rod and the effect of friction, determine the 
radial and transverse components of the velocity of the collar 
when r 5 21 in.

 13.96 For the motion described in Prob. 13.95, determine (a) the maxi-
mum distance between the origin and the collar, (b) the correspond-
ing speed. (Hint: Solve by trial and error the equation obtained 
for r.)

 13.97 Solve Sample Prob. 13.8, assuming that the elastic cord is replaced 
by a central force F of magnitude (80/r2) N directed toward O.

 13.98 A 1.8-kg collar A and a 0.7-kg collar B can slide without friction 
on a frame, consisting of the horizontal rod OE and the vertical 
rod CD, which is free to rotate about CD. The two collars are 
connected by a cord running over a pulley that is attached to the 
frame at O. At the instant shown, the velocity vA of collar A has a 
magnitude of 2.1 m/s and a stop prevents collar B from moving. 
If the stop is suddenly removed, determine (a) the velocity of collar 
A when it is 0.2 m from O, (b) the velocity of collar A when 
collar B comes to rest. (Assume that collar B does not hit O, that 
collar A does not come off rod OE, and that the mass of the frame 
is negligible.)

30 in.

r A
B

C

D

O

vq

vr

Fig. P13.95

B

C

A

D

O

vA0.1 m

E

Fig. P13.98

vA

A B

350 × 103 km 100 × 103 km

Jupiter

Fig. P13.100

 13.99 Using the principles of conservation of energy and conservation of 
angular momentum, solve part a of Sample Prob. 12.9.

 13.100 A spacecraft traveling along a parabolic path toward the planet 
 Jupiter is expected to reach point A with a velocity vA of magnitude 
26.9 km/s. Its engines will then be fired to slow it down, placing it 
into an elliptic orbit which will bring it to within 100 3 103 km of 
Jupiter. Determine the decrease in speed Dv at point A which will 
place the spacecraft into the required orbit. The mass of Jupiter is 
319 times the mass of the earth.

bee29400_ch13_754-853.indd Page 801  12/3/08  9:15:13 PM user-s172bee29400_ch13_754-853.indd Page 801  12/3/08  9:15:13 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



802 Kinetics of Particles: Energy and Momentum 
Methods

 13.101 After completing their moon-exploration mission, the two astro-
nauts forming the crew of an Apollo lunar excursion module (LEM) 
would prepare to rejoin the command module which was orbiting 
the moon at an altitude of 140 km. They would fire the LEM’s 
engine, bring it along a curved path to a point A, 8 km above the 
moon’s surface, and shut off the engine. Knowing that the LEM 
was moving at that time in a direction parallel to the moon’s 
 surface and that it then coasted along an elliptic path to a rendez-
vous at B with the command module, determine (a) the speed of 
the LEM at engine shutoff, (b) the relative velocity with which the 
command module approached the LEM at B. (The radius of the 
moon is 1740 km and its mass is 0.01230 times the mass of 
the earth.)

 13.102 The optimal way of transferring a space vehicle from an inner cir-
cular orbit to an outer coplanar circular orbit is to fire its engines 
as it passes through A to increase its speed and place it in an elliptic 
transfer orbit. Another increase in speed as it passes through B will 
place it in the desired circular orbit. For a vehicle in a circular orbit 
about the earth at an altitude h1 5 200 mi, which is to be trans-
ferred to a circular orbit at an altitude h2 5 500 mi, determine 
(a) the required increases in speed at A and at B, (b) the total 
energy per unit mass required to  execute the transfer.

 13.103 A spacecraft approaching the planet Saturn reaches point A with 
a velocity vA of magnitude 68.8 3 103 ft/s. It is to be placed in an 
elliptic orbit about Saturn so that it will be able to periodically 
examine Tethys, one of Saturn’s moons. Tethys is in a circular orbit 
of radius 183 3 103 mi about the center of Saturn, traveling at a 
speed of 37.2 3 103 ft/s. Determine (a) the decrease in speed 
required by the spacecraft at A to achieve the desired orbit, 
(b) the speed of the spacecraft when it reaches the orbit of Tethys 
at B.

O
AB

140 km

1740 km

Fig. P13.101

BA O

3960 mi

h1 h2

Fig. P13.102

vA

A B

115 × 103 mi 183 × 103 mi

Saturn

Tethys

Fig. P13.103
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803Problems 13.104 A spacecraft is describing an elliptic orbit of minimum altitude 
hA 5 2400 km and maximum altitude hB 5 9600 km above the 
surface of the earth. Determine the speed of the spacecraft at A.

hA

A BO

vA

vB

6370 km

hB

Fig. P13.104

 13.105 A spacecraft describing an elliptic orbit about the earth has a maxi-
mum speed vA 5 26.3 3 103 km/h at A and a minimum speed 
vB 5 18.5 3 103 km/h at B. Determine the altitude of the space-
craft at B.

 13.106 Upon the LEM’s return to the command module, the Apollo 
spacecraft of Prob. 13.101 was turned around so that the LEM 
faced to the rear. The LEM was then cast adrift with a velocity of 
200 m/s relative to the command module. Determine the magni-
tude and direction (angle f formed with the vertical OC) of the 
velocity vC of the LEM just before it crashed at C on the moon’s 
surface.

 13.107 A satellite is projected into space with a velocity v0 at a distance 
r0 from the center of the earth by the last stage of its launching 
rocket. The velocity v0 was designed to send the satellite into a 
circular orbit of radius r0. However, owing to a malfunction of 
control, the satellite is not projected horizontally but at an angle 
a with the horizontal and, as a result, is propelled into an elliptic 
orbit. Determine the maximum and minimum values of the dis-
tance from the center of the earth to the satellite.

vC

vB    

C

O
B

140 km

1740 km

f

Fig. P13.106

a

rmin

r0

v0

rmax

r0

Fig. P13.107
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 13.108 A space platform is in a circular orbit about the earth at an alti-
tude of 300 km. As the platform passes through A, a rocket car-
rying a communications satellite is launched from the platform 
with a relative velocity of magnitude 3.44 km/s in a direction 
tangent to the orbit of the platform. This was intended to place 
the rocket in an elliptic transfer orbit bringing it to point B, where 
the rocket would again be fired to place the satellite in a geosyn-
chronous orbit of radius 42 140 km. After launching, it was dis-
covered that the relative velocity imparted to the rocket was too 
large. Determine the angle g at which the rocket will cross the 
intended orbit at point C.

 13.109 A space vehicle is in a circular orbit at an altitude of 225 mi above 
the earth. To return to earth, it decreases its speed as it passes 
through A by firing its engine for a short interval of time in a 
direction opposite to the direction of its motion. Knowing that the 
velocity of the space vehicle should form an angle fB 5 60° with 
the vertical as it reaches point B at an altitude of 40 mi, determine 
(a) the required speed of the vehicle as it leaves its circular orbit 
at A, (b) its speed at point B.

Fig. P13.108

300 km

Intended
trajectory

Actual
trajectory

AB

C

R = 6370 km
42 140 km

γ

225 mi

A

BO

R = 3960 mi

vB

fB

Fig. P13.109

  *13.110 In Prob. 13.109, the speed of the space vehicle was decreased as it 
passed through A by firing its engine in a direction opposite to the 
direction of motion. An alternative strategy for taking the space vehi-
cle out of its circular orbit would be to turn it around so that its engine 
would point away from the earth and then give it an incremental 
velocity DvA toward the center O of the earth. This would likely 
require a smaller expenditure of energy when firing the engine at A, 
but might result in too fast a descent at B. Assuming this strategy 
is used with only 50 percent of the energy expenditure used in 
Prob. 13.109, determine the resulting values of fB and vB.

 13.111 When the lunar excursion module (LEM) was set adrift after return-
ing two of the Apollo astronauts to the command module, which 
was orbiting the moon at an altitude of 140 km, its speed was 
reduced to let it crash on the moon’s surface. Determine (a) the 
smallest amount by which the speed of the LEM should have been 
reduced to make sure that it would crash on the moon’s surface, 
(b) the amount by which its speed should have been reduced to 
cause it to hit the moon’s surface at a 45° angle. (Hint: Point A is at 
the apogee of the elliptic crash trajectory. Recall also that the mass 
of the moon is 0.0123 times the mass of the earth.)

B

O
A

R = 1740 km

Fig. P13.111
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805Problems  *13.112 A space probe describes a circular orbit of radius nR with a velocity 
v0 about a planet of radius R and center O. Show that (a) in order 
for the probe to leave its orbit and hit the planet at an angle u with 
the vertical, its velocity must be reduced to av0, where

a 5 sin u 

B

2(n 2 1)

n2 2 sin2 u

  (b) the probe will not hit the planet if a is larger than 12/ (1 1 n).

 13.113 Show that the values vA and vP of the speed of an earth satellite 
at the apogee A and the perigee P of an elliptic orbit are defined 
by the relations

v2
A 5

2GM
rA 1 rP

 
rP

rA  
v2

P 5
2GM

rA 1 rP
 
rA

rP

  where M is the mass of the earth, and rA and rP represent, respec-
tively, the maximum and minimum distances of the orbit to the 
center of the earth.

 13.114 Show that the total energy E of an earth satellite of mass m describ-
ing an elliptic orbit is E 5 2GMm/(rA 1 rP), where M is the mass 
of the earth, and rA and rP represent, respectively, the maximum and 
minimum distances of the orbit to the center of the earth. (Recall 
that the gravitational potential energy of a satellite was defined as 
being zero at an infinite distance from the earth.)

 13.115 A spacecraft of mass m describes a circular orbit of radius r1 
around the earth. (a) Show that the additional energy DE which 
must be imparted to the spacecraft to transfer it to a circular orbit 
of larger radius r2 is

¢E 5
GMm(r2 2 r1)

2r1r2

  where M is the mass of the earth. (b) Further show that if the 
transfer from one circular orbit to the other is executed by placing 
the spacecraft on a transitional semielliptic path AB, the amounts 
of energy DEA and DEB which must be imparted at A and B are, 
respectively, proportional to r2 and r1:

¢EA 5
r2

r1 1 r2
 ¢E

  
¢EB 5

r1

r1 1 r2
 ¢E

 13.116 A missile is fired from the ground with an initial velocity v0 forming 
an angle f0 with the vertical. If the missile is to reach a maximum 
altitude equal to aR, where R is the radius of the earth, (a) show 
that the required angle f0 is defined by the relation

sin f0 5 (1 1 a) 
B

1 2
 a

1 1 a
 avesc

v0
b2

  where vesc is the escape velocity, (b) determine the range of allow-
able values of v0.

  *13.117 Using the answers obtained in Prob. 13.107, show that the intended 
circular orbit and the resulting elliptic orbit intersect at the ends 
of the minor axis of the elliptic orbit.

Fig. P13.115

BA
O

r1 r2

PA O

vA

vP

rA rP

Fig. P13.113 and P13.114
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  *13.118 (a) Express in terms of rmin and vmax the angular momentum per 
unit mass, h, and the total energy per unit mass, E/m, of a space 
vehicle moving under the gravitational attraction of a planet of 
mass M (Fig. 13.15). (b) Eliminating vmax between the equations 
obtained, derive the formula

1
rmin

5
GM

h2  c1 1
B

1 1
2E
m

 a h
GM
b2

 
d

  (c) Show that the eccentricity £ of the trajectory of the vehicle can 
be expressed as

e 5
B

1 1
2E
m

 a h
GM
b2

  (d ) Further show that the trajectory of the vehicle is a hyperbola, 
an ellipse, or a parabola, depending on whether E is positive, nega-
tive, or zero.

13.10 PRINCIPLE OF IMPULSE AND MOMENTUM
A third basic method for the solution of problems dealing with the 
motion of particles will be considered now. This method is based on 
the principle of impulse and momentum and can be used to solve 
problems involving force, mass, velocity, and time. It is of particular 
interest in the solution of problems involving impulsive motion and 
problems involving impact (Secs. 13.11 and 13.12).
 Consider a particle of mass m acted upon by a force F. As we 
saw in Sec. 12.3, Newton’s second law can be expressed in the form

 
F 5

d
dt

 (mv)
 

(13.27)

where mv is the linear momentum of the particle. Multiplying both 
sides of Eq. (13.27) by dt and integrating from a time t1 to a time t2, 
we write

 F dt 5 d(mv)

 #
t2

t1

F dt 5 mv2 2 mv1

or, transposing the last term,

 
mv1 1 #

t2

t1

 
F dt 5 mv2 

(13.28)

The integral in Eq. (13.28) is a vector known as the linear impulse, 
or simply the impulse, of the force F during the interval of time 
considered. Resolving F into rectangular components, we write

 Imp1y2 5 #
t2

t1

 
F dt

 
 5 i#

t2

t1

 
Fx dt 1 j#

t2

t1

 
Fy dt 1 k #

t2

t1

 
Fz dt

 
(13.29)

806 Kinetics of Particles: Energy and Momentum 
Methods

Photo 13.2 This impact test between an F-4 
Phantom and a rigid reinforced target was to 
determine the impact force as a function of time.

Photo 13.1
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807and note that the components of the impulse of the force F are, 
respectively, equal to the areas under the curves obtained by plotting 
the components Fx, Fy, and Fz against t (Fig. 13.16). In the case of a 
force F of constant magnitude and direction, the impulse is repre-
sented by the vector F(t2 2 t1), which has the same direction as F.
 If SI units are used, the magnitude of the impulse of a force is 
expressed in N ? s. But, recalling the definition of the newton, we have

N ? s 5 (kg ? m/s2) ? s 5 kg ? m/s

which is the unit obtained in Sec. 12.4 for the linear momentum of 
a particle. We thus check that Eq. (13.28) is dimensionally correct. 
If U.S. customary units are used, the impulse of a force is expressed 
in lb ? s, which is also the unit obtained in Sec. 12.4 for the linear 
momentum of a particle.
 Equation (13.28) expresses that when a particle is acted upon by 
a force F during a given time interval, the final momentum mv2 of the 
particle can be obtained by adding vectorially its initial momentum 
mv1 and the impulse of the force F during the time interval considered 

13.10 Principle of Impulse and Momentum

O

Fz

t1 t2 t

O

Fy

t1 t2 t

O

Fx

t1 t2 t

Fig. 13.16

mv1

mv2

=+

t2

t1

Imp 1    2 =     F dt�

Fig. 13.17

(Fig. 13.17). We write

 mv1 1 Imp1y2 5 mv2 (13.30)

We note that while kinetic energy and work are scalar quantities, 
momentum and impulse are vector quantities. To obtain an analytic 
solution, it is thus necessary to replace Eq. (13.30) by the corre-
sponding component equations

 (mvx)1 1 #
t2

t1

 
Fx dt 5 (mvx)2

 
 (mvy)1 1 #

t2

t1

 
Fy dt 5 (mvy)2 

(13.31)

 (mvz)1 1 #
t2

t1

 
Fz dt 5 (mvz)2

 When several forces act on a particle, the impulse of each of 
the forces must be considered. We have

 mv1 1 o Imp1y2 5 mv2 (13.32)
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808 Kinetics of Particles: Energy and Momentum 
Methods

Again, the equation obtained represents a relation between vector 
quantities; in the actual solution of a problem, it should be replaced 
by the corresponding component equations.
 When a problem involves two particles or more, each particle 
can be considered separately and Eq. (13.32) can be written for each 
particle. We can also add vectorially the momenta of all the particles 
and the impulses of all the forces involved. We write then

 omv1 1 o Imp1y2 5 omv2 (13.33)
Since the forces of action and reaction exerted by the particles on 
each other form pairs of equal and opposite forces, and since the time 
interval from t1 to t2 is common to all the forces involved, the impulses 
of the forces of action and reaction cancel out and only the impulses 
of the external forces need be considered.†
 If no external force is exerted on the particles or, more gener-
ally, if the sum of the external forces is zero, the second term in 
Eq. (13.33) vanishes and Eq. (13.33) reduces to

 omv1 5 omv2 (13.34)
which expresses that the total momentum of the particles is con-
served. Consider, for example, two boats, of mass mA and mB, initially 
at rest, which are being pulled together (Fig. 13.18). If the resistance 

†We should note the difference between this statement and the corresponding 
 statement made in Sec. 13.4 regarding the work of the forces of action and reaction 
between several particles. While the sum of the impulses of these forces is always zero, 
the sum of their work is zero only under special circumstances, e.g., when the various 
bodies involved are connected by inextensible cords or links and are thus constrained to 
move through equal distances.

‡Blue equals signs are used in Fig. 13.18 and throughout the remainder of this chapter 
to express that two systems of vectors are equipollent, i.e., that they have the same 
resultant and moment resultant (cf. Sec. 3.19). Red equals signs will continue to be 
used to indicate that two systems of vectors are equivalent, i.e., that they have the same 
effect. This and the concept of conservation of momentum for a system of particles will 
be discussed in greater detail in Chap. 14.

=
mAvA = 0 mBvB = 0

mAv'A mBv'B

Fig. 13.18

of the water is neglected, the only external forces acting on the boats 
are their weights and the buoyant forces exerted on them. Since 
these forces are balanced, we write

 omv1 5 omv2

 0 5 mAv9A 1 mBv9B

where v9A and v9B represent the velocities of the boats after a finite 
interval of time. The equation obtained indicates that the boats move 
in opposite directions (toward each other) with velocities inversely 
proportional to their masses.‡
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80913.11 IMPULSIVE MOTION
A force acting on a particle during a very short time interval that is 
large enough to produce a definite change in momentum is called 
an impulsive force and the resulting motion is called an impulsive 
motion. For example, when a baseball is struck, the contact between 
bat and ball takes place during a very short time interval Dt. But the 
average value of the force F exerted by the bat on the ball is very 
large, and the resulting impulse F Dt is large enough to change the 
sense of motion of the ball (Fig. 13.19).
 When impulsive forces act on a particle, Eq. (13.32) becomes

 mv1 1 oF Dt 5 mv2 (13.35)

Any force which is not an impulsive force may be neglected, since 
the corresponding impulse F Dt is very small. Nonimpulsive forces 
include the weight of the body, the force exerted by a spring, or any 
other force which is known to be small compared with an impulsive 
force. Unknown reactions may or may not be impulsive; their 
impulses should therefore be included in Eq. (13.35) as long as they 
have not been proved negligible. The impulse of the weight of the 
baseball considered above, for example, may be neglected. If the 
motion of the bat is analyzed, the impulse of the weight of the bat 
can also be neglected. The impulses of the reactions of the player’s 
hands on the bat, however, should be included; these impulses will 
not be negligible if the ball is incorrectly hit.
 We note that the method of impulse and momentum is particu-
larly effective in the analysis of the impulsive motion of a particle, 
since it involves only the initial and final velocities of the particle and 
the impulses of the forces exerted on the particle. The direct applica-
tion of Newton’s second law, on the other hand, would require the 
determination of the forces as functions of the time and the integra-
tion of the equations of motion over the time interval Dt.
 In the case of the impulsive motion of several particles, 
Eq. (13.33) can be used. It reduces to

 omv1 1 oF Dt 5 omv2 (13.36)

where the second term involves only impulsive, external forces. If all 
the external forces acting on the various particles are nonimpulsive, 
the second term in Eq. (13.36) vanishes and this equation reduces 
to Eq. (13.34). We write

 omv1 5 omv2 (13.34)

which expresses that the total momentum of the particles is con-
served. This situation occurs, for example, when two particles which 
are moving freely collide with one another. We should note, however, 
that while the total momentum of the particles is conserved, their 
total energy is generally not conserved. Problems involving the col-
lision or impact of two particles will be discussed in detail in 
Secs. 13.12 through 13.14.

13.11 Impulsive Motion

mv1 mv2 =+ FΔ t

WΔ t ≈ 0

Fig. 13.19 
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SAMPLE PROBLEM 13.10

An automobile weighing 4000 lb is driven down a 5° incline at a speed of 
60 mi/h when the brakes are applied, causing a constant total braking force 
(applied by the road on the tires) of 1500 lb. Determine the time required 
for the automobile to come to a stop.

SOLUTION

We apply the principle of impulse and momentum. Since each force is 
constant in magnitude and direction, each corresponding impulse is equal 
to the product of the force and of the time interval t.

5°

5°

=+

Wt

Ft

Nt

mv1
mv2 = 0

 mv1 1 o Imp1y2 5 mv2
 1q components:  mv1 1 (W sin 5°)t 2 Ft 5 0
(4000/32.2)(88 ft/s) 1 (4000 sin 5°)t 2 1500t 5 0 t 5 9.49 s ◀

SAMPLE PROBLEM 13.11

A 4-oz baseball is pitched with a velocity of 80 ft/s toward a batter. After 
the ball is hit by the bat B, it has a velocity of 120 ft/s in the direction 
shown. If the bat and ball are in contact 0.015 s, determine the average 
impulsive force exerted on the ball during the impact.

SOLUTION

We apply the principle of impulse and momentum to the ball. Since the 
weight of the ball is a nonimpulsive force, it can be neglected.
 mv1 1 o Imp1y2 5 mv2
y
1  x components: 2mv1 1 Fx Dt 5 mv2 cos 40°

2

4
16

32.2
 (80 ft/s) 1 Fx(0.015 s) 5

4
16

32.2
 (120 ft/s)  cos 40°

 Fx 5 189.0 lb
 1xy components: 0 1 Fy Dt 5 mv2 sin 40°

 
Fy(0.015 s) 5

4
16

32.2
 (120 ft/s) sin 40°

 Fy 5 139.9 lb
From its components Fx and Fy we determine the magnitude and direction 
of the force F:
 F 5 97.5 lb a 24.2° ◀

40°+ =mv1

mv2

Fx Δ t

Fy Δ t

40°

B

120 ft /s

80 ft /s
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811

SAMPLE PROBLEM 13.12

A 10-kg package drops from a chute into a 25-kg cart with a velocity of 3 m/s. 
Knowing that the cart is initially at rest and can roll freely, determine (a) the 
final velocity of the cart, (b) the impulse exerted by the cart on the package, 
(c) the fraction of the initial energy lost in the impact.

SOLUTION

We first apply the principle of impulse and momentum to the package-cart 
system to determine the velocity v2 of the cart and package. We then apply 
the same principle to the package alone to determine the impulse F Dt 
exerted on it.

a. Impulse-Momentum Principle: Package and Cart

 mPv1 1 o Imp1y2 5 (mP 1 mC)v2
y
1  x components: mP v1 cos 30° 1 0 5 (mP 1 mC)v2
 (10 kg)(3 m/s) cos 30° 5 (10 kg 1 25 kg)v2
 v2 5 0.742 m/sy  ◀ 
We note that the equation used expresses conservation of momentum in the 
x direction.

b. Impulse-Momentum Principle: Package

30° + =
mPv1

(mP + mC)v2

R Δ t

Fx Δ t

Fy Δ t

30°

+ =
mPv1

mPv2

 mPv1 1 o Imp1y2 5 mPv2
 y1  x components: (10 kg)(3 m/s) cos 30° 1 Fx Dt 5 (10 kg)(0.742 m/s)
 Fx Dt 5 218.56 N ? s
1xy components: 2mP v1 sin 30° 1 Fy Dt 5 0
 2(10 kg)(3 m/s) sin 30° 1 Fy Dt 5 0
 Fy Dt 5 115 N ? s

The impulse exerted on the package is F Dt 5 23.9 N ? s b 38.9° ◀ 

c. Fraction of Energy Lost. The initial and final energies are

 T1 5 1
2 
mP v2

1 5 1
2(10 kg)(3 m/s)2 5 45 J

 T2 5 1
2(mP 1 mC)v2

2 5 1
2(10 kg 1 25 kg) (0.742 m/s)2 5 9.63 J

The fraction of energy lost is 
T1 2 T2

T1
5

45 J 2 9.63 J

45 J
5 0.786 ◀

 

30°
3 m/s
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we integrated Newton’s second law to derive the principle of 
impulse and momentum for a particle. Recalling that the linear momentum of 

a particle was defined as the product of its mass m and its velocity v [Sec. 12.3], 
we wrote

 mv1 1 o Imp1y2 5 mv2 (13.32)

This equation expresses that the linear momentum mv2 of a particle at time t2 can 
be obtained by adding to its linear momentum mv1 at time t1 the impulses of the 
forces exerted on the particle during the time interval t1 to t2. For computing 
purposes, the momenta and impulses may be expressed in terms of their rectan-
gular components, and Eq. (13.32) can be replaced by the equivalent scalar equa-
tions. The units of momentum and impulse are N ? s in the SI system of units 
and lb ? s in U.S. customary units. To solve problems using this equation you can 
follow these steps:

1. Draw a diagram showing the particle, its momentum at t1 and at t2, and the 
impulses of the forces exerted on the particle during the time interval t1 to t2.

2. Calculate the impulse of each force, expressing it in terms of its rectangular 
components if more than one direction is involved. You may encounter the follow-
ing cases:
 a. The time interval is finite and the force is constant.

Imp1y2 5 F(t2 2 t1)

 b. The time interval is finite and the force is a function of t.

Imp1y2 5 #
t2

t1

 
F(t) dt

 c. The time interval is very small and the force is very large. The force is 
called an impulsive force and its impulse over the time interval t2 2 t1 5 Dt is

Imp1y2 5 F Dt

Note that this impulse is zero for a nonimpulsive force such as the weight of a 
body, the force exerted by a spring, or any other force which is known to be small 
by comparison with the impulsive forces. Unknown reactions, however, cannot be 
assumed to be nonimpulsive and their impulses should be taken into account.

3. Substitute the values obtained for the impulses into Eq. (13.32) or into the 
equivalent scalar equations. You will find that the forces and velocities in the 
problems of this lesson are contained in a plane. You will, therefore, write two 
scalar equations and solve these equations for two unknowns. These unknowns 
may be a time [Sample Prob. 13.10], a velocity and an impulse [Sample 
Prob. 13.12], or an average impulsive force [Sample Prob. 13.11].
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4. When several particles are involved, a separate diagram should be drawn 
for each particle, showing the initial and final momentum of the particle, as well 
as the impulses of the forces exerted on the particle.
 a. It is usually convenient, however, to first consider a diagram including all 
the particles. This diagram leads to the equation

 omv1 1 o Imp1y2 5 omv2 (13.33)

where the impulses of only the forces external to the system need be considered. 
Therefore, the two equivalent scalar equations will not contain any of the impulses 
of the unknown internal forces.
 b. If the sum of the impulses of the external forces is zero, Eq. (13.33) 
reduces to

 omv1 5 omv2 (13.34)

which expresses that the total momentum of the particles is conserved. This occurs 
either if the resultant of the external forces is zero or, when the time interval Dt 
is very short (impulsive motion), if all the external forces are nonimpulsive. Keep 
in mind, however, that the total momentum may be conserved in one direction, 
but not in another [Sample Prob. 13.12].
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PROBLEMS
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 13.119 A 1200-kg automobile is moving at a speed of 90 km/h when the 
brakes are fully applied, causing all four wheels to skid. Determine 
the time required to stop the automobile (a) on dry pavement 
(mk 5 0.75), (b) on an icy road (mk 5 0.10).

 13.120 A 40,000-ton ocean liner has an initial velocity of 2.5 mi/h. 
Neglecting the frictional resistance of the water, determine the 
time required to bring the liner to rest by using a single tugboat 
which exerts a constant force of 35 kips.

 13.121 The initial velocity of the block in position A is 30 ft/s. Knowing 
that the coefficient of kinetic friction between the block and the 
plane is mk 5 0.30, determine the time it takes for the block to 
reach B with zero velocity, if (a) u 5 0, (b) u 5 20°.

 13.122 A 2-kg particle is acted upon by the force, expressed in newtons, 
F 5 (8 2 6t)i 1 (4 2 t2)j 1 (4 1 t)k. Knowing that the velocity 
of the particle is v 5 (150 m/s)i 1 (100 m/s)j 2 (250 m/s)k at 
t 5 0, determine (a) the time at which the velocity of the particle 
is parallel to the yz plane, (b) the corresponding velocity of the 
particle.

 13.123 Skid marks on a drag race track indicate that the rear (drive) 
wheels of a car slip for the first 60 ft of the 1320-ft track. 
(a) Knowing that the coefficient of kinetic friction is 0.60, deter-
mine the shortest possible time for the car to travel the initial 
60-ft portion of the track if it starts from rest with its front 
wheels just off the ground. (b) Determine the minimum time for 
the car to run the whole race if, after skidding for 60 ft, the wheels 
roll without sliding for the remainder of the race. Assume for the 
rolling portion of the race that 60 percent of the weight is on the 
rear wheels and that the coefficient of static friction is 0.85. 
Ignore air resistance and rolling resistance.

 13.124 A truck is traveling on a level road at a speed of 90 km/h when its 
brakes are applied to slow it down to 30 km/h. An antiskid braking 
system limits the braking force to a value at which the wheels of 
the truck are just about to slide. Knowing that the coefficient of 
static friction between the road and the wheels is 0.65, determine 
the shortest time needed for the truck to slow down.

 13.125 A truck is traveling down a road with a 4-percent grade at a speed 
of 60 mi/h when its brakes are applied to slow it down to 20 mi/h. 
An antiskid braking system limits the braking force to a value 
at which the wheels of the truck are just about to slide. Knowing 
that the coefficient of static friction between the road and the 
wheels is 0.60, determine the shortest time needed for the truck 
to slow down.

A

B
vA

v = 0

q

Fig. P13.121

Fig. P13.123
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815Problems 13.126 Baggage on the floor of the baggage car of a high-speed train is 
not prevented from moving other than by friction. Determine the 
smallest allowable value of the coefficient of static friction between 
a trunk and the floor of the car if the trunk is not to slide when 
the train decreases its speed at a constant rate from 200 km/h to 
90 km/h in a time interval of 12 s.

 13.127 Solve Prob. 13.126, assuming that the train is going down a 
5-percent grade.

 13.128 A sailboat weighing 980 lb with its occupants is running down 
wind at 8 mi/h when its spinnaker is raised to increase its speed. 
Determine the net force provided by the spinnaker over the 10-s 
interval that it takes for the boat to reach a speed of 12 mi/h.

 13.129 A light train made of two cars travels at 45 mi/h. Car A weighs 
18 tons, and car B weighs 13 tons. When the brakes are applied, 
a constant braking force of 4300 lb is applied to each car. Deter-
mine (a) the time required for the train to stop after the brakes 
are applied, (b) the force in the coupling between the cars while 
the train is slowing down.

 13.130 Solve Prob. 13.129, assuming that a constant braking force of 
4300 lb is applied to car B but that the brakes on car A are 
not applied.

 13.131 A trailer truck with a 2000-kg cab and an 8000-kg trailer is travel-
ing on a level road at 90 km/h. The brakes on the trailer fail and 
the antiskid system of the cab provides the largest possible force 
which will not cause the wheels of the cab to slide. Knowing that 
the coefficient of static friction is 0.65, determine (a) the shortest 
time for the rig to come to a stop, (b) the force in the coupling 
during that time.

 13.132 An 8-kg cylinder C rests on a 4-kg platform A supported by a cord 
which passes over the pulleys D and E and is attached to a 4-kg 
block B. Knowing that the system is released from rest, determine 
(a) the velocity of block B after 0.8 s, (b) the force exerted by the 
cylinder on the platform.

v

Fig. P13.128

45 mi/h

18 tons 13 tonsA B

Fig. P13.129

90 km/h

CROSS COUNTRY MOVERS
2000 kg

8000 kg

Fig. P13.131

B

4 kg

A

C8 kg

D E

4 kg

Fig. P13.132

BA20 kg

15 kg

Fig. P13.133

 13.133 The system shown is released from rest. Determine the time it 
takes for the velocity of A to reach 1 m/s. Neglect friction and the 
mass of the pulleys.
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816 Kinetics of Particles: Energy and Momentum 
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 13.134 A 4-lb collar which can slide on a frictionless vertical rod is acted 
upon by a force P which varies in magnitude as shown. Knowing 
that the collar is initially at rest, determine its velocity at (a) t 5 
2 s, (b) t 5 3 s.

 13.135 A 4-lb collar which can slide on a frictionless vertical rod is acted 
upon by a force P which varies in magnitude as shown. Knowing 
that the collar is initially at rest, determine (a) the maximum speed 
of the collar, (b) the time when the velocity is zero.

 13.136 A 125-lb block initially at rest is acted upon by a force P which 
varies as shown. Knowing that the coefficients of friction between 
the block and the horizontal surface are ms 5 0.50 and mk 5 0.40, 
determine (a) the time at which the block will start moving, 
(b) the maximum speed reached by the block, (c) the time at which 
the block will stop moving.

 13.137 Solve Prob. 13.136, assuming that the weight of the block is 175 lb.

 13.138 A simplified model consisting of a single straight line is to be 
obtained for the variation of pressure inside the 10-mm-diameter 
barrel of a rifle as a 20-g bullet is fired. Knowing that it takes 
1.6 ms for the bullet to travel the length of the barrel and that 
the velocity of the bullet upon exit is 700 m/s, determine the value 
of p0.

P (lb)

t (s)

10

21 30

P

4 lb

Fig. P13.134 and P13.135

125 lb
P

0 8

P (lb)

100

t (s)
16

Fig. P13.136

 13.139 The following mathematical model was suggested for the variation 
in pressure inside the 10-mm-diameter barrel of a rifle as a 25-g 
bullet was fired:

p(t) 5 (950 MPa)e2t/(0.16 ms)

  where t is expressed in ms. Knowing that it took 1.44 ms for the 
bullet to travel the length of the barrel and that the velocity of the 
bullet upon exit was measured to be 520 m/s, determine the per-
cent error introduced if the above equation is used to calculate the 
muzzle velocity of the rifle.

 13.140 The triple jump is a track-and-field event in which an athlete gets 
a running start and tries to leap as far as he can with a hop, step, 
and jump. Shown in the figure is the initial hop of the athlete. 
Assuming that he approaches the takeoff line from the left with a 
horizontal velocity of 10 m/s, remains in contact with the ground 
for 0.18 s, and takes off at a 50° angle with a velocity of 12 m/s, 
determine the vertical component of the average impulsive force 
exerted by the ground on his foot. Give your answer in terms of 
the weight W of the athlete.

1.60

p (MPa)

t (ms)

p0

Fig. P13.138

10 m/s

12 m/s

Take-
off line

50°

Fig. P13.140
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817Problems 13.141 The last segment of the triple jump track-and-field event is the 
jump, in which the athlete makes a final leap, landing in a sand-
filled pit. Assuming that the velocity of a 185-lb athlete just before 
landing is 30 ft/s at an angle of 35° with the horizontal and that 
the athlete comes to a complete stop in 0.22 s after landing, deter-
mine the horizontal component of the average impulsive force 
exerted on his feet during landing.

 13.142 An estimate of the expected load on over-the-shoulder seat belts 
is to be made before designing prototype belts that will be evalu-
ated in automobile crash tests. Assuming that an automobile travel-
ing at 45 mi/h is brought to a stop in 110 ms, determine 
(a) the average impulsive force exerted by a 200-lb man on the 
belt, (b) the maximum force Fm exerted on the belt if the force-
time diagram has the shape shown.

 13.143 A 46-g golf ball is hit with a golf club and leaves it with a velo c-
ity of 50 m/s. We assume that for 0 # t # t0, where t0 is the 
duration of the impact, the magnitude F of the force exerted on 
the ball can be expressed as F 5 Fm sin (pt/t0). Knowing that 
t0 5 0.5 ms, determine the maximum value Fm of the force 
exerted on the ball.

 13.144 The design for a new cementless hip implant is to be studied using 
an instrumented implant and a fixed simulated femur. Assuming 
the punch applies an average force of 2 kN over a time of 2 ms to 
the 200 g implant, determine (a) the velocity of the implant imme-
diately after impact, (b) the average resistance of the implant to 
penetration if the implant moves 1 mm before coming to rest.

 13.145 A 20-Mg railroad car moving at 4 km/h is to be coupled to a 40-Mg 
car which is at rest with locked wheels (mk 5 0.30). Determine 
(a) the velocity of both cars after the coupling is completed, 
(b) the time it takes for both cars to come to rest.

30 ft/s 35°

Landing pit

Fig. P13.141

1100

F (lb)

Fm

t (ms)

Fig. P13.142

Fig. P13.144

40 Mg

20 Mg

4 km/h

Fig. P13.145
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 13.146 At an intersection car B was traveling south and car A was traveling 
30° north of east when they slammed into each other. Upon inves-
tigation it was found that after the crash the two cars got stuck 
and skidded off at an angle of 10° north of east. Each driver 
claimed that he was going at the speed limit of 50 km/h and that 
he tried to slow down but couldn’t avoid the crash because the 
other driver was going a lot faster. Knowing that the masses of cars 
A and B were 1500 kg and 1200 kg, respectively, determine 
(a) which car was going faster, (b) the speed of the faster of the 
two cars if the slower car was traveling at the speed limit.

 13.147 A mother and her child are skiing together, with the mother hold-
ing the end of a rope tied to the child’s waist. They are moving at 
a speed of 7.2 km/h on a flat portion of the ski trail when the 
mother observes that they are approaching a steep descent. She 
decides to pull on the rope to decrease the child’s speed. Knowing 
that this maneuver causes the child’s speed to be cut in half in 
3 s and neglecting friction, determine (a) the mother’s speed at the 
end of the 3-s interval, (b) the average value of the tension in the 
rope during that time interval.

 13.148 Bullet B weighs 0.5 oz and blocks A and C both weigh 3 lb. The 
coefficient of friction between the blocks and the plane is mk 5 0.25. 
Initially the bullet is moving at v0 and blocks A and C are at rest 
(Fig. 1). After the bullet passes through A it becomes embedded in 
block C and all three objects come to stop in the positions shown 
(Fig. 2). Determine the initial speed of the bullet v0.

A

B

30°

10°
v

vA

vB

N

Fig. P13.146

20 kg

55 kg

Fig. P13.147

A

6 in. (1)

(2)

4 in.

C

C
Bv0

B
A

Fig. P13.148
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819Problems 13.149 Two identical spheres A and B, each of mass m, are attached to an 
inextensible inelastic cord of length L, and are resting at a distance 
a from each other on a frictionless horizontal surface. Sphere B is 
given a velocity v0 in a direction perpendicular to line AB and 
moves without friction until it reaches B9 when the cord becomes 
taut. Determine (a) the magnitude of the velocity of each sphere 
immediately after the cord has become taut, (b) energy lost as the 
cord becomes taut.

B'

B

L

A

v0

a

Fig. P13.149

A

B

Fig. P13.150

 13.150 Two swimmers A and B, of weight 190 lb and 125 lb, respectively, 
are at diagonally opposite corners of a floating raft when they 
realize that the raft has broken away from its anchor. Swimmer A 
immediately starts walking toward B at a speed of 2 ft/s relative 
to the raft. Knowing that the raft weighs 300 lb, determine (a) the 
speed of the raft if B does not move, (b) the speed with which B 
must walk toward A if the raft is not to move.

125 g 3 m/s

250 g

Fig. P13.151 

 13.151 A 125-g ball moving at a speed of 3 m/s strikes a 250-g plate sup-
ported by springs. Assuming that no energy is lost in the impact, 
determine (a) the velocity of the ball immediately after impact, 
(b) the impulse of the force exerted by the plate on the ball.
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v0

mM

q

Fig. P13.152

 13.152 A bullet of mass m is fired with a velocity v0 forming an angle u 
with the horizontal and gets lodged in a wooden block of mass M. 
The block can roll without friction on a hard floor and is prevented 
by springs from hitting the wall. Determine the horizontal and 
vertical components of the impulse of the force exerted by the 
block on the bullet.

 13.153 In order to test the resistance of a chain to impact, the chain is 
suspended from a 240-lb rigid beam supported by two columns. 
A rod attached to the last link is then hit by a 60-lb block dropped 
from a 5-ft height. Determine the initial impulse exerted on the 
chain and the energy absorbed by the chain, assuming that the 
block does not rebound from the rod and that the columns sup-
porting the beam are (a) perfectly rigid, (b) equivalent to two per-
fectly elastic springs.

5 ft

Fig. P13.153

 13.154 A baseball player catching a ball can soften the impact by pulling 
his hand back. Assuming that a 5-oz ball reaches his glove at 
90 mi/h and that the player pulls his hand back during the impact 
at an average speed of 30 ft/s over a distance of 6 in., bringing the 
ball to a stop, determine the average impulsive force exerted on 
the player’s hand.

6 in.

90 mi/h

Fig. P13.154
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82113.12 IMPACT
A collision between two bodies which occurs in a very small interval 
of time and during which the two bodies exert relatively large forces 
on each other is called an impact. The common normal to the sur-
faces in contact during the impact is called the line of impact. If the 
mass centers on the two colliding bodies are located on this line, the 
impact is a central impact. Otherwise, the impact is said to be eccen-
tric. Our present study will be limited to the central impact of two 
particles. The analysis of the eccentric impact of two rigid bodies will 
be considered later, in Sec. 17.12.

 If the velocities of the two particles are directed along the line 
of impact, the impact is said to be a direct impact (Fig. 13.20a). If 
either or both particles move along a line other than the line of 
impact, the impact is said to be an oblique impact (Fig. 13.20b).

13.13 DIRECT CENTRAL IMPACT
Consider two particles A and B, of mass mA and mB, which are moving 
in the same straight line and to the right with known velocities vA and 
vB (Fig. 13.21a). If vA is larger than vB, particle A will eventually strike 
particle B. Under the impact, the two particles, will deform and, at the 
end of the period of deformation, they will have the same velocity u 
(Fig. 13.21b). A period of restitution will then take place, at the end 
of which, depending upon the magnitude of the impact forces and 
upon the materials involved, the two particles either will have regained 
their original shape or will stay permanently deformed. Our purpose 
here is to determine the velocities v9A and v9B of the particles at the 
end of the period of restitution (Fig. 13.21c).
 Considering first the two particles as a single system, we note 
that there is no impulsive, external force. Thus, the total momentum 
of the two particles is conserved, and we write

mAvA 1 mBvB 5 mAv9A 1 mBv9B

Since all the velocities considered are directed along the same axis, 
we can replace the equation obtained by the following relation involv-
ing only scalar components:

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

Fig. 13.20

vA vA

vB

vB

Line of

im
pact Line of

im
pact

(a) Direct central impact (b) Oblique central impact

A

B

B

A

13.13 Direct Central Impact

Fig. 13.21

(a) Before impact

(c) After impact

(b) At maximum deformation

vA vB

u

v'A v'B

A B

A B

A B
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A positive value for any of the scalar quantities vA, vB, v9A, or v9B 
means that the corresponding vector is directed to the right; a 
 negative value indicates that the corresponding vector is directed to 
the left.
 To obtain the velocities v9A and v9B, it is necessary to establish a 
second relation between the scalars v9A and v9B. For this purpose, let 
us now consider the motion of particle A during the period of 
 deformation and apply the principle of impulse and momentum. 
Since the only impulsive force acting on A during this period is 
the force P exerted by B (Fig. 13.22a), we write, using again scalar 
components,

 mAvA 2 e P dt 5 mAu (13.38)

where the integral extends over the period of deformation. Consider-
ing now the motion of A during the period of restitution, and denot-
ing by R the force exerted by B on A during this period (Fig. 13.22b), 
we write

 mAu 2 e R dt 5 mAv9A (13.39)

where the integral extends over the period of restitution.

Fig. 13.22

A

A A

A

A

A

mAvA

mAv'A

mAu

mAu

=

=

+

+

(a) Period of deformation

(b) Period of restitution

P d t�

R d t�

 In general, the force R exerted on A during the period of res-
titution differs from the force P exerted during the period of defor-
mation, and the magnitude e R dt of its impulse is smaller than the 
magnitude e P dt of the impulse of P. The ratio of the magnitudes 
of the impulses corresponding, respectively, to the period of restitu-
tion and to the period of deformation is called the coefficient of res-
titution and is denoted by e. We write

 
e 5

e R dt

e P dt  
(13.40)

The value of the coefficient e is always between 0 and 1. It depends 
to a large extent on the two materials involved, but it also varies 
considerably with the impact velocity and the shape and size of the 
two colliding bodies.
 Solving Eqs. (13.38) and (13.39) for the two impulses and sub-
stituting into (13.40), we write

 
e 5

u 2 vA¿
vA 2 u 

(13.41)
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823A similar analysis of particle B leads to the relation

 
e 5

v ¿B 2 u
u 2 vB 

(13.42)

Since the quotients in (13.41) and (13.42) are equal, they are also 
equal to the quotient obtained by adding, respectively, their numera-
tors and their denominators. We have, therefore,

e 5
(u 2 v ¿A) 1 (v ¿B 2 u)
(vA 2 u) 1 (u 2 vB)

5
v ¿B 2 v ¿A
vA 2 vB

and

 v9B 2 v9A 5 e(vA 2 vB) (13.43)

Since v9B 2 v9A represents the relative velocity of the two particles 
after impact and vA 2 vB represents their relative velocity before 
impact, formula (13.43) expresses that the relative velocity of the two 
particles after impact can be obtained by multiplying their relative 
velocity before impact by the coefficient of restitution. This property 
is used to determine experimentally the value of the coefficient of 
restitution of two given materials.
 The velocities of the two particles after impact can now be 
obtained by solving Eqs. (13.37) and (13.43) simultaneously for v9A 
and v9B. It is recalled that the derivation of Eqs. (13.37) and (13.43) 
was based on the assumption that particle B is located to the right 
of A, and that both particles are initially moving to the right. If par-
ticle B is initially moving to the left, the scalar vB should be consid-
ered negative. The same sign convention holds for the velocities after 
impact: a positive sign for v9A will indicate that particle A moves to 
the right after impact, and a negative sign will indicate that it moves 
to the left.
 Two particular cases of impact are of special interest:

 1. e 5 0, Perfectly Plastic Impact. When e 5 0, Eq. (13.43) yields 
v9B 5 v9A. There is no period of restitution, and both particles 
stay together after impact. Substituting v9B 5 v9A 5 v9 into 
Eq. (13.37), which expresses that the total momentum of the 
particles is conserved, we write

 mAvA 1 mBvB 5 (mA 1 mB)v9 (13.44)

  This equation can be solved for the common velocity v9 of the 
two particles after impact.

 2. e 5 1, Perfectly Elastic Impact. When e 5 1, Eq. (13.43) 
reduces to

 v9B 2 v9A 5 vA 2 vB (13.45)

  which expresses that the relative velocities before and after 
impact are equal. The impulses received by each particle dur-
ing the period of deformation and during the period of restitu-
tion are equal. The particles move away from each other after 
impact with the same velocity with which they approached each 

13.13 Direct Central Impact

Photo 13.3 The height the tennis ball bounces 
decreases after each impact because it has a 
coefficient of restitution less than one and energy is 
lost with each bounce.
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other before impact. The velocities v9A and v9B can be obtained 
by solving Eqs. (13.37) and (13.45) simultaneously.

 It is worth noting that in the case of a perfectly elastic impact, the 
total energy of the two particles, as well as their total momentum, is 
conserved. Equations (13.37) and (13.45) can be written as follows:

 mA(vA 2 v9A) 5 mB(v9B 2 vB) (13.379)
 vA 1 v9A 5 vB 1 v9B (13.459)

Multiplying (13.379) and (13.459) member by member, we have

mA(vA 2 v9A)(vA 1 v9A) 5 mB(v9B 2 vB)(v9B 1 vB)
mAv2

A 2 mA(v9A)2 5 mB(v9B)2 2 mBv2
B

Rearranging the terms in the equation obtained and multiplying by 1
2, 

we write

 1
2mAv2

A 1 1
2mBv2

B 5 1
2mA(v ¿A)2 1 1

2mB(v ¿B)2 (13.46)

which expresses that the kinetic energy of the particles is conserved. 
It should be noted, however, that in the general case of impact, i.e., 
when e is not equal to 1, the total energy of the particles is not con-
served. This can be shown in any given case by comparing the kinetic 
energies before and after impact. The lost kinetic energy is in part 
transformed into heat and in part spent in generating elastic waves 
within the two colliding bodies.

13.14 OBLIQUE CENTRAL IMPACT
Let us now consider the case when the velocities of the two colliding 
particles are not directed along the line of impact (Fig. 13.23). As 
indicated in Sec. 13.12, the impact is said to be oblique. Since the 

Fig. 13.23

A
v'A

v'B

vA

vB

Line of
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pact

n
t

B

velocities v9A and v9B of the particles after impact are unknown in 
direction as well as in magnitude, their determination will require 
the use of four independent equations.
 We choose as coordinate axes the n axis along the line of impact, 
i.e., along the common normal to the surfaces in contact, and the t 
axis along their common tangent. Assuming that the particles are 
perfectly smooth and frictionless, we observe that the only impulses 

Photo 13.4 When pool balls strike each other 
there is a transfer of momentum.
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exerted on the particles during the impact are due to internal forces 
directed along the line of impact, i.e., along the n axis (Fig. 13.24). 
It follows that

 1. The component along the t axis of the momentum of each 
particle, considered separately, is conserved; hence the t com-
ponent of the velocity of each particle remains unchanged. 
We write

 (vA)t 5 (v9A)t  (vB)t 5 (v9B)t (13.47)

 2. The component along the n axis of the total momentum of the 
two particles is conserved. We write

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n (13.48)

 3. The component along the n axis of the relative velocity of the 
two particles after impact is obtained by multiplying the n com-
ponent of their relative velocity before impact by the coeffi-
cient of restitution. Indeed, a derivation similar to that given 
in Sec. 13.13 for direct central impact yields

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

 We have thus obtained four independent equations which can 
be solved for the components of the velocities of A and B after impact. 
This method of solution is illustrated in Sample Prob. 13.15.
 Our analysis of the oblique central impact of two particles has 
been based so far on the assumption that both particles moved freely 
before and after the impact. Let us now examine the case when one 
or both of the colliding particles is constrained in its motion. Con-
sider, for instance, the collision between block A, which is constrained 
to move on a horizontal surface, and ball B, which is free to move 
in the plane of the figure (Fig. 13.25). Assuming no friction between 
the block and the ball, or between the block and the horizontal sur-
face, we note that the impulses exerted on the system consist of the 
impulses of the internal forces F and 2F directed along the line of 
impact, i.e., along the n axis, and of the impulse of the external force 
Fext exerted by the horizontal surface on block A and directed along 
the vertical (Fig. 13.26).
 The velocities of block A and ball B immediately after the impact 
are represented by three unknowns: the magnitude of the velocity v9A 
of block A, which is known to be horizontal, and the magnitude and 

Fig. 13.24
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direction of the velocity v9B of ball B. We must therefore write three 
equations by expressing that

 1. The component along the t axis of the momentum of ball B is 
conserved; hence the t component of the velocity of ball B 
remains unchanged. We write

 (vB)t 5 (v9B)t (13.50)

 2. The component along the horizontal x axis of the total momen-
tum of block A and ball B is conserved. We write

 mAvA 1 mB(vB)x 5 mAv9A 1 mB(v9B)x (13.51)

 3. The component along the n axis of the relative velocity of 
block A and ball B after impact is obtained by multiplying 
the n component of their relative velocity before impact by the 
coefficient of restitution. We write again

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

 We should note, however, that in the case considered here, the 
validity of Eq. (13.49) cannot be established through a mere extension 
of the derivation given in Sec. 13.13 for the direct central impact of 
two particles moving in a straight line. Indeed, these particles were 
not subjected to any external impulse, while block A in the present 
analysis is subjected to the impulse exerted by the horizontal surface. 
To prove that Eq. (13.49) is still valid, we will first apply the principle 
of impulse and momentum to block A over the period of deformation 
(Fig. 13.27). Considering only the horizontal components, we write

 mAvA 2 (e P dt) cos u 5 mAu (13.52)

where the integral extends over the period of deformation and where 
u represents the velocity of block A at the end of that period. Con-
sidering now the period of restitution, we write in a similar way

 mAu 2 (e R dt) cos u 5 mAv9A (13.53)

where the integral extends over the period of restitution.

n
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827 Recalling from Sec. 13.13 the definition of the coefficient of 
restitution, we write

 
e 5

e R  dt

e P dt  
(13.40)

Solving Eqs. (13.52) and (13.53) for the integrals e P dt and e R dt, 
and substituting into Eq. (13.40), we have, after reductions,

e 5
u 2 v ¿A
vA 2 u

or, multiplying all velocities by cos u to obtain their projections on 
the line of impact.

 
e 5

un 2 (v ¿A)n

(vA)n 2 un  
(13.54)

We note that Eq. (13.54) is identical to Eq. (13.41) of Sec. 13.13, 
except for the subscripts n which are used here to indicate that we 
are considering velocity components along the line of impact. Since 
the motion of ball B is unconstrained, the proof of Eq. (13.49) can 
be completed in the same manner as the derivation of Eq. (13.43) 
of Sec. 13.13. Thus, we conclude that the relation (13.49) between 
the components along the line of impact of the relative velocities 
of two colliding particles remains valid when one of the particles is 
constrained in its motion. The validity of this relation is easily 
extended to the case when both particles are constrained in their 
motion.

13.15  PROBLEMS INVOLVING ENERGY 
AND MOMENTUM

You now have at your disposal three different methods for the solu-
tion of kinetics problems: the direct application of Newton’s second 
law, oF 5 ma; the method of work and energy; and the method of 
impulse and momentum. To derive maximum benefit from these 
three methods, you should be able to choose the method best suited 
for the solution of a given problem. You should also be prepared to 
use different methods for solving the various parts of a problem 
when such a procedure seems advisable.
 You have already seen that the method of work and energy is 
in many cases more expeditious than the direct application of 
 Newton’s second law. As indicated in Sec. 13.4, however, the method 
of work and energy has limitations, and it must sometimes be supple-
mented by the use of oF 5 ma. This is the case, for example, when 
you wish to determine an acceleration or a normal force.
 For the solution of problems involving no impulsive forces, it will 
usually be found that the equation oF 5 ma yields a solution just as 
fast as the method of impulse and momentum and that the method of 
work and energy, if it applies, is more rapid and more convenient. 
However, in problems of impact, the method of impulse and momen-
tum is the only practicable method. A solution based on the direct 
application of oF 5 ma would be unwieldy, and the method of work 

13.15 Problems Involving Energy and 
Momentum
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828 Kinetics of Particles: Energy and Momentum 
Methods

and energy cannot be used since impact (unless perfectly elastic) 
involves a loss of mechanical energy.
 Many problems involve only conservative forces, except for a 
short impact phase during which impulsive forces act. The solution 
of such problems can be divided into several parts. The part corre-
sponding to the impact phase calls for the use of the method of 
impulse and momentum and of the relation between relative veloci-
ties, and the other parts can usually be solved by the method of work 
and energy. If the problem involves the determination of a normal 
force, however, the use of oF 5 ma is necessary.
 Consider, for example, a pendulum A, of mass mA and length l, 
which is released with no velocity from a position A1 (Fig. 13.28a). 
The pendulum swings freely in a vertical plane and hits a second 
pendulum B, of mass mB and same length l, which is initially at rest. 
After the impact (with coefficient of restitution e), pendulum B 
swings through an angle u that we wish to determine.
 The solution of the problem can be divided into three parts:

 1. Pendulum A Swings from A1 to A2. The principle of conserva-
tion of energy can be used to determine the velocity (vA)2 of 
the pendulum at A2 (Fig. 13.28b).

 2. Pendulum A Hits Pendulum B. Using the fact that the total 
momentum of the two pendulums is conserved and the rela-
tion between their relative velocities, we determine the 
velocities (vA)3 and (vB)3 of the two pendulums after impact 
(Fig. 13.28c).

 3. Pendulum B Swings from B3 to B4. Applying the principle of 
conservation of energy to pendulum B, we determine the maxi-
mum elevation y4 reached by that pendulum (Fig. 13.28d). The 
angle u can then be determined by trigonometry.

Fig. 13.28

(vA)1 = 0

(vB)2 = 0(vA)2 (vA)3 (vB)3

(a) (b) (d)

Conservation
of energy

Conservation
of energy

l

l l l l l l

l

A1

B1 A3 B3
A4

B4

A2 B2

Impact:
Conservation of momentum

Relative velocities

(c)

q

y4

 We note that if the tensions in the cords holding the pendulums 
are to be determined, the method of solution just described should 
be supplemented by the use of oF 5 ma.
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SAMPLE PROBLEM 13.13

A 20-Mg railroad car moving at a speed of 0.5 m/s to the right collides with 
a 35-Mg car which is at rest. If after the collision the 35-Mg car is observed 
to move to the right at a speed of 0.3 m/s, determine the coefficient of res-
titution between the two cars.

SOLUTION

We express that the total momentum of the two cars is conserved.

SAMPLE PROBLEM 13.14

A ball is thrown against a frictionless, vertical wall. Immediately before the 
ball strikes the wall, its velocity has a magnitude v and forms an angle of 30° 
with the horizontal. Knowing that e 5 0.90, determine the magnitude and 
direction of the velocity of the ball as it rebounds from the wall.

=
vA = 0.5 m /s vB = 0

mBvBmAvA mBv'BmAv'A

v'B = 0.3 m /sv'A

20 Mg 35 Mg 20 Mg 35 Mg

mAvA 1 mBvB 5 mAv9A 1 mBv9B
(20 Mg)(10.5 m/s) 1 (35 Mg)(0) 5 (20 Mg)v9A 1 (35 Mg)(10.3 m/s)

v9A 5 20.025 m/s    v9A 5 0.025 m/s z

The coefficient of restitution is obtained by writing

e 5
v ¿B 2 v ¿A
vA 2 vB

5
10.3 2 (20.025)

10.5 2 0
5

0.325
0.5

   e 5 0.65 ◀

30°

v'n

v't

vn

vt

v

v'

32.7°

0.500v

0.779v

SOLUTION

We resolve the initial velocity of the ball into components respectively per-
pendicular and parallel to the wall:

vn 5 v cos 30° 5 0.866v  vt 5 v sin 30° 5 0.500v

Motion Parallel to the Wall. Since the wall is frictionless, the impulse it 
exerts on the ball is perpendicular to the wall. Thus, the component parallel 
to the wall of the momentum of the ball is conserved and we have

v9t 5 vt 5 0.500v x

Motion Perpendicular to the Wall. Since the mass of the wall (and earth) 
is essentially infinite, expressing that the total momentum of the ball and 
wall is conserved would yield no useful information. Using the relation 
(13.49) between relative velocities, we write

 0 2 v9n 5 e(vn 2 0)
 v9n 5 20.90(0.866v) 5 20.779v  v9n 5 0.779v z

Resultant Motion. Adding vectorially the components v9n and v9t,
v9 5 0.926v b 32.7° ◀
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SAMPLE PROBLEM 13.15

The magnitude and direction of the velocities of two identical frictionless 
balls before they strike each other are as shown. Assuming e 5 0.90, deter-
mine the magnitude and direction of the velocity of each ball after the 
impact.

SOLUTION

The impulsive forces that the balls exert on each other during the impact 
are directed along a line joining the centers of the balls called the line of 
impact. Resolving the velocities into components directed, respectively, 
along the line of impact and along the common tangent to the surfaces in 
contact, we write

 (vA)n 5 vA cos 30° 5 126.0 ft/s
 (vA)t 5 vA sin 30° 5 115.0 ft/s
 (vB)n 5 2vB cos 60° 5 220.0 ft/s
 (vB)t 5 vB sin 60° 5 134.6 ft/s

Principle of Impulse and Momentum. In the adjoining sketches we show 
in turn the initial momenta, the impulses, and the final momenta.

Motion along the Common Tangent. Considering only the t components, 
we apply the principle of impulse and momentum to each ball separately. 
Since the impulsive forces are directed along the line of impact, the t com-
ponent of the momentum, and hence the t component of the velocity of 
each ball, is unchanged. We have

(v9A)t 5 15.0 ft/s x  (v9B)t 5 34.6 ft/s x

Motion along the Line of Impact. In the n direction, we consider the two 
balls as a single system and note that by Newton’s third law, the internal 
impulses are, respectively, F Dt and 2F Dt and cancel. We thus write that 
the total momentum of the balls is conserved:

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n

 m(26.0) 1 m(220.0) 5 m(v9A)n 1 m(v9B)n

 (v9A)n 1 (v9B)n 5 6.0 (1)

Using the relation (13.49) between relative velocities, we write

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n]
 (v9B)n 2 (v9A)n 5 (0.90)[26.0 2 (220.0)]
 (v9B)n 2 (v9A)n 5 41.4 (2)

Solving Eqs. (1) and (2) simultaneously, we obtain

 (v9A)n 5 217.7        (v9B)n 5 123.7
 (v9A)n 5 17.7 ft/s z    (v9B)n 5 23.7 ft/s  y

Resultant Motion. Adding vectorially the velocity components of each ball, 
we obtain

v9A 5 23.2 ft/s b 40.3°    v9B 5 41.9 ft/s a 55.6° ◀

t

n

B

m

30°

vA = 30 ft /s
vB = 40 ft /s

A

m

60°

B

m

30°

vA = 30 ft /s
vB = 40 ft /s

A

m

60°

mA(vA)n

mA(vA)t

mB(vB)n

mB(vB)t

F Δt – F Δt

+
=

mA(v'A)n

mA(v'A)t

mB(v'B)n

mB(v'B)t

v'A = 23.2 ft /s

v'B = 41.9 ft /s

34.6

15.0

17.7 23.7

� = 55.6°� = 40.3°
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SAMPLE PROBLEM 13.16

Ball B is hanging from an inextensible cord BC. An identical ball A is 
released from rest when it is just touching the cord and acquires a velocity 
v0 before striking ball B. Assuming perfectly elastic impact (e 5 1) and no 
friction, determine the velocity of each ball immediately after impact.

SOLUTION

Since ball B is constrained to move in a circle of center C, its velocity vB 
after impact must be horizontal. Thus the problem involves three unknowns: 
the magnitude v9B of the velocity of B, and the magnitude and direction of 
the velocity v9A of A after impact.

Impulse-Momentum Principle: Ball A

 mvA 1 F Dt 5 mv9A
1q t components:   mv0 sin 30° 1 0 5 m(v9A)t

 (v9A)t 5 0.5v0 (1)

We note that the equation used expresses conservation of the momentum 
of ball A along the common tangent to balls A and B.

Impulse-Momentum Principle: Balls A and B

 mvA 1 T Dt 5 mv9A 1 mv9B
 y1  x components:    0 5 m(v9A)t cos 30° 2 m(v9A)n sin 30° 2 mv9B

We note that the equation obtained expresses conservation of the total 
momentum in the x direction. Substituting for (v9A)t from Eq. (1) and re-
arranging terms, we write

 0.5(v9A)n 1 v9B 5 0.433v0 (2)

Relative Velocities along the Line of Impact. Since e 5 1, Eq. 
(13.49) yields

 (v9B)n 2 (v9A)n 5 (vA)n 2 (vB)n

 v9B sin 30° 2 (v9A)n 5 v0 cos 30° 2 0
 0.5v9B 2 (v9A)n 5 0.866v0 (3)

Solving Eqs. (2) and (3) simultaneously, we obtain

(v9A)n 5 20.520v0    v9B 5 0.693v0

v9B 5 0.693v0 z ◀

Recalling Eq. (1) we draw the adjoining sketch and obtain by trigonometry

v9A 5 0.721v0    b 5 46.1°    a 5 46.1° 2 30° 5 16.1°
v9A 5 0.721v0 a 16.1° ◀

T Δt 

x
30°

m(v'A)n

m(v'A)t

+ =
mv0

A

B B B

A A

mv'B

B

C

A

A

v0

30°
b

vB = 0

vA = v0

a

30°

A

B

n

30°
A

B

n

(v'A)n

(v'A)t
v'B

A

n

x

t

v'A

(v'A)t = 0.5v0

(v'A)n = 0.520v0

A

B

m(v'A)n

m(v'A)t

F Δt 

+ =
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sin q =
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= 0.5

n

r

r

mv0

q

A

n

t

A

t

A

bee29400_ch13_754-853.indd Page 831  12/3/08  4:42:04 PM user-s172bee29400_ch13_754-853.indd Page 831  12/3/08  4:42:04 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



832

SAMPLE PROBLEM 13.17

A 30-kg block is dropped from a height of 2 m onto the 10-kg pan of a spring 
scale. Assuming the impact to be perfectly plastic, determine the maximum 
deflection of the pan. The constant of the spring is k 5 20 kN/m.

SOLUTION

The impact between the block and the pan must be treated separately; 
therefore we divide the solution into three parts.

30 kg

10 kg 2 m

A

B

2 m

1 2 3 4

Conservation
of energy

Conservation
of energy

Impact: Total
momentum conserved

(vA)2

v3

v4 = 0

x3

(vB)1 = 0 (vB)2 = 0

(vA)1 = 0

h

No deformation
of spring )(Datum

for Vg = 0)(
x4

Conservation of Energy. Block: WA 5 (30 kg)(9.81 m/s2) 5 294 N

T1 5 1
2mA(vA)2

1 5 0  V1 5 WAy 5 (294 N)(2 m) 5 588 J
 T2 5 1

2mA(vA)2
2 5 1

2(30 kg)(vA)2
2  V2 5 0

T1 1 V1 5 T2 1 V2:  0 1 588 J 5 1
2(30 kg)(vA)2

2 1 0
(vA)2 5 16.26 m/s  (vA)2 5 6.26 m/sw

Impact: Conservation of Momentum. Since the impact is perfectly plastic, 
e 5 0; the block and pan move together after the impact.

mA(vA)2 1 mB(vB)2 5 (mA 1 mB)v3
 (30 kg)(6.26 m/s) 1 0 5 (30 kg 1 10 kg)v3

v3 5 14.70 m/s  v3 5 4.70 m/sw

Conservation of Energy. Initially the spring supports the weight WB of 
the pan; thus the initial deflection of the spring is

x3 5
WB

k
5

(10 kg) (9.81 m/s2)

20 3 103 N/m
5

98.1 N
20 3 103 N/m

5 4.91 3 1023 m

Denoting by x4 the total maximum deflection of the spring, we write

T3 5 1
2(mA 1 mB)v2

3 5 1
2(30 kg 1 10 kg)(4.70 m/s)2 5 442 J

V3 5 Vg 1 Ve 5 0 1 1
2kx2

3 5 1
2(20 3 103)(4.91 3 1023)2 5 0.241 J

T4 5 0
V4 5 Vg 1 Ve 5 (WA 1 WB)(2h) 1 1

2kx2
4 5 2(392)h 1 1

2(20 3 103)x2
4

Noting that the displacement of the pan is h 5 x4 2 x3, we write

T3 1 V3 5 T4 1 V4:
442 1 0.241 5 0 2 392(x4 2 4.91 3 1023) 1 1

2(20 3 103)x2
4

x4 5 0.230 m    h 5 x4 2 x3 5 0.230 m 2 4.91 3 1023 m
 h 5 0.225 m h 5 225 mm ◀
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SOLVING PROBLEMS
ON YOUR OWN

This lesson deals with the impact of two bodies, i.e., with a collision occurring 
in a very small interval of time. You will solve a number of impact problems 

by expressing that the total momentum of the two bodies is conserved and noting 
the relationship which exists between the relative velocities of the two bodies 
before and after impact.

1. As a first step in your solution you should select and draw the following 
coordinate axes: the t axis, which is tangent to the surfaces of contact of the two 
colliding bodies, and the n axis, which is normal to the surfaces of contact and 
defines the line of impact. In all the problems of this lesson the line of impact 
passes through the mass centers of the colliding bodies, and the impact is referred 
to as a central impact.

2. Next you will draw a diagram showing the momenta of the bodies before 
impact, the impulses exerted on the bodies during impact, and the final momenta 
of the bodies after impact (Fig. 13.24). You will then observe whether the impact 
is a direct central impact or an oblique central impact.

3. Direct central impact. This occurs when the velocities of bodies A and B
before impact are both directed along the line of impact (Fig. 13.20a).

a. Conservation of momentum. Since the impulsive forces are internal to the 
system, you can write that the total momentum of A and B is conserved,

mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

where vA and vB denote the velocities of bodies A and B before impact and v9A 
and v9B denote their velocities after impact.
 b. Coefficient of restitution. You can also write the following relation between 
the relative velocities of the two bodies before and after impact,

 v9B 2 v9A 5 e(vA 2 vB) (13.43)

where e is the coefficient of restitution between the two bodies.

Note that Eqs. (13.37) and (13.43) are scalar equations which can be solved for two 
unknowns. Also, be careful to adopt a consistent sign convention for all velocities.

4. Oblique central impact. This occurs when one or both of the initial velocities 
of the two bodies is not directed along the line of impact (Fig. 13.20b). To solve 
problems of this type, you should first resolve into components along the t axis and 
the n axis the momenta and impulses shown in your diagram.

(continued)
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 a. Conservation of momentum. Since the impulsive forces act along the line 
of impact, i.e., along the n axis, the component along the t axis of the momentum 
of each body is conserved. Therefore, you can write for each body that the t com-
ponents of its velocity before and after impact are equal,

 (vA)t 5 (v9A)t  (vB)t 5 (v9B)t (13.47)

Also, the component along the n axis of the total momentum of the system is 
conserved,

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n (13.48)

 b. Coefficient of restitution. The relation between the relative velocities of 
the two bodies before and after impact can be written in the n direction only,

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

You now have four equations that you can solve for four unknowns. Note that after 
finding all the velocities, you can determine the impulse exerted by body A on 
body B by drawing an impulse-momentum diagram for B alone and equating 
components in the n direction.
 c. When the motion of one of the colliding bodies is constrained, you must 
include the impulses of the external forces in your diagram. You will then observe 
that some of the above relations do not hold. However, in the example shown in 
Fig. 13.26 the total momentum of the system is conserved in a direction perpen-
dicular to the external impulse. You should also note that when a body A bounces 
off a fixed surface B, the only conservation of momentum equation which can be 
used is the first of Eqs. (13.47) [Sample Prob. 13.14].

5. Remember that energy is lost during most impacts. The only exception is 
for perfectly elastic impacts (e 5 1), where energy is conserved. Thus, in the gen-
eral case of impact, where e , 1, the energy is not conserved. Therefore, be 
careful not to apply the principle of conservation of energy through an impact 
situation. Instead, apply this principle separately to the motions preceding and 
following the impact [Sample Prob. 13.17].
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PROBLEMS
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13.155 The coefficient of restitution between the two collars is known to 
be 0.80. Determine (a) their velocities after impact, (b) the energy 
loss during impact.

 13.156 Collars A and B, of the same mass m, are moving toward each 
other with the velocities shown. Knowing that the coefficient of 
restitution between the collars is 0 (plastic impact), show that after 
impact (a) the common velocity of the collars is equal to half the 
difference in their speed before impact, (b) the loss in kinetic 
energy is 1

4 m(vA 1 vB)2.

 13.157 Two steel blocks are sliding on a frictionless horizontal surface 
with the velocities shown. Knowing that after impact the velocity 
of B is observed to be 10.5 ft/s to the right, determine the coeffi-
cient of restitution between the two blocks.

 13.158 Two steel blocks are sliding on a frictionless horizontal surface 
with the velocities shown. Knowing that the coefficient of restitu-
tion between the two blocks is 0.75, determine (a) the velocity of 
each block after impact, (b) the loss of kinetic energy due to the 
impact.

 13.159 Two identical cars A and B are at rest on a loading dock with brakes 
released. Car C, of a slightly different style but of the same weight, 
has been pushed by dockworkers and hits car B with a velocity of 
1.5 m/s. Knowing that the coefficient of restitution is 0.8 between 
B and C and 0.5 between A and B, determine the velocity of each 
car after all collisions have taken place.

A B

2 m/s

5 kg 3 kg

1.5 m/s

Fig. P13.155

A

A'

B Cv0

Fig. P13.160

A B

vA vB

Fig. P13.156

6 ft/s

A B

1.5 lb 0.9 lb

10 ft/s

Fig. P13.157 and P13.158

CBA

1.5 m/s

Fig. P13.159

 13.160 Three steel spheres of equal weight are suspended from the ceiling 
by cords of equal length which are spaced at a distance slightly 
greater than the diameter of the spheres. After being pulled back 
and released, sphere A hits sphere B, which then hits sphere C. 
Denoting by e the coefficient of restitution between the spheres and 
by v0 the velocity of A just before it hits B, determine (a) the veloci-
ties of A and B immediately after the first collision, (b) the velocities 
of B and C immediately after the second collision. (c) Assuming now 
that n spheres are suspended from the ceiling and that the first 
sphere is pulled back and released as described above, determine 
the velocity of the last sphere after it is hit for the first time. (d) Use 
the result of part c to obtain the velocity of the last sphere when 
n 5 6 and e 5 0.95.
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 13.161 Two disks sliding on a frictionless horizontal plane with opposite 
velocities of the same magnitude v0 hit each other squarely. Disk 
A is known to have a mass of 3 kg and is observed to have zero 
velocity after impact. Determine (a) the mass of disk B, knowing 
that the coefficient of restitution between the two disks is 0.5, 
(b) the range of possible values of the mass of disk B if the coeffi-
cient of restitution between the two disks is unknown.

 13.162 Packages in an automobile parts supply house are transported to 
the loading dock by pushing them along on a roller track with very 
little friction. At the instant shown packages B and C are at rest 
and package A has a velocity of 2 m/s. Knowing that the coefficient 
of restitution between the packages is 0.3, determine (a) the veloc-
ity of package C after A hits B and B hits C, (b) the velocity of A 
after it hits B for the second time.

A

A

B

B

v0 –v0

v'

Fig. P13.161

2 m/s

A B C

8 kg 4 kg 6 kg

Fig. P13.162

t

n

q

a

v

v'

Fig. P13.164

50°

40°

A
B

vA = 6 m/s

vB = 4 m/s

Fig. P13.165

 13.163 One of the requirements for tennis balls to be used in official 
competition is that, when dropped onto a rigid surface from a 
height of 100 in., the height of the first bounce of the ball must 
be in the range 53 in. # h # 58 in. Determine the range of the 
coefficients of restitution of the tennis balls satisfying this 
requirement.

 13.164 Show that for a ball hitting a frictionless fixed surface, a . u. Also 
show that the percent loss in kinetic energy due to the impact is 
100(1 2 e2) cos2 u.

 13.165 A 600-g ball A is moving with a velocity of magnitude 6 m/s when 
it is hit as shown by a 1-kg ball B which has a velocity of magnitude 
4 m/s. Knowing that the coefficient of restitution is 0.8 and assum-
ing no friction, determine the velocity of each ball after impact.
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837Problems 13.166 Two identical hockey pucks are moving on a hockey rink at the 
same speed of 3 m/s and in parallel and opposite directions when 
they strike each other as shown. Assuming a coefficient of restitu-
tion e 5 1, determine the magnitude and direction of the velocity 
of each puck after impact.

 13.167 Two identical pool balls of 2.37-in.-diameter, may move freely on 
a pool table. Ball B is at rest and ball A has an initial velocity 
v 5 v0i. (a) Knowing that b 5 2 in. and e 5 0.7, determine the 
velocity of each ball after impact. (b) Show that if e 5 1, the final 
velocities of the balls form a right angle for all values of b.

20°

A

B

vA

vB

Fig. P13.166

x

y

v

b
A

B

Fig. P13.167

 13.168 The coefficient of restitution is 0.9 between the two 2.37-in. 
 diameter billiard balls A and B. Ball A is moving in the direction 
shown with a velocity of 3 ft/s when it strikes ball B, which is at 
rest. Knowing that after impact B is moving in the x direction, 
determine (a) the angle u, (b) the velocity of B after impact.

A

B

x

y

vA

vB'

6 in.

10 in.

q

Fig. P13.168

 13.169 A boy located at point A halfway between the center O of a semi-
circular wall and the wall itself throws a ball at the wall in a direc-
tion forming an angle of 45° with OA. Knowing that after hitting 
the wall the ball rebounds in a direction parallel to OA, determine 
the coefficient of restitution between the ball and the wall.

R
2

R

O
A

B

v

v�

45°

Fig. P13.169

bee29400_ch13_754-853.indd Page 837  12/11/08  4:11:23 AM s-206bee29400_ch13_754-853.indd Page 837  12/11/08  4:11:23 AM s-206 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0
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 13.170 A girl throws a ball at an inclined wall from a height of 1.2 m, 
hitting the wall at A with a horizontal velocity v0 of magnitude 
15 m/s. Knowing that the coefficient of restitution between the 
ball and the wall is 0.9 and neglecting friction, determine the dis-
tance d from the foot of the wall to the point B where the ball 
will hit the ground after bouncing off the wall.

Fig. P13.170

C

A

B
1.2 m 60°

d

v0

 13.171 A ball hits the ground at A with a velocity v0 of 16 ft/s at an angle 
of 60° with the horizontal. Knowing that e 5 0.6 between the ball 
and the ground and that after rebounding the ball reaches point 
B with a horizontal velocity, determine (a) the  distances h and d, 
(b) the velocity of the ball as it reaches B.

A

B

h

d

v0 = 16 ft /s

vB

60°

Fig. P13.171

A

B
h

v0

a

Fig. P13.172 and P13.173

 13.172 A sphere rebounds as shown after striking an inclined plane with a 
vertical velocity v0 of magnitude v0 5 15 ft/s. Knowing that a 5 30° 
and e 5 0.8 between the sphere and the plane, determine the 
height h reached by the sphere.

 13.173 A sphere rebounds as shown after striking an inclined plane with 
a vertical velocity v0 of magnitude v0 5 20 ft/s. Determine the 
value of a that will maximize the horizontal distance the ball trav-
els before reaching its maximum height h assuming the coefficient 
of restitution between the ball and the ground is (a) e 5 1, 
(b) e 5 0.8.
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839Problems 13.174 A 1-kg block B is moving with a velocity v0 of magnitude v0 5 2 m/s 
as it hits the 0.5-kg sphere A, which is at rest and hanging from a 
cord attached at O. Knowing that mk 5 0.6 between the block and 
the horizontal surface and e 5 0.8 between the block and the 
sphere, determine after impact (a) the maximum height h reached 
by the sphere, (b) the distance x traveled by the block.

 13.175 A 1.5-kg block B is attached to an undeformed spring of constant 
k 5 80 N/m and is resting on a horizontal frictionless surface when 
it is struck by an identical block A moving at a speed of 5 m/s. Con-
sidering successively the cases when the coefficient of restitution 
between the two blocks is (1) e 5 1, (2) e 5 0, determine (a) the 
maximum deflection of the spring, (b) the final velocity of block A.

 13.176 Block A is released from rest and slides down the frictionless sur-
face of B until it hits a bumper on the right end of B. Block A has 
a mass of 10 kg and object B has a mass of 30 kg and B can roll 
freely on the ground. Determine the velocities of A and B imme-
diately after impact when (a) e 5 0, (b) e 5 0.7.

A
B

O

v0h

x

Fig. P13.174

B A

5 m/s

k = 80 N/m

Fig. P13.175

Fig. P13.176

0.2 m

B

A

 13.177 A 90-g ball thrown with a horizontal velocity v0 strikes a 720-g plate 
attached to a vertical wall at a height of 900 mm above the ground. 
It is observed that after rebounding, the ball hits the ground at a 
distance of 480 mm from the wall when the plate is rigidly attached 
to the wall (Fig. 1) and at a distance of 220 mm when a foam-rubber 
mat is placed between the plate and the wall (Fig. 2). Determine 
(a) the coefficient of restitution e between the ball and the plate, 
(b) the initial velocity v0 of the ball.

v0

900 mm

720 g

90 g

v0

90 g

220 mm480 mm

(1) (2)

720 g

Fig. P13.177
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 13.178 A 1.3-lb sphere A is dropped from a height of 1.8 ft onto a 2.6-lb 
plate B, which is supported by a nested set of springs and is initially 
at rest. Knowing that the coefficient of restitution between the 
sphere and the plate is e 5 0.8, determine (a) the height h reached 
by the sphere after rebound, (b) the constant k of the single spring 
equivalent to the given set if the maximum deflection of the plate 
is observed to be equal to 3h.

1.8 ft

h

B

A

Fig. P13.178 and P13.179

A

A B
C

C

vA vB

12 ft

3 ft

B

Fig. P13.180

 13.179 A 1.3-lb sphere A is dropped from a height of 1.8 ft onto 2.6-lb 
plate B, which is supported by a nested set of springs and is ini-
tially at rest. Knowing that the set of springs is equivalent to a 
single spring of constant k 5 5 lb/in., determine (a) the value of 
the coefficient of restitution between the sphere and the plate for 
which the height h reached by the sphere after rebound is maxi-
mum, (b) the corresponding value of h, (c) the corresponding value 
of the maximum deflection of the plate.

 13.180 Two cars of the same mass run head-on into each other at C. After 
the collision, the cars skid with their brakes locked and come to a 
stop in the positions shown in the lower part of the figure. Know-
ing that the speed of car A just before impact was 5 mi/h and that 
the coefficient of kinetic friction between the pavement and the 
tires of both cars is 0.30, determine (a) the speed of car B just 
before impact, (b) the effective coefficient of restitution between 
the two cars.
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841Problems 13.181 Blocks A and B each weigh 0.8 lb and block C weighs 2.4 lb. The 
coefficient of friction between the blocks and the plane is mk 5 0.30. 
Initially block A is moving at a speed v0 5 15 ft/s and blocks B 
and C are at rest (Fig. 1). After A strikes B and B strikes C, all 
three blocks come to a stop in the positions shown (Fig. 2). Deter-
mine (a) the coefficients of restitution between A and B and 
between B and C, (b) the displacement x of block C.

 13.182 The three blocks shown are identical. Blocks B and C are at rest 
when block B is hit by block A, which is moving with a velocity vA 
of 3 ft/s. After the impact, which is assumed to be perfectly plastic 
(e 5 0), the velocity of blocks A and B decreases due to friction, 
while block C picks up speed, until all three blocks are moving 
with the same velocity v. Knowing that the coefficient of kinetic 
friction between all surfaces is mk 5 0.20, determine (a) the time 
required for the three blocks to reach the same velocity, (b) the total 
distance traveled by each block during that time.

 13.183 After having been pushed by an airline employee, an empty 40-kg 
luggage carrier A hits with a velocity of 5 m/s an identical carrier 
B containing a 15-kg suitcase equipped with rollers. The impact 
causes the suitcase to roll into the left wall of carrier B. Knowing 
that the coefficient of restitution between the two  carriers is 0.80 
and that the coefficient of restitution between the suitcase and the 
wall of carrier B is 0.30, determine (a) the velocity of carrier B 
after the suitcase hits its wall for the first time, (b) the total energy 
lost in that impact.

 13.184 A 20-g bullet fired into a 4-kg wooden block suspended from cords 
AC and BD penetrates the block at point E, halfway between C 
and D, without hitting cord BD. Determine (a) the maximum 
height h to which the block and the embedded bullet will swing 
after impact, (b) the total impulse exerted on the block by the two 
cords during the impact.

 13.185 A 70-g ball B dropped from a height h0 5 1.5 m reaches a height 
h2 5 0.25 m after bouncing twice from identical 210-g plates. Plate 
A rests directly on hard ground, while plate C rests on a foam-
rubber mat. Determine (a) the coefficient of restitution between 
the ball and the plates, (b) the height h1 of the ball’s first bounce.

A B C

A B C

v0

3 in. 3 in.

(1)

(2)

12 in.

3 in.

12 in.

12 in. x

Fig. P13.181

Fig. P13.183

A B

C

5 m/s

A B

C

A B

C

v

vA = 3 ft/s

Fig. P13.182

A B

DC
E

4 kg

20 g

600 m/s

20°

l = 1.5 m

h

Fig. P13.184

A

B

C h2

h0
h1

Fig. P13.185
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 13.186 Ball B is hanging from an inextensible cord. An identical ball A is 
released from rest when it is just touching the cord and drops 
through the vertical distance hA 5 8 in. before striking ball B. 
Assuming e 5 0.9 and no friction, determine the resulting maxi-
mum vertical displacement hB of the ball B.

 13.187 A 700-g sphere A moving with a velocity v0 parallel to the ground 
strikes the inclined face of a 2.1-kg wedge B which can roll freely 
on the ground and is initially at rest. After impact the sphere is 
observed from the ground to be moving straight up. Knowing 
that the coefficient of restitution between the sphere and the 
wedge is e 5 0.6, determine (a) the angle u that the inclined face 
of the wedge makes with the horizontal, (b) the energy lost due 
to the impact.

 13.188 When the rope is at an angle of a 5 30° the 2-lb sphere A has a 
speed v0 5 2 ft/s. The coefficient of restitution between A and the 
4-lb wedge B is 0.8 and the length of rope l 5 3 ft. The spring 
constant has a value of 100 lb/ft and u 5 20°. Determine the veloc-
ity of A and B immediately after the impact.

A

B

hA

hB

Fig. P13.186

v0
A

B
q

Fig. P13.187

 13.189 When the rope is at an angle of a 5 30° the 0.5-kg sphere A has 
a speed v0 5 1.2 m/s. The coefficient of restitution between A and 
the 0.9-kg wedge B is 0.7 and the length of rope l 5 0.8 m. The 
spring constant has a value of 500 N/m and u 5 20°. Determine 
the velocity of A and B immediately after the impact.

l

k

a

B
A

qv0

Fig. P13.188

l

k

a

B
A

q
v0

Fig. P13.189
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843

REVIEW AND SUMMARY

This chapter was devoted to the method of work and energy and to 
the method of impulse and momentum. In the first half of the 
 chapter we studied the method of work and energy and its applica-
tion to the analysis of the motion of particles.

We first considered a force F acting on a particle A and defined the 
work of F corresponding to the small displacement dr [Sec. 13.2] as 
the quantity

 dU 5 F ? dr (13.1)

or, recalling the definition of the scalar product of two vectors,

dU 5 F ds cos a (13.19)

where a is the angle between F and dr (Fig. 13.29). The work of F
during a finite displacement from A1 to A2, denoted by U1y2, was 
obtained by integrating Eq. (13.1) along the path described by the 
particle:

U1y2 5 #
A2

A1

 F ? dr
 

(13.2)

For a force defined by its rectangular components, we wrote

U1y2 5 #
A2

A1

 (Fx dx 1 Fy dy 1 Fz dz)
 

(13.20)

The work of the weight W of a body as its center of gravity moves 
from the elevation y1 to y2 (Fig. 13.30) was obtained by substituting 
Fx 5 Fz 5 0 and Fy 5 2W into Eq. (13.20) and integrating. We found

U1y2 5 2 #
y2

y1

 W dy 5 Wy1 2 Wy2
 

(13.4)

Work of a force

Work of a weight

A1

s1

s2

s

A2

F

O

A

dr
ds

a

Fig. 13.29

A2

A

A1

y2

y1

dy

y

W

Fig. 13.30
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The work of a force F exerted by a spring on a body A during a 
finite displacement of the body (Fig. 13.31) from A1(x 5 x1) to 
A2(x 5 x2) was obtained by writing

 dU 5 2F dx 5 2kx dx

 
U1y2 5 2 #

x2

x1

 kx dx 5 1
2 kx2

1 2 1
2 kx2

2 
(13.6)

The work of F is therefore positive when the spring is returning to 
its undeformed position.

Work of the force exerted by a spring

A0

A1

Spring undeformed

B

B

B

F

A

A2

x1

x

x2

Fig. 13.31

Fig. 13.32

O

A2

A1

r2

r1
q

dr

F

–F

M

r

A'

A
m

dq

The work of the gravitational force F exerted by a particle of mass M 
located at O on a particle of mass m as the latter moves from A1 to 
A2 (Fig. 13.32) was obtained by recalling from Sec. 12.10 the expres-
sion for the magnitude of F and writing

 
U1y2 5 2 #

r2

r1

 
GMm

r2  dr 5
GMm

r2
2

GMm
r1  

(13.7)

The kinetic energy of a particle of mass m moving with a velocity v 
[Sec. 13.3] was defined as the scalar quantity

 T 5 1
2mv2 (13.9)

Work of the gravitational force

Kinetic energy of a particle
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845From Newton’s second law we derived the principle of work and
energy, which states that the kinetic energy of a particle at A2 can 
be obtained by adding to its kinetic energy at A1 the work done dur-
ing the displacement from A1 to A2 by the force F exerted on the 
particle:

 T1 1 U1y2 5 T2 (13.11)

The method of work and energy simplifies the solution of many 
problems dealing with forces, displacements, and velocities, since it 
does not require the determination of accelerations [Sec. 13.4]. We 
also note that it involves only scalar quantities and that forces which 
do no work need not be considered [Sample Probs. 13.1 and 13.3]. 
However, this method should be supplemented by the direct applica-
tion of Newton’s second law to determine a force normal to the path 
of the particle [Sample Prob. 13.4].

The power developed by a machine and its mechanical efficiency 
were discussed in Sec. 13.5. Power was defined as the time rate at 
which work is done:

 
Power 5

dU
dt

5 F ? v
 

(13.12, 13.13)

where F is the force exerted on the particle and v the velocity of the 
particle [Sample Prob. 13.5]. The mechanical efficiency, denoted by 
h, was expressed as

 
h 5

power output

power input  
(13.15)

When the work of a force F is independent of the path followed 
[Secs. 13.6 and 13.7], the force F is said to be a conservative force, 
and its work is equal to minus the change in the potential energy V 
associated with F:

 U1y2 5 V1 2 V2 (13.199)

The following expressions were obtained for the potential energy 
associated with each of the forces considered earlier:

Force of gravity (weight): Vg 5 Wy (13.16)

Gravitational force: Vg 5 2
GMm

r
 (13.17)

Elastic force exerted by a spring: Ve 5 1
2 kx2 (13.18)

Principle of work and energy

Method of work and energy

Power and mechanical efficiency

Conservative force. Potential energy

Review and Summary
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Substituting for U1y2 from Eq. (13.199) into Eq. (13.11) and re-
arranging the terms [Sec. 13.8], we obtained

 T1 1 V1 5 T2 1 V2 (13.24)

This is the principle of conservation of energy, which states that 
when a particle moves under the action of conservative forces, the 
sum of its kinetic and potential energies remains constant. The appli-
cation of this principle facilitates the solution of problems involving 
only conservative forces [Sample Probs. 13.6 and 13.7].

Recalling from Sec. 12.9 that, when a particle moves under a central 
force F, its angular momentum about the center of force O remains 
constant, we observed [Sec. 13.9] that, if the central force F is also 
conservative, the principles of conservation of angular momentum 
and of conservation of energy can be used jointly to analyze the 
motion of the particle [Sample Prob. 13.8]. Since the gravitational 
force exerted by the earth on a space vehicle is both central and 
conservative, this approach was used to study the motion of such 
vehicles [Sample Prob. 13.9] and was found particularly effective in 
the case of an oblique launching. Considering the initial position P0 
and an arbitrary position P of the vehicle (Fig. 13.33), we wrote

(HO)0 5 HO: r0mv0 sin f0 5 rmv sin f (13.25)

T0 1 V0 5 T 1 V:  1
2mv2

0 2
GMm

r0
5 1

2mv2 2
GMm

r  
(13.26)

where m was the mass of the vehicle and M the mass of the earth.

The second half of the chapter was devoted to the method of impulse 
and momentum and to its application to the solution of various types 
of problems involving the motion of particles.

 The linear momentum of a particle was defined [Sec. 13.10] as 
the product mv of the mass m of the particle and its velocity v. From 
Newton’s second law, F 5 ma, we derived the relation

 
mv1 1 #

t2

t1

 
F dt 5 mv2 

(13.28)

where mv1 and mv2 represent the momentum of the particle at a 
time t1 and a time t2, respectively, and where the integral defines the 
linear impulse of the force F during the corresponding time interval. 
We wrote therefore

 mv1 1 Imp1y2 5 mv2 (13.30)

which expresses the principle of impulse and momentum for a 
particle.

Principle of conservation of energy

Motion under a gravitational force

Principle of impulse and momentum 
for a particle

O

r

P

v

f

f0

P0

v0

r0

Fig. 13.33
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847 When the particle considered is subjected to several forces, the 
sum of the impulses of these forces should be used; we had

 mv1 1 o Imp1y2 5 mv2 (13.32)

 Since Eqs. (13.30) and (13.32) involve vector quantities, it is 
necessary to consider their x and y components separately when apply-
ing them to the solution of a given problem [Sample Probs. 13.10 
and 13.11].

The method of impulse and momentum is particularly effective in 
the study of the impulsive motion of a particle, when very large 
forces, called impulsive forces, are applied for a very short interval 
of time Dt, since this method involves the impulses F Dt of the 
forces, rather than the forces themselves [Sec. 13.11]. Neglecting the 
impulse of any nonimpulsive force, we wrote

 mv1 1 oF Dt 5 mv2 (13.35)

In the case of the impulsive motion of several particles, we had

 omv1 1 oF Dt 5 omv2 (13.36)

where the second term involves only impulsive, external forces [Sam-
ple Prob. 13.12].

 In the particular case when the sum of the impulses of the 
external forces is zero, Eq. (13.36) reduces to omv1 5 omv2; that is, 
the total momentum of the particles is conserved.

In Secs. 13.12 through 13.14, we considered the central impact of two 
colliding bodies. In the case of a direct central impact [Sec. 13.13], 
the two colliding bodies A and B were moving along the line of impact 
with velocities vA and vB, respectively (Fig. 13.34). Two equations 
could be used to determine their velocities v9A and v9B after the impact. 

Impulsive motion

Direct central impact

Review and Summary

vA

vB

Line of

im
pact

B

A

Fig. 13.34
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848 Kinetics of Particles: Energy and Momentum 
Methods

The first expressed conservation of the total momentum of the 
two bodies,

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

where a positive sign indicates that the corresponding velocity is 
directed to the right, while the second related the relative velocities 
of the two bodies before and after the impact,

 v9B 2 v9A 5 e(vA 2 vB) (13.43)

The constant e is known as the coefficient of restitution; its value lies 
between 0 and 1 and depends in a large measure on the materials 
involved. When e 5 0, the impact is said to be perfectly plastic; when 
e 5 1, it is said to be perfectly elastic [Sample Prob. 13.13].

In the case of an oblique central impact [Sec. 13.14], the velocities 
of the two colliding bodies before and after the impact were resolved 
into n components along the line of impact and t components along 
the common tangent to the surfaces in contact (Fig. 13.35). We 
observed that the t component of the velocity of each body remained 

Oblique central impact

unchanged, while the n components satisfied equations similar to 
Eqs. (13.37) and (13.43) [Sample Probs. 13.14 and 13.15]. It was 
shown that although this method was developed for bodies moving 
freely before and after the impact, it could be extended to the case 
when one or both of the colliding bodies is constrained in its motion 
[Sample Prob. 13.16].

In Sec. 13.15, we discussed the relative advantages of the three fun-
damental methods presented in this chapter and the preceding one, 
namely, Newton’s second law, work and energy, and impulse and 
momentum. We noted that the method of work and energy and the 
method of impulse and momentum can be combined to solve prob-
lems involving a short impact phase during which impulsive forces 
must be taken into consideration [Sample Prob. 13.17].

Using the three fundamental 
methods of kinetic analysis

A
v'A

v'B

vA

vB

Line of

im
pact

n

t

B

Fig. 13.35
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849

REVIEW PROBLEMS

 13.190 A 2-oz pellet shot vertically from a spring-loaded pistol on the 
surface of the earth rises to a height of 300 ft. The same pellet 
shot from the same pistol on the surface of the moon rises to a 
height of 1900 ft. Determine the energy dissipated by aerodynamic 
drag when the pellet is shot on the surface of the earth. (The 
acceleration of gravity on the surface of the moon is 0.165 times 
that on the surface of the earth.)

 13.191 An elastic cable is to be designed for bungee jumping from a tower 
130 ft high. The specifications call for the cable to be 85 ft long 
when unstretched, and to stretch to a total length of 100 ft when 
a 600-lb weight is attached to it and dropped from the tower. 
Determine (a) the required spring constant k of the cable, (b) how 
close to the ground a 185-lb man will come if he uses this cable 
to jump from the tower.

 13.192 A 2-oz hollow steel sphere attached to an 8-in. cord can swing 
about point O in a vertical plane. It is subjected to its own weight 
and to a force F exerted by a small magnet embedded in 
the ground. The magnitude of that force expressed in pounds is 
F 5 0.1/r2, where r is the distance from the magnet to the sphere 
expressed in inches. Knowing that the sphere is released from rest 
at A, determine its speed as it passes through point B.

Fig. P13.191

8 in.

B

O

4 in.
0.5 in.

A

Fig. P13.192

 13.193 A satellite describes an elliptic orbit about a planet of mass M. The 
minimum and maximum values of the distance r from the satellite 
to the center of the planet are, respectively, r0 and r1. Use the 
principles of conservation of energy and conservation of angular 
momentum to derive the relation

1
r0

1
1
r1

5
2GM

h2

  where h is the angular momentum per unit mass of the satellite 
and G is the constant of gravitation.

A B
O

r1r0

v0

Fig. P13.193
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850 Kinetics of Particles: Energy and Momentum 
Methods

 13.194 A shuttle is to rendezvous with a space station which is in a circular 
orbit at an altitude of 250 mi above the surface of the earth. The 
shuttle has reached an altitude of 40 mi when its engine is turned 
off at point B. Knowing that at that time the velocity v0 of the 
shuttle forms an angle f0 5 55° with the vertical, determine the 
required magnitude of v0 if the trajectory of the shuttle is to be 
tangent at A to the orbit of the space station.

 13.195 A 25-g steel-jacketed bullet is fired horizontally with a velocity of 
600 m/s and ricochets off a steel plate along the path CD with a 
velocity of 400 m/s. Knowing that the bullet leaves a 10-mm scratch 
on the plate and assuming that its average speed is 500 m/s 
while it is in contact with the plate, determine the magnitude and 
direction of the average impulsive force exerted by the bullet on 
the plate.

250 mi

A

BO

R = 3960 mi

v0

f0

Fig. P13.194 

A B
C

D

15�

20�10 mm

Fig. P13.195

 13.196 The 650-kg hammer of a drop-hammer pile driver falls from a 
height of 1.2 m onto the top of a 140-kg pile, driving it 110 mm 
into the ground. Assuming perfectly plastic impact (e 5 0), deter-
mine the average resistance of the ground to penetration.

 13.197 A small sphere B of mass m is attached to an inextensible cord of 
length 2a, which passes around the fixed peg A and is attached to 
a fixed support at O. The sphere is held close to the support at O 
and released with no initial velocity. It drops freely to point C, 
where the cord becomes taut, and swings in a vertical plane, first 
about A and then about O. Determine the vertical distance from 
line OD to the highest point C0 that the sphere will reach.

1.2 m

140 kg

650 kg

Fig. P13.196 45°

DO

B

A

C
C�

C�

a

Fig. P13.197
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851Review Problems 13.198 Disks A and B of mass mA and mB, respectively, can slide freely 
on a frictionless horizontal surface. Disk B is at rest when it is hit 
by disk A which is moving with a velocity v0 in a direction forming 
an angle u with the line of impact. Denoting by e the coefficient 
of restitution between the two disks, show that the n component 
of the velocity of A after impact is (a) positive if mA . emB, 
(b) negative if mA , emB, (c) zero if mA 5 emB.

 13.199 Blocks A and B are connected by a cord which passes over pulleys 
and through a collar C. The system is released from rest when 
x 5 1.7 m. As block A rises, it strikes collar C with perfectly plastic 
impact (e 5 0). After impact, the two blocks and the collar keep 
moving until they come to a stop and reverse their motion. As A 
and C move down, C hits the ledge and blocks A and B keep 
moving until they come to another stop. Determine (a) the velocity 
of the blocks and collar immediately after A hits C, (b) the distance 
the blocks and collar move after the impact before coming to a 
stop, (c) the value of x at the end of one complete cycle.

Bt

A

n

v0�

Fig. P13.198

A

C

x

3 kg
6 kg

5 kg

B

Fig. P13.199 

 13.200 A small sphere A attached to a cord AC is released from rest in 
the position shown and hits an identical sphere B hanging from a 
vertical cord BD. If the maximum angle uB formed by cord BD 
with the vertical in the subsequent motion of sphere B is to be 
equal to the angle uA, determine the required value of the ratio 
lB/ lA of the lengths of the two cords in terms of the efficient of 
restitution e between the two spheres.

 13.201 A 2-kg block A is pushed up against a spring compressing it a dis-
tance x 5 0.1 m. The block is then released from rest and slides 
down the 20° incline until it strikes a 1-kg sphere B which is sus-
pended from a 1-m inextensible rope. The spring constant k 5 800 
N/m, the coefficient of friction between A and the ground is 0.2, 
the distance A slides from the unstretched length of the spring 
d 5 1.5 m and the coefficient of restitution between A and B is 
0.8. When a 5 40°, determine (a) the speed of B, (b) the tension 
in the rope.

C

D

�B

�A
lB

lA

A

B

Fig. P13.200

20°

L

B

k

�

dx

A

Fig. P13.201
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COMPUTER PROBLEMS

 13.C1 A 12-lb collar is attached to a spring anchored at point C and can 
slide on a frictionless rod forming an angle of 30° with the vertical. The 
spring is of constant k and is unstretched when the collar is at A. Knowing 
that the collar is released from rest at A, use computational software to 
determine the velocity of the collar at point B for values of k from 0.1 to 
2.0 lb/in.

A C

B

20 in.

20 in.

30°

Fig. P13.C1

A C

B

q

2.4 m

3 m

h

Fig. P13.C3

 13.C2 Skid marks on a drag race track indicate that the rear (drive) wheels 
of a 2000-lb car slip with the front wheels just off the ground for the first 
60 ft of the 1320-ft track. The car is driven with slipping impending, with 
60 percent of its weight on the rear wheels, for the remaining 1260 ft of the 
race. Knowing that the coefficients of kinetic and static friction are 0.60 and 
0.85, respectively, and that the force due to the aerodynamic drag is Fd 5 
0.0098v2, where the speed v is expressed in ft/s and the force Fd in lb, use 
computational software to determine the time elapsed and the speed of the 
car at various points along the track, (a) taking the force Fd into account, 
(b) ignoring the force Fd. If you write a computer program use increments of 
distance Dx 5 0.1 ft in your calculations, and tabulate your results every 5 ft 
for the first 60 ft and every 90 ft for the remaining 1260 ft. (Hint: The 
time Dti required for the car to move through the increment of distance 
Dxi can be obtained by dividing Dxi by the average velocity 1

2(vi 1 vi11)
of the car over Dxi if the acceleration of the car is assumed to remain 
constant over Dx.)

 13.C3 A 5-kg bag is gently pushed off the top of a wall and swings in a 
vertical plane at the end of a 2.4-m rope which can withstand a maximum 
tension Fm. For Fm from 40 to 140 N use computational software to deter-
mine (a) the difference in elevation h between point A and point B where 
the rope will break, (b) the distance d from the vertical wall to the point 
where the bag will strike the floor.

 13.C4 Use computational software to determine (a) the time required for 
the system of Prob. 13.199 to complete 10 successive cycles of the motion 
described in that problem, starting with x 5 1.7 m, (b) the value of x at the 
end of the tenth cycle.
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853Computer Problems 13.C5 A 700-g ball B is hanging from an inextensible cord attached to a 
support at C. A 350-g ball A strikes B with a velocity v0 at an angle u0 with 
the vertical. Assuming no friction and denoting by e the coefficient of restitu-
tion, use computational software to determine the magnitudes v9A and v9B of 
the velocities of the balls immediately after impact and the percentage of 
energy lost in the collision for v0 5 6 m/s and values of u0 from 20° to 150°, 
assuming (a) e 5 1, (b) e 5 0.75, (c) e 5 0.

C

v0
A

B

0q

Fig. P13.C5

 13.C6 In Prob. 13.109, a space vehicle was in a circular orbit at an altitude 
of 225 mi above the surface of the earth. To return to earth it decreased its 
speed as it passed through A by firing its engine for a short interval of time 
in a direction opposite to the direction of its motion. Its resulting velocity 
as it reached point B at an altitude of 40 mi formed an angle fB 5 60° with 
the vertical. An alternative strategy for taking the space vehicle out of its 
circular orbit would be to turn it around so that its engine pointed away 
from the earth and then give it an incremental velocity DvA toward the 
center O of the earth. This would likely require a smaller expenditure of 
energy when firing the engine at A, but might result in too fast a descent 
at B. Assuming that this strategy is used, use computational software to 
determine the values of fB and vB for an energy expenditure ranging from 
5 to 100 percent of that needed in Prob. 13.109.

225 mi

A

BO

R = 3960 mi

vB

fB

Fig. P13.C6
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The thrust for this XR-5M15 prototype 

engine is produced by gas particles 

being ejected at a high velocity. The 

determination of the forces on the test 

stand is based on the analysis of the 

motion of a variable system of 

particles, i.e., the motion of a large 

number of air particles considered 

together rather than separately.
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14.1 INTRODUCTION
In this chapter you will study the motion of systems of particles, i.e., 
the motion of a large number of particles considered together. The 
first part of the chapter is devoted to systems consisting of well-
defined particles; the second part considers the motion of variable 
systems, i.e., systems which are continually gaining or losing parti-
cles, or doing both at the same time.
 In Sec. 14.2, Newton’s second law will first be applied to each 
particle of the system. Defining the effective force of a particle as 
the product miai of its mass mi and its acceleration ai, we will show 
that the external forces acting on the various particles form a system 
equipollent to the system of the effective forces, i.e., both systems 
have the same resultant and the same moment resultant about any 
given point. In Sec. 14.3, it will be further shown that the resultant 
and moment resultant of the external forces are equal, respectively, 
to the rate of change of the total linear momentum and of the total 
angular momentum of the particles of the system.
 In Sec. 14.4, the mass center of a system of particles is defined 
and the motion of that point is described, while in Sec. 14.5 the 
motion of the particles about their mass center is analyzed. The 
conditions under which the linear momentum and the angular 
momentum of a system of particles are conserved are discussed in 
Sec. 14.6, and the results obtained in that section are applied to the 
solution of various problems.
 Sections 14.7 and 14.8 deal with the application of the work-
energy principle to a system of particles, and Sec. 14.9 with the 
application of the impulse-momentum principle. These sections also 
contain a number of problems of practical interest.
 It should be noted that while the derivations given in the first 
part of this chapter are carried out for a system of independent par-
ticles, they remain valid when the particles of the system are rigidly 
connected, i.e., when they form a rigid body. In fact, the results 
obtained here will form the foundation of our discussion of the kinet-
ics of rigid bodies in Chaps. 16 through 18.
 The second part of this chapter is devoted to the study of variable 
systems of particles. In Sec. 14.11 you will consider steady streams of 
particles, such as a stream of water diverted by a fixed vane, or the flow 
of air through a jet engine, and learn to determine the force exerted by 
the stream on the vane and the thrust developed by the engine. Finally, 
in Sec. 14.12, you will learn how to analyze systems which gain mass 
by continually absorbing particles or lose mass by continually expelling 
particles. Among the various practical applications of this analysis will 
be the determination of the thrust developed by a rocket engine.

14.2  APPLICATION OF NEWTON’S LAWS TO THE 
MOTION OF A SYSTEM OF PARTICLES. 
EFFECTIVE FORCES

In order to derive the equations of motion for a system of n particles, 
let us begin by writing Newton’s second law for each individual par-
ticle of the system. Consider the particle Pi, where 1 # i # n. Let 

Chapter 14 Systems of Particles
 14.1 Introduction
 14.2 Application of Newton’s Laws 

to the Motion of a System of 
Particles. Effective Forces

 14.3 Linear and Angular Momentum 
of a System of Particles

 14.4 Motion of the Mass Center of a 
System of Particles

 14.5 Angular Momentum of a System 
of Particles About Its Mass Center

 14.6 Conservation of Momentum for a 
System of Particles

 14.7 Kinetic Energy of a System of 
Particles

 14.8 Work-Energy Principle. 
Conservation of Energy for a 
System of Particles

 14.9 Principle of Impulse and 
Momentum for a System of 
Particles

 14.10 Variable Systems of Particles
 14.11 Steady Stream of Particles
 14.12 Systems Gaining or Losing Mass
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857mi be the mass of Pi and ai its acceleration with respect to the new-
tonian frame of reference Oxyz. The force exerted on Pi by another 
particle Pj of the system (Fig. 14.1), called an internal force, will be 
denoted by fij. The resultant of the internal forces exerted on Pi by 

all the other particles of the system is thus On

j51
fij (where fii has no

meaning and is assumed to be equal to zero). Denoting, on the other 
hand, by Fi the resultant of all the external forces acting on Pi, we 
write Newton’s second law for the particle Pi as follows:

 
Fi 1 On

j51
fij 5 miai 

(14.1)

Denoting by ri the position vector of Pi and taking the moments 
about O of the various terms in Eq. (14.1), we also write

 
ri 3 Fi 1 On

j51
(ri 3 fij) 5 ri 3 miai 

(14.2)

 Repeating this procedure for each particle Pi of the system, we 
obtain n equations of the type (14.1) and n equations of the type 
(14.2), where i takes successively the values 1, 2, . . . , n. The vectors 
miai are referred to as the effective forces of the particles.† Thus the 
equations obtained express the fact that the external forces Fi and 
the internal forces fij acting on the various particles form a system 
equivalent to the system of the effective forces miai (i.e., one system 
may be replaced by the other) (Fig. 14.2).

=

x

y

z

x

y

z

OO

Pj

Pi
Pi

Fi

ri rif ij

mia i

Fig. 14.1

†Since these vectors represent the resultants of the forces acting on the various 
particles of the system, they can truly be considered as forces.

=

x

y

z

x

y

z

OO

Pi

Pj

Pi

Fi

Fj

riri

rj

f ji

f i j

mia i

Fig. 14.2

 Before proceeding further with our derivation, let us examine 
the internal forces fij. We note that these forces occur in pairs fij, fji, 
where fij represents the force exerted by the particle Pj on the par-
ticle Pi and fji represents the force exerted by Pi on Pj (Fig. 14.2). 
Now, according to Newton’s third law (Sec. 6.1), as extended by 
Newton’s law of gravitation to particles acting at a distance (Sec. 12.10), 
the forces fij and fji are equal and opposite and have the same line of 
action. Their sum is therefore fij 1 fji 5 0, and the sum of their 
moments about O is

ri 3 fij 1 rj 3 fji 5 ri 3 (fij 1 fji) 1 (rj 2 ri) 3 fji 5 0

14.2 Application of Newton’s Laws to the 
Motion of a System of Particles. 

Effective Forces
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858 Systems of Particles since the vectors rj 2 ri and fji in the last term are collinear. Adding 
all the internal forces of the system and summing their moments 
about O, we obtain the equations

 On

i51
On

j51
fij 5 0    On

i51
On

j51
(ri 3 fij) 5 0

 
(14.3)

which express the fact that the resultant and the moment resultant 
of the internal forces of the system are zero.
 Returning now to the n equations (14.1), where i 5 1, 2, . . . , n, 
we sum their left-hand members and sum their right-hand members. 
Taking into account the first of Eqs. (14.3), we obtain

 On

i51
Fi 5 On

i51
miai 

(14.4)

Proceeding similarly with Eqs. (14.2) and taking into account the 
second of Eqs. (14.3), we have

 On

i51
(ri 3 Fi) 5 On

i51
(ri 3 miai) 

(14.5)

 Equations (14.4) and (14.5) express the fact that the system of 
the external forces Fi and the system of the effective forces miai have 
the same resultant and the same moment resultant. Referring to the 
definition given in Sec. 3.19 for two equipollent systems of vectors, 
we can therefore state that the system of the external forces acting 
on the particles and the system of the effective forces of the particles 
are equipollent† (Fig. 14.3).

†The result just obtained is often referred to as d’Alembert’s principle, after the French 
mathematician Jean le Rond d’Alembert (1717–1783). However, d’Alembert’s original 
 statement refers to the motion of a system of connected bodies, with fij representing 
 constraint forces which if applied by themselves will not cause the system to move. Since, 
as it will now be shown, this is in general not the case for the internal forces acting on a 
system of free particles, the consideration of d’Alembert’s principle will be postponed 
until the motion of rigid bodies is considered (Chap. 16).

x x

y y

z z

OO

P2

P3F1

F2

P1

P3
m3a3

m2a2

m1a1

P2

P1

=

Fig. 14.3
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859 Equations (14.3) express the fact that the system of the internal 
forces fij is equipollent to zero. Note, however, that it does not follow 
that the internal forces have no effect on the particles under consid-
eration. Indeed, the gravitational forces that the sun and the planets 
exert on one another are internal to the solar system and equipollent 
to zero. Yet these forces are alone responsible for the motion of the 
planets about the sun.
 Similarly, it does not follow from Eqs. (14.4) and (14.5) that 
two systems of external forces which have the same resultant and the 
same moment resultant will have the same effect on a given system 
of particles. Clearly, the systems shown in Figs. 14.4a and 14.4b have 

=
B B

AA

(a)

(b)

F

F

Fig. 14.4

the same resultant and the same moment resultant; yet the first sys-
tem accelerates particle A and leaves particle B unaffected, while the 
second accelerates B and does not affect A. It is important to recall 
that when we stated in Sec. 3.19 that two equipollent systems of 
forces acting on a rigid body are also equivalent, we specifically 
noted that this property could not be extended to a system of forces 
acting on a set of independent particles such as those considered in 
this chapter.
 In order to avoid any confusion, blue equals signs are used to 
connect equipollent systems of vectors, such as those shown in 
Figs. 14.3 and 14.4. These signs indicate that the two systems of 
vectors have the same resultant and the same moment resultant. Red 
equals signs will continue to be used to indicate that two systems of 
vectors are equivalent, i.e., that one system can actually be replaced 
by the other (Fig. 14.2).

14.3  LINEAR AND ANGULAR MOMENTUM 
OF A SYSTEM OF PARTICLES

Equations (14.4) and (14.5), obtained in the preceding section for 
the motion of a system of particles, can be expressed in a more 
condensed form if we introduce the linear and the angular momen-
tum of the system of particles. Defining the linear momentum L of 
the system of particles as the sum of the linear momenta of the vari-
ous particles of the system (Sec. 12.3), we write

 
L 5 On

i51
mivi 

(14.6)

14.3 Linear and Angular Momentum of a 
System of Particles
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860 Systems of Particles Defining the angular momentum HO about O of the system of par-
ticles in a similar way (Sec. 12.7), we have

 
HO 5 On

i51
(ri 3 mivi) 

(14.7)

 Differentiating both members of Eqs. (14.6) and (14.7) with 
respect to t, we write

 
L
.

5 On

i51
miv̇i 5 On

i51
miai 

(14.8)

and

 H
.

O 5 On

i51
(ṙ i 3 mivi) 1 On

i51
(ri 3 miv̇i)

 5 On

i51
(vi 3 mivi) 1 On

i51
(ri 3 miai)

which reduces to

 
H
.

O 5 On

i51
(ri 3 miai) 

(14.9)

since the vectors vi and mivi are collinear.
 We observe that the right-hand members of Eqs. (14.8) and 
(14.9) are respectively identical with the right-hand members of Eqs. 
(14.4) and (14.5). It follows that the left-hand members of these 
equations are respectively equal. Recalling that the left-hand mem-
ber of Eq. (14.5) represents the sum of the moments MO about O 
of the external forces acting on the particles of the system, and omit-
ting the subscript i from the sums, we write

  ©F 5 L
.

 (14.10)
  ©MO 5 H

.
O (14.11)

These equations express that the resultant and the moment resultant 
about the fixed point O of the external forces are respectively equal 
to the rates of change of the linear momentum and of the angular 
momentum about O of the system of particles.

14.4  MOTION OF THE MASS CENTER
OF A SYSTEM OF PARTICLES

Equation (14.10) may be written in an alternative form if the mass 
center of the system of particles is considered. The mass center of 
the system is the point G defined by the position vector r, which 
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861satisfies the relation

 
mr 5 On

i51
miri 

(14.12)

where m represents the total mass On

i51
mi of the particles. Resolving

the position vectors r and ri into rectangular components, we obtain 
the following three scalar equations, which can be used to deter-
mine the coordinates x, y, z of the mass center:

 
mx 5 On

i51
mixi   my 5 On

i51
miyi   mz 5 On

i51
mizi  

(14.129)

 Since mig represents the weight of the particle Pi, and mg the 
total weight of the particles, G is also the center of gravity of the 
system of particles. However, in order to avoid any confusion, G will 
be referred to as the mass center of the system of particles when 
properties associated with the mass of the particles are being dis-
cussed, and as the center of gravity of the system when properties 
associated with the weight of the particles are being considered. Par-
ticles located outside the gravitational field of the earth, for example, 
have a mass but no weight. We can then properly refer to their mass 
center, but obviously not to their center of gravity.†
 Differentiating both members of Eq. (14.12) with respect to t, 
we write

mr
.

5 On

i51
miṙ i

or

 
mv 5 On

i51
mivi 

(14.13)

where v represents the velocity of the mass center G of the system of 
particles. But the right-hand member of Eq. (14.13) is, by definition, 
the linear momentum L of the system (Sec. 14.3). We therefore have

 L 5 mv (14.14)

and, differentiating both members with respect to t,

 L
.

5 ma (14.15)

†It may also be pointed out that the mass center and the center of gravity of a system of 
particles do not exactly coincide, since the weights of the particles are directed toward 
the center of the earth and thus do not truly form a system of parallel forces.

14.4 Motion of the Mass Center of a 
System of Particles
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862 Systems of Particles where a represents the acceleration of the mass center G. Substitut-
ing for L

.
 from (14.15) into (14.10), we write the equation

 oF 5 ma (14.16)

which defines the motion of the mass center G of the system of 
particles.
 We note that Eq. (14.16) is identical with the equation we 
would obtain for a particle of mass m equal to the total mass of 
the particles of the system, acted upon by all the external forces. We 
therefore state that the mass center of a system of particles moves as 
if the entire mass of the system and all the external forces were con-
centrated at that point.
 This principle is best illustrated by the motion of an exploding 
shell. We know that if air resistance is neglected, it can be assumed 
that a shell will travel along a parabolic path. After the shell has 
exploded, the mass center G of the fragments of shell will continue 
to travel along the same path. Indeed, point G must move as if the 
mass and the weight of all fragments were concentrated at G; it must, 
therefore, move as if the shell had not exploded.
 It should be noted that the preceding derivation does not 
involve the moments of the external forces. Therefore, it would be 
wrong to assume that the external forces are equipollent to a vector 
ma attached at the mass center G. This is not in general the case 
since, as you will see in the next section, the sum of the moments 
about G of the external forces is not in general equal to zero.

14.5  ANGULAR MOMENTUM OF A SYSTEM OF 
PARTICLES ABOUT ITS MASS CENTER

In some applications (for example, in the analysis of the motion of 
a rigid body) it is convenient to consider the motion of the particles 
of the system with respect to a centroidal frame of reference Gx9y9z9 
which translates with respect to the newtonian frame of reference 
Oxyz (Fig. 14.5). Although a centroidal frame is not, in general, a 
newtonian frame of reference, it will be seen that the fundamental 
relation (14.11) holds when the frame Oxyz is replaced by Gx9y9z9.
 Denoting, respectively, by r9i and v9i the position vector and the 
velocity of the particle Pi relative to the moving frame of reference 
Gx9y9z9, we define the angular momentum H9G of the system of par-
ticles about the mass center G as follows:

 
H ¿G 5 On

i51
(r¿i 3 miv ¿i) 

(14.17)
 

We now differentiate both members of Eq. (14.17) with respect to t. 
This operation is similar to that performed in Sec. 14.3 on Eq. (14.7), 
and so we write immediately

 
H
.

¿G 5 On

i51
(r¿i 3 mia ¿i)  

(14.18)

Fig. 14.5

x

y

z

O

G x'

y'

z'

Pi
r'i

miv'i
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863where a9i denotes the acceleration of Pi relative to the moving frame 
of reference. Referring to Sec. 11.12, we write

ai 5 a 1 a9i

where ai and a denote, respectively, the accelerations of Pi and G 
relative to the frame Oxyz. Solving for a9i and substituting into (14.18), 
we have

 
H
.

¿G 5 On

i51
(r¿i 3 miai) 2 aOn

i51
mir¿ib 3 a

 
(14.19)

But, by (14.12), the second sum in Eq. (14.19) is equal to mr¿ and 
thus to zero, since the position vector r¿ of G relative to the frame 
Gx9y9z9 is clearly zero. On the other hand, since ai represents the 
acceleration of Pi relative to a newtonian frame, we can use Eq. (14.1) 
and replace miai by the sum of the internal forces fij and of the 
resultant Fi of the external forces acting on Pi. But a reasoning 
 similar to that used in Sec. 14.2 shows that the moment resultant 
about G of the internal forces fij of the entire system is zero. The 
first sum in Eq. (14.19) therefore reduces to the moment resultant 
about G of the external forces acting on the particles of the system, 
and we write

 oMG 5 H
.

¿G (14.20)

which expresses that the moment resultant about G of the external 
forces is equal to the rate of change of the angular momentum about 
G of the system of particles.
 It should be noted that in Eq. (14.17) we defined the angular 
momentum H9G as the sum of the moments about G of the momenta 
of the particles miv9i in their motion relative to the centroidal frame 
of reference Gx9y9z9. We may sometimes want to compute the sum 
HG of the moments about G of the momenta of the particles mivi in 
their absolute motion, i.e., in their motion as observed from the new-
tonian frame of reference Oxyz (Fig. 14.6):

 
HG 5 On

i51
(r¿i 3 mivi) 

(14.21)

Remarkably, the angular momenta H9G and HG are identically equal. 
This can be verified by referring to Sec. 11.12 and writing

 vi 5 v 1 v ¿i  (14.22)

Substituting for vi from (14.22) into Eq. (14.21), we have

HG 5 aOn

i51
mir¿ib 3 v 1 On

i51
(r¿i 3 miv ¿i)

But, as observed earlier, the first sum is equal to zero. Thus HG 
reduces to the second sum, which, by definition, is equal to H9G.†

14.5 Angular Momentum of a System of 
Particles About Its Mass Center

†Note that this property is peculiar to the centroidal frame Gx9y9z9 and does not, in 
general, hold for other frames of reference (see Prob. 14.29).

x

y

z

O

G x'

y'

z'

Pi
r'i

miv'i
mivi

Fig. 14.6
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864 Systems of Particles  Taking advantage of the property we have just established, we 
simplify our notation by dropping the prime (9) from Eq. (14.20) and 
writing

 oMG 5 H
.

G (14.23)

where it is understood that the angular momentum HG can be com-
puted by forming the moments about G of the momenta of the par-
ticles in their motion with respect to either the newtonian frame 
Oxyz or the centroidal frame Gx9y9z9:

 
HG 5 On

i51
(r¿i 3 mivi) 5 On

i51
(r¿i 3 miv ¿i) 

(14.24)

14.6  CONSERVATION OF MOMENTUM
FOR A SYSTEM OF PARTICLES

If no external force acts on the particles of a system, the left-hand 
members of Eqs. (14.10) and (14.11) are equal to zero and these 
equations reduce to L

.
5 0 and H

.
O 5 0. We conclude that

 L 5 constant HO 5 constant (14.25)

The equations obtained express that the linear momentum of the 
system of particles and its angular momentum about the fixed point O 
are conserved.
 In some applications, such as problems involving central forces, 
the moment about a fixed point O of each of the external forces can 
be zero without any of the forces being zero. In such cases, the sec-
ond of Eqs. (14.25) still holds; the angular momentum of the system 
of particles about O is conserved.
 The concept of conservation of momentum can also be applied 
to the analysis of the motion of the mass center G of a system of 
particles and to the analysis of the motion of the system about G. 
For example, if the sum of the external forces is zero, the first of 
Eqs. (14.25) applies. Recalling Eq. (14.14), we write

 v 5 constant (14.26)

which expresses that the mass center G of the system moves in a 
straight line and at a constant speed. On the other hand, if the sum 
of the moments about G of the external forces is zero, it follows from 
Eq. (14.23) that the angular momentum of the system about its mass 
center is conserved:

 HG 5 constant (14.27)

Photo 14.1 If no external forces are acting on 
the two stages of this rocket, the linear and angular 
momentum of the system will be conserved.
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SAMPLE PROBLEM 14.1

A 200-kg space vehicle is observed at t 5 0 to pass through the origin of a 
newtonian reference frame Oxyz with velocity v0 5 (150 m/s)i relative to 
the frame. Following the detonation of explosive charges, the vehicle sepa-
rates into three parts A, B, and C, of mass 100 kg, 60 kg, and 40 kg, respec-
tively. Knowing that at t 5 2.5 s the positions of parts A and B are observed 
to be A(555, 2180, 240) and B(255, 0, 2120), where the coordinates are 
expressed in meters, determine the position of part C at that time.

865

SAMPLE PROBLEM 14.2

A 20-lb projectile is moving with a velocity of 100 ft/s when it explodes into 
two fragments A and B, weighing 5 lb and 15 lb, respectively. Knowing that 
immediately after the explosion, fragments A and B travel in directions 
defined respectively by uA 5 45° and uB 5 30°, determine the velocity of 
each fragment.

vA

vB

v0 = 100 ft/s
 A

 B
20 lb

5 lb A

B
15 lb

q

q

SOLUTION

Since there is no external force, the mass center G of the system moves 
with the constant velocity v0 5 (150 m/s)i. At t 5 2.5 s, its position is

r 5 v0t 5 (150 m/s)i(2.5 s) 5 (375 m)i 

Recalling Eq. (14.12), we write

mr 5 mArA 1 mBrB 1 mCrC 
(200 kg)(375 m)i 5 (100 kg)[(555 m)i 2 (180 m)j 1 (240 m)k]

1 (60 kg)[(255 m)i 2 (120 m)k] 1 (40 kg)rC

rC 5 (105 m)i 1 (450 m)j 2 (420 m)k ◀

SOLUTION

Since there is no external force, the linear momentum of the system is 
conserved, and we write

 mAvA 1 mBvB 5 mv0
 (5yg)vA 1 (15yg)vB 5 (20yg)v0
y
1  x components: 5vA cos 45° 1 15vB cos 30° 5 20(100)
1xy components:  5vA sin 45° 2 15vB sin 30° 5 0 

Solving simultaneously the two equations for vA and vB, we have

vA 5 207 ft/s  vB 5 97.6 ft/s

 vA 5 207 ft/s a 45°  vB 5 97.6 ft/s c 30° ◀

mv0

mAvA

mBvB

45°

30°=
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866

SOLVING PROBLEMS
ON YOUR OWN

This chapter deals with the motion of systems of particles, that is, with the motion 
of a large number of particles considered together, rather than separately. In this 

first lesson you learned to compute the linear momentum and the angular momentum 
of a system of particles. We defined the linear momentum L of a system of particles 
as the sum of the linear momenta of the particles and we defined the angular momen-
tum HO of the system as the sum of the angular momenta of the particles about O:

 
L 5 On

i51
mivi  

HO 5 On

i51
(ri 3 mivi) 

(14.6, 14.7)

In this lesson, you will solve a number of problems of practical interest, either by 
observing that the linear momentum of a system of particles is conserved or by 
considering the motion of the mass center of a system of particles.

1. Conservation of the linear momentum of a system of particles. This occurs 
when the resultant of the external forces acting on the particles of the system is 
zero. You may encounter such a situation in the following types of problems.
 a. Problems involving the rectilinear motion of objects such as colliding 
automobiles and railroad cars. After you have checked that the resultant of the 
external forces is zero, equate the algebraic sums of the initial momenta and final 
momenta to obtain an equation which can be solved for one unknown.
 b. Problems involving the two-dimensional or three-dimensional motion of 
objects such as exploding shells, or colliding aircraft, automobiles, or billiard balls. 
After you have checked that the resultant of the external forces is zero, add vec-
torially the initial momenta of the objects, add vectorially their final momenta, and 
equate the two sums to obtain a vector equation expressing that the linear momen-
tum of the system is conserved.
  In the case of a two-dimensional motion, this equation can be replaced by 
two scalar equations which can be solved for two unknowns, while in the case of 
a three-dimensional motion it can be replaced by three scalar equations which can 
be solved for three unknowns.

2. Motion of the mass center of a system of particles. You saw in Sec. 14.4 
that the mass center of a system of particles moves as if the entire mass of the sys-
tem and all of the external forces were concentrated at that point.
 a. In the case of a body exploding while in motion, it follows that the mass 
center of the resulting fragments moves as the body itself would have moved if the 
explosion had not occurred. Problems of this type can be solved by writing the equa-
tion of motion of the mass center of the system in vectorial form and expressing the 
position vector of the mass center in terms of the position vectors of the various frag-
ments [Eq. (14.12)]. You can then rewrite the vector equation as two or three scalar 
equations and solve the equations for an equivalent number of unknowns.
 b. In the case of the collision of several moving bodies, it follows that the 
motion of the mass center of the various bodies is unaffected by the collision. 
Problems of this type can be solved by writing the equation of motion of the mass 
center of the system in vectorial form and expressing its position vector before 
and after the collision in terms of the position vectors of the relevant bodies 
[Eq. (14.12)]. You can then rewrite the vector equation as two or three scalar 
equations and solve these equations for an equivalent number of unknowns.
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PROBLEMS

867

14.1 An airline employee tosses two suitcases, of mass 15 kg and 
20 kg, respectively, onto a 25-kg baggage carrier in rapid suc-
cession. Knowing that the carrier is initially at rest and that the 
employee imparts a 3-m/s horizontal velocity to the 15-kg 
 suitcase and a 2-m/s horizontal velocity to the 20-kg suitcase, 
determine the final velocity of the baggage carrier if the first 
suitcase tossed onto the carrier is (a) the 15-kg suitcase, (b) the 
20-kg suitcase.

14.2 An airline employee tosses two suitcases in rapid succession, with 
a horizontal velocity of 2.4 m/s, onto a 25-kg baggage carrier 
which is initially at rest. (a) Knowing that the final velocity of 
the baggage carrier is 1.2 m/s and that the first suitcase the 
employee tosses onto the carrier has a mass of 15 kg, determine 
the mass of the other suitcase. (b) What would be the final veloc-
ity of the carrier if the employee reversed the order in which he 
tosses the suitcases?

14.3 A 180-lb man and a 120-lb woman stand side by side at the same 
end of a 300-lb boat, ready to dive, each with a 16-ft/s velocity 
relative to the boat. Determine the velocity of the boat after 
they have both dived, if (a) the woman dives first, (b) the man 
dives first.

Fig. P14.1 and P14.2

Fig. P14.3

Fig. P14.4

14.4 A 180-lb man and a 120-lb woman stand at opposite ends of a 
300-lb boat, ready to dive, each with a 16-ft/s velocity relative to 
the boat. Determine the velocity of the boat after they have both 
dived, if (a) the woman dives first, (b) the man dives first.

 14.5 A bullet is fired with a horizontal velocity of 1500 ft/s through a 
6-lb block A and becomes embedded in a 4.95-lb block B. Know-
ing that blocks A and B start moving with velocities of 5 ft/s and 
9 ft/s, respectively, determine (a) the weight of the bullet, (b) its 
velocity as it travels from block A to block B. Fig. P14.5

A B1500 ft/s

6 lb 4.95 lb

bee29400_ch14_854-913.indd Page 867  12/15/08  1:12:05 PM user-s172bee29400_ch14_854-913.indd Page 867  12/15/08  1:12:05 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



868 Systems of Particles  14.6 A 45-ton boxcar A is moving in a railroad switchyard with a velocity 
of 5.6 mi/h toward cars B and C, which are both at rest with their 
brakes off at a short distance from each other. Car B is a 25-ton 
flatcar supporting a 30-ton container, and car C is a 40-ton boxcar. 
As the cars hit each other they get automatically and tightly cou-
pled. Determine the velocity of car A immediately after each of the 
two couplings, assuming that the container (a) does not slide on the 
flatcar, (b) slides after the first coupling but hits a stop before the 
second coupling occurs, (c) slides and hits the stop only after the 
second coupling has occurred.

5.6 mi/h

A C
B

Fig. P14.6

vA vC

A CB

Fig. P14.7 and P14.8

 14.7 At an amusement park there are 200-kg bumper cars A, B, and C 
that have riders with masses of 40 kg, 60 kg, and 35 kg  respectively. 
Car A is moving to the right with a velocity vA 5 2 m/s and car C 
has a velocity vB 5 1.5 m/s to the left, but car B is initially at rest. 
The coefficient of restitution between each car is 0.8. Determine 
the final velocity of each car, after all impacts, assuming (a) cars A 
and C hit car B at the same time, (b) car A hits car B before 
car C does.

Fig. P14.9 and P14.11

A

B

C

O

x

y

z vA

vB

vC

1.8 m

2.4 m

1.2 m

1.2 m

1.2 m

0.9 m

1.5 m

 14.8 At an amusement park there are 200-kg bumper cars A, B, and C 
that have riders with masses of 40 kg, 60 kg, and 35 kg respectively. 
Car A is moving to the right with a velocity vA 5 2 m/s when it 
hits stationary car B. The coefficient of restitution between each 
car is 0.8. Determine the velocity of car C so that after car B col-
lides with car C the velocity of car B is zero.

 14.9 A system consists of three particles A, B, and C. We know that 
mA 5 3 kg, mB 5 4 kg, and mc 5 5 kg and that the velocities of 
the particles expressed in m/s are, respectively, vA 5 24i 1 4j 1 6k, 
vB 5 26i 1 8j 1 4k, and vC 5 2i 2 6j 2 4k. Determine the 
angular momentum HO of the system about O.

 14.10 For the system of particles of Prob. 14.9, determine (a) the posi-
tion vector r of the mass center G of the system, (b) the linear 
momentum mv of the system, (c) the angular momentum HG of 
the system about G. Also verify that the answers to this problem 
and to Prob. 14.9 satisfy the equation given in Prob. 14.27.

 14.11 A system consists of three particles A, B, and C. We know that 
mA 5 3 kg, mB 5 4 kg, and mC 5 5 kg and that the velocities of the 
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869Problemsparticles expressed in m/s are, respectively, vA 5 24i 1 4j 1 6k, 
vB 5 vxi 1 vyj 1 4k, and vC 5 2i 2 6j 2 4k. Determine (a) the 
components vx and vy of the velocity of particle B for which 
the angular momentum HO of the system about O is parallel to the 
z axis, (b) the corresponding value of HO.

 14.12 For the system of particles of Prob. 14.11, determine (a) the com-
ponents vx and vy of the velocity of particle B for which the angular 
momentum HO of the system about O is parallel to the y axis, 
(b) the corresponding value of HO.

 14.13 A system consists of three particles A, B, and C. We know that 
WA 5 5 lb, WB 5 4 lb, and WC 5 3 lb and that the velocities of 
the particles expressed in ft/s are, respectively, vA 5 2i 1 3j 2 2k, 
vB 5 vxi 1 vyj 1 vzk, and vC 5 23i 2 2j 1 k. Determine 
(a) the components vx and vy of the velocity of particle B for which 
the angular momentum HO of the system about O is parallel to 
the x axis, (b) the value of HO.

 14.14 For the system of particles of Prob. 14.13, determine (a) the com-
ponents vx and vz of the velocity of particle B for which the angular 
momentum HO of the system about O is parallel to the z axis, 
(b) the value of HO.

 14.15 A 900-lb space vehicle traveling with a velocity v0 5 (1200 ft/s)i 
passes through the origin O at t 5 0. Explosive charges then sepa-
rate the vehicle into three parts A, B, and C, weighing, respectively, 
450 lb, 300 lb, and 150 lb. Knowing that at t 5 4 s, the positions 
of parts A and B are observed to be A (3840 ft, 2960 ft, –1920 ft) 
and B (6480 ft, 1200 ft, 2640 ft), determine the corresponding posi-
tion of part C. Neglect the effect of gravity.

 14.16 A 30-lb projectile is passing through the origin O with a velocity 
v0 5 (120 ft/s)i when it explodes into two fragments A and B, of 
weight 12 lb and 18 lb, respectively. Knowing that 3 s later the 
position of fragment A is (300 ft, 24 ft, 248 ft), determine the 
position of fragment B at the same instant. Assume ay 5 2g 5 
232.2 ft/s2 and neglect air resistance.

 14.17 A small airplane of mass 1500 kg and a helicopter of mass 3000 kg 
flying at an altitude of 1200 m are observed to collide directly 
above a tower located at O in a wooded area. Four minutes earlier 
the helicopter had been sighted 8.4 km due west of the tower and 
the airplane 16 km west and 12 km north of the tower. As a result 
of the collision the helicopter was split into two pieces, H1 and H2, 
of mass m1 5 1000 kg and m2 5 2000 kg, respectively; the airplane 
remained in one piece as it fell to the ground. Knowing that the 
two fragments of the helicopter were located at points H1 (500 m, 
2100 m) and H2 (600 m, 2500 m), respectively, and assuming 
that all pieces hit the ground at the same time, determine the 
coordinates of the point A where the wreckage of the airplane will 
be found.

 14.18 In Problem 14.17, knowing that the wreckage of the small airplane 
was found at point A (1200 m, 80 m) and the 1000-kg fragment 
of the helicopter at point H1 (400 m, 2200 m), and assuming that 
all pieces hit the ground at the same time, determine the coordi-
nates of the point H2 where the other fragment of the helicopter 
will be found.

xz

A

B

C

O

vA

vC vB

y

6 ft
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4 ft

4 ft
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Fig. P14.13

O x

y

A
H1

H2

Fig. P14.17 
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 14.19 and 14.20 Car A was traveling east at high speed when it col-
lided at point O with car B, which was traveling north at 72 km/h. 
Car C, which was traveling west at 90 km/h, was 10 m east and 
3 m north of point O at the time of the collision. Because the 
pavement was wet, the driver of car C could not prevent his car 
from sliding into the other two cars, and the three cars, stuck 
together, kept sliding until they hit the utility pole P. Knowing that 
the masses of cars A, B, and C are, respectively, 1500 kg, 1300 kg, 
and 1200 kg, and neglecting the forces exerted on the cars by the 
wet pavement solve the problems indicated.

 14.19  Knowing that the coordinates of the utility pole are 
xp 5 18 m and yp 5 13.9 m, determine (a) the time 
elapsed from the first collision to the stop at P, (b) the 
speed of car A.

 14.20  Knowing that the speed of car A was 129.6 km/h 
and that the time elapsed from the first collision to 
the stop at P was 2.4 s, determine the coordinates 
of the utility pole P.

A

C

O

N

x

y

vA

90 km/h

xP

B

72 
km/h

yP

P

Fig. P14.19 and P14.20

A
B

C

vC

4.3°

vB
37.4°

30°

vA

v0

45°

Fig. P14.21

 14.21 and 14.22 In a game of pool, ball A is moving with a velocity 
v0 when it strikes balls B and C which are at rest and aligned as 
shown. Knowing that after the collision the three balls move in the 
directions indicated and that v0 5 12 ft/s and vC 5 6.29 ft/s, deter-
mine the magnitude of the velocity of (a) ball A, (b) ball B.

 14.23 An expert archer demonstrates his ability by hitting tennis balls 
thrown by an assistant. A 58-g tennis ball has a velocity of 
(10 m/s)i 2 (2 m/s)j and is 10 m above the ground when it is hit 
by a 40-g arrow traveling with a velocity of (50 m/s)j 1 (70 m/s)k 
where j is directed upwards. Determine the position P where the 
ball and arrow will hit the ground, relative to point O located 
directly under the point of impact.

vC

vBv0

A
B

C

49.3°

45°

30°

7.4°

vA

Fig. P14.22
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871Problems 14.24 In a scattering experiment, an alpha particle A is projected with 
the velocity u0 5 2(600 m/s)i 1 (750 m/s)j 2 (800 m/s)k into a 
stream of oxygen nuclei moving with a common velocity v0 5 
(600 m/s)j. After colliding successively with the nuclei B and C, 
particle A is observed to move along the path defined by the 
points A1 (280, 240, 120) and A2 (360, 320, 160), while nuclei B 
and C are observed to move along paths defined, respectively, by 
B1 (147, 220, 130) and B2 (114, 290, 120), and by C1 (240, 232, 
90) and C2 (240, 280, 75). All paths are along straight lines and 
all coordinates are expressed in millimeters. Knowing that the 
mass of an oxygen nucleus is four times that of an alpha particle, 
determine the speed of each of the three particles after the 
collisions.

 14.25 A 12-lb shell moving with a velocity v0 5 (40 ft/s)i 2 (30 ft/s)j 2 
(1200 ft/s)k explodes at point D into three fragments A, B, and C 
weighing, respectively, 5 lb, 4 lb, and 3 lb. Knowing that the frag-
ments hit the vertical wall at the points indicated, determine the 
speed of each fragment immediately after the explosion.

x

z

O A

Q

C

B

A1

A 0
B0

A2

B1

B2

C1

C2

vB vA

vC

v0

v0

u 0

y

Fig. P14.24

y

A

B

C

O

D

5 ft

12 ft

12 ft

z
x

9 ft

6 ft

Fig. P14.25 and P14.26

 14.26 A 12-lb shell moving with a velocity v0 5 (40 ft/s)i 2 (30 ft/s)j 2 
(1200 ft/s)k explodes at point D into three fragments A, B, and C 
weighing, respectively, 4 lb, 3 lb, and 5 lb. Knowing that the frag-
ments hit the vertical wall at the points indicated, determine the 
speed of each fragment immediately after the explosion.
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 14.27 Derive the relation

HO 5 r 3 mv 1 HG

  between the angular momenta HO and HG defined in Eqs. (14.7) 
and (14.24), respectively. The vectors r and v define, respectively, 
the position and velocity of the mass center G of the system of 
particles relative to the newtonian frame of reference Oxyz, and 
m represents the total mass of the system.

 14.28 Show that Eq. (14.23) may be derived directly from Eq. (14.11) by 
substituting for HO the expression given in Prob. 14.27.

 14.29 Consider the frame of reference Ax9y9z9 in translation with respect 
to the newtonian frame of reference Oxyz. We define the angular 
momentum H9A of a system of n particles about A as the sum

 
H ¿A 5 On

i51
r ¿i 3 mi v ¿i  

(1)

  of the moments about A of the momenta mivi9 of the particles in their 
motion relative to the frame Ax9y9z9. Denoting by HA the sum

HA 5 On

i51
r ¿i 3 mi vi

  of the moments about A of the momenta mivi of the particles in 
their motion relative to the newtonian frame Oxyz, show that HA 5 
H9A at a given instant if, and only if, one of the following condi-
tions is satisfied at that instant: (a) A has zero velocity with respect 
to the frame Oxyz, (b) A coincides with the mass center G of the 
system, (c) the velocity vA relative to Oxyz is directed along the 
line AG.

 14.30 Show that the relation oMA 5 H
.

¿A, where H9A is defined by Eq. (1) 
of Prob. 14.29 and where oMA represents the sum of the moments 
about A of the external forces acting on the system of particles, is 
valid if, and only if, one of the following conditions is satisfied: 
(a) the frame Ax9y9z9 is itself a newtonian frame of reference, 
(b) A coincides with the mass center G, (c) the acceleration aA of 
A relative to Oxyz is directed along the line AG.

14.7 KINETIC ENERGY OF A SYSTEM OF PARTICLES
The kinetic energy T of a system of particles is defined as the sum 
of the kinetic energies of the various particles of the system. Refer-
ring to Sec. 13.3, we therefore write

 
T 5

1
2

 On

i51
 mi 

v2
i  

(14.28)

Using a Centroidal Frame of Reference. It is often convenient 
when computing the kinetic energy of a system comprising a large 
number of particles (as in the case of a rigid body) to consider sepa-
rately the motion of the mass center G of the system and the motion 
of the system relative to a moving frame attached to G.

x

z

O

y

x'

z'

A

y'

Pi

miv'i

mivi

r i'

Fig. P14.29 
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873

 Let Pi be a particle of the system, vi its velocity relative to the 
newtonian frame of reference Oxyz, and vi9 its velocity relative to the 
moving frame Gx9y9z9 which is in translation with respect to Oxyz 
(Fig. 14.7). We recall from the preceding section that

 vi 5 v 1 v ¿i  (14.22)

where v denotes the velocity of the mass center G relative to the 
newtonian frame Oxyz. Observing that v2

i is equal to the scalar prod-
uct vi ? vi, we express the kinetic energy T of the system relative to 
the newtonian frame Oxyz as follows:

T 5
1
2

 On

i51
 mi 

v2
i 5

1
2

 On

i51
(mivi ? vi)

or, substituting for vi from (14.22),

 T 5
1
2

 On

i51
[mi(v 1 v ¿i) ? (v 1 v ¿i)]

 5
1
2

 aOn

i51
 mib v 

2 1 v ? On

i51
 miv ¿i 1

1
2

 On

i51
 miv¿2

i

The first sum represents the total mass m of the system. Recalling 
Eq. (14.13), we note that the second sum is equal to mv ¿ and thus 
to zero, since v ¿, which represents the velocity of G relative to the 
frame Gx9y9z9, is clearly zero. We therefore write

 
T 5 1

2 
mv 

2 1
1
2

 On

i5 1
 mi 

v¿2
i  

(14.29)

This equation shows that the kinetic energy T of a system of particles 
can be obtained by adding the kinetic energy of the mass center G 
(assuming the entire mass concentrated at G) and the kinetic energy 
of the system in its motion relative to the frame Gx9y9z9.

v'i

vi

⎯v

⎯v

x

y

z

O

G x'

y'

z'

Pi

Fig. 14.7

14.7 Kinetic Energy of a System of Particles
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874 Systems of Particles 14.8  WORK-ENERGY PRINCIPLE. CONSERVATION 
OF ENERGY FOR A SYSTEM OF PARTICLES

The principle of work and energy can be applied to each particle Pi 
of a system of particles. We write

 T1 1 U1y2 5 T2 (14.30)

for each particle Pi, where U1y2 represents the work done by the 
internal forces fij and the resultant external force Fi acting on Pi. 
Adding the kinetic energies of the various particles of the system and 
considering the work of all the forces involved, we can apply Eq. 
(14.30) to the entire system. The quantities T1 and T2 now represent 
the kinetic energy of the entire system and can be computed from 
either Eq. (14.28) or Eq. (14.29). The quantity U1y2 represents the 
work of all the forces acting on the particles of the system. Note that 
while the internal forces fij and f ji are equal and opposite, the work 
of these forces will not, in general, cancel out, since the particles Pi 
and Pj on which they act will, in general, undergo different displace-
ments. Therefore, in computing U1y2, we must consider the work of 
the internal forces fij as well as the work of the external forces Fi.
 If all the forces acting on the particles of the system are con-
servative, Eq. (14.30) can be replaced by

 T1 1 V1 5 T2 1 V2 (14.31)

where V represents the potential energy associated with the internal 
and external forces acting on the particles of the system. Equation 
(14.31) expresses the principle of conservation of energy for the sys-
tem of particles.

14.9  PRINCIPLE OF IMPULSE AND MOMENTUM
FOR A SYSTEM OF PARTICLES

Integrating Eqs. (14.10) and (14.11) in t from t1 to t2, we write

 
 a #

t2

t1

 
F dt 5 L2 2 L1  

(14.32)

 
 a #

t2

t1

 
MO dt 5 (HO)2 2 (HO)1 

(14.33)

Recalling the definition of the linear impulse of a force given in Sec. 
13.10, we observe that the integrals in Eq. (14.32) represent the 
linear impulses of the external forces acting on the particles of the 
system. We shall refer in a similar way to the integrals in Eq. (14.33) 
as the angular impulses about O of the external forces. Thus, Eq. 
(14.32) expresses that the sum of the linear impulses of the external 
forces acting on the system is equal to the change in linear momen-
tum of the system. Similarly, Eq. (14.33) expresses that the sum of 
the angular impulses about O of the external forces is equal to the 
change in angular momentum about O of the system.

Photo 14.2 When a golf ball is hit out of 
a sand trap, some of the momentum of the club 
is transferred to the golf ball and any sand that 
is hit.
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875 In order to make clear the physical significance of Eqs. (14.32) 
and (14.33), we will rearrange the terms in these equations and write

 
 L1 1 a #

t2

t1

 
F dt 5 L2  

(14.34)

 
 (HO)1 1 a #

t2

t1

 
MO dt 5 (HO)2 

(14.35)

In parts a and c of Fig. 14.8 we have sketched the momenta of the 
particles of the system at times t1 and t2, respectively. In part b we have 
shown a vector equal to the sum of the linear impulses of the external 
forces and a couple of moment equal to the sum of the angular impulses 
about O of the external forces. For simplicity, the particles have been 

14.9 Principle of Impulse and Momentum 
for a System of Particles

x

y

O x

y

O x

y

O

(a)

+ =
(mAvA)1

(mBvB)1

(mCvC)1

(mAvA)2
(mBvB)2

(mCvC)2

(b) (c)

∑     F dt
t2

t1

∑     MO dt
t2

t1

∫

∫
Fig. 14.8

assumed to move in the plane of the figure, but the present discussion 
remains valid in the case of particles moving in space. Recalling from 
Eq. (14.6) that L, by definition, is the resultant of the momenta mivi, 
we note that Eq. (14.34) expresses that the resultant of the vectors 
shown in parts a and b of Fig. 14.8 is equal to the resultant of the 
vectors shown in part c of the same figure. Recalling from Eq. (14.7) 
that HO is the moment resultant of the momenta mivi, we note that 
Eq. (14.35) similarly expresses that the moment resultant of the vectors 
in parts a and b of Fig. 14.8 is equal to the moment resultant of the 
vectors in part c. Together, Eqs. (14.34) and (14.35) thus express that 
the momenta of the particles at time t1 and the impulses of the external 
forces from t1 to t2 form a system of vectors equipollent to the system 
of the momenta of the particles at time t2. This has been indicated in 
Fig. 14.8 by the use of blue plus and equals signs.
 If no external force acts on the particles of the system, the inte-
grals in Eqs. (14.34) and (14.35) are zero, and these equations yield

 L1 5 L2 (14.36)
 (HO)1 5 (HO)2 (14.37)

We thus check the result obtained in Sec. 14.6: If no external force 
acts on the particles of a system, the linear momentum and the 
angular momentum about O of the system of particles are conserved. 
The system of the initial momenta is equipollent to the system of 
the final momenta, and it follows that the angular momentum of the 
system of particles about any fixed point is conserved.
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876

SOLUTION

Since there is no external force, the initial momentum mv0 is equipollent 
to the system of the final momenta. Equating first the sums of the vectors 
in both parts of the adjoining sketch, and then the sums of their moments 
about O, we write

L1 5 L2: mv0 5 mAvA 1 mBvB 1 mCvC (1)
(HO)1 5 (HO)2: 0 5 rA 3 mAvA 1 rB 3 mBvB 1 rC 3 mCvC (2)

Recalling from Sample Prob. 14.1 that v0 5 (150 m/s)i,

mA 5 100 kg  mB 5 60 kg  mC 5 40 kg
 rA 5 (555 m)i 2 (180 m)j 1 (240 m)k
 rB 5 (255 m)i 2 (120 m)k
  rC 5 (105 m)i 1 (450 m)j 2 (420 m)k

and using the information given in the statement of this problem, we rewrite 
Eqs. (1) and (2) as follows:

200(150i) 5 100(270i 2 120j 1 160k) 1 60[(vB)xi 1 (vB)zk]
 1 40[(vC)xi 1 (vC)yj 1 (vC)zk] (19)

0 5 100 †
i

555
270 

j
2180
2120

  
k

240
160
† 1 60 † i

255
(vB)x

   j
0
0

   k
2120
(vB)z

†

1 40 † i
105

(vC)x

   j
450

(vC)y

   k
2420
(vC)z

†
 

(29)

Equating to zero the coefficient of j in (19) and the coefficients of i and k 
in (29), we write, after reductions, the three scalar equations

 (vC)y 2 300 5 0
 450(vC)z 1 420(vC)y 5 0
 105(vC)y 2 450(vC)x 2 45 000 5 0

which yield, respectively,

(vC)y 5 300  (vC)z 5 2280  (vC)x 5 230

The velocity of part C is thus

 vC 5 2(30 m/s)i 1 (300 m/s)j 2 (280 m/s)k ◀

SAMPLE PROBLEM 14.3

For the 200-kg space vehicle of Sample Prob. 14.1, it is known that at t 5 
2.5 s, the velocity of part A is vA 5 (270 m/s)i 2 (120 m/s)j 1 (160 m/s)k 
and the velocity of part B is parallel to the xz plane. Determine the velocity 
of part C.

x

y

z

O

x

y

z

O

A

B C

mAvA

mBvB

mCvC

mv0

=

bee29400_ch14_854-913.indd Page 876  12/13/08  9:29:32 PM user-s172bee29400_ch14_854-913.indd Page 876  12/13/08  9:29:32 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



877

SAMPLE PROBLEM 14.4

Ball B, of mass mB, is suspended from a cord of length l attached to cart A, 
of mass mA, which can roll freely on a frictionless horizontal tract. If the ball 
is given an initial horizontal velocity v0 while the cart is at rest, determine 
(a) the velocity of B as it reaches its maximum elevation, (b) the maximum 
vertical distance h through which B will rise. (It is assumed that v2

0 , 2gl.)

SOLUTION

The impulse-momentum principle and the principle of conservation of 
energy will be applied to the cart-ball system between its initial position 1 
and position 2, when B reaches its maximum elevation.

Velocities Position 1: (vA)1 5 0  (vB)1 5 v0 (1)

Position 2: When ball B reaches its maximum elevation, its velocity (vB/A)2 
relative to its support A is zero. Thus, at that instant, its absolute velocity is

 (vB)2 5 (vA)2 1 (vB/A)2 5 (vA)2 (2)

Impulse-Momentum Principle. Noting that the external impulses consist 
of WAt, WBt, and Rt, where R is the reaction of the track on the cart, and 
recalling (1) and (2), we draw the impulse-momentum diagram and write

omv1 1 o Ext Imp1y2 5 omv2

y
+ x components: mBv0 5 (mA 1 mB)(vA)2

which expresses that the linear momentum of the system is conserved in 
the horizontal direction. Solving for (vA)2:

 
(vA)2 5

mB

mA 1 mB
 v0   (vB)2 5 (vA)2 5

mB

mA 1 mB
 v0y  

◀

Conservation of Energy
Position 1. Potential Energy: V1 5 mAgl
 Kinetic Energy: T1 5 1

2 mB  
v2

0

Position 2. Potential Energy: V2 5 mAgl 1 mBgh
 Kinetic Energy:  T2 5 1

2(mA 1 mB)(vA)2
2 

T1 1 V1 5 T2 1 V2:   1
2 
mBv2

0 1 mAgl 5 1
2(mA 1 mB)(vA)2

2 1 mAgl 1 mBgh
Solving for h, we have

h 5
v2

0

2g
2

mA 1 mB

mB
 
(vA)2

2

2g

or, substituting for (vA)2 the expression found above,

h 5
v2

0

2g
2

mB

mA 1 mB
 
v2

0

2g   
h 5

mA

mA 1 mB
 
v2

0

2g  
◀

Remarks. (1) Recalling that v2
0 , 2gl, it follows from the last equation that 

h , l; we thus check that B stays below A as assumed in our solution.
 (2) For mA W mB, the answers obtained reduce to (vB)2 5 (vA)2 5 0 and
h 5 v2

0 /2g; B oscillates as a simple pendulum with A fixed. For mA V mB, 
they reduce to (vB)2 5 (vA)2 5 v0 and h 5 0; A and B move with the same 
constant velocity v0.

A

B
v0

Position 1 Position 2

(vA)1 = 0

(vB)1 = v0
(vB)2 = (vA)2

(vB/A)2 = 0

(vA)2A

B

A

B

mA(vA)2

mB(vA)2

mBv0

+ =

WAt

WBt

Rt

AAA

B
BB

A

(vB)2 = (vA)2
v0

(vA)2

Datum
h

Position 1 Position 2

B

A

B

l
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SOLUTION

Conservation of Momentum. Since there is no external force, the initial 
momentum mv0 is equipollent to the system of momenta after the two col-
lisions (and before any of the balls hits the side of the table). Referring to 
the adjoining sketch, we write

y
+ x components: m(10 ft/s) 5 m(vB)x 1 mvC (1)
 1xy components: 0 5 mvA 2 m(vB)y  (2)
 1l moments about O: 2(2 ft)m(10 ft/s) 5 (8 ft)mvA

 2(7 ft)m(vB)y 2 (3 ft)mvC (3)

Solving the three equations for vA, (vB)x, and (vB)y in terms of vC,

 vA 5 (vB)y 5 3vC 2 20  (vB)x 5 10 2 vC (4)

Conservation of Energy. Since the surfaces are frictionless and the 
impacts are perfectly elastic, the initial kinetic energy 1

2 mv2
0 is equal to the 

final kinetic energy of the system:
1
2 mv2

0 5 1
2 mAv2

A 1 1
2 mBv2

B 1 1
2 mC  

v2
C  

 v2
A 1 (vB)2

x 1 (vB)2
y 1 v2

C 5 (10 ft/s)2 (5)

Substituting for vA, (vB)x, and (vB)y from (4) into (5), we have

2(3vC 2 20)2 1 (10 2 vC)2 1 v2
C 5 100

 20v2
C 2 260vC 1 800 5 0

Solving for vC, we find vC 5 5 ft/s and vC 5 8 ft/s. Since only the second 
root yields a positive value for vA after substitution into Eqs. (4), we con-
clude that vC 5 8 ft/s and

 vA 5 (vB)y 5 3(8) 2 20 5 4 ft/s  (vB)x 5 10 2 8 5 2 ft/s

 vA 5 4 ft/sx  vB 5 4.47 ft/s c 63.4°  vC 5 8 ft/sy ◀

SAMPLE PROBLEM 14.5

In a game of billiards, ball A is given an initial velocity v0 of magnitude 
v0 5 10 ft/s along line DA parallel to the axis of the table. It hits ball B and 
then ball C, which are both at rest. Knowing that A and C hit the sides of 
the table squarely at points A9 and C9, respectively, that B hits the side 
obliquely at B9, and assuming frictionless surfaces and perfectly elastic 
impacts, determine the velocities vA, vB, and vC with which the balls hit the 
sides of the table. (Remark: In this sample problem and in several of the 
problems which follow, the billiard balls are assumed to be particles moving 
freely in a horizontal plane, rather than the rolling and sliding spheres they 
actually are.)

O

8 ft

7 ft

3 ft

mvC

mvA

m (vB)y 
m (vB)x 

B C

A

mv0 = m (10 ft/s) 
A

O

D

2 ft

=

vB

vA

v0

vC

A'

B'

C'
A

B
CD

2 ft8 ft

7 ft

3 ft

3 ft2 ft
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879

SOLVING PROBLEMS
ON YOUR OWN

In the preceding lesson we defined the linear momentum and the angular 
momentum of a system of particles. In this lesson we defined the kinetic 

energy T of a system of particles:

 
T 5

1
2

 On

i51
 miv

2
i  

(14.28)

The solutions of the problems in the preceding lesson were based on the conserva-
tion of the linear momentum of a system of particles or on the observation of the 
motion of the mass center of a system of particles. In this lesson you will solve 
problems involving the following:

1. Computation of the kinetic energy lost in collisions. The kinetic energy T1
of the system of particles before the collisions and its kinetic energy T2 after the 
collisions are computed from Eq. (14.28) and are subtracted from each other. Keep 
in mind that, while linear momentum and angular momentum are vector quanti-
ties, kinetic energy is a scalar quantity.

2. Conservation of linear momentum and conservation of energy. As you saw 
in the preceding lesson, when the resultant of the external forces acting on a sys-
tem of particles is zero, the linear momentum of the system is conserved. In 
problems involving two-dimensional motion, expressing that the initial linear 
momentum and the final linear momentum of the system are equipollent yields 
two algebraic equations. Equating the initial total energy of the system of particles 
(including potential energy as well as kinetic energy) to its final total energy yields 
an additional equation. Thus, you can write three equations which can be solved 
for three unknowns [Sample Prob. 14.5]. Note that if the resultant of the external 
forces is not zero but has a fixed direction, the component of the linear momentum 
in a direction perpendicular to the resultant is still conserved; the number of equa-
tions which can be used is then reduced to two [Sample Prob. 14.4].

3. Conservation of linear and angular momentum. When no external forces 
act on a system of particles, both the linear momentum of the system and its 
angular momentum about some arbitrary point are conserved. In the case of three-
dimensional motion, this will enable you to write as many as six equations, although 
you may need to solve only some of them to obtain the desired answers [Sample 
Prob. 14.3]. In the case of two-dimensional motion, you will be able to write three 
equations which can be solved for three unknowns.

4. Conservation of linear and angular momentum and conservation of 
energy. In the case of the two-dimensional motion of a system of particles which 
are not subjected to any external forces, you will obtain two algebraic equations 
by expressing that the linear momentum of the system is conserved, one equation 
by writing that the angular momentum of the system about some arbitrary point 
is conserved, and a fourth equation by expressing that the total energy of the sys-
tem is conserved. These equations can be solved for four unknowns.
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PROBLEMS
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 14.31 Assuming that the airline employee of Prob. 14.1 first tosses the 
15-kg suitcase on the baggage carrier, determine the energy lost 
(a) as the first suitcase hits the carrier, (b) as the second suitcase 
hits the carrier.

 14.32 Determine the energy loss as a result of the series of collisions 
described in Prob. 14.7.

 14.33 In Prob. 14.3, determine the work done by the woman and by the 
man as each dives from the boat, assuming that the woman dives 
first.

 14.34 In Prob. 14.5, determine the energy lost as the bullet (a) passes 
through block A, (b) becomes embedded in block B.

 14.35 Two automobiles A and B, of mass mA and mB, respectively, are 
traveling in opposite directions when they collide head on. The 
impact is assumed perfectly plastic, and it is further assumed that 
the energy absorbed by each automobile is equal to its loss of 
kinetic energy with respect to a moving frame of reference attached 
to the mass center of the two-vehicle system. Denoting by EA and 
EB, respectively, the energy absorbed by automobile A and by auto-
mobile B, (a) show that EA/EB 5 mB/mA, that is, the amount of 
energy absorbed by each vehicle is inversely proportional to its 
mass, (b) compute EA and EB, knowing that mA 5 1600 kg and 
mB 5 900 kg and that the speeds of A and B are, respectively, 
90 km/h and 60 km/h.

14.36 It is assumed that each of the two automobiles involved in the 
collision described in Prob. 14.35 had been designed to safely 
withstand a test in which it crashed into a solid, immovable wall 
at the speed v0. The severity of the collision of Prob. 14.35 may 
then be measured for each vehicle by the ratio of the energy it 
absorbed in the collision to the energy it absorbed in the test. 
On that basis, show that the collision described in Prob. 14.35 
is (mA/mB)2 times more severe for automobile B than for auto-
mobile A.

 14.37 Solve Sample Prob. 14.4, assuming that cart A is given an initial 
horizontal velocity v0 while ball B is at rest.

A B

vA vB

Fig. P14.35
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881Problems 14.38 In a game of pool, ball A is moving with the velocity v0 5 v0i when 
it strikes balls B and C, which are at rest side by side. Assuming 
frictionless surfaces and perfectly elastic impact (i.e., conservation 
of energy), determine the final velocity of each ball, assuming that 
the path of A is (a) perfectly centered and that A strikes B and C 
simultaneously, (b) not perfectly centered and that A strikes B 
slightly before it strikes C.

 14.39 and 14.40 In a game of pool, ball A is moving with a velocity 
v0 of magnitude v0 5 15 ft/s when it strikes balls B and C, 
which are at rest and aligned as shown. Knowing that after the 
collision the three balls move in the directions indicated and 
assuming frictionless surfaces and perfectly elastic impact (i.e., 
conservation of energy), determine the magnitudes of the velocities 
vA, vB, and vC.

A

C

Bv0

Fig. P14.38

A
B

vA vC

45°

30°

30°
C

vB
v0

Fig. P14.39

C

A
B

vA

v0 vB

vC

30°

45°

45°

Fig. P14.40

 14.41 Two hemispheres are held together by a cord which maintains 
a spring under compression (the spring is not attached to the hemi-
spheres). The potential energy of the compressed spring is 120 J 
and the assembly has an initial velocity v0 of magnitude 
v0 5 8 m/s. Knowing that the cord is severed when u 5 30°, caus-
ing the hemispheres to fly apart, determine the resulting velocity 
of each hemisphere.

 14.42 Solve Prob. 14.41, knowing that the cord is severed when u 5 120°.

 14.43 A 40-lb block B is suspended from a 6-ft cord attached to a 60-lb 
cart A, which may roll freely on a frictionless, horizontal track. If 
the system is released from rest in the position shown, determine 
the velocities of A and B as B passes directly under A.

A

B

v0

2.5 kg

1.5 kg

q

Fig. P14.41

B

A

60 lb

40 lb

25°

Fig. P14.43 
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882 Systems of Particles  14.44 Three spheres, each of mass m, can slide freely on a frictionless, 
horizontal surface. Spheres A and B are attached to an inextensi-
ble, inelastic cord of length l and are at rest in the position shown 
when sphere B is struck squarely by sphere C which is moving to 
the right with a velocity v0. Knowing that the cord is slack when 
sphere B is struck by sphere C and assuming perfectly elastic 
impact between B and C, determine (a) the velocity of each sphere 
immediately after the cord becomes taut, (b) the fraction of the 
initial kinetic energy of the system which is dissipated when the 
cord becomes taut.

l

A

B

C

l/2

v0

Fig. P14.44

A

B

v0

7 in.

Fig. P14.47

 14.45 A 360-kg space vehicle traveling with a velocity v0 5 (450 m/s)k 
passes through the origin O. Explosive charges then separate the 
vehicle into three parts A, B, and C, with masses of 60 kg, 120 kg, and 
180 kg, respectively. Knowing that shortly thereafter the positions of 
the three parts are, respectively, A(72, 72, 648), B(180, 396, 972), and 
C(2144, 2288, 576), where the coordinates are expressed in meters, 
that the velocity of B is vB 5 (150m/s)i 1 (330 m/s)j 1 (660 m/s)k, 
and that the x component of the velocity of C is 2120 m/s, determine 
the velocity of part A.

 14.46 In the scattering experiment of Prob. 14.24, it is known that the 
alpha particle is projected from A0(300, 0, 300) and that it collides 
with the oxygen nucleus C at Q(240, 200, 100), where all coordi-
nates are expressed in millimeters. Determine the coordinates of 
point B0 where the original path of nucleus B intersects the zx plane. 
(Hint. Express that the angular momentum of the three particles 
about Q is conserved.)

 14.47 Two small spheres A and B, weighing 5 lb and 2 lb, respectively, 
are connected by a rigid rod of negligible weight. The two spheres 
are resting on a horizontal, frictionless surface when A is suddenly 
given the velocity v0 5 (10.5 ft/s)i. Determine (a) the linear 
momentum of the system and its angular momentum about its 
mass center G, (b) the velocities of A and B after the rod AB has 
rotated through 180°.

 14.48 Solve Prob. 14.47, assuming that it is B which is suddenly given 
the velocity v0 5 (10.5 ft/s)i.
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883Problems 14.49 Three identical spheres A, B, and C, which can slide freely on a fric-
tionless horizontal surface, are connected by means of inextensible, 
inelastic cords to a small ring D located at the mass center of the 
three spheres (l9 5 2l cos u). The spheres are rotating initially about 
ring D, which is at rest, at speeds proportional to their distances from 
D. We denote by v0 the original speed of A and B and assume that 
u 5 30°. Suddenly cord CD breaks, causing sphere C to slide away. 
Considering the motion of spheres A and B and of ring D after the 
other two cords have again become taut, determine (a) the speed of 
ring D, (b) the relative speed at which sphere A and B rotate about 
D, (c) the percent of energy of the original system which is dissipated 
when cords AD and BD again become taut.

 14.50 Solve Prob. 14.49, assuming that u 5 45°.

 14.51 Two small disks A and B, of mass 3 kg and 1.5 kg, respectively, 
may slide on a horizontal, frictionless surface. They are connected 
by a cord, 600 mm long, and spin counterclockwise about their 
mass center G at the rate of 10 rad/s. At t 5 0, the coordinates of G 
are x0 5 0, y0 5 2 m, and its velocity v0 5 (1.2 m/s)i 1 (0.96 m/s)j. 
Shortly thereafter the cord breaks; disk A is then observed to move 
along a path parallel to the y axis and disk B along a path which 
intersects the x axis at a distance b 5 7.5 m from O. Determine 
(a) the velocities of A and B after the cord breaks, (b) the distance 
a from the y axis to the path of A.

D

C

B

A
l

vC

180° − q

180° − q

2q

l

vB

vA

l'

Fig. P14.49

a

y

A
A

G

B

O

B

vB

v0

y0

vA

B'

b
x

Fig. P14.51 and P14.52

 14.52 Two small disks A and B, of mass 2 kg and 1 kg, respectively, may 
slide on a horizontal and frictionless surface. They are connected by 
a cord of negligible mass and spin about their mass center G. At t 5 
0, G is moving with the velocity v0 and its coordinates are 
x0 5 0, y0 5 1.89 m. Shortly thereafter, the cord breaks and disk A 
is observed to move with a velocity vA 5 (5 m/s)j in a straight line 
and at a distance a 5 2.56 m from the y axis, while B moves with 
a velocity vB 5 (7.2 m/s)i 2 (4.6 m/s)j along a path intersecting the 
x axis at a distance b 5 7.48 m from the origin O. Determine (a) the 
initial velocity v0 of the mass center G of the two disks, (b) the length 
of the cord initially connecting the two disks, (c) the rate in rad/s at 
which the disks were spinning about G.
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884 Systems of Particles  14.53 In a game of billiards, ball A is given an initial velocity v0 along 
the longitudinal axis of the table. It hits ball B and then ball C, 
which are both at rest. Balls A and C are observed to hit the 
sides of the table squarely at A9 and C9, respectively, and ball B 
is observed to hit the side obliquely at B9. Knowing that v0 5 12 ft/s, 
vA 5 5.76 ft/s, and a 5 66 in., determine (a) the velocities vB and 
vC of balls B and C, (b) the point C9 where ball C hits the side 
of the table. Assume frictionless surfaces and perfectly elastic 
impacts (i.e., conservation of energy).

 14.54 For the game of billiards of Prob. 14.53, it is now assumed that 
v0 5 15 ft/s, vC 5 9.6 ft/s, and c 5 48 in. Determine (a) the veloci-
ties vA and vB of balls A and B, (b) the point A9 where ball A hits 
the side of the table.

 14.55 Three small identical spheres A, B, and C, which can slide on a 
horizontal, frictionless surface, are attached to three 200-mm-long 
strings, which are tied to a ring G. Initially the spheres rotate 
clockwise about the ring with a relative velocity of 0.8 m/s and the 
ring moves along the x axis with a velocity v0 5 (0.4 m/s)i. Sud-
denly the ring breaks and the three spheres move freely in the xy 
plane with A and B following paths parallel to the y axis at a dis-
tance a 5 346 mm from each other and C following a path parallel 
to the x axis. Determine (a) the velocity of each sphere, (b) the 
distance d.

vA

vB

vC

v0

y

x

120°

120°

GB

C

A

A

B

C

da

Fig. P14.55 and P14.56

c

a A'

A

B

C

v0

vA

vB

vC

30 in.

30 in.

72.5 in. 47.5 in.

C'

B'

Fig. P14.53

 14.56 Three small identical spheres A, B, and C, which can slide on a 
horizontal, frictionless surface, are attached to three strings of 
length l which are tied to a ring G. Initially the spheres rotate 
clockwise about the ring which moves along the x axis with a veloc-
ity v0. Suddenly the ring breaks and the three spheres move freely 
in the xy plane. Knowing that vA 5 (1.039 m/s)j, vC 5 (1.800 m/s)i, 
a 5 416 mm, and d 5 240 mm, determine (a) the initial velocity 
of the ring, (b) the length l of the strings, (c) the rate in rad/s at 
which the spheres were rotating about G.
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885*14.10 VARIABLE SYSTEMS OF PARTICLES
All the systems of particles considered so far consisted of well-defined 
particles. These systems did not gain or lose any particles during 
their motion. In a large number of engineering applications, how-
ever, it is necessary to consider variable systems of particles, i.e., 
systems which are continually gaining or losing particles, or doing 
both at the same time. Consider, for example, a hydraulic turbine. 
Its analysis involves the determination of the forces exerted by a 
stream of water on rotating blades, and we note that the particles of 
water in contact with the blades form an everchanging system which 
continually acquires and loses particles. Rockets furnish another 
example of variable systems, since their propulsion depends upon 
the continual ejection of fuel particles.
 We recall that all the kinetics principles established so far were 
derived for constant systems of particles, which neither gain nor lose 
particles. We must therefore find a way to reduce the analysis of a 
variable system of particles to that of an auxiliary constant system. 
The procedure to follow is indicated in Secs. 14.11 and 14.12 for two 
broad categories of applications: a steady stream of particles and a 
system that is gaining or losing mass.

*14.11 STEADY STREAM OF PARTICLES
Consider a steady stream of particles, such as a stream of water 
diverted by a fixed vane or a flow of air through a duct or through 
a blower. In order to determine the resultant of the forces exerted 
on the particles in contact with the vane, duct, or blower, we isolate 
these particles and denote by S the system thus defined (Fig. 14.9). 
We observe that S is a variable system of particles, since it continually 
gains particles flowing in and loses an equal number of particles 
flowing out. Therefore, the kinetics principles that have been estab-
lished so far cannot be directly applied to S.
 However, we can easily define an auxiliary system of particles 
which does remain constant for a short interval of time Dt. Consider 
at time t the system S plus the particles which will enter S during 
the interval at time Dt (Fig. 14.10a). Next, consider at time t 1 Dt 
the system S plus the particles which have left S during the interval 
Dt (Fig. 14.10c). Clearly, the same particles are involved in both 
cases, and we can apply to those particles the principle of impulse 
and momentum. Since the total mass m of the system S remains 
constant, the particles entering the system and those leaving the sys-
tem in the time Dt must have the same mass Dm. Denoting by vA 
and vB, respectively, the velocities of the particles entering S at A 
and leaving S at B, we represent the momentum of the particles 
entering S by (Dm)vA (Fig. 14.10a) and the momentum of the parti-
cles leaving S by (Dm)vB (Fig. 14.10c). We also represent by appro-
priate vectors the momenta mivi of the particles forming S and the 
impulses of the forces exerted on S and indicate by blue plus and 
equals signs that the system of the momenta and impulses in parts a 
and b of Fig. 14.10 is equipollent to the system of the momenta in 
part c of the same figure.

14.11 Steady Stream of Particles

S

Fig. 14.9

bee29400_ch14_854-913.indd Page 885  12/13/08  9:30:24 PM user-s172bee29400_ch14_854-913.indd Page 885  12/13/08  9:30:24 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



886 Systems of Particles

 The resultant omivi of the momenta of the particles of S is found 
on both sides of the equals sign and can thus be omitted. We conclude 
that the system formed by the momentum (Dm)vA of the particles 
entering S in the time Dt and the impulses of the forces exerted on S 
during that time is equipollent to the momentum (Dm)vB of the parti-
cles leaving S in the same time Dt. We can therefore write

 (Dm)vA 1 oF Dt 5 (Dm)vB (14.38)

A similar equation can be obtained by taking the moments of the 
vectors involved (see Sample Prob. 14.5). Dividing all terms of Eq. 
(14.38) by Dt and letting Dt approach zero, we obtain at the limit

 
oF 5

dm
dt

 (vB 2 vA)
 

(14.39)

where vB 2 vA represents the difference between the vector vB and 
the vector vA.
 If SI units are used, dm/dt is expressed in kg/s and the veloci-
ties in m/s; we check that both members of Eq. (14.39) are expressed 
in the same units (newtons). If U.S. customary units are used, dm/dt 
must be expressed in slugs/s and the velocities in ft/s; we check again 
that both members of the equation are expressed in the same units 
(pounds).†
 The principle we have established can be used to analyze a 
large number of engineering applications. Some of the more com-
mon of these applications will be considered next.

S SS
A

B

A

B∑mivi ∑mivi

(Δm)vA

(Δm)vB

(a) (b) (c)

∑F Δt

∑M Δt

+ =

Fig. 14.10

†It is often convenient to express the mass rate of flow dm/dt as the product rQ, 
where r is the density of the stream (mass per unit volume) and Q its volume rate of 
flow (volume per unit time). If SI units are used, r is expressed in kg/m3 (for instance, 
r 5 1000 kg/m3 for water) and Q in m3/s. However, if U.S. customary units are used, r 
will generally have to be computed from the corresponding specific weight g (weight 
per unit volume), r 5 g/g. Since g is expressed in lb/ft3 (for instance, g 5 62.4 lb/ft3 
for water), r is obtained in slugs/ft3. The volume rate of flow Q is expressed in ft3/s.
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887Fluid Stream Diverted by a Vane. If the vane is fixed, the 
method of analysis given above can be applied directly to find the force 
F exerted by the vane on the stream. We note that F is the only 
force which needs to be considered since the pressure in the stream 
is constant (atmospheric pressure). The force exerted by the stream on 
the vane will be equal and opposite to F. If the vane moves with 
a constant velocity, the stream is not steady. However, it will appear 
steady to an observer moving with the vane. We should therefore 
choose a system of axes moving with the vane. Since this system of 
axes is not accelerated, Eq. (14.38) can still be used, but vA and vB 
must be replaced by the relative velocities of the stream with respect 
to the vane (see Sample Prob. 14.7).

Fluid Flowing through a Pipe. The force exerted by the fluid 
on a pipe transition such as a bend or a contraction can be deter-
mined by considering the system of particles S in contact with the 
transition. Since, in general, the pressure in the flow will vary, the 
forces exerted on S by the adjoining portions of the fluid should also 
be considered.

Jet Engine. In a jet engine, air enters with no velocity through 
the front of the engine and leaves through the rear with a high veloc-
ity. The energy required to accelerate the air particles is obtained by 
burning fuel. The mass of the burned fuel in the exhaust gases will 
usually be small enough compared with the mass of the air flowing 
through the engine that it can be neglected. Thus, the analysis of a 
jet engine reduces to that of an airstream. This stream can be con-
sidered as a steady stream if all velocities are measured with respect 
to the airplane. It will be assumed, therefore, that the airstream 
enters the engine with a velocity v of magnitude equal to the speed 
of the airplane and leaves with a velocity u equal to the relative 

14.11 Steady Stream of Particles

†Note that if the airplane is accelerated, it cannot be used as a newtonian frame of 
reference. The same result will be obtained for the thrust, however, by using a 
reference frame at rest with respect to the atmosphere, since the air particles will 
then be observed to enter the engine with no velocity and to leave it with a velocity 
of magnitude u 2 v.

velocity of the exhaust gases (Fig. 14.11). Since the intake and exhaust 
pressures are nearly atmospheric, the only external force which needs 
to be considered is the force exerted by the engine on the airstream. 
This force is equal and opposite to the thrust.†

v u

Fig. 14.11
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888 Systems of Particles Fan. We consider the system of particles S shown in Fig. 14.12. 
The velocity vA of the particles entering the system is assumed equal 
to zero, and the velocity vB of the particles leaving the system is the 
velocity of the slipstream. The rate of flow can be obtained by mul-
tiplying vB by the cross-sectional area of the slipstream. Since the 
pressure all around S is atmospheric, the only external force acting 
on S is the thrust of the fan.

Helicopter. The determination of the thrust created by the rotat-
ing blades of a hovering helicopter is similar to the determination of 
the thrust of a fan. The velocity vA of the air particles as they approach 
the blades is assumed to be zero, and the rate of flow is obtained by 
multiplying the magnitude of the velocity vB of the slipstream by its 
cross-sectional area.

*14.12 SYSTEMS GAINING OR LOSING MASS
Let us now analyze a different type of variable system of particles, 
namely, a system which gains mass by continually absorbing particles 
or loses mass by continually expelling particles. Consider the system 
S shown in Fig. 14.13. Its mass, equal to m at the instant t, increases 

Slipstream

S
S

vBvA    0≈

Fig. 14.12

(Δm)va

Δm

∑F Δt

va

S

S

S

m

mv

v

u = va – v

+

=
m + Δm

(m + Δm)(v + Δv)

Fig. 14.13

by Dm in the interval of time Dt. In order to apply the principle of 
impulse and momentum to the analysis of this system, we must con-
sider at time t the system S plus the particles of mass Dm which S 
absorbs during the time interval Dt. The velocity of S at time t is 
denoted by v, the velocity of S at time t 1 Dt is denoted by v 1 Dv, 
and the absolute velocity of the particles absorbed is denoted by va. 
Applying the principle of impulse and momentum, we write

 mv 1 (Dm)va 1 oF Dt 5 (m 1 Dm)(v 1 Dv)  (14.40)

Photo 14.3 As the shuttle’s booster rockets 
are fired, the gas particles they eject provide the 
thrust required for liftoff.
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889Solving for the sum oF Dt of the impulses of the external forces 
acting on S (excluding the forces exerted by the particles being 
absorbed), we have

 oF Dt 5 mDv 1 Dm(v 2 va) 1 (Dm)(Dv) (14.41)

Introducing the relative velocity u with respect to S of the particles 
which are absorbed, we write u 5 va 2 v and note, since va , v, 
that the relative velocity u is directed to the left, as shown in Fig. 
14.13. Neglecting the last term in Eq. (14.41), which is of the second 
order, we write

oF Dt 5 m Dv 2 (Dm)u

Dividing through by Dt and letting Dt approach zero, we have at the 
limit†

 
oF 5 m  

dv
dt

2
dm
dt

 u
 

(14.42)

Rearranging the terms and recalling that dv/dt 5 a, where a is the 
acceleration of the system S, we write

 
oF 1

dm
dt

 u 5 ma
 

(14.43)

which shows that the action on S of the particles being absorbed is 
equivalent to a thrust

 
P 5

dm
dt

 u
 

(14.44)

which tends to slow down the motion of S, since the relative velocity 
u of the particles is directed to the left. If SI units are used, dm/dt 
is expressed in kg/s, the relative velocity u in m/s, and the corre-
sponding thrust in newtons. If U.S. customary units are used, dm/dt 
must be expressed in slugs/s, u in ft/s, and the corresponding thrust 
in pounds.‡
 The equations obtained can also be used to determine the 
motion of a system S losing mass. In this case, the rate of change of 
mass is negative, and the action on S of the particles being expelled 
is equivalent to a thrust in the direction of 2u, that is, in the direc-
tion opposite to that in which the particles are being expelled. A 
rocket represents a typical case of a system continually losing mass 
(see Sample Prob. 14.8).

14.12 Systems Gaining or Losing Mass

†When the absolute velocity va of the particles absorbed is zero, u 5 2v, and formula 
(14.42) becomes

oF 5
d
dt

 (mv)

Comparing the formula obtained to Eq. (12.3) of Sec. 12.3, we observe that Newton’s 
second law can be applied to a system gaining mass, provided that the particles 
absorbed are initially at rest. It may also be applied to a system losing mass, provided 
that the velocity of the particles expelled is zero with respect to the frame of reference 
selected.
‡See footnote on page 886.
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890

SAMPLE PROBLEM 14.6

Grain falls from a hopper onto a chute CB at the rate of 240 lb/s. It hits 
the chute at A with a velocity of 20 ft/s and leaves at B with a velocity of 
15 ft/s, forming an angle of 10° with the horizontal. Knowing that the com-
bined weight of the chute and of the grain it supports is a force W of mag-
nitude 600 lb applied at G, determine the reaction at the roller support B 
and the components of the reaction at the hinge C.

SOLUTION

We apply the principle of impulse and momentum for the time interval Dt 
to the system consisting of the chute, the grain it supports, and the amount 
of grain which hits the chute in the interval Dt. Since the chute does not 
move, it has no momentum. We also note that the sum omivi of the momenta 
of the particles supported by the chute is the same at t and t 1 Dt and can 
thus be omitted.

12 ft
12 ft7 ft

6 ft

(Δm)vA

3 ft

C
C

C

(Δm)vB

+ =Cx Δt

Cy Δt

W Δt B Δt

10°

vB

vA

3 ft

12 ft
7 ft

10°

W

A
B

C

G6 ft

 Since the system formed by the momentum (Dm)vA and the impulses 
is equipollent to the momentum (Dm)vB, we write

y
1   x components: Cx Dt 5 (Dm)vB cos 10° (1)
1xy components: 2(Dm)vA 1 Cy Dt 2 W Dt 1 B Dt
 5 2(Dm)vB sin 10° (2) 
1l moments about C:  23(Dm)vA 2 7(W Dt) 1 12(B Dt)
 5 6(Dm)vB cos 10° 2 12(Dm)vB sin 10° (3)

Using the given data, W 5 600 lb, vA 5 20 ft/s, vB 5 15 ft/s, and Dm/Dt 5 
240/32.2 5 7.45 slugs/s, and solving Eq. (3) for B and Eq. (1) for Cx,

12B 5 7(600) 1 3(7.45)(20) 1 6(7.45)(15)(cos 10° 2 2 sin 10°)
 12B 5 5075  B 5 423 lb B 5 423 lbx ◀ 

 Cx 5 (7.45)(15) cos 10° 5 110.1 lb Cx 5 110.1 lb y ◀

Substituting for B and solving Eq. (2) for Cy,

Cy 5 600 2 423 1 (7.45)(20 2 15 sin 10°) 5 307 lb
Cy 5 307 lbx ◀
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SAMPLE PROBLEM 14.7

A nozzle discharges a stream of water of cross-sectional area A with a velocity 
vA. The stream is deflected by a single blade which moves to the right with 
a constant velocity V. Assuming that the water moves along the blade at con-
stant speed, determine (a) the components of the force F exerted by the blade 
on the stream, (b) the velocity V for which maximum power is developed.

SOLUTION

a. Components of Force Exerted on Stream. We choose a coordinate 
system which moves with the blade at a constant velocity V. The particles 
of water strike the blade with a relative velocity uA 5 vA 2 V and leave the 
blade with a relative velocity uB. Since the particles move along the blade 
at a constant speed, the relative velocities uA and uB have the same magni-
tude u. Denoting the density of water by r, the mass of the particles striking 
the blade during the time interval Dt is Dm 5 Ar(vA 2 V) Dt; an equal 
mass of particles leaves the blade during Dt. We apply the principle of 
impulse and momentum to the system formed by the particles in contact 
with the blade and the particles striking the blade in the time Dt.

vA

A

B

q

V

uB

uA =  vA –V
q

Fy Δ t

Fx Δ t

+ =
(Δm)uA

(Δm)uA

ΣmiviΣmivi

q

 Recalling that uA and uB have the same magnitude u, and omitting 
the momentum omivi which appears on both sides, we write

y
+ x components:  (Dm)u 2 Fx Dt 5 (Dm)u cos u
1 xy components: 1Fy Dt 5 (Dm)u sin u

Substituting Dm 5 Ar(vA 2 V) Dt and u 5 vA 2 V, we obtain

Fx 5 Ar(vA 2 V)2(1 2 cos u)z  Fy 5 Ar(vA 2 V)2 sin ux ◀

b. Velocity of Blade for Maximum Power. The power is obtained by 
multiplying the velocity V of the blade by the component Fx of the force 
exerted by the stream on the blade.

Power 5 FxV 5 Ar(vA 2 V)2(1 2 cos u)V

Differentiating the power with respect to V and setting the derivative equal 
to zero, we obtain

d(power)

dV
5 Ar(v2

A 2 4vAV 1 3V  

2) (1 2 cos u) 5 0
 

V 5 vA  V 5 1
3vA  For maximum power V 5 1

3vA y ◀

Note. These results are valid only when a single blade deflects the stream. 
Different results are obtained when a series of blades deflects the stream, 
as in a Pelton-wheel turbine. (See Prob. 14.81.)
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SAMPLE PROBLEM 14.8

A rocket of initial mass m0 (including shell and fuel) is fired vertically at 
time t 5 0. The fuel is consumed at a constant rate q 5 dm/dt and is 
expelled at a constant speed u relative to the rocket. Derive an expression 
for the magnitude of the velocity of the rocket at time t, neglecting the 
resistance of the air.

SOLUTION

At time t, the mass of the rocket shell and remaining fuel is m 5 m0 2 qt, 
and the velocity is v. During the time interval Dt, a mass of fuel Dm 5 
q Dt is expelled with a speed u relative to the rocket. Denoting by ve the 
absolute velocity of the expelled fuel, we apply the principle of impulse and 
momentum between time t and time t 1 Dt.

We write

(m0 2 qt)v 2 g(m0 2 qt) Dt 5 (m0 2 qt 2 q Dt)(v 1 Dv) 2 q Dt(u 2 v)

Dividing through by Dt and letting Dt approach zero, we obtain

2g(m0 2 qt) 5 (m0 2 qt)
dv
dt

2 qu
 

Separating variables and integrating from t 5 0, v 5 0 to t 5 t, v 5 v,

 dv 5 a qu

m0 2 qt
2 gb dt   #

v

0
 
dv 5 #

t

0
 
a qu

m0 2 qt
2 gb dt

 

  v 5 [2u ln (m0 2 qt) 2 gt] t
0 

v 5 u ln 

m0

m0 2 qt
2 gt ◀

Remark. The mass remaining at time tf, after all the fuel has been 
expended, is equal to the mass of the rocket shell ms 5 m0 2 qtf, and the 
maximum velocity attained by the rocket is vm 5 u ln (m0/ms) 2 gtf. Assum-
ing that the fuel is expelled in a relatively short period of time, the term gtf 
is small and we have vm ¯ u ln (m0 /ms). In order to escape the gravitational 
field of the earth, a rocket must reach a velocity of 11.18 km/s. Assuming 
u 5 2200 m/s and vm 5 11.18 km/s, we obtain m0 /ms 5 161. Thus, to project 
each kilogram of the rocket shell into space, it is necessary to consume more 
than 161 kg of fuel if a propellant yielding u 5 2200 m/s is used.

+ =(m0 – qt)v (m0 – qt – qΔ t)(v+Δv)W Δt

Δmve

[Δmve = qΔ t(u – v)]

[W Δt = g(m0 – qt)Δt]

v
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SOLVING PROBLEMS
ON YOUR OWN

This lesson is devoted to the study of the motion of variable systems of particles, 
i.e., systems which are continually gaining or losing particles or doing both at 

the same time. The problems you will be asked to solve will involve (1) steady 
streams of particles and (2) systems gaining or losing mass.

1. To solve problems involving a steady stream of particles, you will consider 
a portion S of the stream and express that the system formed by the momentum 
of the particles entering S at A in the time Dt and the impulses of the forces 
exerted on S during that time is equipollent to the momentum of the particles 
leaving S at B in the same time Dt (Fig. 14.10). Considering only the resultants 
of the vector systems involved, you can write the vector equation

 (Dm)vA 1 oF Dt 5 (Dm)vB (14.38)

You may want to consider as well the moments about a given point of the vector 
systems involved to obtain an additional equation [Sample Prob. 14.6], but many 
problems can be solved using Eq. (14.38) or the equation obtained by dividing all 
terms by Dt and letting Dt approach zero,

 
oF 5

dm
dt

 (vB 2 vA)
 

(14.39)

where vB 2 vA represents a vector subtraction and where the mass rate of flow 
dm/dt can be expressed as the product rQ of the density r of the stream (mass 
per unit volume) and the volume rate of flow Q (volume per unit time). If U.S. 
customary units are used, r is expressed as the ratio g/g, where g is the specific 
weight of the stream and g is the acceleration of gravity.

Typical problems involving a steady stream of particles have been described in 
Sec. 14.11. You may be asked to determine the following:
 a. Thrust caused by a diverted flow. Equation (14.39) is applicable, but you 
will get a better understanding of the problem if you use a solution based on 
Eq. (14.38).
 b. Reactions at supports of vanes or conveyor belts. First draw a diagram 
showing on one side of the equals sign the momentum (Dm)vA of the particles 
impacting the vane or belt in the time Dt, as well as the impulses of the loads and 
reactions at the supports during that time, and showing on the other side the 
momentum (Dm)vB of the particles leaving the vane or belt in the time Dt [Sample 
Prob. 14.6]. Equating the x components, y components, and moments of the quan-
tities on both sides of the equals sign will yield three scalar equations which can 
be solved for three unknowns.
 c. Thrust developed by a jet engine, a propeller, or a fan. In most cases, 
a single unknown is involved, and that unknown can be obtained by solving the 
scalar equation derived from Eq. (14.38) or Eq. (14.39).

(continued)
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2. To solve problems involving systems gaining mass, you will consider the 
system S, which has a mass m and is moving with a velocity v at time t, and the 
particles of mass Dm with velocity va that S will absorb in the time interval Dt 
(Fig. 14.13). You will then express that the total momentum of S and of the parti-
cles that will be absorbed, plus the impulse of the external forces exerted on S, 
are equipollent to the momentum of S at time t 1 Dt. Noting that the mass of S 
and its velocity at that time are, respectively, m 1 Dm and v 1 Dv, you will write 
the vector equation

 mv 1 (Dm)va 1 oF Dt 5 (m 1 Dm)(v 1 Dv) (14.40)

As was shown in Sec. 14.12, if you introduce the relative velocity u 5 va 2 v of 
the particles being absorbed, you obtain the following expression for the resultant 
of the external forces applied to S:

 
oF 5 m

dv
dt

2  

dm
dt

 u
 

(14.42)

Furthermore, it was shown that the action on S of the particles being absorbed is 
equivalent to a thrust

 
P 5

dm
dt

u
 

(14.44)

exerted in the direction of the relative velocity of the particles being absorbed.

Examples of systems gaining mass are conveyor belts and moving railroad cars 
being loaded with gravel or sand, and chains being pulled out of a pile.

3. To solve problems involving systems losing mass, such as rockets and rocket 
engines, you can use Eqs. (14.40) through (14.44), provided that you give negative 
values to the increment of mass Dm and to the rate of change of mass dm/dt. It 
follows that the thrust defined by Eq. (14.44) will be exerted in a direction oppo-
site to the direction of the relative velocity of the particles being ejected.
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PROBLEMS

895

 14.57 A stream of water of cross-section area A and velocity v1 strikes a 
plate which is held motionless by a force P. Determine the magni-
tude of P, knowing that A 5 500 mm2, v1 5 25 m/s and V 5 0.

 14.58 A stream of water of cross-section area A and velocity v1 strikes a 
plate which moves to the right with a velocity V. Determine 
the magnitude of V, knowing that A 5 600 mm2, v1 5 30 m/s and 
P 5 400 N.

 14.59 Tree limbs and branches are being fed at A at the rate of 5 kg/s 
into a shredder which spews the resulting wood chips at C with a 
velocity of 20 m/s. Determine the horizontal component of the 
force exerted by the shredder on the truck hitch at D.

y

x

60°

30°

z

Fig. P14.60

v1

V

P

Fig. P14.57 and P14.58

A

B
D

C

vC

25°

Fig. P14.59

 14.60 A rotary power plow is used to remove snow from a level section 
of railroad track. The plow car is placed ahead of an engine 
which propels it at a constant speed of 12 mi/h. The plow car 
clears 180 tons of snow per minute, projecting it in the direction 
shown with a velocity of 40 ft/s relative to the plow car. Neglect-
ing friction, determine (a) the force exerted by the engine on the 
plow car, (b) the lateral force exerted by the track on the plow.
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896 Systems of Particles  14.61 Water flows in a continuous sheet from between two plates A and 
B with a velocity v of magnitude 30 m/s. The stream is split into 
two parts by a smooth horizontal plate C. Knowing that the rates 
of flow in each of the two resulting streams are, respectively, 
Q1 5 100 L/min and Q2 5 500 L/min, determine (a) the angle u, 
(b) the total force exerted by the stream on the  horizontal plate.

A

B

C

v

v

v
1 2

q

Fig. P14.61 and P14.62

750 mm

500 mm

75 mm

A

C

B

D

v

50°

Fig. P14.63

 14.62 Water flows in a continuous sheet from between two plates A and 
B with a velocity v of magnitude 40 m/s. The stream is split into 
two parts by a smooth horizontal plate C. Determine the rates of 
flow Q1 and Q2 in each of the two resulting streams, knowing that 
u 5 30° and that the total force exerted by the stream on the 
horizontal plate is a 500-N vertical force.

 14.63 The nozzle discharges water at the rate of 1.3 m3/min. Knowing 
the velocity of the water at both A and B has a magnitude of 20 m/s 
and neglecting the weight of the vane, determine the components 
of the reactions at C and D.

 14.64 Knowing that the blade AB of Sample Prob. 14.7 is in the shape 
of an arc of circle, show that the resultant force F exerted by the 
blade on the stream is applied at the midpoint C of the arc AB. 
(Hint: First show that the line of action of F must pass through 
the center O of the circle.)
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897Problems 14.65 The stream of water shown flows at a rate of 150 gal/min and 
moves with a velocity of magnitude 60 ft/s at both A and B. The 
vane is supported by a pin and bracket at C and by a load cell at 
D which can exert only a horizontal force. Neglecting the weight 
of the vane, determine the components of the reactions at C and 
D (1 ft3 5 7.48 gal).

 14.66 The nozzle shown discharges water at the rate of 200 gal/min. 
Knowing that at both B and C the stream of water moves with a 
velocity of magnitude 100 ft/s, and neglecting the weight of the 
vane, determine the force-couple system which must be applied at 
A to hold the vane in place (1 ft3 5 7.48 gal).

A

5 in.

6 in.

1.5 in.

vA

vB

B

C

D 8 in.

40°

Fig. P14.65
40°6 in.3 in.

15 in.

vA

A B

C
vC

Fig. P14.66

500 mm

200 mm

250 mm

150 mm

190 mm

vA

vB

50°

A

B

O

G

Fig. P14.67

 14.67 A high speed jet of air issues from the nozzle A with a velocity of 
vA and mass flow rate of 0.36 kg/s. The air impinges on a vane 
causing it to rotate to the position shown. The vane has a mass of 
6 kg. Knowing that the magnitude of the air velocity is equal at A 
and B determine (a) the magnitude of the velocity at A, (b) the 
components of the reactions at O.
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898 Systems of Particles  14.68 Coal is being discharged from a first conveyor belt at the rate of 
120 kg/s. It is received at A by a second belt which discharges it 
again at B. Knowing that v1 5 3 m/s and v2 5 4.25 m/s and that 
the second belt assembly and the coal it supports have a total 
mass of 472 kg, determine the components of the reactions at C 
and D.

0.545 m

0.75 m
2.25 m

2.4 m

1.2 m

1.2 m1.8 m

A

v1 v2

B

C

G

D

Fig. P14.68

A

B

12 ft

Fig. P14.71

20°

20°

270 km/h

Fig. P14.72

 14.69 While cruising in level flight at a speed of 900 km/h, a jet plane 
scoops in air at the rate of 90 kg/s and discharges it with a velocity 
of 660 m/s relative to the airplane. Determine the total drag due 
to air friction on the airplane.

 14.70 The total drag due to air friction on a jet airplane cruising in level 
flight at a speed of 570 mi/h is 7500 lb. Knowing that the exhaust 
velocity is 1800 ft/s relative to the airplane, determine the rate in 
lb/s at which the air must pass through the engine.

 14.71 The jet engine shown scoops in air at A at a rate of 200 lb/s 
and discharges it at B with a velocity of 2000 ft/s relative to the 
airplane. Determine the magnitude and line of action of the pro-
pulsive thrust developed by the engine when the speed of the 
airplane is (a) 300 mi/h, (b) 600 mi/h.

 14.72 In order to shorten the distance required for landing, a jet airplane 
is equipped with movable vanes which partially reverse the direc-
tion of the air discharged by each of its engines. Each engine 
scoops in the air at a rate of 120 kg/s and discharges it with a 
velocity of 600 m/s relative to the engine. At an instant when the 
speed of the airplane is 270 km/h, determine the reverse thrust 
provided by each of the engines.

bee29400_ch14_854-913.indd Page 898  12/13/08  9:31:01 PM user-s172bee29400_ch14_854-913.indd Page 898  12/13/08  9:31:01 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



899Problems 14.73 A floor fan designed to deliver air at a maximum velocity of 6 m/s 
in a 400-mm-diameter slipstream is supported by a 200-mm-
diameter circular base plate. Knowing that the total weight of 
the assembly is 60 N and that its center of gravity is located 
directly above the center of the base plate, determine the maxi-
mum height h at which the fan may be operated if it is not to tip 
over. Assume r 5 1.21 kg/m3 for air and neglect the approach 
velocity of the air.

 14.74 The helicopter shown can produce a maximum downward air 
speed of 80 ft/s in a 30-ft-diameter slipstream. Knowing that the 
weight of the helicopter and its crew is 3500 lb and assuming 
g 5 0.076 lb/ft3 for air, determine the maximum load that the 
helicopter can lift while hovering in midair.

Fig. P14.75

h

400 mmG

Fig. P14.73

30 ft

Fig. P14.74

 14.75 A jet airliner is cruising at a speed of 600 mi/h with each of its 
three engines discharging air with a velocity of 2000 ft/s relative 
to the plane. Determine the speed of the airliner after it has lost 
the use of (a) one of its engines, (b) two of its engines. Assume 
that the drag due to air friction is proportional to the square of 
the speed and that the remaining engines keep operating at the 
same rate.

a

Fig. P14.76

 14.76 A 16-Mg jet airplane maintains a constant speed of 774 km/h while 
climbing at an angle a 5 18°. The airplane scoops in air at a rate 
of 300 kg/s and discharges it with a velocity of 665 m/s relative to 
the airplane. If the pilot changes to a horizontal flight while main-
taining the same engine setting, determine (a) the initial accelera-
tion of the plane, (b) the maximum horizontal speed that will be 
attained. Assume that the drag due to air friction is proportional 
to the square of the speed.
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900 Systems of Particles  14.77 The wind turbine-generator shown has an output-power rating of 
5 kW for a wind speed of 30 km/h. For the given wind speed, 
determine (a) the kinetic energy of the air particles entering the 
7.50-m-diameter circle per second, (b) the efficiency of this energy-
conversion system. Assume r 5 1.21 kg/m3 for air.

 14.78 For a certain wind speed, the wind turbine-generator shown pro-
duces 28 kW of electric power and has an efficiency of 0.35 as 
an energy-conversion system. Assuming r 5 1.21 kg/m3 for air, 
determine (a) the kinetic energy of the air particles entering the 
7.50-m-diameter circle per second, (b) the wind speed.

 14.79 While cruising in level flight at a speed of 570 mi/h, a jet airplane 
scoops in air at a rate of 240 lb/s and discharges it with a velocity 
of 2200 ft/s relative to the airplane. Determine (a) the power actu-
ally used to propel the airplane, (b) the total power developed by 
the engine, (c) the mechanical efficiency of the airplane.

 14.80 The propeller of a small airplane has a 6-ft-diameter slipstream 
and produces a thrust of 800 lb when the airplane is at rest on the 
ground. Assuming y 5 0.076 lb/ft3 for air, determine (a) the speed 
of the air in the slipstream, (b) the volume of air passing through 
the propeller per second, (c) the kinetic energy imparted per sec-
ond to the air in the slipstream.

 14.81 In a Pelton-wheel turbine, a stream of water is deflected by a series 
of blades so that the rate at which water is deflected by the blades 
is equal to the rate at which water issues from the nozzle (Dm/Dt 5 
ArvA). Using the same notation as in Sample Prob. 14.7, (a) deter-
mine the velocity V of the blades for which maximum power is 
developed, (b) derive an expression for the maximum power, 
(c) derive an expression for the mechanical efficiency.

 14.82 A circular reentrant orifice (also called Borda’s mouthpiece) of 
diameter D is placed at a depth h below the surface of a tank. 
Knowing that the speed of the issuing stream is v 5 12gh and 
assuming that the speed of approach v1 is zero, show that the 
diameter of the stream is d 5 D/12. (Hint: Consider the section 
of water indicated, and note that P is equal to the pressure at a 
depth h multiplied by the area of the orifice.)

v1

v2

d1

d 2

Fig. P14.83

vD

d

h

P
1

2

Fig. P14.82

750 m

Fig. P14.77 and P14.78

q
vA

V

Fig. P14.81

 *14.83 The depth of water flowing in a rectangular channel of width b at 
a speed v1 and a depth d1 increases to a depth d2 at a hydraulic 
jump. Express the rate of flow Q in terms of b, d1, and d2.
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901Problems *14.84 Determine the rate of flow in the channel of Prob. 14.83, knowing 
that b 5 12 ft, d1 5 4 ft, and d2 5 5 ft.

 14.85 Gravel falls with practically zero velocity onto a conveyor belt 
at the constant rate q 5 dm/dt. (a) Determine the magnitude 
of the force P required to maintain a constant belt speed v. 
(b) Show that the kinetic energy acquired by the gravel in a 
given time interval is equal to half the work done in that interval 
by the force P. Explain what happens to the other half of the 
work done by P.

A

y

P

Fig. P14.87

v

P

L

Fig. P14.85

A
y

A
y

(1) (2)

l – y

Fig. P14.86

 14.86 A chain of length l and mass m falls through a small hole in a plate. 
Initially, when y is very small, the chain is at rest. In each case 
shown, determine (a) the acceleration of the first link A as a func-
tion of y, (b) the velocity of the chain as the last link passes through 
the hole. In case 1 assume that the individual links are at rest until 
they fall through the hole; in case 2 assume that at any instant all 
links have the same speed. Ignore the effect of friction.

 14.87 A chain of length l and mass m lies in a pile on the floor. If its 
end A is raised vertically at a constant speed v, express in terms 
of the length y of chain which is off the floor at any given instant 
(a) the magnitude of the force P applied to A, (b) the reaction of 
the floor.

 14.88 Solve Prob. 14.87, assuming that the chain is being lowered to the 
floor at a constant speed v.
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902 Systems of Particles  14.89 A toy car is propelled by water that squirts from an internal tank 
at a constant 6 ft/s relative to the car. The weight of the empty car 
is 0.4 lb and it holds 2 lb of water. Neglecting other tangential 
forces determine the top speed of the car.

Fig. P14.91 and P14.92

Fig. P14.93

 14.92 The main propulsion system of a space shuttle consists of three 
identical rocket engines which provide a total thrust of 6 MN. 
Determine the rate at which the hydrogen-oxygen propellant is 
burned by each of the three engines, knowing that it is ejected 
with a relative velocity of 3750 m/s.

 14.93 A space vehicle describing a circular orbit about the earth at a 
speed of 24 3 103 km/h releases at its front end a capsule which 
has a gross mass of 600 kg, including 400 kg of fuel. If the fuel is 
consumed at the rate of 18 kg/s and ejected with a relative velocity 
of 3000 m/s, determine (a) the tangential acceleration of the cap-
sule as its engine is fired, (b) the maximum speed attained by the 
capsule.

 14.94 A rocket has a mass of 1200 kg, including 1000 kg of fuel, which 
is consumed at a rate of 12.5 kg/s and ejected with a relative veloc-
ity of 4000 m/s. Knowing that the rocket is fired vertically from 
the ground, determine its acceleration (a) as it is fired, (b) as the 
last particle of fuel is being consumed.

20°

Fig. P14.89 and P14.90

 14.90 A toy car is propelled by water that squirts from an internal tank. 
The weight of the empty car is 0.4 lb and it holds 2 lb of water. 
Knowing the top speed of the car is 8 ft/s determine the relative 
velocity of the water that is being ejected.

 14.91 The main propulsion system of a space shuttle consists of three 
identical rocket engines, each of which burns the hydrogen-oxygen 
propellant at the rate of 340 kg/s and ejects it with a relative veloc-
ity of 3750 m/s. Determine the total thrust provided by the three 
engines.
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903Problems 14.95 A communication satellite weighing 10,000 lb, including fuel, has 
been ejected from a space shuttle describing a low circular orbit 
around the earth. After the satellite has slowly drifted to a safe 
distance from the shuttle, its engine is fired to increase its veloc-
ity by 8000 ft/s as a first step to its transfer to a geosynchronous 
orbit. Knowing that the fuel is ejected with a relative velocity of 
13,750 ft/s, determine the weight of fuel consumed in this 
maneuver.

 14.96 Determine the increase in velocity of the communication satellite 
of Prob. 14.95 after 2500 lb of fuel has been consumed.

 14.97 A 540-kg spacecraft is mounted on top of a rocket with a mass of 
19 Mg, including 17.8 Mg of fuel. Knowing that the fuel is con-
sumed at a rate of 225 kg/s and ejected with a relative velocity of 
3600 m/s, determine the maximum speed imparted to the space-
craft if the rocket is fired vertically from the ground.

Fig. P14.95

Fig. P14.97

A

B

Fig. P14.98

 14.98 The rocket used to launch the 540-kg spacecraft of Prob. 14.97 
is redesigned to include two stages A and B, each of mass 9.5 Mg, 
including 8.9 Mg of fuel. The fuel is again consumed at a rate 
of 225 kg/s and ejected with a relative velocity of 3600 m/s. 
Knowing that when stage A expels its last particle of fuel, its 
casing is released and jettisoned, determine (a) the speed of the 
rocket at that instant, (b) the maximum speed imparted to the 
spacecraft.

 14.99 Determine the altitude reached by the spacecraft of Prob. 14.97 
when all the fuel of its launching rocket has been consumed.

 14.100 For the spacecraft and the two-stage launching rocket of Prob. 
14.98, determine the altitude at which (a) stage A of the rocket is 
released, (b) the fuel of both stages has been consumed.

 14.101 Determine the distance separating the communication satellite of 
Prob. 14.95 from the space shuttle 60 s after its engine has been 
fired, knowing that the fuel is consumed at a rate of 37.5 lb/s.
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904 Systems of Particles  14.102 For the rocket of Prob. 14.94, determine (a) the altitude at which 
all of the fuel has been consumed, (b) the velocity of the rocket at 
this time.

 14.103 In a jet airplane, the kinetic energy imparted to the exhaust gases 
is wasted as far as propelling the airplane is concerned. The useful 
power is equal to the product of the force available to propel the 
airplane and the speed of the airplane. If v is the speed of the 
airplane and u is the relative speed of the expelled gases, show 
that the mechanical efficiency of the airplane is h 5 2v/(u 1 v). 
Explain why h 5 1 when u 5 v.

 14.104 In a rocket, the kinetic energy imparted to the consumed and 
ejected fuel is wasted as far as propelling the rocket is concerned. 
The useful power is equal to the product of the force available to 
propel the rocket and the speed of the rocket. If v is the speed of 
the rocket and u is the relative speed of the expelled fuel, show 
that the mechanical efficiency of the rocket is h 5 2uv/(u2 1 v2). 
Explain why h 5 1 when u 5 v.
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905

REVIEW AND SUMMARY

In this chapter we analyzed the motion of systems of particles, i.e., 
the motion of a large number of particles considered together. In the 
first part of the chapter we considered systems consisting of well-
defined particles, while in the second part we analyzed systems 
which are continually gaining or losing particles, or doing both at the 
same time.

We first defined the effective force of a particle Pi of a given system 
as the product miai of its mass mi and its acceleration ai with respect 
to a newtonian frame of reference centered at O [Sec. 14.2]. We 
then showed that the system of the external forces acting on the 
particles and the system of the effective forces of the particles are 
equipollent; i.e., both systems have the same resultant and the same 
moment resultant about O:

 
 On

i51
Fi 5 On

i51
miai  

(14.4)

 On

i51
(ri 3 Fi) 5 On

i51
(ri 3 miai) 

(14.5)

Defining the linear momentum L and the angular momentum HO
 

about point O of the system of particles [Sec. 14.3] as

 
L 5 On

i51
mivi   HO 5 On

i51
(ri 3 mivi)   

(14.6, 14.7)

we showed that Eqs. (14.4) and (14.5) can be replaced by the 
equations

 oF 5 L
.   oMO 5 H

.
O (14.10, 14.11)

which express that the resultant and the moment resultant about O 
of the external forces are, respectively, equal to the rates of change 
of the linear momentum and of the angular momentum about O of 
the system of particles.

In Sec. 14.4, we defined the mass center of a system of particles as 
the point G whose position vector r satisfies the equation

 
mr 5 On

i51
miri 

(14.12)

Effective forcesEffective forces

Linear and angular momentum 
of a system of particles
Linear and angular momentum 
of a system of particles

Motion of the mass center 
of a system of particles
Motion of the mass center 
of a system of particles
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906 Systems of Particles
where m represents the total mass On

i51
mi of the particles. Differ-

entiating both members of Eq. (14.12) twice with respect to t, we 
obtained the relations

 L 5 mv  L̇ 5 ma (14.14, 14.15)

where v and a represent, respectively, the velocity and the accelera-
tion of the mass center G. Substituting for L

.
 from (14.15) into 

(14.10), we obtained the equation

 oF 5 ma (14.16) 

from which we concluded that the mass center of a system of parti-
cles moves as if the entire mass of the system and all the external 
forces were concentrated at that point [Sample Prob. 14.1].

In Sec. 14.5 we considered the motion of the particles of a system 
with respect to a centroidal frame Gx9y9z9 attached to the mass cen-
ter G of the system and in translation with respect to the newtonian 
frame Oxyz (Fig. 14.14). We defined the angular momentum of the 
system about its mass center G as the sum of the moments about G 
of the momenta mivi9 of the particles in their motion relative to the 
frame Gx9y9z9. We also noted that the same result can be obtained 
by considering the moments about G of the momenta mivi of the 
particles in their absolute motion. We therefore wrote

 
HG 5 On

i51
(r¿i 3 mivi) 5 On

i51
(r¿i 3 miv ¿i) 

(14.24)

and derived the relation

 oMG 5  ḢG (14.23)

which expresses that the moment resultant about G of the external 
forces is equal to the rate of change of the angular momentum about 
G of the system of particles. As will be seen later, this relation is 
fundamental to the study of the motion of rigid bodies.

When no external force acts on a system of particles [Sec. 14.6], it 
follows from Eqs. (14.10) and (14.11) that the linear momentum L 
and the angular momentum HO of the system are conserved [Sample 
Probs. 14.2 and 14.3]. In problems involving central forces, the angu-
lar momentum of the system about the center of force O will also 
be conserved.

The kinetic energy T of a system of particles was defined as the sum 
of the kinetic energies of the particles [Sec. 14.7]:

 
T 5

1
2 O

n

i51
miv

2
i  

(14.28)

Angular momentum of a system 
of particles about its mass center
Angular momentum of a system 

of particles about its mass center

Conservation of momentumConservation of momentum

Kinetic energy of a system 
of particles

Kinetic energy of a system 
of particles

Fig. 14.14

x

y

z

x'

y'

z'

O

G

Pi

miv'i

r'i
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907Using the centroidal frame of reference Gx9y9z9 of Fig. 14.14, we 
noted that the kinetic energy of the system can also be obtained by add-
ing the kinetic energy 1

2mv 
2 associated with the motion of the mass 

center G and the kinetic energy of the system in its motion relative 
to the frame Gx9y9z9:

 
T 5 1

2mv 
2 1

1
2 O

n

i51
miv¿2

i  
(14.29)

The principle of work and energy can be applied to a system of 
particles as well as to individual particles [Sec. 14.8]. We wrote

 T1 1 U1y2 5 T2 (14.30)

and noted that U1y2 represents the work of all the forces acting on 
the particles of the system, internal as well as external.

If all the forces acting on the particles of the system are conservative, 
we can determine the potential energy V of the system and write

 T1 1 V1 5 T2 1 V2 (14.31) 

which expresses the principle of conservation of energy for a system 
of particles.

We saw in Sec. 14.9 that the principle of impulse and momentum for 
a system of particles can be expressed graphically as shown in 
Fig. 14.15. It states that the momenta of the particles at time t1 and the 
impulses of the external forces from t1 to t2 form a system of vectors 
equipollent to the system of the momenta of the particles at time t2.

Principle of work and energyPrinciple of work and energy

Conservation of energyConservation of energy

Principle of impulse and momentumPrinciple of impulse and momentum

Fig. 14.15

x

y

O x

y

O x

y

O

(a)

+ =
(mAvA)1

(mBvB)1

(mCvC)1

(mAvA)2
(mBvB)2

(mCvC)2

(b) (c)

∑     F dt
t2

t1

∑     MO dt
t2

t1

∫

∫

 If no external force acts on the particles of the system, the 
systems of momenta shown in parts a and c of Fig. 14.15 are equi-
pollent and we have

 L1 5 L2  (HO)1 5 (HO)2 (14.36, 14.37)

Many problems involving the motion of systems of particles can 
be solved by applying simultaneously the principle of impulse and 
momentum and the principle of conservation of energy [Sample 
Prob. 14.4] or by expressing that the linear momentum, angular 
momentum, and energy of the system are conserved [Sample 
Prob. 14.5].

Use of conservation principles in 
the solution of problems involving 
systems of particles

Use of conservation principles in 
the solution of problems involving 
systems of particles

Review and Summary
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908 Systems of Particles In the second part of the chapter, we considered variable systems of 
particles. First we considered a steady stream of particles, such as a 
stream of water diverted by a fixed vane or the flow of air through a 
jet engine [Sec. 14.11]. Applying the principle of impulse and momen-
tum to a system S of particles during a time interval Dt, and including 
the particles which enter the system at A during that time interval 
and those (of the same mass Dm) which leave the system at B, we 
concluded that the system formed by the momentum (Dm)vA of the 
particles entering S in the time Dt and the impulses of the forces 
exerted on S during that time is equipollent to the momentum (Dm)vB 
of the particles leaving S in the same time Dt (Fig. 14.16). Equating 

Variable systems of particles 
Steady stream of particles

Variable systems of particles 
Steady stream of particles

S SS
A

B

A

B∑mivi ∑mivi

(Δm)vA

(Δm)vB

(a) (b) (c)

∑F Δt

∑M Δt

+ =

Fig. 14.16

the x components, y components, and moments about a fixed point 
of the vectors involved, we could obtain as many as three equations, 
which could be solved for the desired unknowns [Sample Probs. 14.6 
and 14.7]. From this result, we could also derive the following expres-
sion for the resultant oF of the forces exerted on S,

 
oF 5

dm
dt

(vB 2 vA)
 

(14.39)

where vB 2 vA represents the difference between the vectors vB and 
vA and where dm/dt is the mass rate of flow of the stream (see foot-
note, page 886).

Considering next a system of particles gaining mass by continually 
absorbing particles or losing mass by continually expelling particles 
[Sec. 14.12], as in the case of a rocket, we applied the principle of 
impulse and momentum to the system during a time interval Dt, being 
careful to include the particles gained or lost during that time interval 
[Sample Prob. 14.8]. We also noted that the action on a system S of 
the particles being absorbed by S was equivalent to a thrust

 
P 5

dm
dt

 u
 

(14.44)

where dm/dt is the rate at which mass is being absorbed, and u is the 
velocity of the particles relative to S. In the case of particles being 
expelled by S, the rate dm/dt is negative and the thrust P is exerted in 
a direction opposite to that in which the particles are being expelled.

Systems gaining or losing massSystems gaining or losing mass
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909

REVIEW PROBLEMS

 14.105 A 30-g bullet is fired with a velocity of 480 m/s into block A, which 
has a mass of 5 kg. The coefficient of kinetic friction between block 
A and cart BC is 0.50. Knowing that the cart has a mass of 4 kg 
and can roll freely, determine (a) the final velocity of the cart and 
block, (b) the final position of the block on the cart.

 14.106 An 80-Mg railroad engine A coasting at 6.5 km/h strikes a 20-Mg 
flatcar C carrying a 30-Mg load B which can slide along the floor of 
the car (mk 5 0.25). Knowing that the car was at rest with its brakes 
released and that it automatically coupled with the engine upon 
impact, determine the velocity of the car (a) immediately after 
impact, (b) after the load has slid to a stop relative to the car.

B C

x

A

480 m/s

Fig. P14.105

A

B

C

20 Mg

30 Mg
6.5 km/h

Fig. P14.106

 14.107 Three identical freight cars have the velocities indicated. Assuming 
that car B is first hit by car A, determine the velocity of each car 
after all the collisions have taken place if (a) all three cars get 
automatically coupled, (b) cars A and B get automatically coupled 
while cars B and C bounce off each other with a coefficient of 
restitution e 5 0.8.

A B C

vA = 6 mi/h vC = 4.8 mi/hvB = 0

Fig. P14.107

 14.108 A 9000-lb helicopter A was traveling due east in level flight at a 
speed of 75 mi/h and at an altitude of 2500 ft when it was hit by a 
12,000-lb helicopter B. As a result of the collision, both helicopters 
lost their lift, and their entangled wreckage fell to the ground in 12 s 
at a point located 1500 ft east and 384 ft south of the point of 
impact. Neglecting air resistance, determine the velocity compo-
nents of helicopter B just before the collision.

bee29400_ch14_854-913.indd Page 909  12/15/08  1:12:44 PM user-s172bee29400_ch14_854-913.indd Page 909  12/15/08  1:12:44 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



910 Systems of Particles  14.109 A 15-lb block B is at rest and a spring of constant k 5 72 lb/in is 
held compressed 3 in. by a cord. After 5-lb block A is placed 
against the end of the spring the cord is cut causing A and B to 
move. Neglecting friction, determine the velocities of blocks A and 
B immediately after A leaves B.

k
6 in.

B

A

Fig. P14.109

 14.110 A 9-kg block B starts from rest and slides down the inclined surface 
of a 15-kg wedge A which is supported by a horizontal surface. 
Neglecting friction, determine (a) the velocity of B relative to A after 
it has slid 0.6 m down the surface of the wedge, (b) the corresponding 
velocity of the wedge.

 14.111 A mass q of sand is discharged per unit time from a conveyor belt 
moving with a velocity v0. The sand is deflected by a plate at A so 
that it falls in a vertical stream. After falling a distance h the sand 
is again deflected by a curved plate at B. Neglecting the friction 
between the sand and the plates, determine the force required to 
hold in the position shown (a) plate A, (b) plate B.

 14.112 The final component of a conveyor system receives sand at a rate 
of 100 kg/s at A and discharges it at B. The sand is moving hori-
zontally at A and B with a velocity of magnitude vA 5 vB 5 4.5 m/s. 
Knowing that the combined weight of the component and of 
the sand it supports is W 5 4 kN, determine the reactions at C 
and D.

A

B

30°

Fig. P14.110

A

h

B

v0

30°

Fig. P14.111

0.75 m

0.9 m

1.2 m1.8 m

A

C D

G

W

vB

vA

B

Fig. P14.112

bee29400_ch14_854-913.indd Page 910  12/15/08  1:13:57 PM user-s172bee29400_ch14_854-913.indd Page 910  12/15/08  1:13:57 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



911Review Problems 14.113 A garden sprinkler has four rotating arms, each of which consists of 
two horizontal straight sections of pipe forming an angle of 120° with 
each other. Each arm discharges water at a rate of 20 L/min with a 
velocity of 18 m/s relative to the arm. Knowing that the friction 
between the moving and stationary parts of the sprinkler is equiva-
lent to a couple of magnitude M 5 0.375 N ? m, determine the con-
stant rate at which the sprinkler rotates.

100 mm
150 mm

120°

Fig. P14.113

 14.114 The ends of a chain lie in piles at A and C. When given an initial 
speed v, the chain keeps moving freely at that speed over the pulley 
at B. Neglecting friction, determine the required value of h.

 14.115 A railroad car of length L and mass m0 when empty is moving 
freely on a horizontal track while being loaded with sand from a 
stationary chute at a rate dm/dt 5 q. Knowing that the car was 
approaching the chute at a speed v0, determine (a) the mass of the 
car and its load after the car has cleared the chute, (b) the speed 
of the car at that time.

 14.116 A possible method for reducing the speed of a training plane as it 
lands on an aircraft carrier consists in having the tail of the plane 
hook into the end of a heavy chain of length l which lies in a pile 
below deck. Denoting by m the mass of the plane and by v0 its 
speed at touchdown, and assuming no other retarding force, deter-
mine (a) the required mass of the chain if the speed of the plane 
is to be reduced to bv0, where b , 1, (b) the maximum value of 
the force exerted by the chain on the plane.

A

B

C

v

h

Fig. P14.114

Fig. P14.115

Fig. P14.116
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912

COMPUTER PROBLEMS

 14.C1 A man and a woman, of weights Wm and Ww, stand at opposite 
ends of a stationary boat of weight Wb, ready to dive with velocities vm and 
vw, respectively, relative to the boat. Use computational software to deter-
mine the velocity of the boat after both swimmers have dived if (a) the 
woman dives first, (b) the man dives first. Use this program first to solve 
Prob. 14.4 as originally stated, then to solve that problem assuming that 
the velocities of the woman and the man relative to the boat are, respec-
tively, (i) 14 ft/s and 18 ft/s, (ii) 18 ft/s and 14 ft/s.

 14.C2 A system of particles consists of n particles Ai of mass mi and 
coordinates xi, yi, and zi, having velocities of components (vx)i, (vy)i, and (vz)i. 
Derive expressions for the components of the angular momentum of the 
system about the origin O of the coordinates. Use computational software 
to solve Probs. 14.9 and 14.13.

 14.C3 A shell moving with a velocity of known components vx, vy, and vz 
explodes into three fragments of weights W1, W2, and W3 at point A0 at a dis-
tance d from a vertical wall. Use computational software to determine the 
speed of each fragment immediately after the explosion, knowing the coordi-
nates xi and yi of the points Ai (i 5 1, 2, 3) where the fragments hit the wall. 
Use this program to solve (a) Prob. 14.25, (b) Prob. 14.26.

Fig. P14.C1

y

AiO

xi

d

z
x

yi

Ao

Fig. P14.C3
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913Computer Problems 14.C4 As a 6000-kg training plane lands on an aircraft carrier at a speed 
of 180 km/h, its tail hooks into the end of an 80-m long chain which lies in 
a pile below deck. Knowing that the chain has a mass per unit length of 
50 kg/m and assuming no other retarding force, use computational software 
to determine the distance traveled by the plane while the chain is being 
pulled out and the corresponding values of the time and of the velocity and 
deceleration of the plane.

Fig. P14.C4

 14.C5 A 16-Mg jet airplane maintains a constant speed of 774 km/h while 
climbing at an angle a 5 18°. The airplane scoops in air at a rate of 300 
kg/s and discharges it with a velocity of 665 m/s relative to the airplane. 
Knowing that the pilot changes the angle of climb a while maintaining the 
same engine setting, use computational software to calculate and plot values 
of a from 0 to 20° (a) the initial acceleration of the plane, (b) the maximum 
speed that will be attained. Assume that the drag due to air friction is pro-
portional to the square of the speed.

 14.C6 A rocket has a weight of 2400 lb, including 2000 lb of fuel, which 
is consumed at the rate of 25 lb/s and ejected with a relative velocity of 
12,000 ft/s. Knowing that the rocket is fired vertically from the ground, 
assuming a constant value for the acceleration of gravity, and using 4-s time 
intervals, use computational software to determine and plot from the time of 
ignition to the time when the last particle of fuel is being consumed (a) the 
acceleration a of the rocket in ft/s2, (b) its velocity v in ft/s, (c) its elevation h 
above the ground in miles. (Hint: Use for v the expression derived in Sample 
Prob. 14.8, and integrate this expression analytically to obtain h.)

a

Fig. P14.C5
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This huge crank belongs to a 

Wartsila-Sulzer RTA96-C turbocharged 

two-stroke diesel engine. In this chapter 

you will learn to perform the kinematic 

analysis of rigid bodies that undergo 

translation, fixed axis rotation, and 

general plane motion.
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Kinematics of Rigid Bodies
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15C H A P T E R
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916

15.1 INTRODUCTION
In this chapter, the kinematics of rigid bodies will be considered. You 
will investigate the relations existing between the time, the positions, 
the velocities, and the accelerations of the various particles forming 
a rigid body. As you will see, the various types of rigid-body motion 
can be conveniently grouped as follows:

Chapter 15 Kinematics of 
Rigid Bodies

 15.1 Introduction
 15.2 Translation
 15.3 Rotation about a Fixed Axis
 15.4 Equations Defining the Rotation 

of a Rigid Body about a 
Fixed Axis

 15.5 General Plane Motion
 15.6 Absolute and Relative Velocity 

in Plane Motion
 15.7 Instantaneous Center of Rotation 

in Plane Motion
 15.8 Absolute and Relative 

Acceleration in Plane Motion
 15.9 Analysis of Plane Motion in 

Terms of a Parameter
 15.10 Rate of Change of a Vector with 

Respect to a Rotating Frame
 15.11 Plane Motion of a Particle 

Relative to a Rotating Frame. 
Coriolis Acceleration

 15.12 Motion about a Fixed Point
 15.13 General Motion
 15.14 Three-Dimensional Motion of a 

Particle Relative to a Rotating 
Frame. Coriolis Acceleration

 15.15 Frame of Reference in 
General Motion

A1

B1

A2

B2

Fig. 15.1

A1

B1

A2

B2

Fig. 15.2

Fig. 15.4

A1

A2

C1

C2

B1

B2

D1

D2

A1

A2

C1

C2

B1

B2

D1

D2

(a) Curvilinear translation (b) Rotation

O

Fig. 15.3

A

B

 1. Translation. A motion is said to be a translation if any straight 
line inside the body keeps the same direction during the motion. 
It can also be observed that in a translation all the particles 
forming the body move along parallel paths. If these paths are 
straight lines, the motion is said to be a rectilinear translation 
(Fig. 15.1); if the paths are curved lines, the motion is a curvi-
linear translation (Fig. 15.2).

 2. Rotation about a Fixed Axis. In this motion, the particles form-
ing the rigid body move in parallel planes along circles centered 
on the same fixed axis (Fig. 15.3). If this axis, called the axis of 
rotation, intersects the rigid body, the particles located on the 
axis have zero velocity and zero acceleration.

   Rotation should not be confused with certain types of cur-
vilinear translation. For example, the plate shown in Fig. 15.4a 
is in curvilinear translation, with all its particles moving along 
parallel circles, while the plate shown in Fig. 15.4b is in rota-
tion, with all its particles moving along concentric circles.
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917  In the first case, any given straight line drawn on the plate 
will maintain the same direction, whereas in the second case, 
point O remains fixed.

   Because each particle moves in a given plane, the rotation 
of a body about a fixed axis is said to be a plane motion.

 3. General Plane Motion. There are many other types of plane 
motion, i.e., motions in which all the particles of the body move 
in parallel planes. Any plane motion which is neither a rotation 
nor a translation is referred to as a general plane motion. Two 
examples of general plane motion are given in Fig. 15.5.

(a) Rolling wheel (b) Sliding rod

Fig. 15.5

 4. Motion about a Fixed Point. The three-dimensional motion of 
a rigid body attached at a fixed point O, e.g., the motion of a 
top on a rough floor (Fig. 15.6), is known as motion about a 
fixed point.

 5. General Motion. Any motion of a rigid body which does not 
fall in any of the categories above is referred to as a general 
motion.

 After a brief discussion in Sec. 15.2 of the motion of translation, 
the rotation of a rigid body about a fixed axis is considered in Sec. 
15.3. The angular velocity and the angular acceleration of a rigid 
body about a fixed axis will be defined, and you will learn to express 
the velocity and the acceleration of a given point of the body in terms 
of its position vector and the angular velocity and angular accelera-
tion of the body.
 The following sections are devoted to the study of the general 
plane motion of a rigid body and to its application to the analysis of 
mechanisms such as gears, connecting rods, and pin-connected link-
ages. Resolving the plane motion of a slab into a translation and a 
rotation (Secs. 15.5 and 15.6), we will then express the velocity of a 
point B of the slab as the sum of the velocity of a reference point A 
and of the velocity of B relative to a frame of reference translating 
with A (i.e., moving with A but not rotating). The same approach is 
used later in Sec. 15.8 to express the acceleration of B in terms of 
the acceleration of A and of the acceleration of B relative to a frame 
translating with A.

Fig. 15.6

O

15.1 Introduction
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918 Kinematics of Rigid Bodies  An alternative method for the analysis of velocities in plane 
motion, based on the concept of instantaneous center of rotation, is 
given in Sec. 15.7; and still another method of analysis, based on the 
use of parametric expressions for the coordinates of a given point, is 
presented in Sec. 15.9.
 The motion of a particle relative to a rotating frame of refer-
ence and the concept of Coriolis acceleration are discussed in Secs. 
15.10 and 15.11, and the results obtained are applied to the analysis 
of the plane motion of mechanisms containing parts which slide on 
each other.
 The remaining part of the chapter is devoted to the analysis of 
the three-dimensional motion of a rigid body, namely, the motion of 
a rigid body with a fixed point and the general motion of a rigid body. 
In Secs. 15.12 and 15.13, a fixed frame of reference or a frame of 
reference in translation will be used to carry out this analysis; in Secs. 
15.14 and 15.15, the motion of the body relative to a rotating frame 
or to a frame in general motion will be considered, and the concept 
of Coriolis acceleration will again be used.

15.2 TRANSLATION
Consider a rigid body in translation (either rectilinear or curvilinear 
translation), and let A and B be any two of its particles (Fig. 15.7a). 
Denoting, respectively, by rA and rB the position vectors of A and B 
with respect to a fixed frame of reference and by rB/A the vector 
joining A and B, we write

 rB 5 rA 1 rB/A (15.1)

Let us differentiate this relation with respect to t. We note that from 
the very definition of a translation, the vector rB/A must maintain a 
constant direction; its magnitude must also be constant, since A and B 

y

x

z

O

A

B

(a)

rB

rB/A

rA

v

v

y

x

z

O

B

(b)

A

ay

x

z

O

B

(c)

a

A

Fig. 15.7

Photo 15.1 This replica of a battering ram at 
Château des Baux, France undergoes curvilinear 
translation.
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919belong to the same rigid body. Thus, the derivative of rB/A is zero 
and we have

 vB 5 vA (15.2)

Differentiating once more, we write

 aB 5 aA (15.3)

 Thus, when a rigid body is in translation, all the points of the 
body have the same velocity and the same acceleration at any given 
instant (Fig. 15.7b and c). In the case of curvilinear translation, the 
velocity and acceleration change in direction as well as in magnitude 
at every instant. In the case of rectilinear translation, all particles of 
the body move along parallel straight lines, and their velocity and 
acceleration keep the same direction during the entire motion.

15.3 ROTATION ABOUT A FIXED AXIS
Consider a rigid body which rotates about a fixed axis AA9. Let P be 
a point of the body and r its position vector with respect to a fixed 
frame of reference. For convenience, let us assume that the frame is 
centered at point O on AA9 and that the z axis coincides with AA9 
(Fig. 15.8). Let B be the projection of P on AA9; since P must remain 
at a constant distance from B, it will describe a circle of center B and 
of radius r sin f, where f denotes the angle formed by r and AA9.
 The position of P and of the entire body is completely defined 
by the angle u the line BP forms with the zx plane. The angle u is 
known as the angular coordinate of the body and is defined as posi-
tive when viewed as counterclockwise from A9. The angular coordi-
nate will be expressed in radians (rad) or, occasionally, in degrees (°) 
or revolutions (rev). We recall that

1 rev 5 2p rad 5 360°

 We recall from Sec. 11.9 that the velocity v 5 dr/dt of a particle 
P is a vector tangent to the path of P and of magnitude v 5 ds/dt. 
Observing that the length Ds of the arc described by P when the 
body rotates through Du is

Ds 5 (BP) Du 5 (r sin f) Du

and dividing both members by Dt, we obtain at the limit, as Dt 
approaches zero,

 
v 5

ds
dt

5 ru
.

 sin f
 

(15.4)

where u̇ denotes the time derivative of u. (Note that the angle u 
depends on the position of P within the body, but the rate of change 
u̇ is itself independent of P.) We conclude that the velocity v of P is 
a vector perpendicular to the plane containing AA9 and r, and of 

15.3 Rotation about a Fixed Axis

Fig. 15.8

A

x

z

y

O

A'

B

P
f

r

q

Photo 15.2 For the central gear rotating about 
a fixed axis, the angular velocity and angular 
acceleration of that gear are vectors directed 
along the vertical axis of rotation.
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920 Kinematics of Rigid Bodies magnitude v defined by (15.4). But this is precisely the result we 
would obtain if we drew along AA9 a vector V 5 u̇k and formed the 
vector product V 3 r (Fig. 15.9). We thus write

 
v 5

dr
dt

5 V 3 r
 

(15.5)

The vector

 V 5 vk 5 u̇k (15.6)

which is directed along the axis of rotation, is called the angular 
velocity of the body and is equal in magnitude to the rate of change 
u̇  of the angular coordinate; its sense may be obtained by the right-
hand rule (Sec. 3.6) from the sense of rotation of the body.†
 The acceleration a of the particle P will now be determined. 
Differentiating (15.5) and recalling the rule for the differentiation of 
a vector product (Sec. 11.10), we write

 a 5
dv
dt

5
d
dt

 (V 3 r)

 5
dV
dt

3 r 1 V 3
dr
dt

 
 5

dV
dt

3 r 1 V 3 v
 

(15.7)

The vector dV/dt is denoted by A and is called the angular accelera-
tion of the body. Substituting also for v from (15.5), we have

 a 5 A 3 r 1 V 3 (V 3 r) (15.8)

Differentiating (15.6) and recalling that k is constant in magnitude 
and direction, we have

 A 5 ak 5 v̇k 5 ük (15.9)

Thus, the angular acceleration of a body rotating about a fixed axis 
is a vector directed along the axis of rotation, and is equal in magni-
tude to the rate of change v̇ of the angular velocity. Returning to 
(15.8), we note that the acceleration of P is the sum of two vectors. 
The first vector is equal to the vector product A 3 r; it is tangent 
to the circle described by P and therefore represents the tangential 
component of the acceleration. The second vector is equal to the 
vector triple product V 3 (V 3 r) obtained by forming the vector 
product of V and V 3 r; since V 3 r is tangent to the circle described 
by P, the vector triple product is directed toward the center B of 
the circle and therefore represents the normal component of the 
acceleration.

†It will be shown in Sec. 15.12 in the more general case of a rigid body rotating 
 simultaneously about axes having different directions that angular velocities obey 
the parallelogram law of addition and thus are actually vector quantities.

Fig. 15.9
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•
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921Rotation of a Representative Slab. The rotation of a rigid body 
about a fixed axis can be defined by the motion of a representative 
slab in a reference plane perpendicular to the axis of rotation. Let 
us choose the xy plane as the reference plane and assume that it 
coincides with the plane of the figure, with the z axis pointing out 
of the paper (Fig. 15.10). Recalling from (15.6) that V 5 vk, we 

Fig. 15.11

x

y

O

P

ww = wk
aa = ak

a t = a k × r

a n = – w2r

Fig. 15.10

x

y

O

r
P

w = wk

v = wk × r

note that a positive value of the scalar v corresponds to a counter-
clockwise rotation of the representative slab, and a negative value to 
a clockwise rotation. Substituting vk for V into Eq. (15.5), we express 
the velocity of any given point P of the slab as

 v 5 vk 3 r (15.10)

Since the vectors k and r are mutually perpendicular, the magnitude 
of the velocity v is

 v 5 rv (15.109)

and its direction can be obtained by rotating r through 90° in the 
sense of rotation of the slab.
 Substituting V 5 vk and A 5 ak into Eq. (15.8), and observing 
that cross-multiplying r twice by k results in a 180° rotation of the 
vector r, we express the acceleration of point P as

 a 5 ak 3 r 2 v2r (15.11)

Resolving a into tangential and normal components (Fig. 15.11), we 
write

 at 5 ak 3 r  at 5 ra (15.119)
 an 5 2v2r an 5 rv2

The tangential component at points in the counterclockwise direc-
tion if the scalar a is positive, and in the clockwise direction if a is 
negative. The normal component an always points in the direction 
opposite to that of r, that is, toward O.

15.3 Rotation about a Fixed Axis
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922 Kinematics of Rigid Bodies 15.4  EQUATIONS DEFINING THE ROTATION OF A 
RIGID BODY ABOUT A FIXED AXIS

The motion of a rigid body rotating about a fixed axis AA9 is said to 
be known when its angular coordinate u can be expressed as a known 
function of t. In practice, however, the rotation of a rigid body is 
seldom defined by a relation between u and t. More often, the condi-
tions of motion will be specified by the type of angular acceleration 
that the body possesses. For example, a may be given as a function 
of t, as a function of u, or as a function of v. Recalling the relations 
(15.6) and (15.9), we write

 
v 5

du
dt  

(15.12)

 
a 5

dv
dt

5
d2u

dt2  
(15.13)

or, solving (15.12) for dt and substituting into (15.13),

 
a 5 v  

dv
du  

(15.14)

Since these equations are similar to those obtained in Chap. 11 for 
the rectilinear motion of a particle, their integration can be per-
formed by following the procedure outlined in Sec. 11.3.
 Two particular cases of rotation are frequently encountered:

 1. Uniform Rotation. This case is characterized by the fact that 
the angular acceleration is zero. The angular velocity is thus 
constant, and the angular coordinate is given by the formula

 u 5 u0 1 vt (15.15)

 2. Uniformly Accelerated Rotation. In this case, the angular accel-
eration is constant. The following formulas relating angular 
velocity, angular coordinate, and time can then be derived in a 
manner similar to that described in Sec. 11.5. The similarity 
between the formulas derived here and those obtained for 
the rectilinear uniformly accelerated motion of a particle is 
apparent.

 v 5 v0 1 at
 u 5 u0 1 v0t 1 1

2at2 (15.16)
 v2 5 v2

0 1 2a(u 2 u0)

It should be emphasized that formula (15.15) can be used only when 
a 5 0, and formulas (15.16) can be used only when a 5 constant. 
In any other case, the general formulas (15.12) to (15.14) should 
be used.

Photo 15.3 If the lower roll has a constant 
angular velocity, the speed of the paper being 
wound onto it increases as the radius of the roll 
increases.
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923

SAMPLE PROBLEM 15.1

Load B is connected to a double pulley by one of the two inextensible cables 
shown. The motion of the pulley is controlled by cable C, which has a con-
stant acceleration of 9 in./s2 and an initial velocity of 12 in./s, both directed 
to the right. Determine (a) the number of revolutions executed by the pulley 
in 2 s, (b) the velocity and change in position of the load B after 2 s, and 
(c) the acceleration of point D on the rim of the inner pulley at t 5 0.

SOLUTION

a. Motion of Pulley. Since the cable is inextensible, the velocity of point 
D is equal to the velocity of point C and the tangential component of the 
acceleration of D is equal to the acceleration of C.

(vD)0 5 (vC)0 5 12 in./s  y  (aD)t 5 aC 5 9 in./s2 y

Noting that the distance from D to the center of the pulley is 3 in., we write

 (vD)0 5 rv0  12 in./s 5 (3 in.)v0  V0 5 4 rad/s i
 (aD)t 5 ra   9 in./s2 5 (3 in.)a   A 5 3 rad/s2

i

Using the equations of uniformly accelerated motion, we obtain, for t 5 2 s,

v 5 v0 1 at 5 4 rad/s 1 (3 rad/s2)(2 s) 5 10 rad/s
V 5 10 rad/s i

u 5 v0t 1 1
2at2 5 (4 rad/s)(2 s) 1 1

2(3 rad/s2)(2 s)2 5 14 rad
u 5 14 rad i

Number of revolutions 5 (14 rad)a 1 rev
2p rad

b 5 2.23 rev ◀

b. Motion of Load B. Using the following relations between linear and 
angular motion, with r 5 5 in., we write

 vB 5 rv 5 (5 in.)(10 rad/s) 5 50 in./s vB 5 50 in./sx ◀

 DyB 5 ru 5 (5 in.)(14 rad) 5 70 in. DyB 5 70 in. upward ◀

c. Acceleration of Point D at t 5 0. The tangential component of the 
acceleration is

(aD)t 5 aC 5 9 in./s2 
y

Since, at t 5 0, v0 5 4 rad/s, the normal component of the acceleration is

(aD)n 5 rDv
2
0 5 (3 in.)(4 rad/s)2 5 48 in./s2  (aD)n 5 48 in./s2

w

The magnitude and direction of the total acceleration can be obtained by 
writing

 tan f 5 (48 in./s2)/(9 in./s2)  f 5 79.4°
 aD sin 79.4° 5 48 in./s2    aD 5 48.8 in./s2

aD 5 48.8 in./s2 c 79.4° ◀

w

vC

vD

vB

A

B

C

D

aD

(aD)t = 9 in./s2

(aD)n = 48 in./s2

D

f

A

B

CD

3 in.

5 in.

w

aB

aC

(aD)t
(aD)n

A

B

C
D

aa
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924

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we began the study of the motion of rigid bodies by considering 
two particular types of motion of rigid bodies: translation and rotation about a 

fixed axis.

1. Rigid body in translation. At any given instant, all the points of a rigid body 
in translation have the same velocity and the same acceleration (Fig. 15.7).

2. Rigid body rotating about a fixed axis. The position of a rigid body rotating 
about a fixed axis was defined at any given instant by the angular coordinate u, 
which is usually measured in radians. Selecting the unit vector k along the fixed 
axis and in such a way that the rotation of the body appears counterclockwise as 
seen from the tip of k, we defined the angular velocity V and the angular accel-
eration A of the body:

 V 5 u̇k  A 5 ük (15.6, 15.9)

In solving problems, keep in mind that the vectors V and A are both directed 
along the fixed axis of rotation and that their sense can be obtained by the right-
hand rule.
 a. The velocity of a point P of a body rotating about a fixed axis was found 
to be

 v 5 V 3 r (15.5)

where V is the angular velocity of the body and r is the position vector drawn 
from any point on the axis of rotation to point P (Fig. 15.9).
 b. The acceleration of point P was found to be

 a 5 A 3 r 1 V 3 (V 3 r) (15.8)

Since vector products are not commutative, be sure to write the vectors in the 
order shown when using either of the above two equations.

3. Rotation of a representative slab. In many problems, you will be able to 
reduce the analysis of the rotation of a three-dimensional body about a fixed axis 
to the study of the rotation of a representative slab in a plane perpendicular to 
the fixed axis. The z axis should be directed along the axis of rotation and point 
out of the paper. Thus, the representative slab will be rotating in the xy plane 
about the origin O of the coordinate system (Fig. 15.10).

To solve problems of this type you should do the following:
 a. Draw a diagram of the representative slab, showing its dimensions, its 
angular velocity and angular acceleration, as well as the vectors representing the 
velocities and accelerations of the points of the slab for which you have or seek 
information.
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 b. Relate the rotation of the slab and the motion of points of the slab by 
writing the equations

 v 5 rv (15.109)
 at 5 ra  an 5 rv2 (15.119)

Remember that the velocity v and the component a t of the acceleration of a 
point P of the slab are tangent to the circular path described by P. The directions 
of v and at are found by rotating the position vector r through 90° in the sense 
indicated by V and A, respectively. The normal component an of the acceleration 
of P is always directed toward the axis of rotation.

4. Equations defining the rotation of a rigid body. You must have been pleased 
to note the similarity existing between the equations defining the rotation of a rigid 
body about a fixed axis [Eqs. (15.12) through (15.16)] and those in Chap. 11 defin-
ing the rectilinear motion of a particle [Eqs. (11.1) through (11.8)]. All you have 
to do to obtain the new set of equations is to substitute u, v, and a for x, v, and 
a in the equations of Chap. 11.
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PROBLEMS

926

 15.1 The motion of a cam is defined by the relation u 5 t3 2 9t2 1 15t, 
where u is expressed in radians and t in seconds. Determine the 
angular coordinate, the angular velocity, and the angular accelera-
tion of the cam when (a) t 5 0, (b) t 5 3 s.

 15.2 For the cam of Prob. 15.1, determine the time, angular coordinate, 
and angular acceleration when the angular velocity is zero.

 15.3 The motion of an oscillating crank is defined by the relation u 5
u0 sin (pt/T) 2 (0.5u0) sin (2 pt/T) where u is expressed in radians 
and t in seconds. Knowing that u0 5 6 rad and T 5 4 s, determine 
the angular coordinate, the angular velocity, and the angular accel-
eration of the crank when (a) t 5 0, (b) t 5 2 s.

 15.4 Solve Prob. 15.4, when t 5 1 s.

 15.5 The motion of a disk rotating in an oil bath is defined by the relation 
u 5 u0(1 2 e2t /4), where u is expressed in radians and t in seconds. 
Knowing that u0 5 0.40 rad, determine the angular coordinate, 
velocity, and acceleration of the disk when (a) t 5 0, (b) t 5 3 s, 
(c) t 5 .̀

 15.6 The angular acceleration of an oscillating disk is defined by the 
relation a 5 2ku. Determine (a) the value of k for which v 5 8 rad/s 
when u 5 0 and u 5 4 rad when v 5 0, (b) the angular velocity 
of the disk when u 5 3 rad.

 15.7 When the power to an electric motor is turned on the motor 
reaches its rated speed of 3300 rpm in 6 s, and when the power 
is turned off the motor coasts to rest in 80 s. Assuming uni-
formly accelerated motion, determine the number of revolutions 
that the motor executes (a) in reaching its rated speed, (b) in coast-
ing to rest.

 15.8 The rotor of a gas turbine is rotating at a speed of 6900 rpm when 
the turbine is shut down. It is observed that 4 min is required for 
the rotor to coast to rest. Assuming uniformly  accelerated motion, 
determine (a) the angular acceleration, (b) the number of revolu-
tions that the rotor executes before  coming to rest.

 15.9 The angular acceleration of a shaft is defined by the relation a 5 
20.25v, where a is expressed in rad/s2 and v in rad/s. Knowing 
that at t 5 0 the angular velocity of the shaft is 20 rad/s, determine 
(a) the number of revolutions the shaft will execute before coming 
to rest, (b) the time required for the shaft to come to rest, (c) the 
time required for the angular velocity of the shaft to be reduced 
to 1 percent of its initial value.

Fig. P15.7
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927Problems 15.10 The assembly shown consists of the straight rod ABC which passes 
through and is welded to the rectangular plate DEFH. The assem-
bly rotates about the axis AC with a constant angular velocity of 
9 rad/s. Knowing that the motion when viewed from C is counter-
clockwise, determine the velocity and acceleration of corner F.

y

x

z

100 mm

100 mm

100 mm

100 mm

175 mm175 mm

A

E

B
F

C

H

D

Fig. P15.10

 15.11 In Prob. 15.10, determine the acceleration of corner H, assuming 
that the angular velocity is 9 rad/s and decreases at a rate of 
18 rad/s2.

 15.12 The bent rod ABCDE rotates about a line joining points A and E 
with a constant angular velocity of 9 rad/s. Knowing that the rota-
tion is clockwise as viewed from E, determine the velocity and 
acceleration of corner C.

200 mm

250 mm

150 mm

150 mm

400 mm
x

z

y

A

B

C

D

E

Fig. P15.12

 15.13 In Prob. 15.12, determine the velocity and acceleration of corner 
B, assuming that the angular velocity is 9 rad/s and increases at 
the rate of 45 rad/s2.
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928 Kinematics of Rigid Bodies  15.14 A triangular plate and two rectangular plates are welded to each 
other and to the straight rod AB. The entire welded unit rotates 
about axis AB with a constant angular velocity of 5 rad/s. Know-
ing that at the instant considered the velocity of corner E is 
directed downward, determine the velocity and acceleration of 
corner D.

x

z

A

B

C

D

E

O

350 mm

300 mm

y

400 mm

Fig. P15.14

A

C

B
q

r

a
w

Fig. P15.18, P15.19, and P15.20

 15.15 In Prob. 15.14, determine the acceleration of corner D, assuming 
that the angular velocity is 5 rad/s and decreases at the rate of 
20 rad/s2.

 15.16 The earth makes one complete revolution on its axis in 23 h 56 min. 
Knowing that the mean radius of the earth is 3960 mi, determine 
the linear velocity and acceleration of a point on the surface of 
the earth (a) at the equator, (b) at Philadelphia, latitude 40° north, 
(c) at the North Pole.

 15.17 The earth makes one complete revolution around the sun in 365.24 
days. Assuming that the orbit of the earth is circular and has a 
radius of 93,000,000 mi, determine the velocity and acceleration 
of the earth.

 15.18 The circular plate shown is initially at rest. Knowing that r 5 
200 mm and that the plate has a constant angular acceleration of 
0.3 rad/s2, determine the magnitude of the total acceleration of 
point B when (a) t 5 0, (b) t 5 2 s, (c) t 5 4 s.

 15.19 The angular acceleration of the 600-mm-radius circular plate 
shown is defined by the relation a 5 a0e2t. Knowing that the plate 
is at rest when t 5 0 and that a0 5 10 rad/s2, determine the mag-
nitude of the total acceleration of point B when (a) t 5 0, (b) t 5 
0.5 s, (c) t 5 .̀

 15.20 The 250-mm-radius circular plate shown is initially at rest and has 
an angular acceleration defined by the relation a 5 a0 cos (pt/T). 
Knowing that T 5 1.5 s and a0 5 10 rad/s2,  determine the mag-
nitude of the total acceleration of point B when (a) t 5 0, (b) t 5 
0.5 s, (c) t 5 0.75 s.
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929Problems 15.21 A series of small machine components being moved by a conveyor 
belt pass over a 6-in.-radius idler pulley. At the instant shown, the 
velocity of point A is 15 in./s to the left and its acceleration is 9 in./s2 
to the right. Determine (a) the angular velocity and angular accel-
eration of the idler pulley, (b) the total acceleration of the machine 
component at B.

 15.22 A series of small machine components being moved by a conveyor 
belt pass over a 6-in.-radius idler pulley. At the instant shown, 
the angular velocity of the idler pulley is 4 rad/s clockwise. 
Determine the angular acceleration of the pulley for which the 
magnitude of the total acceleration of the machine component at 
B is 120 in./s2.

 15.23 The belt sander shown is initially at rest. If the driving drum B 
has a constant angular acceleration of 120 rad/s2 counterclockwise, 
determine the magnitude of the acceleration of the belt at point 
C when (a) t 5 0.5 s, (b) t 5 2 s.

A

B

6 in.

Fig. P15.21 and P15.22

A BC

25 mm

25 mm

Fig. P15.23 and P15.24

 15.24 The rated speed of drum B of the belt sander shown is 2400 rpm. 
When the power is turned off, it is observed that the sander 
coasts from its rated speed to rest in 10 s. Assuming uniformly 
decelerated motion, determine the velocity and acceleration of 
point C of the belt, (a) immediately before the power is turned off, 
(b) 9 s later.
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930 Kinematics of Rigid Bodies  15.25 Ring C has an inside radius of 55 mm and an outside radius of 
60 mm and is positioned between two wheels A and B, each of 
24-mm outside radius. Knowing that wheel A rotates with a 
 constant angular velocity of 300 rpm and that no slipping occurs, 
determine (a) the angular velocity of the ring C and of wheel B, 
(b) the acceleration of the points A and B which are in contact 
with C.

 15.26 Ring B has an inside radius r2 and hangs from the horizontal shaft 
A as shown. Knowing that shaft A rotates with a constant angular 
velocity vA and that no slipping occurs, derive a relation in terms 
of r1, r2, r3, and vA for (a) the angular velocity of ring B, (b) the 
accelerations of the points of shaft A and ring B which are in 
contact.

0.75 ft

A

Fig. P15.28 and P15.29

x

y

r2

r3

A

z

r1

B

Fig. P15.26 and P15.27

 15.27 Ring B has an inside radius r2 and hangs from the horizontal shaft 
A as shown. Shaft A rotates with a constant angular velocity of 
25 rad/s and no slipping occurs. Knowing that r1 5 12 mm, r2 5 
30 mm, and r3 5 40 mm, determine (a) the angular velocity of 
ring B, (b) the accelerations of the points of shaft A and ring B 
which are in contact, (c) the magnitude of the acceleration of a 
point on the outside surface of ring B.

 15.28 Cylinder A is moving downward with a velocity of 9 ft/s when the 
brake is suddenly applied to the drum. Knowing that the cylinder 
moves 18 ft downward before coming to rest and assuming uniformly 
accelerated motion, determine (a) the angular acceleration of the 
drum, (b) the time required for the cylinder to come to rest.

 15.29 The system shown is held at rest by the brake-and-drum system. 
After the brake is partially released at t 5 0, it is observed that 
the cylinder moves 16 ft in 5 s. Assuming uniformly accelerated 
motion, determine (a) the angular acceleration of the drum, 
(b) the angular velocity of the drum at t 5 4 s.

A

B

C

5 mm

24 mm

Fig. P15.25
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931Problems 15.30 A pulley and two loads are connected by inextensible cords as 
shown. Load A has a constant acceleration of 300 mm/s2 and an 
initial velocity of 240 mm/s, both directed upward. Determine 
(a) the number of revolutions executed by the pulley in 3 s, (b) the 
velocity and position of load B after 3 s, (c) the acceleration of point 
D on the rim of the pulley at t 5 0.

 15.31 A pulley and two loads are connected by inextensible cords as 
shown. The pulley starts from rest at t 5 0 and is accelerated at 
the uniform rate of 2.4 rad/s2 clockwise. At t 5 4 s, determine the 
velocity and position (a) of load A, (b) of load B.

 15.32 Disk B is at rest when it is brought into contact with disk A which 
is rotating freely at 450 rpm clockwise. After 6 s of  slippage, during 
which each disk has a constant angular acceleration, disk A reaches 
a final angular velocity of 140 rpm clockwise. Determine the angu-
lar acceleration of each disk during the period of slippage.

B

D

A

C180 mm120 mm
C

Fig. P15.30 and P15.31

A

B

80 mm 60 mm

Fig. P15.34 and P15.35

A

B3 in.

5 in.

Fig. P15.32 and P15.33

 15.33 and 15.34 A simple friction drive consists of two disks A and 
B. Initially, disk A has a clockwise angular velocity of 500 rpm and 
disk B is at rest. It is known that disk A will coast to rest in 60 s. 
However, rather than waiting until both disks are at rest to bring 
them together, disk B is given a  constant angular acceleration of 
2.5 rad/s2 counterclockwise. Determine (a) at what time the disks 
can be brought together if they are not to slip, (b) the angular veloc-
ity of each disk as contact is made.

 15.35 Two friction disks A and B are both rotating freely at 240 rpm 
counterclockwise when they are brought into contact. After 8 s of 
slippage, during which each disk has a constant angular accelera-
tion, disk A reaches a final angular velocity of 60 rpm counter-
clockwise. Determine (a) the angular acceleration of each disk 
during the period of slippage, (b) the time at which the angular 
velocity of disk B is equal to zero.
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Fig. P15.36
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w

Fig. P15.37

 *15.36 In a continuous printing process, paper is drawn into the presses 
at a constant speed v. Denoting by r the radius of the paper roll 
at any given time and by b the thickness of the paper, derive an 
expression for the angular acceleration of the paper roll.

 *15.37 Television recording tape is being rewound on a VCR reel which 
rotates with a constant angular velocity v0. Denoting by r the 
radius of the reel and tape at any given time and by b the thickness 
of the tape, derive an expression for the acceleration of the tape 
as it approaches the reel.

932 Kinematics of Rigid Bodies

15.5 GENERAL PLANE MOTION
As indicated in Sec. 15.1, we understand by general plane motion a 
plane motion which is neither a translation nor a rotation. As you 
will presently see, however, a general plane motion can always be 
considered as the sum of a translation and a rotation.
 Consider, for example, a wheel rolling on a straight track 
(Fig. 15.12). Over a certain interval of time, two given points A and B 
will have moved, respectively, from A1 to A2 and from B1 to B2. The 
same result could be obtained through a translation which would 
bring A and B into A2 and B91 (the line AB remaining vertical), fol-
lowed by a rotation about A bringing B into B2. Although the original 
rolling motion differs from the combination of translation and rota-
tion when these motions are taken in succession, the original motion 
can be exactly duplicated by a combination of simultaneous transla-
tion and rotation.

Fig. 15.12

= +

Plane motion = +Translation with A Rotation about A

A1 A1 A2
A2

A2

B1 B1
B'1

B'1

B2 B2
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933

 Another example of plane motion is given in Fig. 15.13, which 
represents a rod whose extremities slide along a horizontal and a verti-
cal track, respectively. This motion can be replaced by a translation in 
a horizontal direction and a rotation about A (Fig. 15.13a) or by a 
translation in a vertical direction and a rotation about B (Fig. 15.13b).
 In the general case of plane motion, we will consider a small 
displacement which brings two particles A and B of a representative 
slab, respectively, from A1 and B1 into A2 and B2 (Fig. 15.14). This 
displacement can be divided into two parts: in one, the particles 
move into A2 and B91 while the line AB maintains the same direction; 
in the other, B moves into B2 while A remains fixed. The first part 
of the motion is clearly a translation and the second part a rotation 
about A.
 Recalling from Sec. 11.12 the definition of the relative motion 
of a particle with respect to a moving frame of reference—as opposed 
to its absolute motion with respect to a fixed frame of reference—we 
can restate as follows the result obtained above: Given two particles 
A and B of a rigid slab in plane motion, the relative motion of B with 
respect to a frame attached to A and of fixed orientation is a rotation. 
To an observer moving with A but not rotating, particle B will appear 
to describe an arc of circle centered at A.

15.5 General Plane Motion

Fig. 15.13

A2A1
A2 A2A1

B1 B1

B2

B'1 B'1

B2

A2A1

A2A1

A'1

B1

B2

A'1

B2

B1

B2

= +

= +

Plane motion

Plane motion

=

=

Translation with A +

+

Rotation about A

Translation with B Rotation about B

(a)

(b)

Fig. 15.14

B'1

A1

A2

B1

B2
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934 Kinematics of Rigid Bodies 15.6  ABSOLUTE AND RELATIVE VELOCITY 
IN PLANE MOTION

We saw in the preceding section that any plane motion of a slab can 
be replaced by a translation defined by the motion of an arbitrary 
reference point A and a simultaneous rotation about A. The absolute 
velocity vB of a particle B of the slab is obtained from the relative-
velocity formula derived in Sec. 11.12,

 vB 5 vA 1 vB/A (15.17)

where the right-hand member represents a vector sum. The velocity 
vA corresponds to the translation of the slab with A, while the relative 
velocity vB/A is associated with the rotation of the slab about A and 
is measured with respect to axes centered at A and of fixed orienta-
tion (Fig. 15.15). Denoting by rB/A the position vector of B relative 
to A, and by vk the angular velocity of the slab with respect to axes 
of fixed orientation, we have from (15.10) and (15.109)

 vB/A 5 vk 3 rB/A  vB/A 5 rv (15.18)

Fig. 15.15

= +

Plane motion = Translation with A + Rotation about A

A

B

A

B B

vA

vA

vA

vB

vA
vB

x'

y'

wk

rB/A

vB/A

vB/A

vB = vA + vB/A

A
(fixed)

where r is the distance from A to B. Substituting for vB/A from (15.18) 
into (15.17), we can also write

 vB 5 vA 1 vk 3 rB/A (15.179)

 As an example, let us again consider the rod AB of Fig. 15.13. 
Assuming that the velocity vA of end A is known, we propose to find 
the velocity vB of end B and the angular velocity V of the rod, in terms 
of the velocity vA, the length l, and the angle u. Choosing A as a refer-
ence point, we express that the given motion is equivalent to a transla-
tion with A and a simultaneous rotation about A (Fig. 15.16). The 
absolute velocity of B must therefore be equal to the vector sum

 vB 5 vA 1 vB/A (15.17)

We note that while the direction of vB/A is known, its magnitude lv 
is unknown. However, this is compensated for by the fact that the 
direction of vB is known. We can therefore complete the diagram of 
Fig. 15.16. Solving for the magnitudes vB and v, we write

 
vB 5 vA tan u   v 5

vB/A

l
5

vA

l cos u  
(15.19)

Photo 15.4 Planetary gear systems are used 
to high reduction ratios with minimum space and 
weight. The small gears undergo general plane 
motion.
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935

 The same result can be obtained by using B as a point of refer-
ence. Resolving the given motion into a translation with B and a 
simultaneous rotation about B (Fig. 15.17), we write the equation

 vA 5 vB 1 vA/B (15.20)

which is represented graphically in Fig. 15.17. We note that vA/B and 
vB/A have the same magnitude lv but opposite sense. The sense of 
the relative velocity depends, therefore, upon the point of reference 
which has been selected and should be carefully ascertained from 
the appropriate diagram (Fig. 15.16 or 15.17).

Plane motion = Translation with A + Rotation about A

= +

A
A

BBB

vA

vA

vAvA

vB

vB

vB/A

vB/A

vB = vA + vB/A

A (fixed)

lll
q

q

w

q
q

Fig. 15.16

Fig. 15.17

Plane motion

A

B

vA

vB

vA

vA/B

l
q=

= Translation with B

A

B

l

+ Rotation about B

+
vA/B

A

B (fixed)

l

w

vA = vB + vA/B

vB

q vB

q

vB

 Finally, we observe that the angular velocity V of the rod in its 
rotation about B is the same as in its rotation about A. It is measured 
in both cases by the rate of change of the angle u. This result is quite 
general; we should therefore bear in mind that the angular velocity V 
of a rigid body in plane motion is independent of the reference point.
 Most mechanisms consist not of one but of several moving 
parts. When the various parts of a mechanism are pin-connected, the 
analysis of the mechanism can be carried out by considering each 
part as a rigid body, keeping in mind that the points where two parts 
are connected must have the same absolute velocity (see Sample 
Prob. 15.3). A similar analysis can be used when gears are involved, 
since the teeth in contact must also have the same absolute velocity. 
However, when a mechanism contains parts which slide on each 
other, the relative velocity of the parts in contact must be taken into 
account (see Secs. 15.10 and 15.11).

15.6 Absolute and Relative Velocity in 
Plane Motion
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936

SAMPLE PROBLEM 15.2

The double gear shown rolls on the stationary lower rack; the velocity of its 
center A is 1.2 m/s directed to the right. Determine (a) the angular velocity 
of the gear, (b) the velocities of the upper rack R and of point D of the gear.

D

C

R

r2 = 100 mm

vA = 1.2 m/s

r1 = 150 mm

A

B

SOLUTION

a. Angular Velocity of the Gear. Since the gear rolls on the lower rack, its 
center A moves through a distance equal to the outer circumference 2pr1 
for each full revolution of the gear. Noting that 1 rev 5 2p rad, and that when 
A moves to the right (xA . 0) the gear rotates clockwise (u , 0), we write

xA

2pr1
5 2

u

2p
      xA 5 2r1u

Differentiating with respect to the time t and substituting the known values 
vA 5 1.2 m/s and r1 5 150 mm 5 0.150 m, we obtain

vA 5 2r1v  1.2 m/s 5 2(0.150 m)v  v 5 28 rad/s
V 5 vk 5 2(8 rad/s)k ◀

where k is a unit vector pointing out of the paper.

b. Velocities. The rolling motion is resolved into two component motions: 
a translation with the center A and a rotation about the center A. In the 
translation, all points of the gear move with the same velocity vA. In the 
rotation, each point P of the gear moves about A with a relative velocity 
vP/A 5 vk 3 rP/A, where rP/A is the position vector of P relative to A.

vA

vB

vC = 0

vD/A

vC/A

vAvA

vA

D

C

B

A =+ D

C

B

A
D

C

B

A

vB/A

(fixed)

ww = –8k

vA

vD

Translation + Rotation = Rolling Motion

Velocity of Upper Rack. The velocity of the upper rack is equal to the 
velocity of point B; we write

 vR 5 vB 5 vA 1 vB/A 5 vA 1 vk 3 rB/A
 5 (1.2 m/s)i 2 (8 rad/s)k 3 (0.100 m)j
 5 (1.2 m/s)i 1 (0.8 m/s)i 5 (2 m/s)i

vR 5 2 m/sy ◀

Velocity of Point D
 vD 5 vA 1 vD/A 5 vA 1 vk 3 rD/A
 5 (1.2 m/s)i 2 (8 rad/s)k 3 (20.150 m)i
 5 (1.2 m/s)i 1 (1.2 m/s)j

vD 5 1.697 m/s a 45° ◀

vD/A

vA

vD
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937

SAMPLE PROBLEM 15.3

In the engine system shown, the crank AB has a constant clockwise angular 
velocity of 2000 rpm. For the crank position indicated, determine (a) the 
angular velocity of the connecting rod BD, (b) the velocity of the piston P.

r = 3 in.
l = 8 in.

40° b
P

D

A

G
B

SOLUTION

Motion of Crank AB. The crank AB rotates about point A. Expressing vAB 
in rad/s and writing vB 5 rvAB, we obtain

vAB 5 a2000
rev
min
b a1 min

60 s
b a2p rad

1 rev
b 5 209.4 rad/s

 vB 5 (AB)vAB 5 (3 in.)(209.4 rad/s) 5 628.3 in./s
 vB 5 628.3 in./s c 50°

Motion of Connecting Rod BD. We consider this motion as a general plane 
motion. Using the law of sines, we compute the angle b between the con-
necting rod and the horizontal:

sin 40°
8 in.

5
sin b
3 in.

    b 5 13.95°

The velocity vD of the point D where the rod is attached to the piston must 
be horizontal, while the velocity of point B is equal to the velocity vB 
obtained above. Resolving the motion of BD into a translation with B and 
a rotation about B, we obtain

wwAB

vB

3 in.

40°
50°

A

B

vB vD

vD/B
b = 13.95°wBD

76.05°

b

B

D
50° vB

B

D
50°

Plane motion = Translation + Rotation

B

l

(fixed)

D

vB

50°
+=

Expressing the relation between the velocities vD, vB, and vD/B, we write

vD 5 vB 1 vD/B

We draw the vector diagram corresponding to this equation. Recalling that 
b 5 13.95°, we determine the angles of the triangle and write

vD

sin 53.95°
5

vD/B

sin 50°
5

628.3 in./s
sin 76.05°

vD/B 5 495.9 in./s  vD/B 5 495.9 in./s a 76.05°
 vD 5 523.4 in./s 5 43.6 ft/s  vD 5 43.6 ft/s y

vP 5 vD 5 43.6 ft/sy ◀

Since vD/B 5 lvBD, we have

495.9 in./s 5 (8 in.)vBD  VBD 5 62.0 rad/s l ◀

vD

vD/BvB = 628.3 in./s

50° 76.05°

53.95°

b = 13.95°
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938

In this lesson you learned to analyze the velocity of bodies in general plane 
motion. You found that a general plane motion can always be considered as the 

sum of the two motions you studied in the last lesson, namely, a translation and 
a rotation.

To solve a problem involving the velocity of a body in plane motion you should 
take the following steps.

1. Whenever possible determine the velocity of the points of the body
where the body is connected to another body whose motion is known. That other 
body may be an arm or crank rotating with a given angular velocity [Sample 
Prob. 15.3].

2. Next start drawing a “diagram equation” to use in your solution (Figs. 15.15 
and 15.16). This “equation” will consist of the following diagrams.
 a. Plane motion diagram: Draw a diagram of the body including all dimen-
sions and showing those points for which you know or seek the velocity.
 b. Translation diagram: Select a reference point A for which you know the 
direction and/or the magnitude of the velocity vA, and draw a second diagram 
showing the body in translation with all of its points having the same velocity vA.
 c. Rotation diagram: Consider point A as a fixed point and draw a diagram 
showing the body in rotation about A. Show the angular velocity V 5 vk of the 
body and the relative velocities with respect to A of the other points, such as 
the velocity vB/A of B relative to A.

3. Write the relative-velocity formula

vB 5 vA 1 vB/A

While you can solve this vector equation analytically by writing the corresponding 
scalar equations, you will usually find it easier to solve it by using a vector triangle 
(Fig. 15.16).

4. A different reference point can be used to obtain an equivalent solution. For 
example, if point B is selected as the reference point, the velocity of point A is 
expressed as

vA 5 vB 1 vA/B

Note that the relative velocities vB/A and vA/B have the same magnitude but oppo-
site sense. Relative velocities, therefore, depend upon the reference point that has 
been selected. The angular velocity, however, is independent of the choice of ref-
erence point.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

939

15.38 The motion of rod AB is guided by pins attached at A and B which 
slide in the slots shown. At the instant shown, u 5 40° and the pin 
at B moves upward to the left with a constant velocity of 6 in./s. 
Determine (a) the angular velocity of the rod, (b) the velocity of 
the pin at end A.

 15.39 The motion of rod AB is guided by pins attached at A and B which 
slide in the slots shown. At the instant shown, u 5 30° and the 
pin at A moves downward with a constant velocity of 9 in./s. Deter-
mine (a) the angular velocity of the rod, (b) the velocity of the pin 
at end B.

 15.40 Small wheels have been attached to the ends of rod AB and roll 
freely along the surfaces shown. Knowing that wheel A moves to 
the left with a constant velocity of 1.5 m/s, determine (a) the angu-
lar velocity of the rod, (b) the velocity of end B of the rod.

 15.41 Collar A moves upward with a constant velocity of 1.2 m/s. At the 
instant shown when u 5 25°, determine (a) the angular velocity of 
rod AB, (b) the velocity of collar B.

A

B

q 20 in.

15°

Fig. P15.38 and P15.39

A

750 mm

60°

20°
B

Fig. P15.40

15.42 Collar B moves downward to the left with a constant velocity of 
1.6 m/s. At the instant shown when u 5 40°, determine (a) the 
angular velocity of rod AB, (b) the velocity of collar A.

q

A

B

500 mm

60°

Fig. P15.41 and P15.42
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940 Kinematics of Rigid Bodies  15.43 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity of 500 mm/s. At the instant shown, 
determine (a) the angular velocity of the rod, (b) the velocity of 
end B of the rod.

 15.44 The plate shown moves in the xy plane. Knowing that (vA)x 5 
12 in./s, (vB)x 5 24 in./s, and (vC)y 5 224 in./s, determine 
(a) the angular velocity of the plate, (b) the velocity of point B.

4 in.

2 in.

2 in.
6 in.

vA = (vA)x i + (vA)y j

vB = (vB)x i + (vB)y j

vC = (vC)x i + (vC)y j

A

B

O C x

y

Fig. P15.44

 15.45 In Prob. 15.44, determine (a) the velocity of point A, (b) the point 
on the plate with zero velocity.

 15.46 The plate shown moves in the xy plane. Knowing that (vA)x 5 
120 mm/s, (vB)y 5 300 mm/s, and (vC)y 5 260 mm/s, determine 
(a) the angular velocity of the plate, (b) the velocity of point A.

vA = (vA)x i + (vA)y j

vC = (vC)x i + (vC)y j

vB = (vB)x i + (vB)y j

x

y

180 mm

180 mm

180 mm 180 mm

C

O
A

B

Fig. P15.46

 15.47 In Prob. 15.46, determine (a) the velocity of point B, (b) the point 
of the plate with zero velocity.

A

B

C

140 mm

400 mm

200 mm

Fig. P15.43
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941Problems 15.48 In the planetary gear system shown, the radius of gears A, B, C, and 
D is 3 in. and the radius of the outer gear E is 9 in. Knowing that 
gear E has an angular velocity of 120 rpm clockwise and that the 
central gear has an angular velocity of 150 rpm clockwise, determine 
(a) the angular velocity of each planetary gear, (b) the angular veloc-
ity of the spider connecting the planetary gears.

A

B

C

D

E

Fig. P15.48 and P15.49

A

B

90 mm

60 mm

Fig. P15.50 and P15.51

 15.51 Arm AB rotates with an angular velocity of 42 rpm clockwise. 
Determine the required angular velocity of gear A for which (a) the 
angular velocity of gear B is 20 rpm counterclockwise, (b) the 
motion of gear B is a curvilinear translation.

 15.52 Arm AB rotates with an angular velocity of 20 rad/s counterclock-
wise. Knowing that the outer gear C is stationary, determine (a) the 
angular velocity of gear B, (b) the velocity of the gear tooth located 
at point D.

120 mm

50 mm

C

B

D

A

Fig. P15.52

 15.49 In the planetary gear system shown the radius of the central gear 
A is a, the radius of each of the planetary gears is b, and the 
radius of the outer gear E is a 1 2b. The angular velocity of gear 
A is VA clockwise, and the outer gear is stationary. If the angular 
velocity of the spider BCD is to be VA/5 clockwise, determine 
(a) the required value of the ratio b/a, (b) the corresponding angu-
lar velocity of each planetary gear.

 15.50 Gear A rotates with an angular velocity of 120 rpm clockwise. 
Knowing that the angular velocity of arm AB is 90 rpm clockwise, 
determine the corresponding angular velocity of gear B.
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942 Kinematics of Rigid Bodies  15.53 and 15.54 Arm ACB rotates about point C with an angular 
velocity of 40 rad/s counterclockwise. Two friction disks A and B 
are pinned at their centers to arm ACB as shown. Knowing that 
the disks roll without slipping at surfaces of contact, determine the 
angular velocity of (a) disk A, (b) disk B.

BA
C

D

1.2 in. 0.9 in.

0.6 in. 1.5 in.

2.4 in.

Fig. P15.53

D

C
BA

0.6 in.

1.5 in.

2.4 in.

1.8 in.0.3 in.

Fig. P15.54

 15.55 Knowing that crank AB has a constant angular velocity of 160 rpm 
counterclockwise, determine the angular velocity of rod BD and the 
velocity of collar D when (a) u 5 0, (b) u 5 90°.

q

6 in.

3 in.

A

B

D
10 in.

Fig. P15.55 and P15.56

 15.56 Knowing that crank AB has a constant angular velocity of 160 rpm 
counterclockwise, determine the angular velocity of rod BD and the 
velocity of collar D when u 5 60°.
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943Problems 15.57 In the engine system shown, l 5 160 mm and b 5 60 mm. Knowing 
that the crank AB rotates with a constant angular velocity of 1000 rpm 
clockwise, determine the velocity of the piston P and the angular 
velocity of the connecting rod when (a) u 5 0, (b) u 5 90°.

 15.58 In the engine system shown in Fig. P15.57 and P15.58, l 5 160 mm 
and b 5 60 mm. Knowing that crank AB rotates with a constant 
angular velocity of 1000 rpm clockwise, determine the velocity of 
the piston F and the angular velocity of the connecting rod when 
u 5 60°.

 15.59 A straight rack rests on a gear of radius r and is attached to a block 
B as shown. Denoting by vD the clockwise angular velocity of gear 
D and by u the angle formed by the rack and the  horizontal, derive 
expressions for the velocity of block B and the angular velocity of 
the rack in terms of r, u, and vD.

P

D

A
B

l

q

b

Fig. P15.57 and P15.58
A

D
B

q

r

Fig. P15.59, P15.60, and P15.61

2 in.

O
A

B
q

8 in.in.1
2

Fig. P15.62

 15.60 A straight rack rests on a gear of radius r 5 75 mm and is attached 
to a block B as shown. Knowing that at the instant shown the 
angular velocity of gear D is 15 rpm counterclockwise and u 5 
20°, determine (a) the velocity of block B, (b) the angular velocity 
of the rack.

 15.61 A straight rack rests on a gear of radius r 5 60 mm and is 
attached to a block B as shown. Knowing that at the instant 
shown the velocity of block B is 200 mm/s to the right and u 5 
25°, determine (a) the angular velocity of gear D, (b) the angular 
velocity of the rack.

 15.62 In the eccentric shown, a disk of 2-in.-radius revolves about shaft 
O that is located 0.5 in. from the center A of the disk. The distance 
between the center A of the disk and the pin at B is 8 in. Knowing 
that the angular velocity of the disk is 900 rpm clockwise, deter-
mine the velocity of the block when u 5 30°.
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944 Kinematics of Rigid Bodies  15.63 through 15.65 In the position shown, bar AB has an angular 
velocity of 4 rad/s clockwise. Determine the angular velocity of 
bars BD and DE.

 15.66 In the position shown, bar DE has a constant angular velocity of 
10 rad/s clockwise. Knowing that h 5 500 mm, determine (a) the 
angular velocity of bar FBD, (b) the velocity of point F.

8 in.

7 in.
4 in.

3 in.

A

B

D

E

Fig. P15.63

A B

D

E

250 mm 150 mm

100 mm

60 mm

Fig. P15.64

400 mm400 mm

A

B
D

E

300 mm

500 mm

Fig. P15.65

A

B

D

E

100 mm

F

300 mm
100 mm

200 mm

120 mm

h 

Fig. P15.66 and P15.67
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945Problems 15.67 In the position shown, bar DE has a constant angular velocity of 
10 rad/s clockwise. Determine (a) the distance h for which the 
velocity of point F is vertical, (b) the corresponding velocity of 
point F.

 15.68 In the position shown, bar AB has zero angular acceleration 
and an angular velocity of 20 rad/s counterclockwise. Deter-
mine (a) the angular velocity of member BDH, (b) the velocity 
of point G.

A E

B G D

H

3 in. 3 in.5 in. 5 in.

10 in.

4 in.

Fig. P15.68 and P15.69

 15.69 In the position shown, bar AB has zero angular acceleration 
and an angular velocity of 20 rad/s counterclockwise. Deter-
mine (a) the angular velocity of member BDH, (b) the velocity 
of point H.

 15.70 An automobile travels to the right at a constant speed of 48 mi/h. 
If the diameter of a wheel is 22 in., determine the velocities of 
points B, C, D, and E on the rim of the wheel.

C

B
D

A E

30

22 in.

90

Fig. P15.70
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 15.71 The 80-mm-radius wheel shown rolls to the left with a velocity of 
900 mm/s. Knowing that the distance AD is 50 mm, determine 
the velocity of the collar and the angular velocity of rod AB when 
(a) b 5 0, (b) b 5 90°.

 *15.72 For the gearing shown, derive an expression for the angular veloc-
ity vC of gear C and show that vC is independent of the radius of 
gear B. Assume that point A is fixed and denote the angular veloci-
ties of rod ABC and gear A by vABC and vA respectively.

A

B

250 mm
D80 mm

b

160 mm

Fig. P15.71

A

B

C

rA

rB

rC

Fig. P15.72

15.7  INSTANTANEOUS CENTER OF ROTATION 
IN PLANE MOTION

Consider the general plane motion of a slab. We propose to show 
that at any given instant the velocities of the various particles of the 
slab are the same as if the slab were rotating about a certain axis 
perpendicular to the plane of the slab, called the instantaneous axis 
of rotation. This axis intersects the plane of the slab at a point C, 
called the instantaneous center of rotation of the slab.
 We first recall that the plane motion of a slab can always be 
replaced by a translation defined by the motion of an arbitrary refer-
ence point A and by a rotation about A. As far as the velocities are 
concerned, the translation is characterized by the velocity vA of the 
reference point A and the rotation is characterized by the angular 
velocity V of the slab (which is independent of the choice of A). Thus, 
the velocity vA of point A and the angular velocity V of the slab define 

946 Kinematics of Rigid Bodies

Photo 15.5 If the tires of this car are rolling 
without sliding the instantaneous center of rotation 
of a tire is the point of contact between the road 
and the tire.
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947

completely the velocities of all the other particles of the slab (Fig. 
15.18a). Now let us assume that vA and V are known and that they 
are both different from zero. (If vA 5 0, point A is itself the instan-
taneous center of rotation, and if V 5 0, all the particles have the 
same velocity vA.) These velocities could be obtained by letting the slab 
rotate with the angular velocity V about a point C located on the per-
pendicular to vA at a distance r 5 vA/v from A as shown in Fig. 15.18b. 
We check that the velocity of A would be perpendicular to AC and that 
its magnitude would be rv 5 (vA/v)v 5 vA. Thus the velocities of all 
the other particles of the slab would be the same as originally defined. 
Therefore, as far as the velocities are concerned, the slab seems to rotate 
about the instantaneous center C at the instant considered.
 The position of the instantaneous center can be defined in two 
other ways. If the directions of the velocities of two particles A and B 
of the slab are known and if they are different, the instantaneous 
center C is obtained by drawing the perpendicular to vA through A 
and the perpendicular to vB through B and determining the point in 
which these two lines intersect (Fig. 15.19a). If the velocities vA and 
vB of two particles A and B are perpendicular to the line AB and if 
their magnitudes are known, the instantaneous center can be found 
by intersecting the line AB with the line joining the extremities of the 
vectors vA and vB (Fig. 15.19b). Note that if vA and vB were parallel 

vA vA

A A

C

(a) (b)

r = vA/w

w

w

Fig. 15.18

C C

A

(a) (b)

A

B B

vAvA

vB
vB

Fig. 15.19

15.7 Instantaneous Center of Rotation in 
Plane Motion
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948 Kinematics of Rigid Bodies in Fig. 15.19a or if vA and vB had the same magnitude in Fig. 15.19b, 
the instantaneous center C would be at an infinite distance and V 
would be zero; all points of the slab would have the same velocity.
 To see how the concept of instantaneous center of rotation can 
be put to use, let us consider again the rod of Sec. 15.6. Drawing 
the perpendicular to vA through A and the perpendicular to vB 
through B (Fig. 15.20), we obtain the instantaneous center C. At the 

q

w

A

B
C

l
vB

vA

Fig. 15.20

instant considered, the velocities of all the particles of the rod are 
thus the same as if the rod rotated about C. Now, if the magnitude 
vA of the velocity of A is known, the magnitude v of the angular 
velocity of the rod can be obtained by writing

v 5
vA

AC
5

vA

l cos u

The magnitude of the velocity of B can then be obtained by writing

vB 5 (BC)v 5 l sin u 

vA

l cos u
5 vA tan u

Note that only absolute velocities are involved in the computation.
 The instantaneous center of a slab in plane motion can be 
located either on the slab or outside the slab. If it is located on the 
slab, the particle C coinciding with the instantaneous center at a given 
instant t must have zero velocity at that instant. However, it should 
be noted that the instantaneous center of rotation is valid only at a 
given instant. Thus, the particle C of the slab which coincides with 
the instantaneous center at time t will generally not coincide with the 
instantaneous center at time t 1 Dt; while its velocity is zero at time t, 
it will probably be different from zero at time t 1 Dt. This means 
that, in general, the particle C does not have zero acceleration and, 
therefore, that the accelerations of the various particles of the slab 
cannot be determined as if the slab were rotating about C.
 As the motion of the slab proceeds, the instantaneous center 
moves in space. But it was just pointed out that the position of the 
instantaneous center on the slab keeps changing. Thus, the instanta-
neous center describes one curve in space, called the space centrode, 
and another curve on the slab, called the body centrode (Fig. 15.21). 
It can be shown that at any instant, these two curves are tangent at C 
and that as the slab moves, the body centrode appears to roll on the 
space centrode.Fig. 15.21

C

Body
centrode

Space
centrode
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949

SAMPLE PROBLEM 15.4

Solve Sample Prob. 15.2, using the method of the instantaneous center of 
rotation.

SOLUTION

a. Angular Velocity of the Gear. Since the gear rolls on the stationary 
lower rack, the point of contact C of the gear with the rack has no velocity; 
point C is therefore the instantaneous center of rotation. We write

vA 5 rAv  1.2 m/s 5 (0.150 m)v
V 5 8 rad/s i ◀

b. Velocities. As far as velocities are concerned, all points of the gear 
seem to rotate about the instantaneous center.
Velocity of Upper Rack. Recalling that vR 5 vB, we write

vR 5 vB 5 rBv  vR 5 (0.250 m)(8 rad/s) 5 2 m/s
vR 5 2 m/sy ◀

Velocity of Point D. Since rD 5 (0.150 m)12 5 0.2121 m, we write

vD 5 rDv  vD 5 (0.2121 m)(8 rad/s) 5 1.697 m/s
vD 5 1.697 m/s a 45° ◀

D A

vB

C

vA

rD

45°

B
vD

45°
rA = 150 mm

rB = 250 mm

SAMPLE PROBLEM 15.5

Solve Sample Prob. 15.3, using the method of the instantaneous center of 
rotation.

SOLUTION

Motion of Crank AB. Referring to Sample Prob. 15.3, we obtain the veloc-
ity of point B; vB 5 628.3 in./s c 50°.
Motion of the Connecting Rod BD. We first locate the instantaneous cen-
ter C by drawing lines perpendicular to the absolute velocities vB and vD. 
Recalling from Sample Prob. 15.3 that b 5 13.95° and that BD 5 8 in., we 
solve the triangle BCD.

gB 5 40° 1 b 5 53.95°   gD 5 90° 2 b 5 76.05°
BC

sin 76.05°
5

CD
sin 53.95°

5
8 in.

sin 50°
BC 5 10.14 in.  CD 5 8.44 in.

Since the connecting rod BD seems to rotate about point C, we write

 vB 5 (BC)vBD

628.3 in./s 5 (10.14 in.)vBD

VBD 5 62.0 rad/s l ◀

vD 5 (CD)vBD 5 (8.44 in.)(62.0 rad/s)
 5 523 in./s 5 43.6 ft/s

vP 5 vD 5 43.6 ft/sy ◀ 

vB vDb

B

D
A

C

b

40°

40°

40°

50°

90°
90°

�B
�D
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950

In this lesson we introduced the instantaneous center of rotation in plane motion. 
This provides us with an alternative way for solving problems involving the 

velocities of the various points of a body in plane motion.

As its name suggests, the instantaneous center of rotation is the point about which 
you can assume a body is rotating at a given instant, as you determine the veloci-
ties of the points of the body at that instant.

A. To determine the instantaneous center of rotation of a body in plane motion, 
you should use one of the following procedures.

1. If the velocity vA of a point A and the angular velocity V of the body are 
both known (Fig. 15.18):
 a. Draw a sketch of the body, showing point A, its velocity vA, and the angu-
lar velocity V of the body.
 b. From A draw a line perpendicular to vA on the side of vA from which 
this velocity is viewed as having the same sense as V.
 c. Locate the instantaneous center C on this line, at a distance r 5 vA/v 
from point A.

2. If the directions of the velocities of two points A and B are known and 
are different (Fig. 15.19a):
 a. Draw a sketch of the body, showing points A and B and their velocities 
vA and vB.
 b. From A and B draw lines perpendicular to vA and vB, respectively. The 
instantaneous center C is located at the point where the two lines intersect.
 c. If the velocity of one of the two points is known, you can determine 
the angular velocity of the body. For example, if you know vA, you can write v 5 
vA/AC, where AC is the distance from point A to the instantaneous center C.

3. If the velocities of two points A and B are known and are both perpen-
dicular to the line AB (Fig. 15.19b):
 a. Draw a sketch of the body, showing points A and B with their velocities 
vA and vB drawn to scale.
 b. Draw a line through points A and B, and another line through the tips 
of the vectors vA and vB. The instantaneous center C is located at the point where 
the two lines intersect.

SOLVING PROBLEMS
ON YOUR OWN
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 c. The angular velocity of the body is obtained by either dividing vA by AC 
or vB by BC.
 d. If the velocities vA and vB have the same magnitude, the two lines drawn 
in part b do not intersect; the instantaneous center C is at an infinite distance. 
The angular velocity V is zero and the body is in translation.

B. Once you have determined the instantaneous center and the angular 
velocity of a body, you can determine the velocity vP of any point P of the body 
in the following way.

1. Draw a sketch of the body, showing point P, the instantaneous center of 
rotation C, and the angular velocity V.

2. Draw a line from P to the instantaneous center C and measure or calculate 
the distance from P to C.

3. The velocity vP is a vector perpendicular to the line PC, of the same sense 
as V, and of magnitude vP 5 (PC)v.

Finally, keep in mind that the instantaneous center of rotation can be used only 
to determine velocities. It cannot be used to determine accelerations.

bee29400_ch15_0914-1023.indd Page 951  12/14/08  9:24:17 AM user-s172bee29400_ch15_0914-1023.indd Page 951  12/14/08  9:24:17 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



PROBLEMS
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15.73 A 10-ft beam AE is being lowered by means of two overhead 
cranes. At the instant shown it is known that the velocity of point 
D is 24 in./s downward and the velocity of point E is 36 in./s 
downward. Determine (a) the instantaneous center of rotation of 
the beam, (b) the velocity of point A.

A B D E

3 ft 4 ft 3 ft

Fig. P15.73

15.74 A helicopter moves horizontally in the x direction at a speed of 
120 mi/h. Knowing that the main blades rotate clockwise with an 
angular velocity of 180 rpm, determine the instantaneous axis of 
rotation of the main blades.

15.75 The spool of tape shown and its frame assembly are pulled upward 
at a speed vA 5 750 mm/s. Knowing that the 80-mm-radius spool 
has an angular velocity of 15 rad/s clockwise and that at the instant 
shown the total thickness of the tape on the spool is 20 mm, deter-
mine (a) the instantaneous center of rotation of the spool, (b) the 
velocities of points B and D.

y

x

z

w

Fig. P15.74

A

B

D

80 mm

vB

vA

Fig. P15.75 and P15.76

 15.76 The spool of tape shown and its frame assembly are pulled up-
ward at a speed vA 5 100 mm/s. Knowing that end B of the tape 
is pulled downward with a velocity of 300 mm/s and that at the 
instant shown the total thickness of the tape on the spool is 20 mm, 
determine (a) the instantaneous center of rotation of the spool, 
(b) the velocity of point D of the spool.
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953Problems 15.77 Solve Sample Prob. 15.2, assuming that the lower rack is not 
 stationary but moves to the left with a velocity of 0.6 m/s.

 15.78 A double pulley is attached to a slider block by a pin at A. The 
30-mm-radius inner pulley is rigidly attached to the 60-mm-radius 
outer pulley. Knowing that each of the two cords is pulled at a 
constant speed as shown, determine (a) the instantaneous center 
of rotation of the double pulley, (b) the velocity of the slider block, 
(c) the number of millimeters of cord wrapped or unwrapped on 
each pulley per second.

 15.79 Solve Prob. 15.78, assuming that cord E is pulled upward at a 
speed of 160 mm/s and cord F is pulled downward at a speed 
of 200 mm/s.

 15.80 and 15.81 A 3-in.-radius drum is rigidly attached to a 5-in.- 
radius drum as shown. One of the drums rolls without sliding on the 
surface shown, and a cord is wound around the other drum. Knowing 
that end E of the cord is pulled to the left with a velocity of 6 in./s, 
determine (a) the angular velocity of the drums, (b) the velocity of 
the center of the drums, (c) the length of cord wound or unwound 
per second. 160 mm/s

A
B D

F

E

200 mm/s

Fig. P15.78

A

BE

D

3 in.
5 in.

Fig. P15.80

A

B

E D

3 in.
5 in.

Fig. P15.81

 15.82 Knowing that at the instant shown the angular velocity of rod AB 
is 15 rad/s clockwise, determine (a) the angular velocity of rod BD, 
(b) the velocity of the midpoint of rod BD.

A

B

D
E

0.2 m

0.2 m

0.25 m

0.6 m

Fig. P15.82 and P15.83

 15.83 Knowing that at the instant shown the velocity of point D is 
2.4 m/s upward, determine (a) the angular velocity of rod AB, 
(b) the velocity of the midpoint of rod BD.
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954 Kinematics of Rigid Bodies  15.84 Rod ABD is guided by wheels at A and B that roll in horizontal 
and vertical tracks. Knowing that at the instant b 5 60° and 
the velocity of wheel B is 40 in./s downward, determine (a) the 
angular velocity of the rod, (b) the velocity of point D.

 15.85 An overhead door is guided by wheels at A and B that roll in hori-
zontal and vertical tracks. Knowing that when u 5 40° the velocity 
of wheel B is 1.5 ft/s upward, determine (a) the angular velocity 
of the door, (b) the velocity of end D of the door.

A

B

D

15 in.

15 in.

b

Fig. P15.84 A

B

D

q

5 ft

5 ft

Fig. P15.85

 15.86 Knowing that at the instant shown the angular velocity of rod BE 
is 4 rad/s counterclockwise, determine (a) the angular velocity of 
rod AD, (b) the velocity of collar D, (c) the velocity of point A.

 15.87 Knowing that at the instant shown the velocity of collar D is 
1.6 m/s upward, determine (a) the angular velocity of rod AD, 
(b) the velocity of point B, (c) the velocity of point A.

 15.88 Rod AB can slide freely along the floor and the inclined plane. 
Denoting by vA the velocity of point A, derive an expression for 
(a) the angular velocity of the rod, (b) the velocity of end B.

A

D

B

E

192 mm

360 mm

240 mm
30°

Fig. P15.86 and P15.87

vA q
bA

B

l

Fig. P15.88 and P15.89

 15.89 Rod AB can slide freely along the floor and the inclined plane. 
Knowing that u 5 20°, b 5 50°, l 5 0.6 m, and vA 5 3 m/s, 
determine (a) the angular velocity of the rod, (b) the velocity 
of end B.
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955Problems 15.90 Arm ABD is connected by pins to a collar at B and to crank 
DE. Knowing that the velocity of collar B is 400 mm/s upward, 
determine (a) the angular velocity of arm ABD, (b) the velocity of 
point A.

E

B

A

D

160 mm

90 mm

180 mm
320 mm

300 mm

125 mm

Fig. P15.90 and P15.91

 15.91 Arm ABD is connected by pins to a collar at B and to crank DE. 
Knowing that the angular velocity of crank DE is 1.2 rad/s 
 counterclockwise, determine (a) the angular velocity of arm ABD, 
(b) the velocity of point A.

 15.92 Two slots have been cut in plate FG and the plate has been placed 
so that the slots fit two fixed pins A and B. Knowing that at the 
instant shown the angular velocity of crank DE is 6 rad/s clockwise, 
determine (a) the velocity of point F, (b) the velocity of point G.

 15.93 Two identical rods ABF and DBE are connected by a pin at B. 
Knowing that at the instant shown the velocity of point D is 10 in./s 
upward, determine the velocity of (a) point E, (b) point F.

 15.94 Rod AB is attached to a collar at A and is fitted with a small wheel 
at B. Knowing that when u 5 60° the velocity of the collar is 
250 mm/s upward, determine (a) the angular velocity of rod AB, 
(b) the velocity of point B.

A

B

G

DE

F

4 in.

7 in.

6 in.

8 in.

6 in. 18 in. 8 in.

3.6 in.

60�

Fig. P15.92

A
E

F

B

D
6 in.

9 in.

15�

15�

Fig. P15.93

200 mm

C

A

B

300 mm

B

q

Fig. P15.94
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956 Kinematics of Rigid Bodies  15.95 Two collars C and D move along the vertical rod shown. Knowing 
that the velocity of the collar C is 660 mm/s downward, determine 
(a) the velocity of collar D, (b) the angular velocity of member AB.

 15.96 Two 500-mm rods are pin-connected at D as shown. Knowing that 
B moves to the left with a constant velocity of 360 mm/s, determine 
at the instant shown (a) the angular velocity of each rod, (b) the 
velocity of E.

320 mm

100 mm

100 mm

240 mm

D

C

B

A

Fig. P15.95

A

D

B

E

200

200

150150 250

Dimensions in mm

500

Fig. P15.96

 15.97 Two rods AB and DE are connected as shown. Knowing that point 
D moves to the left with a velocity of 40 in./s, determine (a) the 
angular velocity of each rod, (b) the velocity of point A.

 15.98 Two rods AB and DE are connected as shown. Knowing that point 
B moves downward with a velocity of 60 in./s, determine (a) the 
angular velocity of each rod, (b) the velocity of point E.

 15.99 Describe the space centrode and the body centrode of rod ABD 
of Prob. 15.84. (Hint: The body centrode need not lie on a physical 
portion of the rod.)

 15.100 Describe the space centrode and the body centrode of the gear of 
Sample Prob. 15.2 as the gear rolls on the stationary horizontal 
rack.

 15.101 Using the method of Sec. 15.7, solve Prob. 15.62.

 15.102 Using the method of Sec. 15.7, solve Prob. 15.64.

 15.103 Using the method of Sec. 15.7, solve Prob. 15.65.

 15.104 Using the method of Sec. 15.7, solve Prob. 15.70.

A

B

D

E

8 in.

8 in.

9 in. 8 in. 8 in.

Fig. P15.97

A

D

E

B

8 in.

8 in.

15 in. 9 in.6 in.

Fig. P15.98
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95715.8  ABSOLUTE AND RELATIVE ACCELERATION 
IN PLANE MOTION

We saw in Sec. 15.5 that any plane motion can be replaced by a 
translation defined by the motion of an arbitrary reference point A 
and a simultaneous rotation about A. This property was used in Sec. 
15.6 to determine the velocity of the various points of a moving slab. 
The same property will now be used to determine the acceleration 
of the points of the slab.
 We first recall that the absolute acceleration aB of a particle of 
the slab can be obtained from the relative-acceleration formula 
derived in Sec. 11.12,

 aB 5 aA 1 aB/A (15.21)

where the right-hand member represents a vector sum. The accel-
eration aA corresponds to the translation of the slab with A, while 
the relative acceleration aB/A is associated with the rotation of the 
slab about A and is measured with respect to axes centered at A and 
of fixed orientation. We recall from Sec. 15.3 that the relative accel-
eration aB/A can be resolved into two components, a tangential com-
ponent (aB/A)t perpendicular to the line AB, and a normal component 
(aB/A)n directed toward A (Fig. 15.22). Denoting by rB/A the position 
vector of B relative to A and, respectively, by vk and ak the angular 
velocity and angular acceleration of the slab with respect to axes of 
fixed orientation, we have

 (aB/A)t 5 ak 3 rB/A  (aB/A)t 5 ra
 (aB/A)n 5 2v2rB/A   (aB/A)n 5 rv2 (15.22)

where r is the distance from A to B. Substituting into (15.21) the 
expressions obtained for the tangential and normal components of 
aB/A, we can also write

 aB 5 aA 1 ak 3 rB/A 2 v2rB/A (15.219)

15.8 Absolute and Relative Acceleration 
in Plane Motion

Plane motion = Translation with A + Rotation about A

A (fixed)A

B
aB

aB/A

aB/A
(aB/A)n

(aB/A)n

(aB/A)t (aB/A)t

aA

A

B
B

x'

y'

aA

aB

aA

aA

ak
wk

rB/A= +

Fig. 15.22

Photo 15.6 The central gear rotates about a 
fixed axis and is pin-connected to three bars 
which are in general plane motion.
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958 Kinematics of Rigid Bodies

 As an example, let us again consider the rod AB whose extremi-
ties slide, respectively, along a horizontal and a vertical track (Fig. 
15.23). Assuming that the velocity vA and the acceleration aA of A 
are known, we propose to determine the acceleration aB of B and 
the angular acceleration A of the rod. Choosing A as a reference 
point, we express that the given motion is equivalent to a translation 
with A and a rotation about A. The absolute acceleration of B must 
be equal to the sum

 aB 5 aA 1 aB/A

 5 aA 1 (aB/A)n 1 (aB/A)t 
(15.23)

where (aB/A)n has the magnitude lv2 and is directed toward A, while 
(aB/A)t has the magnitude la and is perpendicular to AB. Students 
should note that there is no way to tell whether the tangential compo-
nent (aB/A)t is directed to the left or to the right, and therefore both 
possible directions for this component are indicated in Fig. 15.23. 
Similarly, both possible senses for aB are indicated, since it is not 
known whether point B is accelerated upward or downward.
 Equation (15.23) has been expressed geometrically in Fig. 15.24. 
Four different vector polygons can be obtained, depending upon the 
sense of aA and the relative magnitude of aA and (aB/A)n. If we are to 
determine aB and a from one of these diagrams, we must know not 
only aA and u but also v. The angular velocity of the rod should there-
fore be separately determined by one of the methods indicated in 
Secs. 15.6 and 15.7. The values of aB and a can then be obtained by 
considering successively the x and y components of the vectors shown 
in Fig. 15.24. In the case of polygon a, for example, we write

y
1 x components: 0 5 aA 1 lv2 sin u 2 la cos u
1xy components: 2aB 5 2lv2 cos u 2 la sin u

and solve for aB and a. The two unknowns can also be obtained by 
direct measurement on the vector polygon. In that case, care should 
be taken to draw first the known vectors aA and (aB/A)n.
 It is quite evident that the determination of accelerations is 
considerably more involved than the determination of velocities. Yet 

θ

A A

B B
B

l l
(aB/A)n

(a B/A
) t

aB
aA

aA aA

= +

Plane motion = Translation with A + Rotation about A
A (fixed)

a

w

Fig. 15.23

q

q

q

q

(aB/A)n

(aB/A)n

(aB/A)n

(aB/A)n

(aB/A)t

(aB/A)t

(aB/A)t

(aB/A)t

aB

aB

aB

aB

aA

aA

aA

aA

(a)

(b)

(c)

(d)

Fig. 15.24
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959in the example considered here, the extremities A and B of the rod 
were moving along straight tracks, and the diagrams drawn were 
relatively simple. If A and B had moved along curved tracks, it would 
have been necessary to resolve the accelerations aA and aB into nor-
mal and tangential components and the solution of the problem 
would have involved six different vectors.
 When a mechanism consists of several moving parts which are 
pin-connected, the analysis of the mechanism can be carried out by 
considering each part as a rigid body, keeping in mind that the points 
at which two parts are connected must have the same absolute accel-
eration (see Sample Prob. 15.7). In the case of meshed gears, the 
tangential components of the accelerations of the teeth in contact 
are equal, but their normal components are different.

*15.9  ANALYSIS OF PLANE MOTION IN TERMS 
OF A PARAMETER

In the case of certain mechanisms, it is possible to express the coor-
dinates x and y of all the significant points of the mechanism by 
means of simple analytic expressions containing a single parameter. 
It is sometimes advantageous in such a case to determine the abso-
lute velocity and the absolute acceleration of the various points of 
the mechanism directly, since the components of the velocity and 
of the acceleration of a given point can be obtained by differentiating 
the coordinates x and y of that point.
 Let us consider again the rod AB whose extremities slide, 
respectively, in a horizontal and a vertical track (Fig. 15.25). The 
coordinates xA and yB of the extremities of the rod can be expressed 
in terms of the angle u the rod forms with the vertical:

 xA 5 l sin u  yB 5 l cos u (15.24)

Differentiating Eqs. (15.24) twice with respect to t, we write

 vA 5 ẋA 5 lu̇ cos u
 aA 5 ẍA 5 2lu̇2 sin u 1 lü cos u

 vB 5 ẏB 5 2lu̇ sin u
 aB 5 ÿB 5 2lu̇2 cos u 2 lü sin u

Recalling that u̇ 5 v and ü 5 a, we obtain

 vA 5 lv cos u vB 5 2lv sin u (15.25)

aA 5 2lv2 sin u 1 la cos u  aB 5 2lv2 cos u 2 la sin u
(15.26)

We note that a positive sign for vA or aA indicates that the velocity 
vA or the acceleration aA is directed to the right; a positive sign for 
vB or aB indicates that vB or aB is directed upward. Equations (15.25) 
can be used, for example to determine vB and v when vA and u are 
known. Substituting for v in (15.26), we can then determine aB and 
a if aA is known.

q

A

B

lyB

xA

Fig. 15.25

15.9 Analysis of Plane Motion in 
Terms of a Parameter

bee29400_ch15_0914-1023.indd Page 959  12/14/08  9:25:10 AM user-s172bee29400_ch15_0914-1023.indd Page 959  12/14/08  9:25:10 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



960

SAMPLE PROBLEM 15.6

The center of the double gear of Sample Prob. 15.2 has a velocity of 1.2 m/s 
to the right and an acceleration of 3 m/s2 to the right. Recalling that the 
lower rack is stationary, determine (a) the angular acceleration of the gear, 
(b) the acceleration of points B, C, and D of the gear.

D

C

R

r2 = 100 mm

vA = 1.2 m/s

aA = 3 m/s2

r1 = 150 mm

A

B

SOLUTION

a. Angular Acceleration of the Gear. In Sample Prob. 15.2, we found 
that xA 5 2r1u and vA 5 2r1v. Differentiating the latter with respect to 
time, we obtain aA 5 2r1a.

vA 5 2r1v 1.2 m/s 5 2(0.150 m)v v 5 28 rad/s
aA 5 2r1a 3 m/s2 5 2(0.150 m)a a 5 220 rad/s2

A 5 ak 5 2(20 rad/s2)k ◀

b. Accelerations. The rolling motion of the gear is resolved into a transla-
tion with A and a rotation about A.

Translation + Rotation = Rolling motion

aA

(aC/A)t

aAaA

aA

D

C

B

A =+ A
D

C

B

A(fixed)
wa

aA

aB

aD

aC(aC/A)n

(aB/A)t(aD/A)t

(aD/A)n

(aB/A)n

Acceleration of Point B. Adding vectorially the accelerations correspond-
ing to the translation and to the rotation, we obtain

 aB 5 aA 1 aB/A 5 aA 1 (aB/A)t 1 (aB/A)n

 5 aA 1 ak 3 rB/A 2 v2rB/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (0.100 m)j 2 (8 rad/s)2(0.100 m)j
 5 (3 m/s2)i 1 (2 m/s2)i 2 (6.40 m/s2)j

aB 5 8.12 m/s2 c 52.0° ◀

Acceleration of Point C

 aC 5 aA 1 aC/A 5 aA 1 ak 3 rC/A 2 v2rC/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (20.150 m)j 2 (8 rad/s)2(20.150 m)j
 5 (3 m/s2)i 2 (3 m/s2)i 1 (9.60 m/s2)j

aC 5 9.60 m/s2
x ◀

Acceleration of Point D

 aD 5 aA 1 aD/A 5 aA 1 ak 3 rD/A 2 v2rD/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (20.150 m)i 2 (8 rad/s)2(20.150 m)i
 5 (3 m/s2)i 1 (3 m/s2)j 1 (9.60 m/s2)i

aD 5 12.95 m/s2 a 13.4° ◀

aA

aB

(aB/A)t

(aB/A)n

aA

aC

(aC/A)n

(aC/A)t

aA

aD
(aD/A)t

(aD/A)n
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961

SAMPLE PROBLEM 15.7

Crank AB of the engine system of Sample Prob. 15.3 has a constant clock-
wise angular velocity of 2000 rpm. For the crank position shown, determine 
the angular acceleration of the connecting rod BD and the acceleration of 
point D.

r = 3 in.
l = 8 in.

A

B
G

b P

D

40°

SOLUTION

Motion of Crank AB. Since the crank rotates about A with constant 
vAB 5 2000 rpm 5 209.4 rad/s, we have aAB 5 0. The acceleration of B 
is therefore directed toward A and has a magnitude

 aB 5 rv2
AB 5 ( 3

12 ft) (209.4 rad/s)2 5 10,962 ft/s2

 aB 5 10,962 ft/s2 d 40°

Motion of the Connecting Rod BD. The angular velocity VBD and the value 
of b were obtained in Sample Prob. 15.3:

VBD 5 62.0 rad/s l  b 5 13.95°

The motion of BD is resolved into a translation with B and a rotation about 
B. The relative acceleration aD/B is resolved into normal and tangential 
components:

(aD/B)n 5 (BD)v2
BD 5 ( 8

12 ft) (62.0 rad/s)2 5 2563 ft/s2

 (aD/B)n 5 2563 ft/s2 b 13.95°
(aD/B) t 5 (BD)aBD 5 ( 8

12)aBD 5 0.6667aBD

  (aD/B)t 5 0.6667aBD za 76.05°

While (aD/B)t must be perpendicular to BD, its sense is not known.

r = 3 in.

A

B

40°
aB

B
G

D
aB

B

D
G

B

DaB
aB

aB

aD

(aD/B)n

(aD/B)t

aBD wBD

13.95°

Plane motion Translation Rotation= +

= +

 Noting that the acceleration aD must be horizontal, we write

aD 5 aB 1 aD/B 5 aB 1 (aD/B)n 1 (aD/B)t

[aD
G

] 5 [10,962 d 40°] 1 [2563 b 13.95°] 1 [0.6667aBD za 76.05°]

Equating x and y components, we obtain the following scalar equations:

y
1  x components:

2aD 5 210,962 cos 40° 2 2563 cos 13.95° 1 0.6667aBD sin 13.95°
1xy components:

0 5 210,962 sin 40° 1 2563 sin 13.95° 1 0.6667aBD cos 13.95°

 Solving the equations simultaneously, we obtain aBD 5 19940 rad/s2 
and aD 5 19290 ft/s2. The positive signs indicate that the senses shown on 
the vector polygon are correct; we write

aBD 5 9940 rad/s2
l ◀

aD 5 9290 ft/s2
z ◀

40°

aB

aD

(aD/B)n

(aD/B)t

aD/B

13.95°

13.95°
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962

SAMPLE PROBLEM 15.8

The linkage ABDE moves in the vertical plane. Knowing that in the position 
shown crank AB has a constant angular velocity V1 of 20 rad/s counterclock-
wise, determine the angular velocities and angular accelerations of the con-
necting rod BD and of the crank DE.A ww1

B
D

E

3 in.

14 in.

17 in.

17 in.

12 in.8 in.

SOLUTION

This problem could be solved by the method used in Sample Prob. 15.7. In 
this case, however, the vector approach will be used. The position vectors 
rB, rD, and rD/B are chosen as shown in the sketch.

Velocities. Since the motion of each element of the linkage is contained 
in the plane of the figure, we have

VAB 5 vABk 5 (20 rad/s)k  VBD 5 vBDk  VDE 5 vDEk

where k is a unit vector pointing out of the paper. We now write

 vD 5 vB 1 vD/B

 vDEk 3 rD 5 vABk 3 rB 1 vBDk 3 rD/B

vDEk 3 (217i 1 17j) 5 20k 3 (8i 1 14j) 1 vBDk 3 (12i 1 3j)
 217vDEj 2 17vDEi 5 160j 2 280i 1 12vBDj 2 3vBDi

Equating the coefficients of the unit vectors i and j, we obtain the following 
two scalar equations:

 217vDE 5 2280 2 3vBD

 217vDE 5 1160 1 12vBD

 VBD 5 2(29.33 rad/s)k  VDE 5 (11.29 rad/s)k ◀

Accelerations. Noting that at the instant considered crank AB has a con-
stant angular velocity, we write

 AAB 5 0  ABD 5 aBDk  ADE 5 aDEk 
 aD 5 aB 1 aD/B (1)

Each term of Eq. (1) is evaluated separately:

 aD 5 aDEk 3 rD 2 v2
DErD

 5 aDEk 3 (217i 1 17j) 2 (11.29)2(217i 1 17j)
 5 217aDEj 2 17aDEi 1 2170i 2 2170j
 aB 5 aABk 3 rB 2 v2

ABrB 5 0 2 (20)2(8i 1 14j)
 5 23200i 2 5600j
 aD/B 5 aBDk 3 rD/B 2 v2

BDrD/B

 5 aBDk 3 (12i 1 3j) 2 (29.33)2(12i 1 3j)
 5 12aBDj 2 3aBDi 2 10,320i 2 2580j

Substituting into Eq. (1) and equating the coefficients of i and j, we obtain

 217aDE 1 3aBD 5 215,690
 217aDE 2 12aBD 5 26010
 ABD 5 2(645 rad/s2)k  ADE 5 (809 rad/s2)k ◀

A

B
D

E
rB

rD

rB = 8i + 14j
rD = –17i + 17j

rD/B = 12i + 3j

rD/B

y

x
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963

SOLVING PROBLEMS
ON YOUR OWN

This lesson was devoted to the determination of the accelerations of the points 
of a rigid body in plane motion. As you did previously for velocities, you will 

again consider the plane motion of a rigid body as the sum of two motions, namely, 
a translation and a rotation.

To solve a problem involving accelerations in plane motion you should use the 
following steps:

1. Determine the angular velocity of the body. To find V you can either
a. Consider the motion of the body as the sum of a translation and a rotation 

as you did in Sec. 15.6, or
b. Use the instantaneous center of rotation of the body as you did in Sec. 15.7. 

However, keep in mind that you cannot use the instantaneous center to determine 
accelerations.

2. Start drawing a “diagram equation” to use in your solution. This “equation” 
will involve the following diagrams (Fig. 15.44).

a. Plane motion diagram. Draw a sketch of the body, including all dimen-
sions, as well as the angular velocity V. Show the angular acceleration A with its 
magnitude and sense if you know them. Also show those points for which you 
know or seek the accelerations, indicating all that you know about these 
accelerations.

b. Translation diagram. Select a reference point A for which you know the 
direction, the magnitude, or a component of the acceleration aA. Draw a second 
diagram showing the body in translation with each point having the same accelera-
tion as point A.
 c. Rotation diagram. Considering point A as a fixed reference point, draw a 
third diagram showing the body in rotation about A. Indicate the normal and tan-
gential components of the relative accelerations of other points, such as the com-
ponents (aB/A)n and (aB/A)t of the acceleration of point B with respect to point A.

3. Write the relative-acceleration formula

aB 5 aA 1 aB/A  or  aB 5 aA 1 (aB/A)n 1 (aB/A)t

The sample problems illustrate three different ways to use this vector equation:
 a. If A is given or can easily be determined, you can use this equation to 
determine the accelerations of various points of the body [Sample Prob. 15.6].

(continued)
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 b. If A cannot easily be determined, select for point B a point for which you 
know the direction, the magnitude, or a component of the acceleration aB and 
draw a vector diagram of the equation. Starting at the same point, draw all known 
acceleration components in tip-to-tail fashion for each member of the equation. 
Complete the diagram by drawing the two remaining vectors in appropriate direc-
tions and in such a way that the two sums of vectors end at a common point.

The magnitudes of the two remaining vectors can be found either graphically or 
analytically. Usually an analytic solution will require the solution of two simultane-
ous equations [Sample Prob. 15.7]. However, by first considering the components 
of the various vectors in a direction perpendicular to one of the unknown vectors, 
you may be able to obtain an equation in a single unknown.

One of the two vectors obtained by the method just described will be (aB/A)t, from 
which you can compute a. Once a has been found, the vector equation can be 
used to determine the acceleration of any other point of the body.
 c. A full vector approach can also be used to solve the vector equation. This 
is illustrated in Sample Prob. 15.8.

4. The analysis of plane motion in terms of a parameter completed this les-
son. This method should be used only if it is possible to express the coordinates 
x and y of all significant points of the body in terms of a single parameter (Sec. 
15.9). By differentiating twice with respect to t the coordinates x and y of a given 
point, you can determine the rectangular components of the absolute velocity and 
absolute acceleration of that point.
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PROBLEMS

965

15.105 A 900-mm rod rests on a horizontal table. A force P applied as 
shown produces the following accelerations: aA 5 3.6 m/s2 to the 
right, a 5 6 rad/s2 counterclockwise as viewed from above. Deter-
mine the acceleration (a) of point G, (b) of point B.

B

G

A
0.45 m

0.45 m

P

Fig. P15.105 and P15.106

15.106 In Prob. 15.105, determine the point of the rod that (a) has no 
acceleration, (b) has an acceleration of 2.4 m/s2 to the right.

 15.107 A 10-ft steel beam is lowered by means of two cables unwinding at 
the same speed from overhead cranes. As the beam approaches the 
ground, the crane operators apply brakes to slow down the unwind-
ing motion. At the instant considered the deceleration of the cable 
attached at A is 12 ft/s2, while that of the cable at B is 5 ft/s2. Deter-
mine (a) the angular acceleration of the beam, (b) the acceleration 
of point C.

 15.108 The acceleration of point C is 1 ft/s2 downward and the angular 
acceleration of the beam is 0.8 rad/s2 clockwise. Knowing that the 
angular velocity of the beam is zero at the instant considered, 
determine the acceleration of each cable.

 15.109 and 15.110 Bar BDE is attached to two links AB and CD. 
Knowing that at the instant shown link AB has zero angular accel-
eration and an angular velocity of 3 rad/s clockwise, determine the 
acceleration (a) of point D, (b) of point E.

A B C

9 ft
1 ft

Fig. P15.107 and P15.108

A
B

C

E

D

240 mm

180 mm

150 mm

150 mm

Fig. P15.109

A
B

C

E

D

240 mm

180 mm

150 mm

150 mm

Fig. P15.110
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966 Kinematics of Rigid Bodies  15.111 An automobile travels to the left at a constant speed of 48 mi/h. 
Knowing that the diameter of the wheel is 22 in., determine the 
acceleration (a) of point B, (b) of point C, (c) of point D.

A

B
D

C

22 in.

30�

Fig. P15.111

 15.112 A carriage C is supported by a caster A and a cylinder B, each of 
50-mm diameter. Knowing that at the instant shown the carriage 
has an acceleration of 2.4 m/s2 and a velocity of 1.5 m/s, both 
directed to the left, determine (a) the angular accelerations of the 
caster and of the cylinder, (b) the accelerations of the centers of 
the caster and of the cylinder.

 15.113 The motion of the 75-mm-radius cylinder is controlled by the cord 
shown. Knowing that end E of the cord has a velocity of 300 mm/s 
and an acceleration of 480 mm/s2, both directed upward, deter-
mine the acceleration (a) of point A, (b) of point B.

 15.114 The motion of the 75-mm-radius cylinder is controlled by the cord 
shown. Knowing that end E of the cord has a velocity of 300 mm/s 
and an acceleration of 480 mm/s2, both directed upward, deter-
mine the accelerations of points C and D of the cylinder.

 15.115 and 15.116 A 3-in.-radius drum is rigidly attached to a 5-in.-
radius drum as shown. One of the drums rolls without sliding 
on the surface shown, and a cord is wound around the other 
drum. Knowing that at the instant shown end D of the cord has 
a velocity of 8 in./s and an acceleration of 30 in./s2, both directed 
to the left, determine the accelerations of points A, B, and C of 
the drums.

A B

C

Fig. P15.112

B

C

D

E

GA

75 mm

Fig. P15.113 and P15.114

3 in.
5 in.

G

AD

B

C

Fig. P15.115

3 in.
5 in.

G

A

D B

C

Fig. P15.116
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967Problems 15.117 The 150-mm-radius drum rolls without slipping on a belt that 
moves to the left with a constant velocity of 300 mm/s. At an 
instant when the velocity and acceleration of the center D of the 
drum are as shown, determine the accelerations of points A, B, 
and C of the drum.

A

B

C

900 mm/s2

750 mm/s

300 mm/s

150 mm

D

Fig. P15.117

 15.118 The 18-in.-radius flywheel is rigidly attached to a 1.5-in.-radius 
shaft that can roll along parallel rails. Knowing that at the instant 
shown the center of the shaft has a velocity of 1.2 in./s and an 
acceleration of 0.5 in./s2, both directed down to the left, determine 
the acceleration (a) of point A, (b) of point B.

 15.119 In the planetary gear system shown the radius of gears A, B, C, 
and D is 3 in. and the radius of the outer gear E is 9 in. Knowing 
that gear A has a constant angular velocity of 150 rpm clockwise 
and that the outer gear E is stationary, determine the magnitude 
of the acceleration of the tooth of gear D that is in contact with 
(a) gear A, (b) gear E.

 15.120 The disk shown has a constant angular velocity of 500 rpm coun-
terclockwise. Knowing that rod BD is 250 mm long, determine the 
acceleration of collar D when (a) u 5 90°, (b) u 5 180°.

A

B

18 in.

20�

Fig. P15.118

A

B

C

D

E

Fig. P15.119

150 mm

50 mm

q

A

B

D

Fig. P15.120

E

D

B

q

50 mm

90°

45°

A

Fig. P15.121

 15.121 In the two-cylinder air compressor shown the connecting rods BD 
and BE are each 190 mm long and crank AB rotates about the fixed 
point A with a constant angular velocity of 1500 rpm clockwise. 
Determine the acceleration of each piston when u 5 0.
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968 Kinematics of Rigid Bodies  15.122 Arm AB has a constant angular velocity of 16 rad/s counterclock-
wise. At the instant when u 5 0, determine the acceleration (a) of 
collar D, (b) of the midpoint G of bar BD.

q

6 in.

3 in.

A

B

D
10 in.

Fig. P15.122, P15.123, and P15.124

 15.123 Arm AB has a constant angular velocity of 16 rad/s counter-
clockwise. At the instant when u 5 90°, determine the acceleration 
(a) of collar D, (b) of the midpoint G of bar BD.

 15.124 Arm AB has a constant angular velocity of 16 rad/s counter-
clockwise. At the instant when u 5 60°, determine the acceleration 
of collar D.

 15.125 Knowing that crank AB rotates about point A with a constant 
angular velocity of 900 rpm clockwise, determine the acceleration 
of the piston P when u 5 60°.

 15.126 Knowing that crank AB rotates about point A with a constant 
angular velocity of 900 rpm clockwise, determine the acceleration 
of the piston P when u 5 120°.

 15.127 Knowing that at the instant shown rod AB has zero angular accel-
eration and an angular velocity of 15 rad/s counterclockwise, deter-
mine (a) the angular acceleration of arm DE, (b) the acceleration 
of point D.

A
B

P

D

150 mm

50 mm

q

Fig. P15.125 and P15.126

A

DGB
E

3 in.

4 in. 5 in. 5 in. 4 in.

Fig. P15.127 and P15.128

 15.128 Knowing that at the instant shown rod AB has zero angular accel-
eration and an angular velocity of 15 rad/s counterclockwise, deter-
mine (a) the angular acceleration of member BD, (b) the acceleration 
of point G.

 15.129 Knowing that at the instant shown rod AB has a constant angu-
lar velocity of 6 rad/s clockwise, determine the acceleration of 
point D.

 15.130 Knowing that at the instant shown rod AB has a constant angular 
velocity of 6 rad/s clockwise, determine (a) the angular accelera-
tion of member BDE, (b) the acceleration of point E.

A

B

D

E

C

225 mm 225 mm

90 mm

90 mm

90 mm

Fig. P15.129 and P15.130
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969Problems 15.131 Knowing that at the instant shown rod AB has zero angular accel-
eration and an angular velocity v0 clockwise, determine (a) the 
angular acceleration of arm DE, (b) the acceleration of point D.

 15.132 At the instant shown rod AB has zero angular acceleration and 
an angular velocity of 8 rad/s clockwise. Knowing that l 5 0.3 m, 
determine the acceleration of the midpoint C of member BD.

 15.133 and 15.134 Knowing that at the instant shown bar AB has a 
constant angular velocity of 4 rad/s clockwise, determine the angu-
lar acceleration (a) of bar BD, (b) of bar DE.

A

B

D

E

C
l

l l

Fig. P15.131 and P15.132

400 mm 400 mm

500 mm

300 mm

D
B

A

E

Fig. P15.133 and P15.135

8 in.

7 in.
4 in.

3 in.

A

B

D

E

Fig. P15.134 and P15.136

 15.135 and 15.136 Knowing that at the instant shown bar AB has an 
angular velocity of 4 rad/s and an angular acceleration of 2 rad/s2, 
both clockwise, determine the angular acceleration (a) of bar BD, 
(b) of bar DE by using the vector approach as is done in Sample 
Prob. 15.8.

 15.137 Denoting by rA the position vector of a point A of a rigid slab that 
is in plane motion, show that (a) the position vector rC of the 
instantaneous center of rotation is

rC 5 rA 1
V 3 vA

v2

  Where V is the angular velocity of the slab and vA is the velocity 
of point A, (b) the acceleration of the instantaneous center of rota-
tion is zero if, and only if,

aA 5
a

v
 vA 1 V 3 vA

  where A 5 ak is the angular acceleration of the slab.

A

C
O

w

a

rA

vA

rC

Fig. P15.137
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970 Kinematics of Rigid Bodies   *15.138 The wheels attached to the ends of rod AB roll along the surfaces 
shown. Using the method of Sec. 15.9, derive an expression for the 
angular velocity of the rod in terms of vB, u, l, and b.

A

B

q

b
dB

l

vB

Fig. P15.138 and P15.139

  *15.139 The wheels attached to the ends of rod AB roll along the surfaces 
shown. Using the method of Sec. 15.9 and knowing that the accel-
eration of wheel B is zero, derive an expression for the angular 
acceleration of the rod in terms of vB, u, l, and b.

  *15.140 The drive disk of the Scotch crosshead mechanism shown has an 
angular velocity V and an angular acceleration A, both directed 
counterclockwise. Using the method of Sec. 15.9, derive expres-
sions for the velocity and acceleration of point B.

  *15.141 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity vA. Using the method of Sec. 15.9, 
derive expressions for the angular velocity and angular acceleration 
of the rod.

A

B

b

q

Fig. P15.140

  *15.142 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity vA. Using the method of Sec. 15.9, 
derive expressions for the horizontal and vertical components of the 
velocity of point B.

  *15.143 A disk of radius r rolls to the right with a constant velocity v. Denot-
ing by P the point of the rim in contact with the ground at t 5 0, 
derive expressions for the horizontal and vertical components of the 
velocity of P at any time t.

C

A

B

q

b

xA

l

Fig. P15.141 and P15.142
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  *15.144 At the instant shown, rod AB rotates with an angular velocity V 
and an angular acceleration A, both clockwise. Using the method 
of Sec. 15.9, derive expressions for the velocity and acceleration of 
point C.

A

l l

l

B

D

q

C

Fig. P15.144 and P15.145

  *15.145 At the instant shown, rod AB rotates with an angular velocity V 
and an angular acceleration A, both clockwise. Using the method 
of Sec. 15.9, derive expressions for the horizontal and vertical com-
ponents of the velocity and acceleration of point D.

  *15.146 The position of rod AB is controlled by a disk of radius r which is 
attached to yoke CD. Knowing that the yoke moves vertically 
upward with a constant velocity v0, derive an expression for the 
angular acceleration of rod AB.

  *15.147 In Prob. 15.146, derive an expression for the angular acceleration 
of rod AB.

  *15.148 A wheel of radius r rolls without slipping along the inside of a fixed 
cylinder of radius R with a constant angular velocity V. Denoting 
by P the point of the wheel in contact with the cylinder at t 5 0, 
derive expressions for the horizontal and vertical components of 
the velocity of P at any time t. (The curve described by point P is 
a hypocycloid.)

  *15.149 In Prob. 15.148, show that the path of P is a vertical straight line 
when r 5 R /2. Derive expressions for the corresponding velocity 
and acceleration of P at any time t.

B

C

D

A

r

q

Fig. P15.146

ww

y

r

P
x

R

Fig. P15.148

15.10  RATE OF CHANGE OF A VECTOR WITH 
RESPECT TO A ROTATING FRAME

We saw in Sec. 11.10 that the rate of change of a vector is the same 
with respect to a fixed frame and with respect to a frame in transla-
tion. In this section, the rates of change of a vector Q with respect 
to a fixed frame and with respect to a rotating frame of reference 
will be considered.† You will learn to determine the rate of change 
of Q with respect to one frame of reference when Q is defined by 
its components in another frame.

†It is recalled that the selection of a fixed frame of reference is arbitrary. Any frame 
may be designated as “fixed”; all others will then be considered as moving.

15.10 Rate of Change of a Vector with 
Respect to a Rotating Frame 971

Photo 15.7 A geneva mechanism is used to 
convert rotary motion into intermittent motion.
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972 Kinematics of Rigid Bodies  Consider two frames of reference centered at O, a fixed frame 
OXYZ and a frame Oxyz which rotates about the fixed axis OA; let 
V denote the angular velocity of the frame Oxyz at a given instant 
(Fig. 15.26). Consider now a vector function Q(t) represented by the 
vector Q attached at O; as the time t varies, both the direction and 
the magnitude of Q change. Since the variation of Q is viewed dif-
ferently by an observer using OXYZ as a frame of reference and by 
an observer using Oxyz, we should expect the rate of change of Q to 
depend upon the frame of reference which has been selected. There-
fore, the rate of change of Q with respect to the fixed frame OXYZ 
will be denoted by (Q̇)OXYZ, and the rate of change of Q with respect 
to the rotating frame Oxyz will be denoted by (Q̇)Oxyz. We propose to 
determine the relation existing between these two rates of change.
 Let us first resolve the vector Q into components along the x, y, 
and z axes of the rotating frame. Denoting by i, j, and k the corre-
sponding unit vectors, we write

 Q 5 Qxi 1 Qyj 1 Qzk (15.27)

Differentiating (15.27) with respect to t and considering the unit 
vectors i, j, k as fixed, we obtain the rate of change of Q with respect 
to the rotating frame Oxyz:

 (Q̇)Oxyz 5  Q̇xi 1  Q̇yj 1  Q̇zk (15.28)

 To obtain the rate of change of Q with respect to the fixed 
frame OXYZ, we must consider the unit vectors i, j, k as variable 
when differentiating (15.27). We therefore write

(Q
.

)OXYZ 5 Q
.

xi 1 Q
.

yj 1 Q
.

zk 1 Qx 

di
dt

1 Qy 

dj

dt
1 Qz 

dk
dt   (15.29)

Recalling (15.28), we observe that the sum of the first three terms 
in the right-hand member of (15.29) represents the rate of change 
(Q̇)Oxyz. We note, on the other hand, that the rate of change (Q̇)OXYZ 
would reduce to the last three terms in (15.29) if the vector Q were 
fixed within the frame Oxyz, since (Q̇)Oxyz would then be zero. But 
in that case, (Q̇)OXYZ would represent the velocity of a particle located 
at the tip of Q and belonging to a body rigidly attached to the frame 
Oxyz. Thus, the last three terms in (15.29) represent the velocity of 
that particle; since the frame Oxyz has an angular velocity V with 
respect to OXYZ at the instant considered, we write, by (15.5),

 
Qx 

di
dt

1 Qy 

dj

dt
1 Qz 

dk
dt

5 V 3 Q
 (15.30)

Substituting from (15.28) and (15.30) into (15.29), we obtain the 
fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

We conclude that the rate of change of the vector Q with respect to 
the fixed frame OXYZ is made of two parts: The first part represents 
the rate of change of Q with respect to the rotating frame Oxyz; the 
second part, V 3 Q, is induced by the rotation of the frame Oxyz.

A

O

x

z

y

Z

X

Y

Q

j
i

k

ΩΩ

Fig. 15.26
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973 The use of relation (15.31) simplifies the determination of the 
rate of change of a vector Q with respect to a fixed frame of refer-
ence OXYZ when the vector Q is defined by its components along 
the axes of a rotating frame Oxyz, since this relation does not require 
the separate computation of the derivatives of the unit vectors defin-
ing the orientation of the rotating frame.

15.11  PLANE MOTION OF A PARTICLE RELATIVE TO 
A ROTATING FRAME. CORIOLIS ACCELERATION

Consider two frames of reference, both centered at O and both in the 
plane of the figure, a fixed frame OXY and a rotating frame Oxy (Fig. 
15.27). Let P be a particle moving in the plane of the figure. The 
position vector r of P is the same in both frames, but its rate of change 
depends upon the frame of reference which has been selected.
 The absolute velocity vP of the particle is defined as the velocity 
observed from the fixed frame OXY and is equal to the rate of change 
(ṙ)OXY of r with respect to that frame. We can, however, express vP in 
terms of the rate of change (ṙ)Oxy observed from the rotating frame if 
we make use of Eq. (15.31). Denoting by V the angular velocity of the 
frame Oxy with respect to OXY at the instant considered, we write

 vP 5 (ṙ)OXY 5 V 3 r 1 (ṙ)Oxy (15.32)

But (ṙ)Oxy defines the velocity of the particle P relative to the rotating 
frame Oxy. Denoting the rotating frame by ^ for short, we represent 
the velocity (ṙ)Oxy of P relative to the rotating frame by vP/^. Let us 
imagine that a rigid slab has been attached to the rotating frame. 
Then vP/^ represents the velocity of P along the path that it describes 
on that slab (Fig. 15.28), and the term V 3 r in (15.32) represents 
the velocity vP9 of the point P9 of the slab—or rotating frame—which 
coincides with P at the instant considered. Thus, we have

 vP 5 vP9 1 vP/^ (15.33)

where vP 5 absolute velocity of particle P
 vP9 5 velocity of point P9 of moving frame ^ coinciding with P
 vP/^ 5 velocity of P relative to moving frame ^

 The absolute acceleration aP of the particle is defined as the 
rate of change of vP with respect to the fixed frame OXY. Computing 
the rates of change with respect to OXY of the terms in (15.32), 
we write

 
aP 5 v̇P 5 V

.
3 r 1 V 3 ṙ 1

d
dt

[(ṙ)Oxy]
 

(15.34)

where all derivatives are defined with respect to OXY, except where 
indicated otherwise. Referring to Eq. (15.31), we note that the last 
term in (15.34) can be expressed as

d
dt

[(ṙ)Oxy] 5 (r̈)Oxy 1 V 3 (ṙ)Oxy

x

y

X

Y

r

ΩΩ

P

O

Fig. 15.27

x

y

X

Y

r

ΩΩ

P

O

P'

vP' = ΩΩ × r
vP/    = (r)O xy

.

Fig. 15.28

15.11 Plane Motion of a Particle Relative to a 
Rotating Frame. Coriolis Acceleration
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974 Kinematics of Rigid Bodies On the other hand, ṙ represents the velocity vP and can be replaced 
by the right-hand member of Eq. (15.32). After completing these 
two substitutions into (15.34), we write

aP 5   ̇V 3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxy 1 (  ̈r)Oxy   (15.35)

Referring to the expression (15.8) obtained in Sec. 15.3 for the accel-
eration of a particle in a rigid body rotating about a fixed axis, we 
note that the sum of the first two terms represents the acceleration 
aP9 of the point P9 of the rotating frame which coincides with P at 
the instant considered. On the other hand, the last term defines the 
acceleration aP/f of P relative to the rotating frame. If it were not 
for the third term, which has not been accounted for, a relation 
similar to (15.33) could be written for the accelerations, and aP could 
be expressed as the sum of aP9 and aP/f. However, it is clear that 
such a relation would be incorrect and that we must include the 
additional term. This term, which will be denoted by ac, is called the 
complementary acceleration, or Coriolis acceleration, after the French 
mathematician de Coriolis (1792–1843). We write

 aP 5 aP9 1 aP/^ 1 ac (15.36)

where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding 

with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 ( ˙ r)Oxy 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration†

 We note that since point P9 moves in a circle about the origin 
O, its acceleration aP9 has, in general, two components: a component 
(aP9)t tangent to the circle, and a component (aP9)n directed toward 
O. Similarly, the acceleration aP/^ generally has two components: a 
component (aP/^)t tangent to the path that P describes on the rotating 
slab, and a component (aP/^)n directed toward the center of curvature 
of that path. We further note that since the vector V is perpendicular 
to the plane of motion, and thus to vP/^, the magnitude of the Coriolis 
acceleration ac 5 2V 3 vP/^ is equal to 2VvP/^, and its direction can 
be obtained by rotating the vector vP/^ through 90° in the sense of 
rotation of the moving frame (Fig. 15.29). The Coriolis acceleration 
reduces to zero when either V or vP/^ is zero.
 The following example will help in understanding the physical 
meaning of the Coriolis acceleration. Consider a collar P which is 

†It is important to note the difference between Eq. (15.36) and Eq. (15.21) of Sec. 15.8. 
When we wrote
 aB 5 aA 1 aB/A (15.21)

in Sec. 15.8, we were expressing the absolute acceleration of point B as the sum of its 
acceleration aB/A relative to a frame in translation and of the acceleration aA of a point 
of that frame. We are now trying to relate the absolute acceleration of point P to its 
 acceleration aP/f relative to a rotating frame f and to the acceleration aP9 of the point P9 
of that frame which coincides with P; Eq. (15.36) shows that because the frame is rotating, 
it is necessary to include an additional term representing the Coriolis acceleration ac.

x

y

X

Y

r

ΩΩ

P

O

a c = 2 ΩΩ × vP/

vP/

Fig. 15.29
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975made to slide at a constant relative speed u along a rod OB rotating 
at a constant angular velocity V about O (Fig. 15.30a). According to 
formula (15.36), the absolute acceleration of P can be obtained by 
adding vectorially the acceleration aA of the point A of the rod coin-
ciding with P, the relative acceleration aP/OB of P with respect to the 
rod, and the Coriolis acceleration ac. Since the angular velocity V of 
the rod is constant, aA reduces to its normal component (aA)n of mag-
nitude rv2; and since u is constant, the relative acceleration aP/OB is 
zero. According to the definition given above, the Coriolis accelera-
tion is a vector perpendicular to OB, of magnitude 2v u, and directed 
as shown in the figure. The acceleration of the collar P consists, 
therefore, of the two vectors shown in Fig. 15.30a. Note that the 
result obtained can be checked by applying the relation (11.44).
 To understand better the significance of the Coriolis acceleration, 
let us consider the absolute velocity of P at time t and at time t 1 Dt 
(Fig. 15.30b). The velocity at time t can be resolved into its compo-
nents u and vA; the velocity at time t 1 Dt can be resolved into its 
components u9 and vA9. Drawing these components from the same 
origin (Fig. 15.30c), we note that the change in velocity during the
time Dt can be represented by the sum of three vectors, RR¿

¡
, TT–

¡
,

and T–T¿
¡

. The vector TT–
¡

 measures the change in direction of the
velocity vA, and the quotient TT–

¡
/¢t represents the acceleration aA

when Dt approaches zero. We check that the direction of TT–
¡

 is that 
of aA when Dt approaches zero and that

lim
¢ty0

 
TT–
¢t

5 lim
¢ty0

 vA 
¢u
¢t

5 rvv 5 rv2 5 aA

The vector RR¿
¡

 measures the change in direction of u due to the
rotation of the rod; the vector T–T¿

¡
 measures the change in magni-

tude of vA due to the motion of P on the rod. The vectors RR¿
¡

 and 
T–T¿
¡

 result from the combined effect of the relative motion of P and 
of the rotation of the rod; they would vanish if either of these two 
motions stopped. It is easily verified that the sum of these two vectors 
defines the Coriolis acceleration. Their direction is that of ac when 
Dt approaches zero, and since RR9 5 u Du and T 0T9 5 vA9 2 vA 5 
(r 1 Dr)v 2 rv 5 v Dr, we check that ac is equal to

lim
¢ty0 

aRR ¿
¢t

1
T–T ¿

¢t
b 5 lim

¢ty0
 au 

¢u
¢t

1 v  

¢r
¢t
b 5 uv 1 v u 5 2v u

 Formulas (15.33) and (15.36) can be used to analyze the motion 
of mechanisms which contain parts sliding on each other. They make 
it possible, for example, to relate the absolute and relative motions 
of sliding pins and collars (see Sample Probs. 15.9 and 15.10). The 
concept of Coriolis acceleration is also very useful in the study of 
long-range projectiles and of other bodies whose motions are appre-
ciably affected by the rotation of the earth. As was pointed out in 
Sec. 12.2, a system of axes attached to the earth does not truly con-
stitute a newtonian frame of reference; such a system of axes should 
actually be considered as rotating. The formulas derived in this sec-
tion will therefore facilitate the study of the motion of bodies with 
respect to axes attached to the earth.

15.11 Plane Motion of a Particle Relative to a 
Rotating Frame. Coriolis Acceleration

a c = 2wu

aA = rw2

u

P

P

B

A
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vA = rw
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u

u'
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r
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r
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Fig. 15.30

bee29400_ch15_0914-1023.indd Page 975  12/14/08  9:27:09 AM user-s172bee29400_ch15_0914-1023.indd Page 975  12/14/08  9:27:09 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



976

SAMPLE PROBLEM 15.9

The Geneva mechanism shown is used in many counting instruments and 
in other applications where an intermittent rotary motion is required. Disk D 
rotates with a constant counterclockwise angular velocity VD of 10 rad/s. A 
pin P is attached to disk D and slides along one of several slots cut in disk S. 
It is desirable that the angular velocity of disk S be zero as the pin enters 
and leaves each slot; in the case of four slots, this will occur if the distance 
between the centers of the disks is l 5 12 R.
 At the instant when f 5 150°, determine (a) the angular velocity of 
disk S, (b) the velocity of pin P relative to disk S.

Disk S

Disk D

R = 50 mm

O

f = 135°R

P

B

l =    2R

SOLUTION

We solve triangle OPB, which corresponds to the position f 5 150°. Using 
the law of cosines, we write

r 2 5 R2 1 l2 2 2Rl cos 30° 5 0.551R2  r 5 0.742R 5 37.1 mm

From the law of sines,

 sin b
R

5
 sin 30°

r
    sin b 5

 sin 30°
0.742

    b 5 42.4°

Since pin P is attached to disk D, and since disk D rotates about point B, 
the magnitude of the absolute velocity of P is

vP 5 RvD 5 (50 mm)(10 rad/s) 5 500 mm/s
 vP 5 500 mm/s d 60°

We consider now the motion of pin P along the slot in disk S. Denoting by 
P9 the point of disk S which coincides with P at the instant considered and 
selecting a rotating frame S attached to disk S, we write

vP 5 vP9 1 vP/S

Noting that vP9 is perpendicular to the radius OP and that vP/S is directed 
along the slot, we draw the velocity triangle corresponding to the equation 
above. From the triangle, we compute

 g 5 90° 2 42.4° 2 30° 5 17.6°
 vP9 5 vP sin g 5 (500 mm/s) sin 17.6°
 vP9 5 151.2 mm/s f 42.4°
 vP/S 5 vP cos g 5 (500 mm/s) cos 17.6°
 vP/S 5 vP/S 5 477 mm/s d 42.4° ◀

Since vP9 is perpendicular to the radius OP, we write

vP9 5 rvS   151.2 mm/s 5 (37.1 mm)vS
 VS 5 VS 5 4.08 rad/s i ◀

Disk S Disk DP

O B

f = 150°
b P'

R

r

l =    2R

b = 42.4°

30°
�

vP'

vP

vP/
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977

SAMPLE PROBLEM 15.10

In the Geneva mechanism of Sample Prob. 15.9, disk D rotates with a con-
stant counterclockwise angular velocity VD of 10 rad/s. At the instant when 
f 5 150°, determine the angular acceleration of disk S.

SOLUTION

Referring to Sample Prob. 15.9, we obtain the angular velocity of the frame 
S attached to disk S and the velocity of the pin relative to S:

vS 5 4.08 rad/s i
b 5 42.4°  vP/S 5 477 mm/s d 42.4°

Since pin P moves with respect to the rotating frame S, we write

 aP 5 aP9 1 aP/S 1 ac (1)

Each term of this vector equation is investigated separately.

Absolute Acceleration aP. Since disk D rotates with a constant angular 
velocity, the absolute acceleration aP is directed toward B. We have

 aP 5 Rv2
D 5 (500 mm)(10 rad/s)2 5 5000 mm/s2

 aP 5 5000 mm/s2 c 30°

Acceleration aP9 of the Coinciding Point P9. The acceleration aP9 of the 
point P9 of the frame S which coincides with P at the instant considered is 
resolved into normal and tangential components. (We recall from Sample 
Prob. 15.9 that r 5 37.1 mm.)

(aP9)n 5 rv2
S 5 (37.1 mm)(4.08 rad/s)2 5 618 mm/s2

 (aP9)n 5 618 mm/s2 d 42.4°
 (aP9)t 5 raS 5 37.1aS  (aP9)t 5 37.1aS f 42.4°

Relative Acceleration aPyS. Since the pin P moves in a straight slot cut in 
disk S, the relative acceleration aP/S must be parallel to the slot; i.e., its 
direction must be a 42.4°.

Coriolis Acceleration ac. Rotating the relative velocity vP/S through 90° in 
the sense of VS , we obtain the direction of the Coriolis component of the 
acceleration: h  42.4°. We write 

ac 5 2vSvP/S  5 2(4.08 rad/s)(477 mm/s) 5 3890 mm/s2

ac 5 3890 mm/s2 h 42.4°

We rewrite Eq. (1) and substitute the accelerations found above:

aP 5 (aP9)n 1 (aP9)t 1 aP/S  1 ac

[5000 c 30°] 5 [618 d 42.4°] 1 [37.1aS  f 42.4°]
1 [aP/S  a 42.4°] 1 [3890 h 42.4°]

Equating components in a direction perpendicular to the slot,

5000 cos 17.6° 5 37.1aS  2 3890
AS 5 AS 5 233 rad/s2

i ◀

Disk S Disk DP

P'

O
B

f = 150�
b

r

R

l =    2R

30°

42.4°

42.4°

42.4°

42.4°

(aP')n = 618 mm/s2

(aP')t = 37.1a
aP/

ac = 3890 mm/s2

aP = 5000 mm/s2

z

x

x

z

bee29400_ch15_0914-1023.indd Page 977  12/14/08  9:27:20 AM user-s172bee29400_ch15_0914-1023.indd Page 977  12/14/08  9:27:20 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



978

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you studied the rate of change of a vector with respect to a rotat-
ing frame and then applied your knowledge to the analysis of the plane motion 

of a particle relative to a rotating frame.

1. Rate of change of a vector with respect to a fixed frame and with respect 
to a rotating frame. Denoting by ( ˙ Q)OXYZ the rate of change of a vector Q with
respect to a fixed frame OXYZ and by (Q̇)Oxyz its rate of change with respect to a 
rotating frame Oxyz, we obtained the fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

where V is the angular velocity of the rotating frame.

This fundamental relation will now be applied to the solution of two-dimensional 
problems.

2. Plane motion of a particle relative to a rotating frame. Using the above 
fundamental relation and designating by ^ the rotating frame, we obtained the 
following expressions for the velocity and the acceleration of a particle P:

 vP 5 vP9 1 vP/^ (15.33)
 aP 5 aP9 1 aP/^ 1 ac (15.36)

In these equations:
 a. The subscript P refers to the absolute motion of the particle P, that is, to its 
motion with respect to a fixed frame of reference OXY.
 b. The subscript P9 refers to the motion of the point P9 of the rotating frame 
^ which coincides with P at the instant considered.
 c. The subscript P/^ refers to the motion of the particle P relative to the rotat-
ing frame ^.
 d. The term ac represents the Coriolis acceleration of point P. Its magnitude 
is 2VvP/^, and its direction is found by rotating vP/^ through 90° in the sense of 
rotation of the frame ^.

You should keep in mind that the Coriolis acceleration should be taken into account 
whenever a part of the mechanism you are analyzing is moving with respect to 
another part that is rotating. The problems you will encounter in this lesson involve 
collars that slide on rotating rods, booms that extend from cranes rotating in a 
vertical plane, etc.

When solving a problem involving a rotating frame, you will find it convenient to 
draw vector diagrams representing Eqs. (15.33) and (15.36), respectively, and use 
these diagrams to obtain either an analytical or a graphical solution.
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PROBLEMS

979

 15.150 and 15.151 Two rotating rods are connected by slider block P. 
The rod attached at A rotates with a constant angular velocity vA. 
For the given data, determine for the position shown (a) the angu-
lar velocity of the rod attached at B, (b) the relative velocity of 
slider block P with respect to the rod on which it slides.

15.150 b 5 8 in., vA 5 6 rad/s.
15.151 b 5 300 mm, vA 5 10 rad/s.

60° 20°
BA

P
E

b

Fig. P15.150 and P15.152 A

P

B

b

D

60° 20°

Fig. P15.151 and P15.153

15.154 and 15.155 Pin P is attached to the collar shown; the motion 
of the pin is guided by a slot cut in rod BD and by the collar that 
slides on rod AE. Knowing that at the instant considered the rods 
rotate clockwise with constant angular velocities, determine for 
the given data the velocity of pin F.

 15.154 vAE 5 4 rad/s, vbd 5 1.5 rad/s.
 15.155 vae 5 3.5 rad/s, vBD 5 2.4 rad/s.

A P

B

E

D

20 in.
30�

Fig. P15.154 and P15.155

15.152 and 15.153 Two rotating rods are connected by slider block P. 
The velocity v0 of the slider block relative to the rod is constant 
and is directed outwards. For the given data, determine the angu-
lar velocity of each rod in the position shown.

15.152 b 5 300 mm, v0 5 480 mm/s.
15.153 b 5 8 in., v0 5 9 in./s.
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980 Kinematics of Rigid Bodies  15.156 and 15.157 Two rods AE and BD pass through holes drilled 
into a hexagonal block. (The holes are drilled in different planes 
so that the rods will not touch each other.) Knowing that at the 
instant considered rod AE rotates counterclockwise with a con-
stant angular velocity V, determine, for the given data, the relative 
velocity of the block with respect to each rod.

 15.156 (a) u 5 90°, (b) u 5 60°.
 15.157 u 5 45°.

 15.158 Four pins slide in four separate slots cut in a circular plate as shown. 
When the plate is at rest, each pin has a velocity directed as shown 
and of the same constant magnitude u. If each pin maintains the 
same velocity relative to the plate when the plate rotates about O 
with a constant counterclockwise angular velocity V, determine the 
acceleration of each pin.

 15.159 Solve Prob. 15.158, assuming that the plate rotates about O with 
a constant clockwise angular velocity V.

 15.160 At the instant shown the length of the boom AB is being decreased 
at the constant rate of 0.2 m/s and the boom is being lowered at the 
constant rate of 0.08 rad/s. Determine (a) the velocity of point B, 
(b) the acceleration of point B.

A

B

E

D

H

l

q
60°

Fig. P15.156 and P15.157

u

u

u

uOP1

P2

P3

P4

r

r
r

r

Fig. P15.158

A

B

q = 30�

6 m

Fig. P15.160 and P15.161

12 in.

5 in.

z

B
E

CA
F

x

y

12 in.
D

u

Fig. P15.162 and P15.163

 15.161 At the instant shown the length of the boom AB is being increased 
at the constant rate of 0.2 m/s and the boom is being lowered at the 
constant rate of 0.08 rad/s. Determine (a) the velocity of point B, 
(b) the acceleration of point B.

 15.162 and 15.163 The sleeve BC is welded to an arm that rotates 
about A with a constant angular velocity V. In the position shown 
rod DF is being moved to the left at a constant speed u 5 16 in./s 
relative to the sleeve. For the given angular velocity V, determine 
the acceleration (a) of point D, (b) of the point of rod DF that coin-
cides with point E.

 15.162 V 5 (3 rad/s) i.
 15.163 V 5 (3 rad/s) j.
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981Problems 15.164 The cage of a mine elevator moves downward at a constant speed 
of 40 ft/s. Determine the magnitude and direction of the Coriolis 
acceleration of the cage if the elevator is located (a) at the equator, 
(b) at latitude 40° north, (c) at latitude 40° south.

 15.165 A rocket sled is tested on a straight track that is built along a merid-
ian. Knowing that the track is located at latitude 40° north, deter-
mine the Coriolis acceleration of the sled when it is moving north 
at a speed of 900 km/h.

 15.166 The motion of nozzle D is controlled by arm AB. At the instant 
shown the arm is rotating counterclockwise at the constant rate v 5 
2.4 rad/s and portion BC is being extended at the constant rate u 5 
10 in./s with respect to the arm. For each of the arrangements shown, 
determine the acceleration of the nozzle D.

 15.167 Solve Prob. 15.166, assuming that the direction of the relative 
velocity u is reversed so that portion BD is being retracted.

 15.168 and 15.169 A chain is looped around two gears of radius 40 mm 
that can rotate freely with respect to the 320-mm arm AB. The 
chain moves about arm AB in a clockwise direction at the constant 
rate of 80 mm/s relative to the arm. Knowing that in the position 
shown arm AB rotates clockwise about A at the constant rate v 5 
0.75 rad/s, determine the acceleration of each of the chain links 
indicated.

 15.168 Links 1 and 2.
 15.169 Links 3 and 4.

 15.170 Rod AB of length R rotates about A with a constant clockwise 
angular velocity V1. At the same time, rod BD of length r rotates 
about B with a constant counterclockwise angular velocity V2 with 
respect to rod AB. Show that if V2 5 2V1 the acceleration of point 
D passes through point A. Further show that this result is inde-
pendent of R, r, and u.

ww
u

u

A

A

B

B C

D

D

8 in.

4 in.

4 in.

3 in.

(a)

(b)

ww

Fig. P15.166

1

2

4

A

160 mm 160 mm

3A B

u

Fig. P15.168 and P15.169

R

r
�

B

A

D

w2

w1

Fig. P15.170 and P15.171

 15.171 Rod AB of length R 5 15 in. rotates about A with a constant 
clockwise angular velocity V1 of 5 rad/s. At the same time, rod BD 
of length r 5 8 in. rotates about B with a constant counterclock-
wise angular velocity V2 of 3 rad/s with respect to rod AB. Know-
ing that u 5 60°, determine for the position shown the acceleration 
of point D.
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982 Kinematics of Rigid Bodies  15.172 The collar P slides outward at a constant relative speed u along 
rod AB, which rotates counterclockwise with a constant angular 
velocity of 20 rpm. Knowing that r 5 250 mm when u 5 0 and 
that the collar reaches B when u 5 90°, determine the magnitude 
of the acceleration of the collar P just as it reaches B.

A

B

P

u

ww

q

500 mmr

Fig. P15.172

 15.173 Pin P slides in a circular slot cut in the plate shown at a constant 
relative speed u 5 90 mm/s. Knowing that at the instant shown 
the plate rotates clockwise about A at the constant rate v 5 3 rad/s, 
determine the acceleration of the pin if it is located at (a) point A, 
(b) point B, (c) point C.

A

B

C

P
u

100 mm

ww

Fig. P15.173 and P15.174

 15.174 Pin P slides in a circular slot cut in the plate shown at a constant 
relative speed u 5 90 mm/s. Knowing that at the instant shown 
the angular velocity V of the plate is 3 rad/s clockwise and is 
decreasing at the rate of 5 rad/s2, determine the acceleration of the 
pin if it is located at (a) point A, (b) point B, (c) point C.

 15.175 and 15.176 Knowing that at the instant shown the rod attached 
at B rotates with a constant counterclockwise angular velocity VB 
of 6 rad/s, determine the angular velocity and angular acceleration 
of the rod attached at A.

A B

D

30�

0.4 m

Fig. P15.175

A B

D

30�

0.4 m

Fig. P15.176
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983Problems 15.177 At the instant shown bar BC has an angular velocity of 3 rad/s and 
an angular acceleration of 2 rad/s2, both counterclockwise, deter-
mine the angular acceleration of the plate.

 15.178 At the instant shown bar BC has an angular velocity of 3 rad/s and 
an angular acceleration of 2 rad/s2, both clockwise, determine the 
angular acceleration of the plate.

 15.179 The Geneva mechanism shown is used to provide an intermittent 
rotary motion of disk S. Disk D rotates with a constant counter-
clockwise angular velocity VD of 8 rad/s. A pin P is attached to disk 
D and can slide in one of the six equally spaced slots cut in disk S. 
It is desirable that the angular velocity of disk S be zero as the pin 
enters and leaves each of the six slots; this will occur if the distance 
between the centers of the disks and the radii of the disks are 
related as shown. Determine the angular velocity and angular accel-
eration of disk S at the instant when f 5 150°.

 15.180 In Prob. 15.179, determine the angular velocity and angular accel-
eration of disk S at the instant when f 5 135°.

 15.181 The disk shown rotates with a constant clockwise angular velo c ity 
of 12 rad/s. At the instant shown, determine (a) the angular veloc-
ity and angular acceleration of rod BD, (b) the velocity and accel-
eration of the point of the rod coinciding with E.

3 in.

4 in.A

D

B

C

4 in. 6 in.

Fig. P15.177 and P15.178

RS = √3RD

O

P

B

f

RD = 1.25 in.

l = 2RD

Disk D
when f = 120°

Disk S

Fig. P15.179

AB

D

E

125 mm

250 mm

Fig. P15.181
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  *15.182 Rod AB passes through a collar which is welded to link DE. Know-
ing that at the instant shown block A moves to the right at a con-
stant speed of 75 in./s, determine (a) the angular velocity of rod AB, 
(b) the velocity relative to the collar of the point of the rod in con-
tact with the collar, (c) the acceleration of the point of the rod in 
contact with the collar. (Hint: Rod AB and link DE have the same 
V and the same A.)

A 30�

6 in.
D

E

B

Fig. P15.182

  *15.183 Solve Prob. 15.182 assuming block A moves to the left at a constant 
speed of 75 in./s.

*15.12 MOTION ABOUT A FIXED POINT
In Sec. 15.3 the motion of a rigid body constrained to rotate about 
a fixed axis was considered. The more general case of the motion of 
a rigid body which has a fixed point O will now be examined.
 First, it will be proved that the most general displacement of a 
rigid body with a fixed point O is equivalent to a rotation of the body 
about an axis through O.† Instead of considering the rigid body 
itself, we can detach a sphere of center O from the body and analyze 
the motion of that sphere. Clearly, the motion of the sphere com-
pletely characterizes the motion of the given body. Since three points 
define the position of a solid in space, the center O and two points 
A and B on the surface of the sphere will define the position of the 
sphere and thus the position of the body. Let A1 and B1 characterize 
the position of the sphere at one instant, and let A2 and B2 character-
ize its position at a later instant (Fig. 15.31a). Since the sphere is 
rigid, the lengths of the arcs of great circle A1B1 and A2B2 must be 
equal, but except for this requirement, the positions of A1, A2, B1, 
and B2 are arbitrary. We propose to prove that the points A and B 
can be brought, respectively, from A1 and B1 into A2 and B2 by a 
single rotation of the sphere about an axis.
 For convenience, and without loss of generality, we select point B 
so that its initial position coincides with the final position of A; thus, 
B1 5 A2 (Fig. 15.31b). We draw the arcs of great circle A1A2, A2B2 
and the arcs bisecting, respectively, A1A2 and A2B2. Let C be the 
point of intersection of these last two arcs; we complete the construc-
tion by drawing A1C, A2C, and B2C. As pointed out above, because 
of the rigidity of the sphere, A1B1 5 A2B2. Since C is by construction 
equidistant from A1, A2, and B2, we also have A1C 5 A2C 5 B2C. 

†This is known as Euler’s theorem.

B2

B1 = A2

B1

A1

(a)

(b)

A1

A2

B2

O

C

Fig. 15.31
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985As a result, the spherical triangles A1CA2 and B1CB2 are congruent 
and the angles A1CA2 and B1CB2 are equal. Denoting by u the com-
mon value of these angles, we conclude that the sphere can be brought 
from its initial position into its final position by a single rotation 
through u about the axis OC.
 It follows that the motion during a time interval Dt of a rigid 
body with a fixed point O can be considered as a rotation through 
Du about a certain axis. Drawing along that axis a vector of magni-
tude Du/Dt and letting Dt approach zero, we obtain at the limit the 
instantaneous axis of rotation and the angular velocity V of the body 
at the instant considered (Fig. 15.32). The velocity of a particle P of 
the body can then be obtained, as in Sec. 15.3, by forming the vector 
product of V and of the position vector r of the particle:

 
v 5

dr
dt

5 V 3 r
 

(15.37)

The acceleration of the particle is obtained by differentiating (15.37) 
with respect to t. As in Sec. 15.3 we have

 a 5 A 3 r 1 V 3 (V 3 r) (15.38)

where the angular acceleration A is defined as the derivative

 
A 5

dV
dt  

(15.39)

of the angular velocity V.
 In the case of the motion of a rigid body with a fixed point, the 
direction of V and of the instantaneous axis of rotation changes from 
one instant to the next. The angular acceleration A therefore reflects 
the change in direction of V as well as its change in magnitude and, 
in general, is not directed along the instantaneous axis of rotation. 
While the particles of the body located on the instantaneous axis of 
rotation have zero velocity at the instant considered, they do not have 
zero acceleration. Also, the accelerations of the various particles of 
the body cannot be determined as if the body were rotating perma-
nently about the instantaneous axis.
 Recalling the definition of the velocity of a particle with posi-
tion vector r, we note that the angular acceleration A, as expressed 
in (15.39), represents the velocity of the tip of the vector V. This 
property may be useful in the determination of the angular accelera-
tion of a rigid body. For example, it follows that the vector A is tan-
gent to the curve described in space by the tip of the vector V.
 We should note that the vector V moves within the body, as 
well as in space. It thus generates two cones called, respectively, the 
body cone and the space cone (Fig. 15.33).† It can be shown that at 
any given instant, the two cones are tangent along the instantaneous 
axis of rotation and that as the body moves, the body cone appears 
to roll on the space cone.

15.12 Motion about a Fixed Point

O

P

r

ww

aa

Fig. 15.32

†It is recalled that a cone is, by definition, a surface generated by a straight line passing 
through a fixed point. In general, the cones considered here will not be circular cones.

Fig. 15.33

Space cone

O

aa

Body cone

w
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986 Kinematics of Rigid Bodies  Before concluding our analysis of the motion of a rigid body 
with a fixed point, we should prove that angular velocities are actually 
vectors. As indicated in Sec. 2.3, some quantities, such as the finite 
rotations of a rigid body, have magnitude and direction but do not 
obey the parallelogram law of addition; these quantities cannot be 
considered as vectors. In contrast, angular velocities (and also infini-
tesimal rotations), as will be demonstrated presently, do obey the 
parallelogram law and thus are truly vector quantities.

 Consider a rigid body with a fixed point O which at a given 
instant rotates simultaneously about the axes OA and OB with angu-
lar velocities V1 and V2 (Fig. 15.34a). We know that this motion must 
be equivalent at the instant considered to a single rotation of angular 
velocity V. We propose to show that

 V 5 V1 1 V2 (15.40)

i.e., that the resulting angular velocity can be obtained by adding V1 
and v2 by the parallelogram law (Fig. 15.34b).
 Consider a particle P of the body, defined by the position vector 
r. Denoting, respectively, by v1, v2, and v the velocity of P when the 
body rotates about OA only, about OB only, and about both axes 
simultaneously, we write

 v 5 V 3 r  v1 5 V1 3 r  v2 5 V2 3 r  (15.41)

But the vectorial character of linear velocities is well established 
(since they represent the derivatives of position vectors). We there-
fore have

v 5 v1 1 v2

where the plus sign indicates vector addition. Substituting from 
(15.41), we write

V 3 r 5 V1 3 r 1 V2 3 r
 V 3 r 5 (V1 1 V2) 3 r

where the plus sign still indicates vector addition. Since the relation 
obtained holds for an arbitrary r, we conclude that (15.40) must be 
true.

O
B

A

w
ww1

ww2

w

w

(a)

Fig. 15.34 

O

C

ww
w

w

ww1

ww2

(b)

Photo 15.8 When the ladder rotates about its 
fixed base, its angular velocity can be obtained 
by adding the angular velocities which correspond 
to simultaneous rotations about two different axes.
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987*15.13 GENERAL MOTION
The most general motion of a rigid body in space will now be con-
sidered. Let A and B be two particles of the body. We recall from 
Sec. 11.12 that the velocity of B with respect to the fixed frame of 
reference OXYZ can be expressed as

 vB 5 vA 1 vB/A (15.42)

where vB/A is the velocity of B relative to a frame AX9Y9Z9 attached 
to A and of fixed orientation (Fig. 15.35). Since A is fixed in this 
frame, the motion of the body relative to AX9Y9Z9 is the motion of a 
body with a fixed point. The relative velocity vB/A can therefore be 
obtained from (15.37) after r has been replaced by the position vector 
rB/A of B relative to A. Substituting for vB/A into (15.42), we write

 vB 5 vA 1 v 3 rB/A (15.43)

where V is the angular velocity of the body at the instant considered.
 The acceleration of B is obtained by a similar reasoning. We 
first write

aB 5 aA 1 aB/A

and, recalling Eq. (15.38),

 aB 5 aA 1 A 3 rB/A 1 V 3 (V 3 rB/A) (15.44)

where A is the angular acceleration of the body at the instant 
considered.
 Equations (15.43) and (15.44) show that the most general 
motion of a rigid body is equivalent, at any given instant, to the sum 
of a translation, in which all the particles of the body have the same 
velocity and acceleration as a reference particle A, and of a motion 
in which particle A is assumed to be fixed.†
 It is easily shown, by solving (15.43) and (15.44) for vA and aA, 
that the motion of the body with respect to a frame attached to B 
would be characterized by the same vectors V and A as its motion 
relative to AX9Y9Z9. The angular velocity and angular acceleration of 
a rigid body at a given instant are thus independent of the choice of 
reference point. On the other hand, one should keep in mind that 
whether the moving frame is attached to A or to B, it should maintain 
a fixed orientation; that is, it should remain parallel to the fixed refer-
ence frame OXYZ throughout the motion of the rigid body. In many 
problems it will be more convenient to use a moving frame which is 
allowed to rotate as well as to translate. The use of such moving 
frames will be discussed in Secs. 15.14 and 15.15.

15.13 General Motion

X
O

A
B

w

aa

Y

Z

X'

Y'

Z'

rA

rB/A

Fig. 15.35

†It is recalled from Sec. 15.12 that, in general, the vectors V and A are not collinear, 
and that the accelerations of the particles of the body in their motion relative to the 
frame AX9Y9Z9 cannot be determined as if the body were rotating permanently about 
the instantaneous axis through A.
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988

SAMPLE PROBLEM 15.11

The crane shown rotates with a constant angular velocity V1 of 0.30 rad/s. 
Simultaneously, the boom is being raised with a constant angular velocity 
V2 of 0.50 rad/s relative to the cab. Knowing that the length of the boom 
OP is l 5 12 m, determine (a) the angular velocity V of the boom, (b) the 
angular acceleration A of the boom, (c) the velocity v of the tip of the boom, 
(d) the acceleration a of the tip of the boom.

X

Y

Z

O

P

q = 30°

w1

w2

SOLUTION

a. Angular Velocity of Boom. Adding the angular velocity V1 of the cab 
and the angular velocity V2 of the boom relative to the cab, we obtain the 
angular velocity V of the boom at the instant considered:

V 5 V1 1 V2  V 5 (0.30 rad/s)j 1 (0.50 rad/s)k ◀

b. Angular Acceleration of Boom. The angular acceleration A of the 
boom is obtained by differentiating V. Since the vector V1 is constant in 
magnitude and direction, we have

A 5 V̇ 5 V̇1 1 V̇2 5 0 1 V̇2

where the rate of change V̇2 is to be computed with respect to the fixed 
frame OXYZ. However, it is more convenient to use a frame Oxyz attached 
to the cab and rotating with it, since the vector V2 also rotates with the cab 
and therefore has zero rate of change with respect to that frame. Using Eq. 
(15.31) with Q 5 V2 and V 5 V1, we write

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q
 (V̇2)OXYZ 5 (V̇2)Oxyz 1 V1 3 V2

A 5 (V̇2)OXYZ 5 0 1 (0.30 rad/s)j 3 (0.50 rad/s)k

 A 5 (0.15 rad/s2)i ◀

c. Velocity of Tip of Boom. Noting that the position vector of point P is 
r 5 (10.39 m)i + (6 m)j and using the expression found for V in part a, we 
write

v 5 V 3 r 5 † i j k
0 0.30 rad/s 0.50 rad/s

10.39 m 6 m 0
†

v 5 2(3 m/s)i 1 (5.20 m/s)j 2 (3.12 m/s)k ◀

d. Acceleration of Tip of Boom. Recalling that v 5 V 3 r, we write

 a 5 A 3 r 1 V 3 (V 3 r) 5 A 3 r 1 V 3 v

 
a 5 † i j k

0.15 0 0
10.39 6 0

† 1 † i j k
0 0.30 0.50

23 5.20 23.12
†

 5 0.90k 2 0.94i 2 2.60i 2 1.50j 1 0.90k

 a 5 2(3.54 m/s2)i 2 (1.50 m/s2)j 1 (1.80 m/s2)k ◀

Xx

Y

Z

O

P

w1 = 0.30j

w2 = 0.50k

y

z

10.39 m

6 m

P

a = 0.15i
X

Y

Z

O

w1 = 0.30j

w2 = 0.50k

10.39 m

6 m
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989

SAMPLE PROBLEM 15.12

The rod AB, of length 7 in., is attached to the disk by a ball-and-socket 
connection and to the collar B by a clevis. The disk rotates in the yz plane 
at a constant rate v1 5 12 rad/s, while the collar is free to slide along the 
horizontal rod CD. For the position u 5 0, determine (a) the velocity of the 
collar, (b) the angular velocity of the rod.

A

B DC

w1

x

y

z

2 in. 3 in.

q

w1 = w1i

6 in.

vB

vA

w1 = 12 i
rA = 2k
rB = 6i + 3j

rB/A = 6i + 3j – 2k

A

B

x

y

z

2 in.

3 in.

O

rE/B = –3j + 2k

A

B

E

DC

x

y

z

2 in.

3 in.

O

SOLUTION

a. Velocity of Collar. Since point A is attached to the disk and since collar 
B moves in a direction parallel to the x axis, we have

vA 5 V1 3 rA 5 12i 3 2k 5 224j   vB 5 vBi

Denoting by V the angular velocity of the rod, we write

vB 5 vA 1 vB/A 5 vA 1 V 3 rB/A

vBi 5 224j 1 † i j k
vx vy vz

6 3 22
†

vBi 5 224j 1 (22vy 2 3vz)i 1 (6vz 1 2vx)j 1 (3vx 2 6vy)k

Equating the coefficients of the unit vectors, we obtain

 vB 5 22vy 23vz (1)
 24 5 2vx  16vz (2)
 0 5 3vx 26vy  (3)

Multiplying Eqs. (1), (2), (3), respectively, by 6, 3, 22 and adding, we write

6vB 1 72 5 0   vB 5 212   vB 5 2(12 in./s)i ◀

b. Angular Velocity of Rod AB. We note that the angular velocity cannot 
be determined from Eqs. (1), (2), and (3), since the determinant formed by 
the coefficients of vx, vy, and vz is zero. We must therefore obtain an addi-
tional equation by considering the constraint imposed by the clevis at B.
 The collar-clevis connection at B permits rotation of AB about the rod 
CD and also about an axis perpendicular to the plane containing AB and 
CD. It prevents rotation of AB about the axis EB, which is perpendicular 
to CD and lies in the plane containing AB and CD. Thus the projection of 
V on rE/B must be zero and we write†

V ? rE/B 5 0  (vxi 1 vyj 1 vzk) ? (23j 1 2k) 5 0
 23vy 1 2vz 5 0 (4)

Solving Eqs. (1) through (4) simultaneously, we obtain

vB 5 212  vx 5 3.69  vy 5 1.846  vz 5 2.77
V 5 (3.69 rad/s)i 1 (1.846 rad/s)j 1 (2.77 rad/s)k ◀

†We could also note that the direction of EB is that of the vector triple product rB/C 3 
(rB/C 3 rB/A) and write V ? [rB/C 3 (rB/C 3 rB/A)] 5 0. This formulation would be 
 particularly useful if the rod CD were skew.
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990

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you started the study of the kinematics of rigid bodies in three 
dimensions. You first studied the motion of a rigid body about a fixed point and 

then the general motion of a rigid body.

A. Motion of a rigid body about a fixed point. To analyze the motion of a 
point B of a body rotating about a fixed point O you may have to take some or all 
of the following steps.

1. Determine the position vector r connecting the fixed point O to point B.

2. Determine the angular velocity V of the body with respect to a fixed frame 
of reference. The angular velocity V will often be obtained by adding two com-
ponent angular velocities V1 and V2 [Sample Prob. 15.11].

3. Compute the velocity of B by using the equation

 v 5 V 3 r  (15.37)

Your computation will usually be facilitated if you express the vector product as a 
determinant.

4. Determine the angular acceleration A of the body. The angular acceleration 
A represents the rate of change (V̇)OXYZ of the vector V with respect to a fixed 
frame of reference OXYZ and reflects both a change in magnitude and a change 
in direction of the angular velocity. However, when computing A you may find it 
convenient to first compute the rate of change (V̇)Oxyz of V with respect to a 
rotating frame of reference Oxyz of your choice and use Eq. (15.31) of the preced-
ing lesson to obtain A. You will write

A 5 (V̇)OXYZ 5 (V̇)Oxyz 1 V 3 V

where V is the angular velocity of the rotating frame Oxyz [Sample Prob. 15.11].

5. Compute the acceleration of B by using the equation

 a 5 A 3 r 1 V 3 (V 3 r) (15.38)

Note that the vector product (V 3 r) represents the velocity of point B and was 
computed in step 3. Also, the computation of the first vector product in (15.38) 
will be facilitated if you express this product in determinant form. Remember that, 
as was the case with the plane motion of a rigid body, the instantaneous axis of 
rotation cannot be used to determine accelerations.
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B. General motion of a rigid body. The general motion of a rigid body may be 
considered as the sum of a translation and a rotation. Keep the following in mind:
 a. In the translation part of the motion, all the points of the body have the 
same velocity vA and the same acceleration aA as the point A of the body that has 
been selected as the reference point.
 b. In the rotation part of the motion, the same reference point A is assumed 
to be a fixed point.

1. To determine the velocity of a point B of the rigid body when you know the 
velocity vA of the reference point A and the angular velocity V of the body, you 
simply add vA to the velocity vB/A 5 V 3 rB/A of B in its rotation about A:

 vB 5 vA 1 V 3 rB/A (15.43)

As indicated earlier, the computation of the vector product will usually be facili-
tated if you express this product in determinant form.

Equation (15.43) can also be used to determine the magnitude of vB when its 
direction is known, even if V is not known. While the corresponding three scalar 
equations are linearly dependent and the components of V are indeterminate, 
these components can be eliminated and vA can be found by using an appropriate 
linear combination of the three equations [Sample Prob. 15.12, part a]. Alterna-
tively, you can assign an arbitrary value to one of the components of V and solve 
the equations for vA. However, an additional equation must be sought in order to 
determine the true values of the components of V [Sample Prob. 15.12, part b].

2. To determine the acceleration of a point B of the rigid body when you know 
the acceleration aA of the reference point A and the angular acceleration A of the 
body, you simply add aA to the acceleration of B in its rotation about A, as expressed 
by Eq. (15.38):

 aB 5 aA 1 A 3 rB/A 1 V 3 (V 3 rB/A) (15.44)

Note that the vector product (V 3 rB/A) represents the velocity vB/A of B relative 
to A and may already have been computed as part of your calculation of vB. We 
also remind you that the computation of the other two vector products will be 
facilitated if you express these products in determinant form.

The three scalar equations associated with Eq. (15.44) can also be used to deter-
mine the magnitude of aB when its direction is known, even if V and A are not 
known. While the components of V and A are indeterminate, you can assign arbi-
trary values to one of the components of V and to one of the components of A 
and solve the equations for aB.
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PROBLEMS

992

15.184 Plate ABD and rod OB are rigidly connected and rotate about the 
ball-and-socket joint O with an angular velocity V 5 vxi 1 vx  j 1 
vzk. Knowing that vA 5 (3 in./s)i 1 (14 in./s)j 1 (vA)zk and vx 5 
1.5 rad/s, determine (a) the angular velocity of the assembly, (b) the 
velocity of point D.

O

y

A

B

D

8 in.
8 in.

6 in. 4 in.

4 in.

z

x

Fig. P15.184

15.185 Solve Prob. 15.184, assuming that vx 5 21.5 rad/s.

 15.186 At the instant considered the radar antenna shown rotates about 
the origin of coordinates with an angular velocity V 5 vxi 1
vy j 1 vzk. Knowing that (vA)y 5 300 mm/s, (vB)y 5 180 mm/s, 
and (vB)z 5 360 mm/s, determine (a) the angular velocity of the 
antenna, (b) the velocity of point A.

x

y

z

A

B

O

0.3 m

0.25 m

0.25 m

Fig. P15.186 and P15.187

 15.187 At the instant considered the radar antenna shown rotates about 
the origin of coordinates with an angular velocity V 5 vxi 1
vy j 1 vzk. Knowing that (vA)x 5 100 mm/s, (vA)y 5 290 mm/s, 
and (vB)z 5 120 mm/s, determine (a) the angular velocity of the 
antenna, (b) the velocity of point A.
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993Problems 15.188 The blade assembly of an oscillating fan rotates with a constant 
angular velocity V1 5 2(360 rpm)i with respect to the motor 
housing. Determine the angular acceleration of the blade assem-
bly, knowing that at the instant shown the angular velocity and 
angular acceleration of the motor housing are, respectively, V2 5 
2(2.5 rpm)j and A2 5 0.

y

z

x

ww2

ww1

Fig. P15.188
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Fig. P15.189
 15.189 The rotor of an electric motor rotates at the constant rate v1 5 

1800 rpm. Determine the angular acceleration of the rotor as the 
motor is rotated about the y axis with a constant angular velocity V2 
of 6 rpm counterclockwise when viewed from the positive y axis.

 15.190 In the system shown, disk A is free to rotate about the horizontal 
rod OA. Assuming that disk B is stationary (v2 5 0), and that shaft 
OC rotates with a constant angular velocity V1, determine (a) the 
angular velocity of disk A, (b) the angular acceleration of disk A.

 15.191 In the system shown, disk A is free to rotate about the horizontal 
rod OA. Assuming that shaft OC and disk B rotate with constant 
angular velocities V1 and V2, respectively, both counterclockwise, 
determine (a) the angular velocity of disk A, (b) the angular accel-
eration of disk A.

 15.192 The L-shaped arm BCD rotates about the z axis with a constant 
angular velocity V1 of 5 rad/s. Knowing that the 150-mm-radius 
disk rotates about BC with a constant angular velocity V2 of 4 rad/s, 
determine the angular acceleration of the disk.
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Fig. P15.190 and P15.191
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Fig. P15.192

 15.193 In Prob. 15.192, determine (a) the velocity of point A, (b) the accel-
eration of point A.
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994 Kinematics of Rigid Bodies  15.194 A 3-in.-radius disk spins at the constant rate v2 5 4 rad/s about 
an axis held by a housing attached to a horizontal rod that rotates 
at the constant rate v1 5 5 rad/s. For the position shown, deter-
mine (a) the angular acceleration of the disk, (b) the acceleration 
of point P on the rim of the disk if u 5 0, (c) the acceleration of 
point P on the rim of the disk if u 5 90°.

 15.195 A 3-in.-radius disk spins at the constant rate v2 5 4 rad/s about 
an axis held by a housing attached to a horizontal rod that rotates 
at the constant rate v1 5 5 rad/s. Knowing that u 5 30°, determine 
the acceleration of point P on the rim of the disk.

 15.196 A gun barrel of length OP 5 4 m is mounted on a turret as shown. 
To keep the gun aimed at a moving target the azimuth angle b is 
being increased at the rate db/dt 5 30°/s and the elevation angle 
g is being increased at the rate dg/dt 5 10°/s. For the position b 5 
90° and g 5 30°, determine (a) the angular velocity of the barrel, 
(b) the angular acceleration of the barrel, (c) the velocity and accel-
eration of point P.
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Fig. P15.194 and P15.195
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Fig. P15.197

 15.197 In the planetary gear system shown, gears A and B are rigidly con-
nected to each other and rotate as a unit about the inclined shaft. 
Gears C and D rotate with constant angular velocities of 30 rad/s 
and 20 rad/s, respectively (both counterclockwise when viewed from 
the right). Choosing the x axis to the right, the y axis upward, and 
the z axis pointing out of the plane of the figure, determine (a) the 
common angular velocity of gears A and B, (b) the angular velocity 
of shaft FH, which is rigidly attached to the inclined shaft.
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995Problems 15.198 A 30-mm-radius wheel is mounted on an axle OB of length 100 mm. 
The wheel rolls without sliding on the horizontal floor, and the 
axle is perpendicular to the plane of the wheel. Knowing that the 
system rotates about the y axis at a constant rate v1 5 2.4 rad/s, 
determine (a) the angular velocity of the wheel, (b) the angular 
acceleration of the wheel, (c) the acceleration of point C located 
at the highest point on the rim of the wheel.

 15.199 Several rods are brazed together to form the robotic guide arm 
shown which is attached to a ball-and-socket joint at O. Rod OA 
slides in a straight inclined slot while rod OB slides in a slot parallel 
to the z-axis. Knowing that at the instant shown vB 5 (180 mm/s)k, 
determine (a) the angular velocity of the guide arm, (b) the velocity 
of point A, (c) the velocity of point C.
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C

B

Fig. P15.198

 15.200 In Prob. 15.199 the speed of point B is known to be constant. For 
the position shown, determine (a) the angular acceleration of the 
guide arm, (b) the acceleration of point C.

 15.201 The 45° sector of a 10-in.-radius circular plate is attached to a fixed 
ball-and-socket joint at O. As edge OA moves on the horizontal 
surface, edge OB moves along the vertical wall. Knowing that 
point A moves at a constant speed of 60 in./s, determine for the 
position shown (a) the angular velocity of the plate, (b) the velocity 
of point B.

 15.202 Rod AB of length 275 mm is connected by ball-and-socket joints to 
collars A and B, which slide along the two rods shown. Knowing 
that collar B moves toward the origin O at a constant speed of 
180 mm/s, determine the velocity of collar A when c 5 175 mm.

 15.203 Rod AB of length 275 mm is connected by ball-and-socket joints 
to collars A and B, which slide along the two rods shown. Knowing 
that collar B moves toward the origin O at a constant speed of 180 
mm/s, determine the velocity of collar A when c 5 50 mm.
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996 Kinematics of Rigid Bodies  15.204 Rod AB is connected by ball-and-socket joints to collar A 
and to the 16-in.-diameter disk C. Knowing that disk C rotates 
counterclockwise at the constant rate v0 5 3 rad/s in the zx 
plane, determine the velocity of collar A for the position 
shown.

 15.205 Rod AB of length 29 in. is connected by ball-and-socket joints to 
the rotating crank BC and to the collar A. Crank BC is of length 
8 in. and rotates in the horizontal xy plane at the constant rate 
v0 5 10 rad/s. At the instant shown, when crank BC is parallel 
to the z axis, determine the velocity of collar A.
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Fig. P15.205
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Fig. P15.206 and P15.207

 15.206 Rod AB of length 300 mm is connected by ball-and-socket 
joints to collars A and B, which slide along the two rods shown. 
Knowing that collar B moves toward point D at a constant 
speed of 50 mm/s, determine the velocity of collar A when c 5 
80 mm.

 15.207 Rod AB of length 300 mm is connected by ball-and-socket 
joints to collars A and B, which slide along the two rods shown. 
Knowing that collar B moves toward point D at a constant 
speed of 50 mm/s, determine the velocity of collar A when c 5 
120 mm.
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Fig. P15.204

bee29400_ch15_0914-1023.indd Page 996  12/14/08  9:29:19 AM user-s172bee29400_ch15_0914-1023.indd Page 996  12/14/08  9:29:19 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



997Problems 15.208 Rod AB of length 25 in. is connected by ball-and-socket joints to 
collars A and B, which slide along the two rods shown. Knowing 
that collar B moves toward point E at a constant speed of 20 in./s, 
determine the velocity of collar A as collar B passes through 
point D.

 15.209 Rod AB of length 25 in. is connected by ball-and-socket joints to 
collars A and B, which slide along the two rods shown. Knowing 
that collar B moves toward point E at a constant speed of 20 in./s, 
determine the velocity of collar A as collar B passed through 
point C.

 15.210 Two shafts AC and EG, which lie in the vertical yz plane, are con-
nected by a universal joint at D. Shaft AC rotates with a constant 
angular velocity V1 as shown. At a time when the arm of the 
crosspiece attached to shaft AC is vertical, determine the angular 
velocity of shaft EG.
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 15.211 Solve Prob. 15.210, assuming that the arm of the crosspiece 
attached to the shaft AC is horizontal.

 15.212 In Prob. 15.203, the ball-and-socket joint between the rod and 
collar A is replaced by the clevis shown. Determine (a) the angular 
velocity of the rod, (b) the velocity of collar A.

Fig. P15.212

Fig. P15.213

 15.213 In Prob. 15.204, the ball-and-socket joint between the rod and 
collar A is replaced by the clevis shown. Determine (a) the angular 
velocity of the rod, (b) the velocity of collar A.
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 15.214 through 15.219 For the mechanism of the problem indicated, 
determine the acceleration of collar A.

 15.214 Mechanism of Prob. 15.202.
 15.215 Mechanism of Prob. 15.203.
 15.216 Mechanism of Prob. 15.204.
 15.217 Mechanism of Prob. 15.205.
 15.218 Mechanism of Prob. 15.206.
 15.219 Mechanism of Prob. 15.207.

998 Kinematics of Rigid Bodies

*15.14  THREE-DIMENSIONAL MOTION OF A 
PARTICLE RELATIVE TO A ROTATING FRAME. 
CORIOLIS ACCELERATION

We saw in Sec. 15.10 that given a vector function Q(t) and two 
frames of reference centered at O—a fixed frame OXYZ and a rotat-
ing frame Oxyz—the rates of change of Q with respect to the two 
frames satisfy the relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

We had assumed at the time that the frame Oxyz was constrained 
to rotate about a fixed axis OA. However, the derivation given in 
Sec. 15.10 remains valid when the frame Oxyz is constrained only to 
have a fixed point O. Under this more general assumption, the axis 
OA represents the instantaneous axis of rotation of the frame Oxyz 
(Sec. 15.12) and the vector V, its angular velocity at the instant 
considered (Fig. 15.36).
 Let us now consider the three-dimensional motion of a particle P 
relative to a rotating frame Oxyz constrained to have a fixed origin O. 
Let r be the position vector of P at a given instant and V be the angular 
velocity of the frame Oxyz with respect to the fixed frame OXYZ at 
the same instant (Fig. 15.37). The derivations given in Sec. 15.11 
for the two-dimensional motion of a particle can be readily extended 
to the three-dimensional case, and the absolute velocity vP of P (i.e., its 
velocity with respect to the fixed frame OXYZ) can be expressed as

 vP 5 V 3 r 1 (ṙ)Oxyz (15.45)

Denoting by ^ the rotating frame Oxyz, we write this relation in the 
alternative form

 vP 5 vP9 1 vP/^ (15.46)

 where vP 5 absolute velocity of particle P
 vP9 5  velocity of point P9 of moving frame ^ coinciding
 with P
 vP/^ 5 velocity of P relative to moving frame ^

 The absolute acceleration aP of P can be expressed as

 aP 5 V̇ 3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxyz 1 (r̈)Oxyz (15.47)
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999An alternative form is

 aP 5 aP9 1 aP/^ 1 ac (15.48)

 where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding

 with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 (ṙ)Oxyz 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration†

We note that the Coriolis acceleration is perpendicular to the vectors 
V and vP/^. However, since these vectors are usually not perpendicu-
lar to each other, the magnitude of ac is in general not equal to 
2VvP/^, as was the case for the plane motion of a particle. We further 
note that the Coriolis acceleration reduces to zero when the vectors 
V and vP/^ are parallel, or when either of them is zero.
 Rotating frames of reference are particularly useful in the study 
of the three-dimensional motion of rigid bodies. If a rigid body has 
a fixed point O, as was the case for the crane of Sample Prob. 15.11, 
we can use a frame Oxyz which is neither fixed nor rigidly attached 
to the rigid body. Denoting by V the angular velocity of the frame 
Oxyz, we then resolve the angular velocity V of the body into the 
components V and VB/^, where the second component represents 
the angular velocity of the body relative to the frame Oxyz (see 
Sample Prob. 15.14). An appropriate choice of the rotating frame 
often leads to a simpler analysis of the motion of the rigid body than 
would be possible with axes of fixed orientation. This is especially 
true in the case of the general three-dimensional motion of a rigid 
body, i.e., when the rigid body under consideration has no fixed point 
(see Sample Prob. 15.15).

*15.15 FRAME OF REFERENCE IN GENERAL MOTION
Consider a fixed frame of reference OXYZ and a frame Axyz which 
moves in a known, but arbitrary, fashion with respect to OXYZ (Fig. 
15.38). Let P be a particle moving in space. The position of P is 
defined at any instant by the vector rP in the fixed frame, and by the 
vector rP/A in the moving frame. Denoting by rA the position vector 
of A in the fixed frame, we have

 rP 5 rA 1 rP/A (15.49)

The absolute velocity vP of the particle is obtained by writing

 vP 5  ṙP 5 ṙA 1 ṙP/A (15.50)

where the derivatives are defined with respect to the fixed frame 
OXYZ. The first term in the right-hand member of (15.50) thus rep-
resents the velocity vA of the origin A of the moving axes. On the 
other hand, since the rate of change of a vector is the same with 

†It is important to note the difference between Eq. (15.48) and Eq. (15.21) of Sec. 15.8. 
See the footnote on page 974.
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15.15 Frame of Reference in General Motion
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respect to a fixed frame and with respect to a frame in translation 
(Sec. 11.10), the second term can be regarded as the velocity vP/A of 
P relative to the frame AX9Y9Z9 of the same orientation as OXYZ and 
the same origin as Axyz. We therefore have

 vP 5 vA 1 vP/A (15.51)

But the velocity vP/A of P relative to AX9Y9Z9 can be obtained from 
(15.45) by substituting rP/A for r in that equation. We write

 vP 5 vA 1 V 3 rP/A 1 (ṙP/A)Axyz (15.52)

where V is the angular velocity of the frame Axyz at the instant 
considered.
 The absolute acceleration aP of the particle is obtained by dif-
ferentiating (15.51) and writing

 aP 5  v̇P 5  v̇A 1  v̇P/A (15.53)

where the derivatives are defined with respect to either of the frames 
OXYZ or AX9Y9Z9. Thus, the first term in the right-hand member of 
(15.53) represents the acceleration aA of the origin A of the moving 
axes and the second term represents the acceleration aP/A of P rela-
tive to the frame AX9Y9Z9. This acceleration can be obtained from 
(15.47) by substituting rP/A for r. We therefore write

aP 5 aA 1  V̇ 3 rP/A 1 V 3 (V 3 rP/A)
 1 2V 3 ( ṙP/A)Axyz 1 ( r̈P/A)Axyz (15.54)

Formulas (15.52) and (15.54) make it possible to determine the 
velocity and acceleration of a given particle with respect to a fixed 
frame of reference, when the motion of the particle is known with 
respect to a moving frame. These formulas become more significant, 
and considerably easier to remember, if we note that the sum of the 
first two terms in (15.52) represents the velocity of the point P9 of 
the moving frame which coincides with P at the instant considered, 
and that the sum of the first three terms in (15.54) represents the 
acceleration of the same point. Thus, the relations (15.46) and (15.48) 
of the preceding section are still valid in the case of a reference 
frame in general motion, and we can write

 vP 5 vP9 1 vP/^ (15.46)
 aP 5 aP9 1 aP/^ 1 ac (15.48)

where the various vectors involved have been defined in Sec. 15.14.
 It should be noted that if the moving reference frame ^ (or 
Axyz) is in translation, the velocity and acceleration of the point P9 
of the frame which coincides with P become, respectively, equal to 
the velocity and acceleration of the origin A of the frame. On the 
other hand, since the frame maintains a fixed orientation, ac is zero, 
and the relations (15.46) and (15.48) reduce, respectively, to the rela-
tions (11.33) and (11.34) derived in Sec. 11.12.

1000 Kinematics of Rigid Bodies

Photo 15.9 The motion of air particles in a 
hurricane can be considered as motion relative 
to a frame of reference attached to the Earth and 
rotating with it.

bee29400_ch15_0914-1023.indd Page 1000  12/14/08  9:29:51 AM user-s172bee29400_ch15_0914-1023.indd Page 1000  12/14/08  9:29:51 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1001

SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the rotating 
frame Oxyz to the bent rod. Its angular velocity and angular acceleration 
relative to OXYZ are therefore V 5 (220 rad/s)j and  V̇ 5 (2200 rad/s2)j, 
respectively. The position vector of D is

r 5 (8 in.)(sin 30°i 1 cos 30°j) 5 (4 in.)i 1 (6.93 in.)j

a. Velocity vD. Denoting by D9 the point of the rod which coincides with 
D and by ^ the rotating frame Oxyz, we write from Eq. (15.46)

 vD 5 vD9 1 vD/^ (1)

where

 vD9 5 V 3 r 5 (220 rad/s)j 3 [(4 in.)i 1 (6.93 in.)j] 5 (80 in./s)k
 vD/^ 5 (50 in./s)(sin 30°i 1 cos 30°j) 5 (25 in./s)i 1 (43.3 in./s)j

Substituting the values obtained for vD9 and vD/^ into (1), we find

vD 5 (25 in./s)i 1 (43.3 in./s)j 1 (80 in./s)k ◀

b. Acceleration aD. From Eq. (15.48) we write

 aD 5 aD9 1 aD/^ 1 ac (2)

where

 aD9 5  V̇ 3 r 1 V 3 (V 3 r)
 5 (2200 rad/s2)j 3 [(4 in.)i 1 (6.93 in.)j] 2 (20 rad/s)j 3 (80 in./s)k
 5 1(800 in./s2)k 2 (1600 in./s2)i
 aD/^ 5 (600 in./s2)(sin 30°i 1 cos 30°j) 5 (300 in./s2)i 1 (520 in./s2)j
 ac 5 2V 3 vD/^
 5 2(220 rad/s)j 3 [(25 in./s)i 1 (43.3 in./s)j] 5 (1000 in./s2)k

Substituting the values obtained for aD9, aD/^, and ac into (2),

aD 5 2(1300 in./s2)i 1 (520 in./s2)j 1 (1800 in./s2)k ◀

SAMPLE PROBLEM 15.13

The bent rod OAB rotates about the vertical OB. At the instant considered, 
its angular velocity and angular acceleration are, respectively, 20 rad/s and 
200 rad/s2, both clockwise when viewed from the positive Y axis. The collar 
D moves along the rod, and at the instant considered, OD 5 8 in. The 
velocity and acceleration of the collar relative to the rod are, respectively, 
50 in./s and 600 in./s2, both upward. Determine (a) the velocity of the collar, 
(b) the acceleration of the collar.
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SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the rotating 
frame Oxyz to the cab. Its angular velocity with respect to the frame OXYZ 
is therefore V 5 V1 5 (0.30 rad/s)j. The angular velocity of the boom 
 relative to the cab and the rotating frame Oxyz (or ^, for short) is VB/^ 5 
V2 5 (0.50 rad/s)k.

a. Velocity vP. From Eq. (15.46) we write

 vP 5 vP9 1 vP/^ (1)

where vP9 is the velocity of the point P9 of the rotating frame which coincides 
with P:

vP9 5 V 3 r 5 (0.30 rad/s)j 3 [(10.39 m)i 1 (6 m)j] 5 2(3.12 m/s)k

and where vP/^ is the velocity of P relative to the rotating frame Oxyz. But 
the angular velocity of the boom relative to Oxyz was found to be VB/^ 5 
(0.50 rad/s)k. The velocity of its tip P relative to Oxyz is therefore

vP/^ 5 VB/^ 3 r 5 (0.50 rad/s)k 3 [(10.39 m)i 1 (6 m)j]
 5 2(3 m/s)i 1 (5.20 m/s)j

Substituting the values obtained for vP9 and vP/^ into (1), we find

vP 5 2(3 m/s)i 1 (5.20 m/s)j 2 (3.12 m/s)k ◀

b. Acceleration aP. From Eq. (15.48) we write

 aP 5 aP9 1 aP/^ 1 ac (2)

Since V and VB/^ are both constant, we have

 aP9 5 V 3 (V 3 r) 5 (0.30 rad/s)j 3 (23.12 m/s)k 5 2(0.94 m/s2)i
 aP/^ 5 VB/^ 3 (VB/^ 3 r)
 5 (0.50 rad/s)k 3 [2(3 m/s)i 1 (5.20 m/s)j]
 5 2(1.50 m/s2)j 2 (2.60 m/s2)i
 ac 5 2V 3 vP/^
 5 2(0.30 rad/s)j 3 [2(3 m/s)i 1 (5.20 m/s)j] 5 (1.80 m/s2)k

Substituting for aP9, aP/^, and ac into (2), we find

aP 5 2(3.54 m/s2)i 2 (1.50 m/s2)j 1 (1.80 m/s2)k ◀

SAMPLE PROBLEM 15.14

The crane shown rotates with a constant angular velocity V1 of 0.30 rad/s. 
Simultaneously, the boom is being raised with a constant angular velocity 
V2 of 0.50 rad/s relative to the cab. Knowing that the length of the boom 
OP is l 5 12 m, determine (a) the velocity of the tip of the boom, (b) the 
acceleration of the tip of the boom.
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SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the moving frame 
Axyz to the arm OA. Its angular velocity with respect to the frame OXYZ is 
therefore V 5 v1 j. The angular velocity of disk D relative to the moving frame 
Axyz (or ^, for short) is VD/^ 5 v2k. The position vector of P relative to O is 
r 5 Li + Rj, and its position vector relative to A is rP/A 5 Rj.

a. Velocity vP. Denoting by P9 the point of the moving frame which coin-
cides with P, we write from Eq. (15.46)

 vP 5 vP9 1 vP/^ (1)

where vP9 5 V 3 r 5 v1 j 3 (Li 1 Rj) 5 2v1Lk

 vP/^ 5 VD/^ 3 rP/A 5 v2k 3 Rj 5 2v2Ri

Substituting the values obtained for vP9 and vP/^ into (1), we find

vP 5 2v2Ri 2 v1Lk ◀

b. Acceleration aP. From Eq. (15.48) we write

 aP 5 aP9 1 aP/^ 1 ac (2)

Since V and VD/^ are both constant, we have

 aP9 5 V 3 (V 3 r) 5 v1 j 3 (2v1Lk) 5 2v2
1Li

 aP/^ 5 VD/^ 3 (VD/^ 3 rP/A) 5 v2k 3 (2v2Ri) 5 2v2
2Rj

 ac 5 2V 3 vP/^ 5 2v1 j 3 (2v2Ri) 5 2v1v2Rk

Substituting the values obtained into (2), we find

aP 5 2v2
1Li 2 v2

2Rj 1 2v1v2Rk ◀

c. Angular Velocity and Angular Acceleration of Disk.

 v 5 V 1 vD/^ V 5 v1j 1 v2k ◀

Using Eq. (15.31) with Q 5 V, we write

 A 5 (V̇)OXYZ 5 (V̇)Axyz 1 V 3 V
  5 0 1 v1 j 3 (v1 j 1 v2k)

A 5 v1v2i ◀

SAMPLE PROBLEM 15.15

Disk D, of radius R, is pinned to end A of the arm OA of length L located 
in the plane of the disk. The arm rotates about a vertical axis through O at 
the constant rate v1, and the disk rotates about A at the constant rate v2. 
Determine (a) the velocity of point P located directly above A, (b) the accel-
eration of P, (c) the angular velocity and angular acceleration of the disk.
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you concluded your study of the kinematics of rigid bodies by 
learning how to use an auxiliary frame of reference ^ to analyze the three-

dimensional motion of a rigid body. This auxiliary frame may be a rotating frame
with a fixed origin O, or it may be a frame in general motion.

A. Using a rotating frame of reference. As you approach a problem involving 
the use of a rotating frame ^ you should take the following steps.

1. Select the rotating frame ^ that you wish to use and draw the correspond-
ing coordinate axes x, y, and z from the fixed point O.

2. Determine the angular velocity V of the frame ^ with respect to a fixed 
frame OXYZ. In most cases, you will have selected a frame which is attached to 
some rotating element of the system; V will then be the angular velocity of that 
element.

3. Designate as P9 the point of the rotating frame ^ that coincides with the 
point P of interest at the instant you are considering. Determine the velocity vP9

and the acceleration aP9 of point P9. Since P9 is part of ^ and has the same posi-
tion vector r as P, you will find that

vP9 5 V 3 r  and  aP9 5 A 3 r 1 V 3 (V 3 r)

where A is the angular acceleration of ^. However, in many of the problems that 
you will encounter, the angular velocity of ^ is constant in both magnitude and 
direction, and A 5 0.

4. Determine the velocity and acceleration of point P with respect to the 
frame ^. As you are trying to determine vP/^ and aP/^ you will find it useful to 
visualize the motion of P on frame ^ when the frame is not rotating. If P is a 
point of a rigid body @ which has an angular velocity V@ and an angular accelera-
tion A@ relative to ^ [Sample Prob. 15.14], you will find that

vP/^ 5 V@ 3 r  and  aP/^ 5 A@ 3 r 1 V@ 3 (V@ 3 r)

In many of the problems that you will encounter, the angular velocity of body @ 
relative to frame ^ is constant in both magnitude and direction, and A@ 5 0.

5. Determine the Coriolis acceleration. Considering the angular velocity V of 
frame ^ and the velocity vP/^ of point P relative to that frame, which was com-
puted in the previous step, you write

ac 5 2V 3 vP/^
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6. The velocity and the acceleration of P with respect to the fixed frame 
OXYZ can now be obtained by adding the expressions you have determined:

 vP 5 vP9 1 vP/^ (15.46)
 aP 5 aP9 1 aP/^ 1 ac (15.48)

B. Using a frame of reference in general motion. The steps that you will take 
differ only slightly from those listed under A. They consist of the following:

1. Select the frame ^ that you wish to use and a reference point A in that 
frame, from which you will draw the coordinate axes, x, y, and z defining that 
frame. You will consider the motion of the frame as the sum of a translation with 
A and a rotation about A.

2. Determine the velocity vA of point A and the angular velocity V of the 
frame. In most cases, you will have selected a frame which is attached to some 
element of the system; V will then be the angular velocity of that element.

3. Designate as P9 the point of frame ^ that coincides with the point P of 
interest at the instant you are considering, and determine the velocity vP9 and 
the acceleration aP9 of that point. In some cases, this can be done by visualizing 
the motion of P if that point were prevented from moving with respect to ^ 
[Sample Prob. 15.15]. A more general approach is to recall that the motion of P9 
is the sum of a translation with the reference point A and a rotation about A. The 
velocity vP9 and the acceleration aP9 of P9, therefore, can be obtained by adding 
vA and aA, respectively, to the expressions found in paragraph A3 and replacing 
the position vector r by the vector rP/A drawn from A to P:

vP9 5 vA 1 V 3 rP/A    aP9 5 aA 1 A 3 rP/A 1 V 3 (V 3 rP/A)

Steps 4, 5, and 6 are the same as in Part A, except that the vector r should 
again be replaced by rP/A. Thus, Eqs. (15.46) and (15.48) can still be used to obtain 
the velocity and the acceleration of P with respect to the fixed frame of reference 
OXYZ.

bee29400_ch15_0914-1023.indd Page 1005  12/14/08  9:30:18 AM user-s172bee29400_ch15_0914-1023.indd Page 1005  12/14/08  9:30:18 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



PROBLEMS

1006

15.220 Rod AB is welded to the 12-in.-radius plate which rotates at the 
constant rate v1 5 6 rad/s. Knowing that collar D moves toward 
end B of the rod at a constant speed u 5 78 in./s, determine, for 
the position shown, (a) the velocity of D, (b) the acceleration of D.
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Fig. P15.222

 15.221 The bent rod shown rotates at the constant rate v1 5 3 rad/s. 
Knowing that collar C moves toward point D at a constant relative 
speed u 5 34 in./s, determine, for the position shown, the velocity 
and acceleration of C if (a) x 5 5 in., (b) x 5 15 in.

 15.222 The circular plate shown rotates about its vertical diameter at the 
constant rate v1 5 10 rad/s. Knowing that in the position shown 
the disk lies in the XY plane and point D of strap CD moves 
upward at a constant relative speed u 5 1.5 m/s, determine (a) the 
velocity of D, (b) the acceleration of D.
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1007 15.223 Solve Prob. 15.222, assuming that, at the instant shown, the angu-
lar velocity V1 of the plate is 10 rad/s and is decreasing at the rate 
of 25 rad/s2, while the relative speed u of point D of strap CD 
is 1.5 m/s and is decreasing at the rate 3 m/s2.

 15.224 A square plate of side 18 in. is hinged at A and B to a clevis. The 
plate rotates at the constant rate v2 5 4 rad/s with respect to the 
clevis, which itself rotates at the constant rate v1 5 3 rad/s about 
the Y axis. For the position shown, determine (a) the velocity of 
point C, (b) the acceleration of point C.

w1

w2
A

C

B

D

X

Z

O

9 in.

9 in.
18 in.

20�

Y
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Fig. P15.226, P15.227, and P15.228

 15.225 A square plate of side 18 in. is hinged at A and B to a clevis. The 
plate rotates at the constant rate v2 5 4 rad/s with respect to the 
clevis, which itself rotates at the constant rate v1 5 3 rad/s about 
the Y axis. For the position shown, determine (a) the velocity of 
corner D, (b) the acceleration of corner D.

 15.226 through 15.228 The rectangular plate shown rotates at the 
constant rate v2 5 12 rad/s with respect to arm AE, which itself 
rotates at the constant rate v1 5 9 rad/s about the Z axis. For the 
position shown, determine the velocity and acceleration of the 
point of the plate indicated.
 15.226 Corner B.
 15.227 Point D.
 15.228 Corner C.

 15.229 Solve Prob. 15.228, assuming that at the instant shown the angular 
velocity V2 of the plate with respect to arm AE is 12 rad/s and is 
decreasing at the rate of 60 rad/s2, while the angular velocity V1 
of the arm about the Z axis is 9 rad/s and is decreasing at the rate 
of 45 rad/s2.

 15.230 Solve Prob. 15.221, assuming that at the instant shown the angular 
velocity V1 of the rod is 3 rad/s and is increasing at the rate of 12 
rad/s2, while the relative speed u of the collar is 34 in./s and is 
decreasing at the rate of 85 in./s2.

 15.231 Using the method of Sec. 15.14, solve Prob. 15.191.

 15.232 Using the method of Sec. 15.14, solve Prob. 15.195.

Problems
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 15.233 Using the method of Sec. 15.14, solve Prob. 15.192.

 15.234 The body AB and rod BC of the robotic component shown rotate 
at the constant rate v1 5 0.60 rad/s about the Y axis. Simultane-
ously a wire-and-pulley control causes arm CD to rotate about C 
at the constant rate v 5 db/dt 5 0.45 rad/s. Knowing b 5 120°, 
determine (a) the angular acceleration of arm CD, (b) the velocity 
of D, (c) the acceleration of D.
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Fig. P15.235 and P15.236

 15.236 A disk of radius 120 mm rotates at the constant rate v2 5 5 rad/s 
with respect to the arm AB, which itself rotates at the constant 
rate v1 5 3 rad/s. For the position shown, determine the velocity 
and acceleration of point D.

 15.237 The crane shown rotates at the constant rate v1 5 0.25 rad/s; simul-
taneously, the telescoping boom is being lowered at the constant 
rate v2 5 0.40 rad/s. Knowing that at the instant shown the length 
of the boom is 20 ft and is increasing at the constant rate u 5 
1.5 ft/s, determine the velocity and acceleration of point B.

 15.235 A disk of radius 120 mm rotates at the constant rate v2 5 5 rad/s 
with respect to the arm AB, which itself rotates at the constant 
rate v1 5 3 rad/s. For the position shown, determine the velocity 
and acceleration of point C.

1008 Kinematics of Rigid Bodies
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1009 15.238 The arm AB of length 5 m is used to provide an elevated platform 
for construction workers. In the position shown, arm AB is being 
raised at the constant rate du/dt 5 0.25 rad/s; simultaneously, the 
unit is being rotated about the Y axis at the constant rate v1 5 
0.15 rad/s. Knowing that u 5 20°, determine the velocity and 
acceleration of point B.
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Fig. P15.238

 15.239 Solve Prob. 15.238, assuming that u 5 40°.

 15.240 A disk of 180-mm radius rotates at the constant rate v2 5 12 rad/s 
with respect to arm CD, which itself rotates at the constant rate 
v1 5 8 rad/s about the Y axis. Determine at the instant shown the 
velocity and acceleration of point A on the rim of the disk.

A

B
D

C

XZ

Y 180 mm

360 mm

150 mm

ww1

ww2

Fig. P15.240 and P15.241

 15.241 A disk of 180-mm radius rotates at the constant rate v2 5 12 rad/s 
with respect to arm CD, which itself rotates at the constant 
rate v1 5 8 rad/s about the Y axis. Determine at the instant 
shown the velocity and acceleration of point B on the rim of 
the disk.

Problems
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 15.242 and 15.243 In the position shown the thin rod moves at a 
constant speed u 5 3 in./s out of the tube BC. At the same time 
tube BC rotates at the constant rate v2 5 1.5 rad/s with respect 
to arm CD. Knowing that the entire assembly rotates about the X 
axis at the constant rate v1 5 1.2 rad/s, determine the velocity and 
acceleration of end A of the rod.
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 15.244 Two disks, each of 130-mm radius, are welded to the 500-mm rod 
CD. The rod-and-disks unit rotates at the constant rate v2 5 3 rad/s 
with respect to arm AB. Knowing that at the instant shown v1 5 
4 rad/s, determine the velocity and acceleration of (a) point E, 
(b) point F.

 15.245 In Prob. 15.244, determine the velocity and acceleration of
(a) point G, (b) point H.

 15.246 The vertical plate shown is welded to arm EFG, and the entire 
unit rotates at the constant rate v1 5 1.6 rad/s about the Y axis. 
At the same time, a continuous link belt moves around the perim-
eter of the plate at a constant speed u 5 4.5 in./s. For the position 
shown, determine the acceleration of the link of the belt located 
(a) at point A, (b) at point B.

 15.247 The vertical plate shown is welded to arm EFG, and the entire 
unit rotates at the constant rate v1 5 1.6 rad/s about the Y axis. 
At the same time, a continuous link belt moves around the perim-
eter of the plate at a constant speed u 5 4.5 in./s. For the position 
shown, determine the acceleration of the link of the belt located 
(a) at point C, (b) at point D.

1010 Kinematics of Rigid Bodies
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1011

REVIEW AND SUMMARY

This chapter was devoted to the study of the kinematics of rigid 
bodies.

We first considered the translation of a rigid body [Sec. 15.2] and 
observed that in such a motion, all points of the body have the same 
velocity and the same acceleration at any given instant.

We next considered the rotation of a rigid body about a fixed axis 
[Sec. 15.3]. The position of the body is defined by the angle u that 
the line BP, drawn from the axis of rotation to a point P of the body, 
forms with a fixed plane (Fig. 15.39). We found that the magnitude 
of the velocity of P is

v 5
ds
dt

5 ru
.
 sin f

 
(15.4)

where u̇ is the time derivative of u. We then expressed the velocity 
of P as

v 5
dr
dt

5 V 3 r
 

(15.5)

where the vector

V 5 vk 5 u̇k (15.6)

is directed along the fixed axis of rotation and represents the angular 
velocity of the body.
 Denoting by A the derivative dV/dt of the angular velocity, we 
expressed the acceleration of P as

a 5 A 3 r 1 V 3 (V 3 r) (15.8)

Differentiating (15.6), and recalling that k is constant in magnitude 
and direction, we found that

A 5 ak 5 v. k 5  ük (15.9)

The vector A represents the angular acceleration of the body and is 
directed along the fixed axis of rotation.

Rigid body in translation

Rigid body in rotation 
about a fixed axis
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Fig. 15.39
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Next we considered the motion of a representative slab located in a 
plane perpendicular to the axis of rotation of the body (Fig. 15.40). 
Since the angular velocity is perpendicular to the slab, the velocity of 
a point P of the slab was expressed as

 v 5 vk 3 r (15.10)

where v is contained in the plane of the slab. Substituting V 5 vk 
and A 5 ak into (15.8), we found that the acceleration of P could 
be resolved into tangential and normal components (Fig. 15.41) 
respectively equal to

 at 5 ak 3 r at 5 ra
 an 5 2v2r an 5 rv2 (15.119)

Recalling Eqs. (15.6) and (15.9), we obtained the following expres-
sions for the angular velocity and the angular acceleration of the slab 
[Sec. 15.4]:

 
v 5

du
dt  

(15.12)

 
a 5

dv
dt

5
d2u

dt2  
(15.13)

or

 
a 5 v  

dv
du  

(15.14)

We noted that these expressions are similar to those obtained in 
Chap. 11 for the rectilinear motion of a particle.

 Two particular cases of rotation are frequently encountered: 
uniform rotation and uniformly accelerated rotation. Problems 
involving either of these motions can be solved by using equations 
similar to those used in Secs. 11.4 and 11.5 for the uniform rectilin-
ear motion and the uniformly accelerated rectilinear motion of a 
particle, but where x, v, and a are replaced by u, v, and a, respec-
tively [Sample Prob. 15.1].

Rotation of a representative slab

Tangential and normal components

Angular velocity and angular 
acceleration of rotating slab

x

y

O

r
P

wk

v = wk × r

Fig. 15.40

x

y

O
ww = wk

aa = ak

a t = a k × r

a n = – w2r

P

Fig. 15.41
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1013

The most general plane motion of a rigid slab can be considered as 
the sum of a translation and a rotation [Sec. 15.5]. For example, the 
slab shown in Fig. 15.42 can be assumed to translate with point A, 
while simultaneously rotating about A. It follows [Sec. 15.6] that the 
velocity of any point B of the slab can be expressed as

 vB 5 vA 1 vB/A (15.17)

where vA is the velocity of A and vB/A the relative velocity of B with 
respect to A or, more precisely, with respect to axes x9y9 translating 
with A. Denoting by rB/A the position vector of B relative to A, we 
found that

 vB/A 5 vk 3 rB/A  vB/A 5 rv (15.18)

The fundamental equation (15.17) relating the absolute velocities of 
points A and B and the relative velocity of B with respect to A was 
expressed in the form of a vector diagram and used to solve problems 
involving the motion of various types of mechanisms [Sample Probs. 
15.2 and 15.3].

Another approach to the solution of problems involving the velocities 
of the points of a rigid slab in plane motion was presented in Sec. 15.7 
and used in Sample Probs. 15.4 and 15.5. It is based on the determina-
tion of the instantaneous center of rotation C of the slab (Fig. 15.43).

Velocities in plane motion

Instantaneous center of rotation

= +

Plane motion = Translation with A + Rotation about A

A

B

A

B B

vA

vA

vA

vB

vA
vB

x'

y'

wk

rB/A

vB/A

vB/A

vB = vA + vB/A

A
(fixed)

Fig. 15.42
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C C

A

(a) (b)

A

B B

vAvA

vB
vB

Fig. 15.43
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The fact that any plane motion of a rigid slab can be considered as 
the sum of a translation of the slab with a reference point A and a 
rotation about A was used in Sec. 15.8 to relate the absolute accel-
erations of any two points A and B of the slab and the relative accel-
eration of B with respect to A. We had

 aB 5 aA 1 aB/A (15.21)

where aB/A consisted of a normal component (aB/A)n of magnitude rv2 
directed toward A, and a tangential component (aB/A)t of magnitude 
ra perpendicular to the line AB (Fig. 15.44). The fundamental rela-
tion (15.21) was expressed in terms of vector diagrams or vector 
equations and used to determine the accelerations of given points of 
various mechanisms [Sample Probs. 15.6 through 15.8]. It should be 
noted that the instantaneous center of rotation C considered in 
Sec. 15.7 cannot be used for the determination of accelerations, since 
point C, in general, does not have zero acceleration.

In the case of certain mechanisms, it is possible to express the coor-
dinates x and y of all significant points of the mechanism by means 
of simple analytic expressions containing a single parameter. The 
components of the absolute velocity and acceleration of a given point 
are then obtained by differentiating twice with respect to the time t 
the coordinates x and y of that point [Sec. 15.9].

While the rate of change of a vector is the same with respect to a 
fixed frame of reference and with respect to a frame in translation, 
the rate of change of a vector with respect to a rotating frame is 
different. Therefore, in order to study the motion of a particle rela-
tive to a rotating frame we first had to compare the rates of change 
of a general vector Q with respect to a fixed frame OXYZ and with 
respect to a frame Oxyz rotating with an angular velocity V [Sec. 
15.10] (Fig. 15.45). We obtained the fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

and we concluded that the rate of change of the vector Q with respect 
to the fixed frame OXYZ is made of two parts: The first part represents 
the rate of change of Q with respect to the rotating frame Oxyz; the 
second part, V 3 Q, is induced by the rotation of the frame Oxyz.

Accelerations in plane motion

Coordinates expressed in terms 
of a parameter

Rate of change of a vector with 
respect to a rotating frame

Plane motion = Translation with A + Rotation about A

A (fixed)A

B
aB

aB/A

aB/A
(aB/A)n

(aB/A)n

(aB/A)t (aB/A)t

aA

A

B
B

x'

y'

aA

aB

aA

aA

ak
wk

rB/A= +

Fig. 15.44
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O

x

z

y

Z

X

Y

Q

j
i

k

ΩΩ

Fig. 15.45
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1015The next part of the chapter [Sec. 15.11] was devoted to the two-
dimensional kinematic analysis of a particle P moving with respect 
to a frame ^ rotating with an angular velocity V about a fixed axis 
(Fig. 15.46). We found that the absolute velocity of P could be 
expressed as

 vP 5 vP9 1 vP/^ (15.33)

where vP 5 absolute velocity of particle P
 vP9 5  velocity of point P9 of moving frame ^ coinciding 

 with P
 vP/^ 5 velocity of P relative to moving frame ^

We noted that the same expression for vP is obtained if the frame is 
in translation rather than in rotation. However, when the frame is in 
rotation, the expression for the acceleration of P is found to contain 
an additional term ac called the complementary acceleration or Cori-
olis acceleration. We wrote

 aP 5 aP9 1 aP/^ 1 ac (15.36)

where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding

 with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 (ṙ)Oxy 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration

Since V and vP/^ are perpendicular to each other in the case of plane 
motion, the Coriolis acceleration was found to have a magnitude ac 5 
2VvP/^ and to point in the direction obtained by rotating the vector 
vP/^ through 90° in the sense of rotation of the moving frame. For-
mulas (15.33) and (15.36) can be used to analyze the motion of 
mechanisms which contain parts sliding on each other [Sample 
Probs. 15.9 and 15.10].

The last part of the chapter was devoted to the study of the kine-
matics of rigid bodies in three dimensions. We first considered the 
motion of a rigid body with a fixed point [Sec. 15.12]. After proving 
that the most general displacement of a rigid body with a fixed 
point O is equivalent to a rotation of the body about an axis 
through O, we were able to define the angular velocity V and the 
instantaneous axis of rotation of the body at a given instant. The 
velocity of a point P of the body (Fig. 15.47) could again be 
expressed as

 
v 5

dr
dt

5 V 3 r
 

(15.37)

Differentiating this expression, we also wrote

 a 5 A 3 r 1 V 3 (V 3 r) (15.38)

However, since the direction of V changes from one instant to the 
next, the angular acceleration A is, in general, not directed along the 
instantaneous axis of rotation [Sample Prob. 15.11].

Plane motion of a particle relative 
to a rotating frame

Motion of a rigid body 
with a fixed point

Review and Summary

x

y

X

Y

r

ΩΩ

P

O

P'

vP' = Ω × r
vP/    = (r)O xy

.

Fig. 15.46

O

P

r

ww

aa

Fig. 15.47
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It was shown in Sec. 15.13 that the most general motion of a rigid 
body in space is equivalent, at any given instant, to the sum of a 
translation and a rotation. Considering two particles A and B of the 
body, we found that

 vB 5 vA 1 vB/A (15.42)

where vB/A is the velocity of B relative to a frame AX9Y9Z9 attached 
to A and of fixed orientation (Fig. 15.48). Denoting by rB/A the posi-
tion vector of B relative to A, we wrote

 vB 5 vA 1 V 3 rB/A (15.43)

where V is the angular velocity of the body at the instant considered 
[Sample Prob. 15.12]. The acceleration of B was obtained by a simi-
lar reasoning. We first wrote

aB 5 aA 1 aB/A

and, recalling Eq. (15.38),

 aB 5 aA 1 A 3 rB/A 1 V 3 (V 3 rB/A) (15.44)

In the final two sections of the chapter we considered the three-
dimensional motion of a particle P relative to a frame Oxyz rotating 
with an angular velocity V with respect to a fixed frame OXYZ (Fig. 
15.49). In Sec. 15.14 we expressed the absolute velocity vP of P as

 vP 5 vP9 1 vP/^ (15.46)

where vP 5 absolute velocity of particle P
 vP9 5  velocity of point P9 of moving frame ^ coinciding

 with P
 vP/^ 5 velocity of P relative to moving frame ^

General motion in space

Three-dimensional motion 
of a particle relative 
to a rotating frame

X
O

A
B

w

aa

Y

Z

X'

Y'

Z'

rA

rB/A

Fig. 15.48

Fig. 15.49
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1017 The absolute acceleration aP of P was then expressed as

 aP 5 aP9 1 aP/^ 1 ac (15.48)

where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding

 with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 (ṙ)Oxyz 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration

It was noted that the magnitude ac of the Coriolis acceleration is not 
equal to 2VvP/^ [Sample Prob. 15.13] except in the special case when 
V and vP/^ are perpendicular to each other.

We also observed [Sec. 15.15] that Eqs. (15.46) and (15.48) remain 
valid when the frame Axyz moves in a known, but arbitrary, fashion 
with respect to the fixed frame OXYZ (Fig. 15.50), provided that the 
motion of A is included in the terms vP9 and aP9 representing the 
absolute velocity and acceleration of the coinciding point P9.

Frame of reference in general motion

X

Y

Z

A

y

x

Z'

P

X'

Y'

z
O

rA

rP/A

rP

Fig. 15.50

 Rotating frames of reference are particularly useful in the 
study of the three-dimensional motion of rigid bodies. Indeed, 
there are many cases where an appropriate choice of the rotating 
frame will lead to a simpler analysis of the motion of the rigid body 
than would be possible with axes of fixed orientation [Sample Probs. 
15.14 and 15.15].

Review and Summary
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REVIEW PROBLEMS

 15.248 Knowing that at the instant shown crank BC has a constant angu-
lar velocity of 45 rpm clockwise, determine the acceleration (a) of 
point A, (b) of point D.

 15.249 The rotor of an electric motor has a speed of 1800 rpm when the 
power is cut off. The rotor is then observed to come to rest after 
executing 1550 revolutions. Assuming uniformly accelerated 
motion, determine (a) the angular acceleration of the rotor, (b) the 
time required for the rotor to come to rest.

 15.250 A disk of 0.15-m radius rotates at the constant rate v2 with respect 
to plate BC, which itself rotates at the constant rate v1 about 
the y axis. Knowing that v1 5 v2 5 3 rad/s, determine, for the 
position shown, the velocity and acceleration (a) of point D, (b) of 
point F.

D

8 in.

8 in.

4 in.

B

A

C

Fig. P15.248

0.15 m

ω2
D F

ω1B C

y

z

x

0.15 m

A

Fig. P15.250

 15.251 The fan of an automobile engine rotates about a horizontal axis 
parallel to the direction of motion of the automobile. When viewed 
from the rear of the engine, the fan is observed to rotate clockwise 
at the rate of 2500 rpm. Knowing that the automobile is turning 
right along a path of radius 12 m at a constant speed of 12 km/h, 
determine the angular acceleration of the fan at the instant the 
automobile is moving due north.
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1019 15.252 A drum of radius 4.5 in. is mounted on a cylinder of radius 7.5 in. 
A cord is wound around the drum, and its extremity E is pulled 
to the right with a constant velocity of 15 in./s, causing the cylinder 
to roll without sliding on plate F. Knowing that plate F is station-
ary, determine (a) the velocity of the center of the cylinder, (b) the 
acceleration of point D of the cylinder.

15.253 Solve Prob. 15.252, assuming that plate F is moving to the right 
with a constant velocity of 9 in./s.

 15.254 Water flows through a curved pipe AB that rotates with a constant 
clockwise angular velocity of 90 rpm. If the velocity of the water 
relative to the pipe is 8 m/s, determine the total acceleration of a 
particle of water at point P.

E

A

B

D
F

4.5 in.7.5 in.

Fig. P15.252

B

P

A

0.5 m
ww

Fig. P15.254

y

q

AB

C

E

D

x

z

4 in.

16 in.

4 in.

w1

Fig. P15.255

15.255 Rod BC of length 24 in. is connected by ball-and-socket joints to a 
rotating arm AB and to a collar C that slides on the fixed rod DE.
Knowing that the length of arm AB is 4 in. and that it rotates at the 
constant rate v1 5 10 rad/s, determine the velocity of collar C when 
u 5 0.

Review Problems

 15.256 Solve Prob. 15.255, assuming that u 5 90°.
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 15.257 Crank AB has a constant angular velocity of 1.5 rad/s counterclock-
wise. For the position shown, determine (a) the angular velocity 
of rod BD, (b) the velocity of collar D.

A

B

w1

y

x

z

b

Fig. P15.259

A

B D

40 mm

160 mm

25�

Fig. P15.257 and P15.258

 15.258 Crank AB has a constant angular velocity of 1.5 rad/s counterclock-
wise. For the position shown, determine (a) the angular accelera-
tion of rod BD, (b) the acceleration of collar D.

 15.259 Rod AB of length 125 mm is attached to a vertical rod that rotates 
about the y axis at the constant rate v1 5 5 rad/s. Knowing that 
the angle formed by rod AB and the vertical is increasing at the 
constant rate db/dt 5 3 rad/s, determine the velocity and accelera-
tion of end B of the rod when b 5 30°.
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1021

COMPUTER PROBLEMS

 15.C1 The disk shown has a constant angular velocity of 500 rpm coun-
terclockwise. Knowing that rod BD is 250 mm long, use computational 
 software to determine and plot for values of u from 0 to 360° and using 30° 
increments, the velocity of collar D and the angular velocity of rod BD.
Determine the two values of u for which the speed of collar D is zero.

Fig. P15.C1

50 mm

150 mm

A

B

D

q

 15.C2 Two rotating rods are connected by a slider block P as shown. 
Knowing that rod BP rotates with a constant angular velocity of 6 rad/s 
counterclockwise, use computational software to determine and plot for val-
ues of u from 0 to 180° the angular velocity and angular acceleration of rod 
AE. Determine the value of u for which the angular acceleration aAE of rod 
AE is maximum and the corresponding value of aAE.

A

P

B

E
15 in.

30 in.

q

Fig. P15.C2
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 15.C3 In the engine system shown, l 5 160 mm and b 5 60 mm. Know-
ing that crank AB rotates with a constant angular velocity of 1000 rpm 
clockwise, use computational software to determine and plot for values of 
u from 0 to 180° and using 10° increments, (a) the angular velocity and 
angular acceleration of rod BD, (b) the velocity and acceleration of the 
 piston P.

 15.C4 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity of 180 mm/s. Use computational software to 
determine and plot for values of u from 20° to 90° and using 5° increments, 
the velocity of point B and the angular acceleration of the rod. Determine 
the value of u for which the angular acceleration a of the rod is maximum 
and the corresponding value of a.

Fig. P15.C3

P

D

A
B

l

q

b

 15.C5 Rod BC of length 24 in. is connected by ball-and-socket joints to 
the rotating arm AB and to collar C that slides on the fixed rod DE. Arm 
AB of length 4 in. rotates in the XY plane with a constant angular velocity 
of 10 rad/s. Use computational software to determine and plot for values of 
u from 0 to 360° the velocity of collar C. Determine the two values of u for 
which the velocity of collar C is zero.
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B

q

400 mm

140 mm

Fig. P15.C4
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z
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Fig. P15.C5
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1023 15.C6 Rod AB of length 25 in. is connected by ball-and-socket joints to 
collars A and B, which slide along the two rods shown. Collar B moves 
toward support E at a constant speed of 20 in./s. Denoting by d the dis-
tance from point C to collar B, use computational software to determine 
and plot the velocity of collar A for values of d from 0 to 15 in.

Fig. P15.C6
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B

O

D

E

A

y

z

x

9 in.

12 in. 20 in.

20 in.

Computer Problems

bee29400_ch15_0914-1023.indd Page 1023  12/14/08  9:32:50 AM user-s172bee29400_ch15_0914-1023.indd Page 1023  12/14/08  9:32:50 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



Three-bladed wind turbines, similar to 

the ones shown in this picture of a wind 

farm, are currently the most common 

design. In this chapter you will learn to 

analyze the motion of a rigid body by 

considering the motion of its mass center, 

the motion relative to its mass center, 

and the external forces acting on it.
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Plane Motion of Rigid Bodies: 
Forces and Accelerations
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1026

16.1 INTRODUCTION
In this chapter and in Chaps. 17 and 18, you will study the kinetics 
of rigid bodies, i.e., the relations existing between the forces acting 
on a rigid body, the shape and mass of the body, and the motion 
produced. In Chaps. 12 and 13, you studied similar relations, assum-
ing then that the body could be considered as a particle, i.e., that its 
mass could be concentrated in one point and that all forces acted at 
that point. The shape of the body, as well as the exact location of the 
points of application of the forces, will now be taken into account. 
You will also be concerned not only with the motion of the body as 
a whole but also with the motion of the body about its mass center.
 Our approach will be to consider rigid bodies as made of large 
numbers of particles and to use the results obtained in Chap. 14 for 
the motion of systems of particles. Specifically, two equations from 
Chap. 14 will be used: Eq. (14.16), oF 5 ma, which relates the 
resultant of the external forces and the acceleration of the mass cen-
ter G of the system of particles, and Eq. (14.23), oMG 5 H

.
G, which 

relates the moment resultant of the external forces and the angular 
momentum of the system of particles about G.
 Except for Sec. 16.2, which applies to the most general case of 
the motion of a rigid body, the results derived in this chapter will be 
limited in two ways: (1) They will be restricted to the plane motion 
of rigid bodies, i.e., to a motion in which each particle of the body 
remains at a constant distance from a fixed reference plane. (2) The 
rigid bodies considered will consist only of plane slabs and of bodies 
which are symmetrical with respect to the reference plane.† The 
study of the plane motion of nonsymmetrical three-dimensional bodies 
and, more generally, the motion of rigid bodies in three-dimensional 
space will be postponed until Chap. 18.
 In Sec. 16.3, we define the angular momentum of a rigid body in 
plane motion and show that the rate of change of the angular momen-
tum H

.
G about the mass center is equal to the product IA of the 

centroidal mass moment of inertia I and the angular acceleration A of 
the body. D’Alembert’s principle, introduced in Sec. 16.4, is used to 
prove that the external forces acting on a rigid body are equivalent to a 
vector ma attached at the mass center and a couple of moment IA.
 In Sec. 16.5, we derive the principle of transmissibility using 
only the parallelogram law and Newton’s laws of motion, allowing us 
to remove this principle from the list of axioms (Sec. 1.2) required 
for the study of the statics and dynamics of rigid bodies.
 Free-body-diagram equations are introduced in Sec. 16.6 and 
will be used in the solution of all problems involving the plane motion 
of rigid bodies.
 After considering the plane motion of connected rigid bodies 
in Sec. 16.7, you will be prepared to solve a variety of problems involv-
ing the translation, centroidal rotation, and unconstrained motion of 
rigid bodies. In Sec. 16.8 and in the remaining part of the chapter, 
the solution of problems involving noncentroidal rotation, rolling 
motion, and other partially constrained plane motions of rigid bodies 
will be considered.

†Or, more generally, bodies which have a principal centroidal axis of inertia perpendicular 
to the reference plane.

Chapter 16 Plane Motion of Rigid 
Bodies: Forces and Accelerations

 16.1 Introduction
 16.2 Equations of Motion for a 

Rigid Body
 16.3 Angular Momentum of a Rigid 

Body in Plane Motion
 16.4 Plane Motion of a Rigid Body. 

D’Alembert’s Principle
 16.5 A Remark on the Axioms of the 

Mechanics of Rigid Bodies
 16.6 Solution of Problems Involving 

the Motion of a Rigid Body
 16.7 Systems of Rigid Bodies
 16.8 Constrained Plane Motion
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102716.2 EQUATIONS OF MOTION FOR A RIGID BODY
Consider a rigid body acted upon by several external forces F1, F2, 
F3, . . . (Fig. 16.1). We can assume that the body is made of a large 
number n of particles of mass ¢mi (i 5 1, 2, . . . , n) and apply the 
results obtained in Chap. 14 for a system of particles (Fig. 16.2). 
Considering first the motion of the mass center G of the body with 
respect to the newtonian frame of reference Oxyz, we recall Eq. 
(14.16) and write

 oF 5 ma (16.1)

where m is the mass of the body and a is the acceleration of the mass 
center G. Turning now to the motion of the body relative to the cen-
troidal frame of reference Gx9y9z9, we recall Eq. (14.23) and write

 oMG 5 H
.

G (16.2)

where H
.

G represents the rate of change of HG, the angular momen-
tum about G of the system of particles forming the rigid body. In 
the following, HG will simply be referred to as the angular momen-
tum of the rigid body about its mass center G. Together Eqs. (16.1) 
and (16.2) express that the system of the external forces is equipollent 
to the system consisting of the vector ma attached at G and the couple 
of moment H

.
G (Fig. 16.3).†

16.2 Equations of Motion for a Rigid Body

†Since the systems involved act on a rigid body, we could conclude at this point, by 
referring to Sec. 3.19, that the two systems are equivalent as well as equipollent and 
use red rather than blue equals signs in Fig. 16.3. However, by postponing this 
conclusion, we will be able to arrive at it independently (Secs. 16.4 and 18.5), thereby 
eliminating the necessity of including the principle of transmissibility among the 
axioms of mechanics (Sec. 16.5).

O
x

y

z

F1

F2

F3

F4

G

Fig. 16.1

O

G

x

y

z

x'

y'

z'

Δmi

r'i

Fig. 16.2

F1

F2

F3

F4

HG
.

⎯am

=G G

Fig. 16.3

 Equations (16.1) and (16.2) apply in the most general case of the 
motion of a rigid body. In the rest of this chapter, however, our analysis 
will be limited to the plane motion of rigid bodies, i.e., to a motion in 
which each particle remains at a constant distance from a fixed refer-
ence plane, and it will be assumed that the rigid bodies considered 
consist only of plane slabs and of bodies which are symmetrical with 
respect to the reference plane. Further study of the plane motion of 
nonsymmetrical three-dimensional bodies and of the motion of rigid 
bodies in three-dimensional space will be postponed until Chap. 18.

Photo 16.1 The system of external forces 
acting on the man and wakeboard includes the 
weights, the tension in the tow rope, and the 
forces exerted by the water and the air.
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1028 Plane Motion of Rigid Bodies: 
Forces and Accelerations 16.3  ANGULAR MOMENTUM OF A RIGID BODY 

IN PLANE MOTION
Consider a rigid slab in plane motion. Assuming that the slab is made 
of a large number n of particles Pi of mass ¢mi and recalling 
Eq. (14.24) of Sec. 14.5, we note that the angular momentum HG of 
the slab about its mass center G can be computed by taking the 
moments about G of the momenta of the particles of the slab in their 
motion with respect to either of the frames Oxy or Gx9y9 (Fig. 16.4). 
Choosing the latter course, we write

 
HG 5 On

i51
(r¿i 3 v ¿i  ¢mi)  

(16.3)

where r9i and v9i ¢mi denote, respectively, the position vector and the 
linear momentum of the particle Pi relative to the centroidal frame 
of reference Gx9y9. But since the particle belongs to the slab, we 
have v9i 5 V 3 r9i, where V is the angular velocity of the slab at the 
instant considered. We write

HG 5 On

i51
[r¿i 3 (V 3 r¿i) ¢mi]

Referring to Fig. 16.4, we easily verify that the expression obtained 
represents a vector of the same direction as V (that is, perpendicular 
to the slab) and of magnitude equal to vor9i

2 Dmi. Recalling that the 
sum or9i

2 Dmi represents the moment of inertia I of the slab about 
a centroidal axis perpendicular to the slab, we conclude that the 
angular momentum HG of the slab about its mass center is

 HG 5 IV (16.4)

 Differentiating both members of Eq. (16.4) we obtain

 H
.

G 5 IV̇ 5 IA (16.5)

Thus the rate of change of the angular momentum of the slab is 
represented by a vector of the same direction as A (that is, perpen-
dicular to the slab) and of magnitude Ia.
 It should be kept in mind that the results obtained in this sec-
tion have been derived for a rigid slab in plane motion. As you will 
see in Chap. 18, they remain valid in the case of the plane motion 
of rigid bodies which are symmetrical with respect to the reference 
plane.† However, they do not apply in the case of nonsymmetrical 
bodies or in the case of three-dimensional motion.

O

G

x

y

x'

y'

r'i

Pi

v'i Δmi

w

Fig. 16.4

†Or, more generally, bodies which have a principal centroidal axis of inertia perpendicular 
to the reference plane. 

Photo 16.2 The hard disk and pick-up arms of 
a hard disk computer undergo centroidal rotation.
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102916.4  PLANE MOTION OF A RIGID BODY. 
D’ALEMBERT’S PRINCIPLE

Consider a rigid slab of mass m moving under the action of several 
external forces F1, F2, F3, . . . , contained in the plane of the slab 
(Fig. 16.5). Substituting for H

.
G from Eq. (16.5) into Eq. (16.2) and 

writing the fundamental equations of motion (16.1) and (16.2) in 
scalar form, we have

 oFx 5 max   oFy 5 may   oMG 5 Ia (16.6)

 Equations (16.6) show that the acceleration of the mass center 
G of the slab and its angular acceleration A are easily obtained once 
the resultant of the external forces acting on the slab and their 
moment resultant about G have been determined. Given appropriate 
initial conditions, the coordinates x and y of the mass center and the 
angular coordinate u of the slab can then be obtained by integration 
at any instant t. Thus the motion of the slab is completely defined by 
the resultant and moment resultant about G of the external forces 
acting on it.
 This property, which will be extended in Chap. 18 to the case 
of the three-dimensional motion of a rigid body, is characteristic of 
the motion of a rigid body. Indeed, as we saw in Chap. 14, the motion 
of a system of particles which are not rigidly connected will in gen-
eral depend upon the specific external forces acting on the various 
particles, as well as upon the internal forces.
 Since the motion of a rigid body depends only upon the resultant 
and moment resultant of the external forces acting on it, it follows that 
two systems of forces which are equipollent, i.e., which have the same 
resultant and the same moment resultant, are also equivalent; that is, 
they have exactly the same effect on a given rigid body.†
 Consider in particular the system of the external forces acting 
on a rigid body (Fig. 16.6a) and the system of the effective forces 
associated with the particles forming the rigid body (Fig. 16.6b). It 
was shown in Sec. 14.2 that the two systems thus defined are equi-
pollent. But since the particles considered now form a rigid body, it 
follows from the discussion above that the two systems are also 
equivalent. We can thus state that the external forces acting on a 
rigid body are equivalent to the effective forces of the various parti-
cles forming the body. This statement is referred to as d’Alembert’s 
principle after the French mathematician Jean le Rond d’Alembert 
(1717–1783), even though d’Alembert’s original statement was writ-
ten in a somewhat different form.
 The fact that the system of external forces is equivalent to the 
system of the effective forces has been emphasized by the use of a 
red equals sign in Fig. 16.6 and also in Fig. 16.7, where using results 
obtained earlier in this section, we have replaced the effective forces 
by a vector ma attached at the mass center G of the slab and a 
couple of moment IA.

16.4 Plane Motion of a Rigid Body. 
D’Alembert’s Principle

O

G

x

y

F1

F2

F3
F4

Fig. 16.5

P

F1

F2

F3

F4

=

(a) (b)

(Δmi)a i

G G

Fig. 16.6

†This result has already been derived in Sec. 3.19 from the principle of transmissibility 
(Sec. 3.3). The present derivation is independent of that principle, however, and will 
make possible its elimination from the axioms of mechanics (Sec. 16.5).

G G

F1

F2

F3
F4

=

(a) (b)

⎯am

a⎯I

Fig. 16.7
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1030 Plane Motion of Rigid Bodies: 
Forces and Accelerations

Translation. In the case of a body in translation, the angular accel-
eration of the body is identically equal to zero and its effective forces 
reduce to the vector ma attached at G (Fig. 16.8). Thus, the resultant 
of the external forces acting on a rigid body in translation passes 
through the mass center of the body and is equal to ma.

Centroidal Rotation. When a slab, or, more generally, a body 
symmetrical with respect to the reference plane, rotates about a fixed 
axis perpendicular to the reference plane and passing through its 
mass center G, we say that the body is in centroidal rotation. Since 
the acceleration a is identically equal to zero, the effective forces 
of the body reduce to the couple IA (Fig. 16.9). Thus, the external 
forces acting on a body in centroidal rotation are equivalent to a 
couple of moment IA.

General Plane Motion. Comparing Fig. 16.7 with Figs. 16.8 and 
16.9, we observe that from the point of view of kinetics, the most 
general plane motion of a rigid body symmetrical with respect to the 
reference plane can be replaced by the sum of a translation and a 
centroidal rotation. We should note that this statement is more 
restrictive than the similar statement made earlier from the point of 
view of kinematics (Sec. 15.5), since we now require that the mass 
center of the body be selected as the reference point.
 Referring to Eqs. (16.6), we observe that the first two equations 
are identical with the equations of motion of a particle of mass m acted 
upon by the given forces F1, F2, F3, . . . We thus check that the mass 
center G of a rigid body in plane motion moves as if the entire mass of 
the body were concentrated at that point, and as if all the external forces 
acted on it. We recall that this result has already been obtained in Sec. 
14.4 in the general case of a system of particles, the particles being not 
necessarily rigidly connected. We also note, as we did in Sec. 14.4, that 
the system of the external forces does not, in general, reduce to a single 
vector ma attached at G. Therefore, in the general case of the plane 
motion of a rigid body, the resultant of the external forces acting on the 
body does not pass through the mass center of the body.
 Finally, it should be observed that the last of Eqs. (16.6) would 
still be valid if the rigid body, while subjected to the same applied 
forces, were constrained to rotate about a fixed axis through G. Thus, 
a rigid body in plane motion rotates about its mass center as if this 
point were fixed.

*16.5  A REMARK ON THE AXIOMS OF THE 
MECHANICS OF RIGID BODIES

The fact that two equipollent systems of external forces acting on a 
rigid body are also equivalent, i.e., have the same effect on that rigid 
body, has already been established in Sec. 3.19. But there it was 
derived from the principle of transmissibility, one of the axioms used 
in our study of the statics of rigid bodies. It should be noted that 
this axiom has not been used in the present chapter because  Newton’s 
second and third laws of motion make its use unnecessary in the 
study of the dynamics of rigid bodies.
 In fact, the principle of transmissibility may now be derived 
from the other axioms used in the study of mechanics. This principle 
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F3
F4

G =

(a) (b)

⎯am

G

Fig. 16.8 Translation.
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(a) (b)
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G

Fig. 16.9 Centroidal rotation.
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Fig. 16.7 (repeated)
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1031stated, without proof (Sec. 3.3), that the conditions of equilibrium or 
motion of a rigid body remain unchanged if a force F acting at a given 
point of the rigid body is replaced by a force F9 of the same magni-
tude and same direction, but acting at a different point, provided 
that the two forces have the same line of action. But since F and F9 
have the same moment about any given point, it is clear that they 
form two equipollent systems of external forces. Thus, we may now 
prove, as a result of what we established in the preceding section, 
that F and F9 have the same effect on the rigid body (Fig. 3.3).
 The principle of transmissibility can therefore be removed from 
the list of axioms required for the study of the mechanics of rigid 
bodies. These axioms are reduced to the parallelogram law of addi-
tion of vectors and to Newton’s laws of motion.

16.6  SOLUTION OF PROBLEMS INVOLVING 
THE MOTION OF A RIGID BODY

We saw in Sec. 16.4 that when a rigid body is in plane motion, there 
exists a fundamental relation between the forces F1, F2, F3, . . . , acting 
on the body, the acceleration a of its mass center, and the angular 
acceleration A of the body. This relation, which is represented in Fig. 
16.7 in the form of a free-body-diagram equation, can be used to deter-
mine the acceleration a and the angular acceleration A produced by a 
given system of forces acting on a rigid body or, conversely, to deter-
mine the forces which produce a given motion of the rigid body.
 The three algebraic equations (16.6) can be used to solve prob-
lems of plane motion.† However, our experience in statics suggests 
that the solution of many problems involving rigid bodies could be 
simplified by an appropriate choice of the point about which the 
moments of the forces are computed. It is therefore preferable to 
remember the relation existing between the forces and the accelera-
tions in the pictorial form shown in Fig. 16.7 and to derive from this 
fundamental relation the component or moment equations which fit 
best the solution of the problem under consideration.
 The fundamental relation shown in Fig. 16.7 can be presented 
in an alternative form if we add to the external forces an inertia vec-
tor 2ma of sense opposite to that of a, attached at G, and an inertia 
couple 2IA of moment equal in magnitude to Ia and of sense oppo-
site to that of A (Fig. 16.10). The system obtained is equivalent to 
zero, and the rigid body is said to be in dynamic equilibrium.
 Whether the principle of equivalence of external and effective 
forces is directly applied, as in Fig. 16.7, or whether the concept of dy-
namic equilibrium is introduced, as in Fig. 16.10, the use of free-body-
diagram equations showing vectorially the relationship existing between 
the forces applied on the rigid body and the resulting linear and angular 
accelerations presents considerable advantages over the blind  application 
of formulas (16.6). These advantages can be summarized as follows:

 1. The use of a pictorial representation provides a much clearer under-
standing of the effect of the forces on the motion of the body.

†We recall that the last of Eqs. (16.6) is valid only in the case of the plane motion of 
a rigid body symmetrical with respect to the reference plane. In all other cases, the 
methods of Chap. 18 should be used.

Fig. 16.10
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16.6 Solution of Problems Involving the 
Motion of a Rigid Body

Fig. 3.3 (repeated)
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1032 Plane Motion of Rigid Bodies: 
Forces and Accelerations

 2. This approach makes it possible to divide the solution of a 
dynamics problem into two parts: In the first part, the analysis 
of the kinematic and kinetic characteristics of the problem 
leads to the free-body diagrams of Fig. 16.7 or 16.10; in the 
second part, the diagram obtained is used to analyze the various 
forces and vectors involved by the methods of Chap. 3.

 3. A unified approach is provided for the analysis of the plane 
motion of a rigid body, regardless of the particular type of 
motion involved. While the kinematics of the various motions 
considered may vary from one case to the other, the approach 
to the kinetics of the motion is consistently the same. In every 
case a diagram will be drawn showing the external forces, the 
vector ma associated with the motion of G, and the couple IA 
associated with the rotation of the body about G.

 4. The resolution of the plane motion of a rigid body into a transla-
tion and a centroidal rotation, which is used here, is a basic con-
cept which can be applied effectively throughout the study of 
mechanics. It will be used again in Chap. 17 with the method of 
work and energy and the method of impulse and momentum.

 5. As you will see in Chap. 18, this approach can be extended to 
the study of the general three-dimensional motion of a rigid 
body. The motion of the body will again be resolved into a 
translation and a rotation about the mass center, and free-body-
diagram equations will be used to indicate the relationship 
existing between the external forces and the rates of change of 
the linear and angular momentum of the body.

16.7 SYSTEMS OF RIGID BODIES
The method described in the preceding section can also be used 
in problems involving the plane motion of several connected rigid 
bodies. For each part of the system, a diagram similar to Fig. 16.7 
or Fig. 16.10 can be drawn. The equations of motion obtained from 
these diagrams are solved simultaneously.
 In some cases, as in Sample Prob. 16.3, a single diagram can 
be drawn for the entire system. This diagram should include all the 
external forces, as well as the vectors ma and the couples IA associ-
ated with the various parts of the system. However, internal forces 
such as the forces exerted by connecting cables, can be omitted since 
they occur in pairs of equal and opposite forces and are thus equipol-
lent to zero. The equations obtained by expressing that the system 
of the external forces is equipollent to the system of the effective 
forces can be solved for the remaining unknowns.†
 It is not possible to use this second approach in problems 
involving more than three unknowns, since only three equations of 
motion are available when a single diagram is used. We need not 
elaborate upon this point, since the discussion involved would be 
completely similar to that given in Sec. 6.11 in the case of the equi-
librium of a system of rigid bodies.

†Note that we cannot speak of equivalent systems since we are not dealing with a single 
rigid body.

Photo 16.3 The forklift and moving load can 
be analyzed as a system of two connected rigid 
bodies in plane motion.
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1033

SAMPLE PROBLEM 16.1

When the forward speed of the truck shown was 30 ft/s, the brakes were 
suddenly applied, causing all four wheels to stop rotating. It was observed 
that the truck skidded to rest in 20 ft. Determine the magnitude of the 
normal reaction and of the friction force at each wheel as the truck skidded 
to rest.

SOLUTION

Kinematics of Motion. Choosing the positive sense to the right and using 
the equations of uniformly accelerated motion, we write

v0 5 130 ft/s   v2 5 v 2
0 1 2a x   0 5 (30)2 1 2a(20)

a 5 222.5 ft/s2   a 5 22.5 ft/s2
z

Equations of Motion. The external forces consist of the weight W of the 
truck and of the normal reactions and friction forces at the wheels. (The 
vectors NA and FA represent the sum of the reactions at the rear wheels, 
while NB and FB represent the sum of the reactions at the front wheels.) 
Since the truck is in translation, the effective forces reduce to the vector 
ma attached at G. Three equations of motion are obtained by expressing 
that the system of the external forces is equivalent to the system of the 
effective forces.

1xoFy 5 o(Fy)eff :  NA 1 NB 2 W 5 0

 Since FA 5 mkNA and FB 5 mkNB, where mk is the coefficient of kinetic 
friction, we find that

FA 1 FB 5 mk(NA 1 NB) 5 mkW
y
1 oFx 5 o(Fx)eff :  2(FA 1 FB) 5 2maw

 
2mkW 5 2

W

32.2 ft/s2 (22.5 ft/s2)

 mk 5 0.699
1loMA 5 o(MA)eff :  2W(5 ft) 1 NB(12 ft) 5 maa(4 ft)

 
2W(5 ft) 1 NB(12 ft) 5

W

32.2 ft/s2  (22.5 ft/s2) (4 ft)

NB 5 0.650W
FB 5 mkNB 5 (0.699)(0.650W)  FB 5 0.454W

1xoFy 5 o(Fy)eff :  NA 1 NB 2 W 5 0
NA 1 0.650W 2 W 5 0

NA 5 0.350W
FA 5 mkNA 5 (0.699)(0.350W)    FA 5 0.245W

Reactions at Each Wheel. Recalling that the values computed above rep-
resent the sum of the reactions at the two front wheels or the two rear 
wheels, we obtain the magnitude of the reactions at each wheel by writing

Nfront 5 1
2NB 5 0.325W    Nrear 5 1

2NA 5 0.175W ◀

 Ffront 5 1
2FB 5 0.227W  Frear 5  1

2FA 5 0.122W ◀

a

B

G

A

⎯v0

A B

4 ft

5 ft 7 ft

G

=
A

A

W

FA FB
NA NB

4 ft

5 ft 7 ft

⎯am

G

G
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SAMPLE PROBLEM 16.2

The thin plate ABCD of mass 8 kg is held in the position shown by the wire 
BH and two links AE and DF. Neglecting the mass of the links, determine 
immediately after wire BH has been cut (a) the acceleration of the plate, 
(b) the force in each link.

SOLUTION

Kinematics of Motion. After wire BH has been cut, we observe that 
 corners A and D move along parallel circles of radius 150 mm centered, 
respectively, at E and F. The motion of the plate is thus a curvilinear 
 translation; the particles forming the plate move along parallel circles of 
radius 150 mm.
 At the instant wire BH is cut, the velocity of the plate is zero. Thus 
the acceleration a of the mass center G of the plate is tangent to the circular 
path which will be described by G.

Equations of Motion. The external forces consist of the weight W and the 
forces FAE and FDF exerted by the links. Since the plate is in translation, 
the effective forces reduce to the vector ma attached at G and directed 
along the t axis. A free-body-diagram equation is drawn to show that the 
system of the external forces is equivalent to the system of the effective 
forces.

a. Acceleration of the Plate.

 1ooFt 5 o(Ft)eff :
 W cos 30° 5 ma
 mg cos 30° 5 ma
 a 5 g cos 30° 5 (9.81 m/s2) cos 30° (1)

a 5 8.50 m/s2 d 60° ◀

b. Forces in Links AE and DF.

 1roFn 5 o(Fn)eff :  FAE 1 FDF 2 W sin 30° 5 0 (2)
 1ioMG 5 o(MG)eff :

(FAE sin 30°)(250 mm) 2 (FAE cos 30°)(100 mm)
1 (FDF sin 30°)(250 mm) 1 (FDF cos 30°)(100 mm) 5 0

38.4FAE 1 211.6FDF 5 0
 FDF 5 20.1815FAE (3)

Substituting for FDF from (3) into (2), we write

FAE 2 0.1815FAE 2 W sin 30° 5 0
 FAE 5 0.6109W

FDF 5 20.1815(0.6109W) 5 20.1109W

Noting that W 5 mg 5 (8 kg)(9.81 m/s2) 5 78.48 N, we have

 FAE 5 0.6109(78.48 N) FAE 5 47.9 N T ◀

FDF 5 20.1109(78.48 N)  FDF 5 8.70 N C ◀

n

n
A

A

B

CD

B

C
D

FAE

FDF

=
⎯am

30°

30°
30°

30°

G

G

W

t

t

250 mm

200 mm

250 mm

100 mm

100 mm

A B

CD

30°

150 mmE

F

H

200 mm

500 mm

30°

A B

C
D

⎯a

30°

60°

E

F

150 mm

30°
G
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SAMPLE PROBLEM 16.3

A pulley weighing 12 lb and having a radius of gyration of 8 in. is connected 
to two blocks as shown. Assuming no axle friction, determine the angular 
acceleration of the pulley and the acceleration of each block.

SOLUTION

Sense of Motion. Although an arbitrary sense of motion can be assumed 
(since no friction forces are involved) and later checked by the sign of the 
answer, we may prefer to determine the actual sense of rotation of the pulley 
first. The weight of block B required to maintain the equilibrium of the 
pulley when it is acted upon by the 5-lb block A is first determined. We 
write

 1loMG 5 0:  WB(6 in.) 2 (5 lb)(10 in.) 5 0  WB 5 8.33 lb

Since block B actually weighs 10 lb, the pulley will rotate counterclockwise.

Kinematics of Motion. Assuming A counterclockwise and noting that
aA 5 rAa and aB 5 rBa, we obtain

aA 5 (10
12 ft)ax  aB 5 ( 6

12 ft)aw

Equations of Motion. A single system consisting of the pulley and the two 
blocks is considered. Forces external to this system consist of the weights 
of the pulley and the two blocks and of the reaction at G. (The forces 
exerted by the cables on the pulley and on the blocks are internal to the 
system considered and cancel out.) Since the motion of the pulley is a cen-
troidal rotation and the motion of each block is a translation, the effective 
forces reduce to the couple IA and the two vectors maA and maB. The 
centroidal moment of inertia of the pulley is

I 5 mk2 5
W
g

 k2 5
12 lb

32.2 ft/s2  ( 8
12 ft)2 5 0.1656 lb ? ft ? s2

Since the system of the external forces is equipollent to the system of the 
effective forces, we write

 1loMG 5 o(MG)eff :

 (10 lb)( 6
12 ft) 2 (5 lb)(10

12 ft) 5 1Ia 1 mBaB( 6
12 ft) 1 mAaA(10

12 ft)

 (10)( 6
12) 2 (5)(10

12) 5 0.1656a 1 10
32.2( 6

12a)( 6
12) 1 5

32.2(10
12a)(10

12)

 a 5 12.374 rad/s2 A 5 2.37 rad/s2
l  ◀

aA 5 rAa 5 (10
12 ft)(2.374 rad/s2)  aA 5  1.978 ft/s2

x ◀

aB 5 rBa 5 ( 6
12 ft)(2.374 rad/s2)  aB 5  1.187 ft/s2

w ◀

B
A

G

6 in.

10 in.

10 lb

5 lb

B

aB

aA

A

G

a
rB rA

10 lb

12 lb

5 lb

mBaB

mAaA

B
A

G

B
A

G

R

a⎯I
=
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SAMPLE PROBLEM 16.4

A cord is wrapped around a homogeneous disk of radius r 5 0.5 m and 
mass m 5 15 kg. If the cord is pulled upward with a force T of magnitude 
180 N, determine (a) the acceleration of the center of the disk, (b) the 
angular acceleration of the disk, (c) the acceleration of the cord.

SOLUTION

Equations of Motion. We assume that the components ax and ay of the 
acceleration of the center are directed, respectively, to the right and upward 
and that the angular acceleration of the disk is counterclockwise. The exter-
nal forces acting on the disk consist of the weight W and the force T exerted 
by the cord. This system is equivalent to the system of the effective forces, 
which consists of a vector of components max and may attached at G and 
a couple IA. We write

y
1 oFx 5 o(Fx)eff :  0 5 max  ax 5 0 ◀

 1xoFy 5 o(Fy)eff :  T 2 W 5 may

 
 ay 5

T 2 W
m

Since T 5 180 N, m 5 15 kg, and W 5 (15 kg)(9.81 m/s2) 5 147.1 N, we 
have

 
ay 5

180 N 2 147.1 N
15 kg

5 12.19 m/s2  ay 5 2.19 m/s2
x ◀

1loMG 5 o(MG)eff :  2Tr 5 Ia
  2Tr 5 (1

2 mr2)a

 
a 5 2

2T
mr

5 2
2(180 N)

(15 kg)(0.5 m)
5 248.0 rad/s2

A 5 48.0 rad/s2 
i ◀

Acceleration of Cord. Since the acceleration of the cord is equal to the 
tangential component of the acceleration of point A on the disk, we write

 acord 5 (aA) t 5 a 1 (aA/G) t

 5 [2.19 m/s2 
x] 1 [(0.5 m)(48 rad/s2)x]

 acord 5 26.2 m/s2 
x ◀

A
0.5 m

G

T

⎯ay

⎯a xa

G

T

⎯aym

⎯a xm

r

W

=
a⎯I

G
G

A

⎯a

acord

ar G
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SAMPLE PROBLEM 16.5

A uniform sphere of mass m and radius r is projected along a rough hori-
zontal surface with a linear velocity v0 and no angular velocity. Denoting by 
mk the coefficient of kinetic friction between the sphere and the floor, deter-
mine (a) the time t1 at which the sphere will start rolling without sliding, 
(b) the linear velocity and angular velocity of the sphere at time t1.

SOLUTION

Equations of Motion. The positive sense is chosen to the right for a and 
clockwise for A. The external forces acting on the sphere consist of the 
weight W, the normal reaction N, and the friction force F. Since the point 
of the sphere in contact with the surface is sliding to the right, the friction 
force F is directed to the left. While the sphere is sliding, the magnitude 
of the friction force is F 5 mkN. The effective forces consist of the vector 
ma attached at G and the couple IA. Expressing that the system of the 
external forces is equivalent to the system of the effective forces, we write

 1xoFy 5 o(Fy)eff : N 2 W 5 0
  N 5 W 5 mg   F 5 mkN 5 mkmg

y
1 oFx 5 o(Fx)eff : 2F 5 ma     2mkmg 5 ma     a 5 2mkg

 1ioMG 5 o(MG)eff :  Fr 5 Ia

Noting that I 5 2
5 
mr2 and substituting the value obtained for F, we write

(mkmg)r 5 2
5 
mr2a      a 5

5
2

 
mkg

r

Kinematics of Motion. As long as the sphere both rotates and slides, its 
linear and angular motions are uniformly accelerated.

 t 5 0, v 5 v0      
  v 5 v0 1 at 5 v0 2 mkgt (1)

 
t 5 0, v0 5 0     v 5 v0 1 at 5 0 1 a5

2
 
mkg

r
b t

 
(2)

 The sphere will start rolling without sliding when the velocity vC of 
the point of contact C is zero. At that time, t 5 t1, point C becomes the 
instantaneous center of rotation, and we have

 v1 5 rv1 (3)

Substituting in (3) the values obtained for v1 and v1 by making t 5 t1 in 
(1) and (2), respectively, we write

 v0 2 mkgt1 5 r a5
2

 
mkg

r
 t1b t1 5

2
7

 
v0

mkg
 ◀

Substituting for t1 into (2), we have

v1 5
5
2

 
mkg

r
 t1 5

5
2

 
mkg

r
 a2

7
 

v0

mkg
b

     
v1 5

5
7

 
v0

r   
V1 5

5
7

 
v0

r  
i ◀

 v1 5 rv1 5 r a5
7

 
v0

r
b

   
v1 5 5

7 v0  v1 5 5
7 v0y  ◀

⎯v0

G
⎯a

a
r

= ⎯am
G

G
W

N

F

a⎯I

⎯v1

w1

G
C
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This chapter deals with the plane motion of rigid bodies, and in this first lesson 
we considered rigid bodies that are free to move under the action of applied 

forces.

1. Effective forces. We first recalled that a rigid body consists of a large number 
of particles. The effective forces of the particles forming the body were found to 
be equivalent to a vector ma attached at the mass center G of the body and a 
couple of moment IA [Fig. 16.7]. Noting that the applied forces are equivalent to 
the effective forces, we wrote

 oFx 5 max      oFy 5 may      oMG 5 Ia (16.5)

where ax and ay are the x and y components of the acceleration of the mass center 
G of the body and a is the angular acceleration of the body. It is important to 
note that when these equations are used, the moments of the applied forces 
must be computed with respect to the mass center of the body. However, you learned 
a more efficient method of solution based on the use of a free-body-diagram 
equation.

2. Free-body-diagram equation. Your first step in the solution of a problem 
should be to draw a free-body-diagram equation.
 a. A free-body-diagram equation consists of two diagrams representing two 
equivalent systems of vectors. In the first diagram you should show the forces 
exerted on the body, including the applied forces, the reactions at the supports, 
and the weight of the body. In the second diagram you should show the vector 
ma and the couple IA representing the effective forces.
 b. Using a free-body-diagram equation allows you to sum components in 
any direction and to sum moments about any point. When writing the three equa-
tions of motion needed to solve a given problem, you can therefore select one or 
more equations involving a single unknown. Solving these equations first and sub-
stituting the values obtained for the unknowns into the remaining equation(s) will 
yield a simpler solution.

SOLVING PROBLEMS
ON YOUR OWN
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3. Plane motion of a rigid body. The problems that you will be asked to solve 
will fall into one of the following categories.
 a. Rigid body in translation. For a body in translation, the angular accelera-
tion is zero. The effective forces reduce to the vector ma applied at the mass 
center [Sample Probs. 16.1 and 16.2].
 b. Rigid body in centroidal rotation. For a body in centroidal rotation, the 
acceleration of the mass center is zero. The effective forces reduce to the couple 
IA [Sample Prob. 16.3].
 c. Rigid body in general plane motion. You can consider the general plane 
motion of a rigid body as the sum of a translation and a centroidal rotation. The 
effective forces are equivalent to the vector ma and the couple IA [Sample Probs. 
16.4 and 16.5].

4. Plane motion of a system of rigid bodies. You first should draw a free-body-
diagram equation that includes all the rigid bodies of the system. A vector ma and 
a couple IA are attached to each body. However, the forces exerted on each other 
by the various bodies of the system can be omitted, since they occur in pairs of 
equal and opposite forces.
 a. If no more than three unknowns are involved, you can use this free-
body-diagram equation and sum components in any direction and sum moments 
about any point to obtain equations that can be solved for the desired unknowns 
[Sample Prob. 16.3].
 b. If more than three unknowns are involved, you must draw a separate 
free-body-diagram equation for each of the rigid bodies of the system. Both inter-
nal forces and external forces should be included in each of the free-body-diagram 
equations, and care should be taken to represent with equal and opposite vectors 
the forces that two bodies exert on each other.
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PROBLEMS

1040

16.1 A conveyor system is fitted with vertical panels, and a 300-mm rod 
AB of mass 2.5 kg is lodged between two panels as shown. Knowing 
that the acceleration of the system is 1.5 m/s2 to the left, determine 
(a) the force exerted on the rod at C, (b) the reaction at B.

 16.2 A conveyor system is fitted with vertical panels, and a 300-mm rod 
AB of mass 2.5 kg is lodged between two panels as shown. If the 
rod is to remain in the position shown, determine the maximum 
allowable acceleration of the system.

 16.3 A 6-ft board is placed in a truck with one end resting against a 
block secured to the floor and the other leaning against a vertical 
partition. Determine the maximum allowable acceleration of the 
truck if the board is to remain in the position shown.

200 mm

A

C

B
70°

a

Fig. P16.1 and P16.2

A

B

78°

Fig. P16.3

16.4 A uniform rod BC weighing 8 lb is connected to a collar A by a 
10-in. cord AB. Neglecting the mass of the collar and cord, deter-
mine (a) the smallest constant acceleration aA for which the cord 
and the rod will lie in a straight line, (b) the corresponding tension 
in the cord.

 16.5 Knowing that the coefficient of static friction between the tires and 
the road is 0.80 for the automobile shown, determine the  maximum 
possible acceleration on a level road, assuming (a) four-wheel drive, 
(b) rear-wheel drive, (c) front-wheel drive.

10 in.

14 in.
16 in.

B

C

A

PaA

Fig. P16.4

40 in.60 in.

20 in.

G

Fig. P16.5

16.6 For the truck of Sample Prob. 16.1, determine the distance through 
which the truck will skid if (a) the rear-wheel brakes fail to operate, 
(b) the front-wheel brakes fail to operate.

 16.7 A 20-kg cabinet is mounted on casters that allow it to move freely 
(m 5 0) on the floor. If a 100-N force is applied as shown, deter-
mine (a) the acceleration of the cabinet, (b) the range of values of 
h for which the cabinet will not tip.

 16.8 Solve Prob. 16.7, assuming that the casters are locked and slide on 
the rough floor (mk 5 0.25).

100 N

h

G

0.6 m

0.9 m

Fig. P16.7
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1041Problems 16.9 The forklift truck shown weighs 2250 lb and is used to lift a crate 
of weight W 5 2500 lb. Knowing that the truck is at rest, deter-
mine (a) the upward acceleration of the crate for which the reac-
tions at the rear wheels B are zero, (b) the corresponding reaction 
at each of the front wheels A.

A

G

B
4 ft

3 ft 3 ft4 ft

3 ft

W

Fig. P16.9 and P16.10

 16.10 The forklift truck shown weighs 2250 lb and is used to lift a crate 
of weight W 5 2500 lb. The truck is moving to the left at a speed 
of 10 ft/s when the brakes are applied on all four wheels. Knowing 
that the coefficient of static friction between the crate and the fork 
lift is 0.30, determine the smallest distance in which the truck can 
be brought to a stop if the crate is not to slide and if the truck is 
not to tip forward.

 16.11 The support bracket shown is used to transport a cylindrical can 
from one elevation to another. Knowing that ms 5 0.25 between the 
can and the bracket, determine (a) the magnitude of the upward 
acceleration a for which the can will slide on the bracket, (b) the 
smallest ratio h/d for which the can will tip before it slides.

 16.12 Solve Prob. 16.11, assuming that the acceleration a of the bracket 
is directed downward.

 16.13 A completely filled barrel and its contents have a combined 
weight of 200 lb. A cylinder C is connected to the barrel at a 
height h 5 22 in. as shown. Knowing ms 5 0.40 and mk 5 0.35, 
determine the maximum weight of C so the barrel will not tip.

30°

h

d

A

a

Fig. P16.11 

20 in.

A B

h
18 in.

36 in.

C

G

Fig. P16.13
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1042 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.14 A uniform rectangular plate has a mass of 5 kg and is held in posi-
tion by three ropes as shown. Knowing that u 5 30°, determine, 
immediately after rope CF has been cut, (a) the acceleration of the 
plate, (b) the tension in ropes AD and BE.

300 mm

240 mm

D E

A B

C F

qq

Fig. P16.14 and P16.15

 16.15 A uniform rectangular plate has a mass of 5 kg and is held in posi-
tion by three ropes as shown. Determine the largest value of u for 
which both ropes AD and BE remain taut immediately after rope 
CF has been cut.

 16.16 A uniform circular plate of mass 3 kg is attached to two links AC 
and BD of the same length. Knowing that the plate is released 
from rest in the position shown, determine (a) the acceleration of 
the plate, (b) the tension in each link.

 16.17 Three bars, each of weight 8 lb, are welded together and are pin-
connected to two links BE and CF. Neglecting the weight of the 
links, determine the force in each link immediately after the system 
is released from rest.

 16.18 At the instant shown the angular velocity of links BE and CF is 
6 rad/s counterclockwise and is decreasing at the rate of 12 rad/s2. 
Knowing that the length of each link is 300 mm and neglecting the 
weight of the links, determine (a) the force P, (b) the correspond-
ing force in each link. The mass of rod AD is 6 kg.

75°

75°
C

A

D

B

G

Fig. P16.16

15 in.

15 in.

A D

B

E F

C

50° 50°

Fig. P16.17

E

A
B C D

F30° 30°

0.2 m 0.6 m 0.2 m

P

Fig. P16.18
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1043Problems 16.19 The 15-lb rod BC connects a disk centered at A to crank CD. 
Knowing that the disk is made to rotate at the constant speed of 
180 rpm, determine for the position shown the vertical compo-
nents of the forces exerted on rod BC by pins at B and C.

 16.20 The triangular weldment ABC is guided by two pins that slide 
freely in parallel curved slots of radius 6 in. cut in a vertical plate. 
The weldment weighs 16 lb and its mass center is located at point 
G. Knowing that at the instant shown the velocity of each pin is 
30 in./s downward along the slots, determine (a) the acceleration 
of the weldment, (b) the reactions at A and B.

B

A

C

D

30°

30°

30 in.

8 in.

8 in.

Fig. P16.19

6 in.

6 in.

3 in.

60°

60°

G

A C

B

Fig. P16.20

 *16.21 Draw the shear and bending-moment diagrams for the vertical rod 
AB of Prob. 16.17.

 *16.22 Draw the shear and bending-moment diagrams for the connecting 
rod BC of Prob. 16.19.

 16.23 For a rigid slab in translation, show that the system of the effective 
forces consists of vectors (¢mi)a attached to the various particles 
of the slab, where a is the acceleration of the mass center G of the 
slab. Further show, by computing their sum and the sum of their 
moments about G, that the effective forces reduce to a single vec-
tor ma attached at G.

 16.24 For a rigid slab in centroidal rotation, show that the system of the 
effective forces consists of vectors 2(¢mi)v

2r ¿i and (¢mi)(A 3 r ¿i) 
attached to the various particles Pi of the slab, where V and A are 
the angular velocity and angular acceleration of the slab, and where 
r ¿i  denotes the position vector of the particle Pi relative to the mass 
center G of the slab. Further show, by computing their sum and 
the sum of their moments about G, that the effective forces reduce 
to a couple IA.

 16.25 It takes 10 min for a 6000-lb flywheel to coast to rest from an 
angular velocity of 300 rpm. Knowing that the radius of gyration 
of the flywheel is 36 in., determine the average magnitude of the 
couple due to kinetic friction in the bearings.

G
⎯a

Pi

(Δmi)a⎯

Fig. P16.23

Pi

–(Δmi)w2r'i

(Δmi)(a × r'i)

r'i

G a
w

Fig. P16.24
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1044 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.26 The rotor of an electric motor has an angular velocity of 3600 rpm 
when the load and power are cut off. The 50-kg rotor, which has a 
centroidal radius of gyration of 180 mm, then coasts to rest. Know-
ing that kinetic friction results in a couple of magnitude 3.5 N ? m 
exerted on the rotor, determine the number of revolutions that the 
rotor executes before coming to rest.

 16.27 The 180-mm-radius disk is at rest when it is placed in contact with 
a belt moving at a constant speed. Neglecting the weight of the 
link AB and knowing that the coefficient of kinetic friction between 
the disk and the belt is 0.40, determine the angular acceleration 
of the disk while slipping occurs.

 16.28 Solve Prob. 16.27, assuming that the direction of motion of the 
belt is reversed.

 16.29 The 150-mm-radius brake drum is attached to a larger flywheel 
that is not shown. The total mass moment of inertia of the drum 
and the flywheel is 75 kg ? m2. A band brake is used to control 
the motion of the system and the coefficient of kinetic friction 
between the belt and the drum is 0.25. Knowing that the 100-N 
force P is applied when the initial angular velocity of the system 
is 240 rpm clockwise, determine the time required for the system 
to stop. Show that the same result is obtained if the initial angular 
velocity of the system is 240 rpm counterclockwise.

 16.30 The 8-in.-radius brake drum is attached is a larger flywheel that is 
not shown. The total mass moment of inertia of the drum and the 
flywheel is 14 lb ? ft ? s2 and the coefficient of kinetic friction 
between the drum and the brake shoe is 0.35. Knowing that the 
angular velocity of the flywheel is 360 rpm counterclockwise when 
a force P of magnitude 75 lb is applied to the pedal C, determine 
the number of revolutions executed by the flywheel before it comes 
to rest.

B

A
180 mm

60°

v

Fig. P16.27

80 mm

80 mm

320 mm

P

150 mm

D

E

B C

A

Fig. P16.29

10 in.

8 in.

A

B

C

P

6 in.

15 in.

D

Fig. P16.30

 16.31 Solve Prob. 16.30, assuming that the initial angular velocity of the 
flywheel is 360 rpm clockwise.
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1045Problems 16.32 The flywheel shown has a radius of 500 mm, a mass of 120 kg, 
and a radius of gyration of 375 mm. A 15-kg block A is attached 
to a wire that is wrapped around the flywheel, and the system is 
released from rest. Neglecting the effect of friction, determine 
(a) the acceleration of block A, (b) the speed of block A after it 
has moved 1.5 m.

 16.33 In order to determine the mass moment of inertia of a flywheel of 
radius 600 mm, a 12-kg block is attached to a wire that is wrapped 
around the flywheel. The block is released and is observed to fall 
3 m in 4.6 s. To eliminate bearing friction from the computation, 
a second block of mass 24 kg is used and is observed to fall 3 m 
in 3.1 s. Assuming that the moment of the couple due to friction 
remains constant, determine the mass moment of inertia of the 
flywheel.

 16.34 Each of the double pulleys shown has a mass moment of inertia 
of 15 lb ? ft ? s2 and is initially at rest. The outside radius is 18 in., 
and the inner radius is 9 in. Determine (a) the angular acceleration 
of each pulley, (b) the angular velocity of each pulley after point 
A on the cord has moved 10 ft.

A m

Fig. P16.32 and P16.33

A A A A

160 lb

(1) (2) (3) (4)

160 lb 460 lb 300 lb 80 lb

Fig. P16.34

 16.36 Solve Prob. 16.35, assuming that the couple M is applied to disk A.

4 in.

A B

C

10 in. 10 in.

M

Fig. P16.35

 16.35 Each of the gears A and B weighs 20 lb and has a radius of gyra-
tion of 7.5 in.; gear C weighs 5 lb and has a radius of gyration of 
3 in. If a couple M of constant magnitude 50 lb ? in. is applied to 
gear C, determine (a) the angular acceleration of gear A, (b) the 
tangential force which gear C exerts on gear A.
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1046 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.37 and 16.38 Two uniform disks and two cylinders are assembled 
as indicated. Disk A weighs 20 lb and disk B weighs 12 lb. Knowing 
that the system is released from rest, determine the acceleration 
(a) of cylinder C, (b) of cylinder D.

 16.37  Disks A and B are bolted together and the cylinders 
are attached to separate cords wrapped on the disks.

 16.38  The cylinders are attached to a single cord that passes 
over the disks. Assume that no slipping occurs between 
the cord and the disks.

18 lb15 lb

6 in.8 in.

B

C D

A

Fig. P16.37

18 lb D15 lbC

8 in.
6 in.

A B

Fig. P16.38

 16.39 Disk A has a mass of 6 kg and an initial angular velocity of 360 rpm 
clockwise; disk B has a mass of 3 kg and is initially at rest. The 
disks are brought together by applying a horizontal force of 
 magnitude 20 N to the axle of disk A. Knowing that mk 5 0.15 
between the disks and neglecting bearing friction, determine 
(a) the angular acceleration of each disk, (b) the final angular veloc-
ity of each disk.

A

B

80 mm 60 mm

Fig. P16.39

P

8 in.

4 in.

B

A

Fig. P16.41

 16.40 Solve Prob. 16.39, assuming that initially disk A is at rest and disk 
B has an angular velocity of 360 rpm clockwise.

 16.41 A belt of negligible mass passes between cylinders A and B and is 
pulled to the right with a force P. Cylinders A and B weigh, respec-
tively, 5 and 20 lb. The shaft of cylinder A is free to slide in a vertical 
slot and the coefficients of friction between the belt and each of the 
cylinders are ms 5 0.50 and mk 5 0.40. For P 5 3.6 lb, determine 
(a) whether slipping occurs between the belt and either cylinder, 
(b) the angular acceleration of each cylinder.

 16.42 Solve Prob. 16.41 for P 5 2.00 lb.
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1047Problems 16.43 The 6-lb disk A has a radius rA 5 3 in. and an initial angular 
velocity V0 5 375 rpm clockwise. The 15-lb disk B has a radius 
rB 5 5 in. and is at rest. A force P of magnitude 2.5 lb is then 
applied to bring the disks into contact. Knowing that mk 5 0.25 
between the disks and neglecting bearing friction, determine 
(a) the angular acceleration of each disk, (b) the final angular 
velocity of each disk.

 16.44 Solve Prob. 16.43, assuming that disk A is initially at rest and that 
disk B has an angular velocity of 375 rpm clockwise.

 16.45 Disk B has an angular velocity V0 when it is brought into contact 
with disk A, which is at rest. Show that (a) the final angular veloci-
ties of the disks are independent of the coefficient of friction mk 
between the disks as long as mk ± 0, (b) the final angular velocity 
of disk B depends only upon V0 and the ratio of the masses mA 
and mB of the two disks.

 16.46 Show that the system of the effective forces for a rigid slab in plane 
motion reduces to a single vector, and express the distance from 
the mass center G of the slab to the line of action of this vector in 
terms of the centroidal radius of gyration k of the slab, the magni-
tude a of the acceleration of G, and the angular acceleration a.

 16.47 For a rigid slab in plane motion, show that the system of the effective 
forces consists of vectors (¢mi)a, 2(¢mi)v

2r9i and (¢mi)(A 3 r9i) 
attached to the various particles Pi of the slab, where a is the 
acceleration of the mass center G of the slab, V is the angular 
velocity of the slab, A is its angular acceleration, and r9i denotes the 
position vector of the particle Pi, relative to G. Further show, by 
computing their sum and the sum of their moments about G, that 
the effective forces reduce to a vector ma attached at G and a 
couple IA.

 16.48 A uniform slender rod AB rests on a frictionless horizontal surface, 
and a force P of magnitude 0.25 lb is applied at A in a direction 
perpendicular to the rod. Knowing that the rod weighs 1.75 lb, 
determine the acceleration of (a) point A, (b) point B.

P

A

B

w0

rB

rA

Fig. P16.43 and P16.45

G

⎯a

Pi
(Δmi)a⎯

–(Δmi)w2r'i

(Δmi)(a × r'i)

a

r'i

w

Fig. P16.47

z

x

y

B

A

P

36 in.

Fig. P16.48

 16.49 (a) In Prob. 16.48, determine the point of the rod AB at which the 
force P should be applied if the acceleration of point B is to be 
zero. (b) Knowing that P 5 0.25 lb, determine the corresponding 
acceleration of point A.
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1048 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.50 and 16.51 A force P of magnitude 3 N is applied to a tape 
wrapped around the body indicated. Knowing that the body rests 
on a frictionless horizontal surface, determine the acceleration of 
(a) point A, (b) point B.

 16.50 A thin hoop of mass 2.4 kg.
 16.51 A uniform disk of mass 2.4 kg.

z x

A
C

B

r

y

P

Fig. P16.50

P

z x

A

B

r C

y

Fig. P16.51 and P16.52

 16.52 A force P is applied to a tape wrapped around a uniform disk that 
rests on a frictionless horizontal surface. Show that for each 360° 
rotation of the disk the center of the disk will move a distance pr.

 16.53 A 120-kg satellite has a radius of gyration of 600 mm with respect 
to the y axis and is symmetrical with respect to the zx plane. Its 
orientation is changed by firing four small rockets A, B, C, and D, 
each of which produces a 16.20-N thrust T directed as shown. 
Determine the angular acceleration of the satellite and the accel-
eration of its mass center G (a) when all four rockets are fired, 
(b) when all rockets except D are fired.

 16.54 A rectangular plate of mass 5 kg is suspended from four vertical 
wires, and a force P of magnitude 6 N is applied to corner C as 
shown. Immediately after P is applied, determine the acceleration 
of (a) the midpoint of edge BC, (b) corner B.

800 mm

x

z

AB
C G

T

T
T

y

D

T

Fig. P16.53

B
D

A

CP

z
x

y

300 mm
400 mm

Fig. P16.54
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1049Problems 16.55 A 3-kg sprocket wheel has a centroidal radius of gyration of 70 mm 
and is suspended from a chain as shown. Determine the accelera-
tion of points A and B of the chain, knowing that TA 5 14 N and 
TB 5 18 N.

80 mm80 mm

A B

TA TB

Fig. P16.55

 16.56 Solve Prob. 16.55, assuming that TA 5 14 N and TB 5 12 N.

 16.57 and 16.58 A 15-ft beam weighing 500 lb is lowered by means 
of two cables unwinding from overhead cranes. As the beam 
approaches the ground, the crane operators apply brakes to slow 
the unwinding motion. Knowing that the deceleration of cable A 
is 20 ft/s2 and the deceleration of cable B is 2 ft/s2, determine the 
tension in each cable.

 16.59 The steel roll shown has a mass of 1200 kg, a centriodal radius of 
gyration of 150 mm, and is lifted by two cables looped around its 
shaft. Knowing that for each cable TA 5 3100 N and TB 5 3300 N, 
determine (a) the angular acceleration of the roll, (b) the accelera-
tion of its mass center.

 16.60 The steel roll shown has a mass of 1200 kg, has a centriodal radius 
of gyration of 150 mm, and is lifted by two cables looped around 
its shaft. Knowing that at the instant shown the acceleration of the 
roll is 150 mm/s2 downward and that for each cable TA 5 3000 N, 
determine (a) the corresponding tension TB, (b) the angular accel-
eration of the roll.

A B

15 ft

TBTA

Fig. P16.57

A B

15 ft

12 ft

TBTA

Fig. P16.58

B

TA TB

TA TB

A

B
A

100 mm

Fig. P16.59 and P16.60

bee29400_ch16_1024-1079.indd Page 1049  12/16/08  10:32:41 AM user-s172bee29400_ch16_1024-1079.indd Page 1049  12/16/08  10:32:41 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1050 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.61 By pulling on the string of a yo-yo, a person manages to make the 
yo-yo spin, while remaining at the same elevation above the floor. 
Denoting the mass of the yo-yo by m, the radius of the inner drum 
on which the string is wound by r, and the centroidal radius of 
gyration of the yo-yo by k, determine the angular acceleration of 
the yo-yo.

T

Fig. P16.61 and P16.62

A B

L

1 2

Fig. P16.63

A B

1 2

L
3

L
3

L
3

Fig. P16.64

A B

1 2

L
3

L
3

L
3

30°30°

Fig. P16.65

 16.62 The 3-oz yo-yo shown has a centroidal radius of gyration of 1.25 in. 
The radius of the inner drum on which a string is wound is 0.25 
in. Knowing that at the instant shown the acceleration of the cen-
ter of the yo-yo is 3 ft/s2 upward, determine (a) the required ten-
sion T in the string, (b) the corresponding angular acceleration of 
the yo-yo.

 16.63 through 16.65 A beam AB of mass m and of uniform cross 
section is suspended from two springs as shown. If spring 2 breaks, 
determine at that instant (a) the angular acceleration of the bar, 
(b) the acceleration of point A, (c) the acceleration of point B.
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1051Problems 16.66 through 16.68 A thin plate of the shape indicated and of mass 
m is suspended from two springs as shown. If spring 2 breaks, 
determine the acceleration at that instant (a) of point A, (b) of 
point B.

 16.66 A circular plate of diameter b.
 16.67 A thin hoop of diameter b.
 16.68 A square plate of side b.

A B

b 21

Fig. P16.66

A B

b 21

Fig. P16.67

B

b
2

b 21

A

Fig. P16.68

 16.69 A bowler projects an 8-in.-diameter ball weighing 12 lb along an 
alley with a forward velocity v0 of 15 ft/s and a backspin V0 of 
9 rad/s. Knowing that the coefficient of kinetic friction between the 
ball and the alley is 0.10, determine (a) the time t1 at which the 
ball will start rolling without sliding, (b) the speed of the ball at 
time t1, (c) the distance the ball will have traveled at time t1.

 16.70 Solve Prob. 16.69, assuming that the bowler projects the ball with 
the same forward velocity but with a backspin of 18 rad/s.

 16.71 A sphere of radius r and mass m is projected along a rough hori-
zontal surface with the initial velocities indicated. If the final veloc-
ity of the sphere is to be zero, express, in terms of v0, r, and mk, 
(a) the required magnitude of V0, (b) the time t1 required for the 
sphere to come to rest, (c) the distance the sphere will move before 
coming to rest.

 16.72 Solve Prob. 16.71, assuming that the sphere is replaced by a uni-
form thin hoop of radius r and mass m.

 16.73 A uniform sphere of radius r and mass m is placed with no  initial 
velocity on a belt that moves to the right with a constant velocity 
v1. Denoting by mk the coefficient of kinetic friction between the 
sphere and the belt, determine (a) the time t1 at which the sphere 
will start rolling without sliding, (b) the linear and angular veloci-
ties of the sphere at time t1.

 16.74 A sphere of radius r and mass m has a linear velocity v0 directed to 
the left and no angular velocity as it is placed on a belt moving to
the right with a constant velocity v1. If after first sliding on the belt the 
sphere is to have no linear velocity relative to the ground as 
it starts rolling on the belt without sliding, determine in terms of 
v1 and the coefficient of kinetic friction mk between the sphere and 
the belt (a) the required value of v0, (b) the time t1 at which the 
sphere will start rolling on the belt, (c) the distance the sphere will 
have moved relative to the ground at time t1.

ww0

v0

Fig. P16.69

v0

w0

Fig. P16.71

v1

Fig. P16.73

v1

v0

Fig. P16.74
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1052 Plane Motion of Rigid Bodies: 
Forces and Accelerations 16.8 CONSTRAINED PLANE MOTION

Most engineering applications deal with rigid bodies which are mov-
ing under given constraints. For example, cranks must rotate about 
a fixed axis, wheels must roll without sliding, and connecting rods 
must describe certain prescribed motions. In all such cases, definite 
relations exist between the components of the acceleration a of the 
mass center G of the body considered and its angular acceleration 
A; the corresponding motion is said to be a constrained motion.
 The solution of a problem involving a constrained plane motion 
calls first for a kinematic analysis of the problem. Consider, for exam-
ple, a slender rod AB of length l and mass m whose extremities are 
connected to blocks of negligible mass which slide along horizontal 
and vertical frictionless tracks. The rod is pulled by a force P applied 
at A (Fig. 16.11). We know from Sec. 15.8 that the acceleration a of 
the mass center G of the rod can be determined at any given instant 
from the position of the rod, its angular velocity, and its angular accel-
eration at that instant. Suppose, for example, that the values of u, v, 
and a are known at a given instant and that we wish to determine 
the corresponding value of the force P, as well as the reactions at A 
and B. We should first determine the components ax and ay of the 
acceleration of the mass center G by the method of Sec. 15.8. We 
next apply d’Alembert’s principle (Fig. 16.12), using the expressions 
obtained for ax and ay. The unknown forces P, NA, and NB can then 
be determined by writing and solving the appropriate equations.

⎯ay
(q,w,a)

⎯a x (q,w,a)

A

B

P

a

q

w

l

G

Fig. 16.11

A

B

P

W

NA  

NB

=
⎯a xm

⎯a ym

a⎯I

GG

Fig. 16.12

 Suppose now that the applied force P, the angle u, and the 
angular velocity v of the rod are known at a given instant and that 
we wish to find the angular acceleration a of the rod and the com-
ponents ax and ay of the acceleration of its mass center at that instant, 
as well as the reactions at A and B. The preliminary kinematic study 
of the problem will have for its object to express the components ax 
and ay of the acceleration of G in terms of the angular acceleration 
a of the rod. This will be done by first expressing the acceleration 
of a suitable reference point such as A in terms of the angular accel-
eration a. The components ax and ay of the acceleration of G can 
then be determined in terms of a, and the expressions obtained car-
ried into Fig. 16.12. Three equations can then be derived in terms 
of a, NA, and NB and solved for the three unknowns (see Sample 
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1053Prob. 16.10). Note that the method of dynamic equilibrium can also 
be used to carry out the solution of the two types of problems we 
have considered (Fig. 16.13).
 When a mechanism consists of several moving parts, the 
approach just described can be used with each part of the mecha-
nism. The procedure required to determine the various unknowns is 
then similar to the procedure followed in the case of the equilibrium 
of a system of connected rigid bodies (Sec. 6.11).
 Earlier, we analyzed two particular cases of constrained plane 
motion: the translation of a rigid body, in which the angular accelera-
tion of the body is constrained to be zero, and the centroidal rotation, 
in which the acceleration a of the mass center of the body is con-
strained to be zero. Two other particular cases of constrained plane 
motion are of special interest: the noncentroidal rotation of a rigid 
body and the rolling motion of a disk or wheel. These two cases can 
be analyzed by one of the general methods described above. How-
ever, in view of the range of their applications, they deserve a few 
special comments.

Noncentroidal Rotation. The motion of a rigid body constrained 
to rotate about a fixed axis which does not pass through its mass 
center is called noncentroidal rotation. The mass center G of the 
body moves along a circle of radius r centered at the point O, where 
the axis of rotation intersects the plane of reference (Fig. 16.14). 
Denoting, respectively, by V and A the angular velocity and the 
angular acceleration of the line OG, we obtain the following expres-
sions for the tangential and normal components of the acceleration 
of G:

 at 5 ra   an 5 rv2 (16.7)

Since line OG belongs to the body, its angular velocity V and its 
angular acceleration A also represent the angular velocity and the 
angular acceleration of the body in its motion relative to G. Equa-
tions (16.7) define, therefore, the kinematic relation existing between 
the motion of the mass center G and the motion of the body about 
G. They should be used to eliminate at and an from the equations 
obtained by applying d’Alembert’s principle (Fig. 16.15) or the 
method of dynamic equilibrium (Fig. 16.16).

16.8 Constrained Plane Motion

Fig. 16.13
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NA  
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W
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O
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⎯r

⎯a t =⎯ra
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G

Fig. 16.14 
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Fig. 16.15

O

F1
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F3
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a

=  0– a⎯I ⎯a t–m

⎯a n–m

G

Fig. 16.16 
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1054 Plane Motion of Rigid Bodies: 
Forces and Accelerations

 An interesting relation is obtained by equating the moments 
about the fixed point O of the forces and vectors shown, respectively, 
in parts a and b of Fig. 16.15. We write

1l oMO 5 Ia 1 (mra)r 5 (I 1 mr 2)a

But according to the parallel-axis theorem, we have I 1 mr 
2 5 IO, 

where IO denotes the moment of inertia of the rigid body about the 
fixed axis. We therefore write

 oMO 5 IOa (16.8)

Although formula (16.8) expresses an important relation between the 
sum of the moments of the external forces about the fixed point O 
and the product IOa, it should be clearly understood that this for-
mula does not mean that the system of the external forces is equiva-
lent to a couple of moment IOa. The system of the effective forces, 
and thus the system of the external forces, reduces to a couple only 
when O coincides with G—that is, only when the rotation is centroi-
dal (Sec. 16.4). In the more general case of noncentroidal rotation, 
the system of the external forces does not reduce to a couple.
 A particular case of noncentroidal rotation is of special interest—
the case of uniform rotation, in which the angular velocity V is con-
stant. Since A is zero, the inertia couple in Fig. 16.16 vanishes and 
the inertia vector reduces to its normal component. This component 
(also called centrifugal force) represents the tendency of the rigid 
body to break away from the axis of rotation.

Rolling Motion. Another important case of plane motion is the 
motion of a disk or wheel rolling on a plane surface. If the disk is 
constrained to roll without sliding, the acceleration a of its mass 
center G and its angular acceleration A are not independent. Assum-
ing that the disk is balanced, so that its mass center and its geometric 
center coincide, we first write that the distance x traveled by G dur-
ing a rotation u of the disk is x 5 ru, where r is the radius of the 
disk. Differentiating this relation twice, we write

 a 5 ra (16.9)

O
O

=

F1

F2

F3
Ry

R x

(a) (b)

⎯r ⎯a nm

⎯a tm

a

a⎯I
G G

Fig. 16.15 (repeated)

O
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F2
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Ry

R x

a

=  0– a⎯I ⎯a t–m

⎯a n–m

G

Fig. 16.16 (repeated)

bee29400_ch16_1024-1079.indd Page 1054  12/16/08  10:32:47 AM user-s172bee29400_ch16_1024-1079.indd Page 1054  12/16/08  10:32:47 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1055 Recalling that the system of the effective forces in plane motion 
reduces to a vector ma and a couple IA, we find that in the particular 
case of the rolling motion of a balanced disk, the effective forces 
reduce to a vector of magnitude mra attached at G and to a couple 
of magnitude Ia. We may thus express that the external forces are 
equivalent to the vector and couple shown in Fig. 16.17.
 When a disk rolls without sliding, there is no relative motion 
between the point of the disk in contact with the ground and the 
ground itself. Thus as far as the computation of the friction force F 
is concerned, a rolling disk can be compared with a block at rest on 
a surface. The magnitude F of the friction force can have any value, 
as long as this value does not exceed the maximum value Fm 5 msN, 
where ms is the coefficient of static friction and N is the magnitude 
of the normal force. In the case of a rolling disk, the magnitude F of 
the friction force should therefore be determined independently of N 
by solving the equation obtained from Fig. 16.17.
 When sliding is impending, the friction force reaches its maxi-
mum value Fm 5 msN and can be obtained from N.
 When the disk rotates and slides at the same time, a relative 
motion exists between the point of the disk which is in contact with 
the ground and the ground itself, and the force of friction has the 
magnitude Fk 5 mkN, where mk is the coefficient of kinetic friction. 
In this case, however, the motion of the mass center G of the disk 
and the rotation of the disk about G are independent, and a is not 
equal to ra.
 These three different cases can be summarized as follows:

Rolling, no sliding: F # msN   a 5 ra
Rolling, sliding impending: F 5 msN   a 5 ra
Rotating and sliding: F 5 mkN   a and a independent

When it is not known whether or not a disk slides, it should first be 
assumed that the disk rolls without sliding. If F is found smaller than 
or equal to msN, the assumption is proved correct. If F is found larger 
than msN, the assumption is incorrect and the problem should be 
started again, assuming rotating and sliding.
 When a disk is unbalanced, i.e., when its mass center G does 
not coincide with its geometric center O, the relation (16.9) does not 
hold between a and a. However, a similar relation holds between 
the magnitude aO of the acceleration of the geometric center and 
the angular acceleration a of an unbalanced disk which rolls without 
sliding. We have

 aO 5 ra (16.10)

To determine a in terms of the angular acceleration a and the angular 
velocity v of the disk, we can use the relative-acceleration formula

 a 5 aG 5 aO 1 aG/O
 5 aO 1 (aG/O) t 1 (aG/O)n (16.11)

where the three component accelerations obtained have the direc-
tions indicated in Fig. 16.18 and the magnitudes aO 5 ra, (aG/O)t 5 
(OG)a, and (aG/O)n 5 (OG)v2.

16.8 Constrained Plane Motion

N

F

=
a⎯I

W

P

CC

G
G

ma (a = ra)

Fig. 16.17

O

C

aO

aO (aG/O)n

(aG/O)t

G

Fig. 16.18

Photo 16.4 As the ball hits the bowling alley, 
it first spins and slides, then rolls without sliding.
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1056

SAMPLE PROBLEM 16.6

The portion AOB of a mechanism consists of a 400-mm steel rod OB welded 
to a gear E of radius 120 mm which can rotate about a horizontal shaft O. 
It is actuated by a gear D and, at the instant shown, has a clockwise angular 
velocity of 8 rad/s and a counterclockwise angular acceleration of 40 rad/s2. 
Knowing that rod OB has a mass of 3 kg and gear E a mass of 4 kg and a 
radius of gyration of 85 mm, determine (a) the tangential force exerted by 
gear D on gear E, (b) the components of the reaction at shaft O.

SOLUTION

In determining the effective forces of the rigid body AOB, gear E and rod 
OB will be considered separately. Therefore, the components of the accel-
eration of the mass center GOB of the rod will be determined first:

 (aOB) t 5 ra 5 (0.200 m)(40 rad/s2) 5 8 m/s2

 (aOB)n 5 rv2 5 (0.200 m)(8 rad/s)2 5 12.8 m/s2

Equations of Motion. Two sketches of the rigid body AOB have been 
drawn. The first shows the external forces consisting of the weight WE of 
gear E, the weight WOB of the rod OB, the force F exerted by gear D, and 
the components Rx and Ry of the reaction at O. The magnitudes of the 
weights are, respectively,

 WE 5 mEg 5 (4 kg) (9.81 m/s2) 5 39.2 N
 WOB 5 mOBg 5 (3 kg) (9.81 m/s2) 5 29.4 N

The second sketch shows the effective forces, which consist of a couple IEA 
(since gear E is in centroidal rotation) and of a couple and two vector com-
ponents at the mass center of OB. Since the accelerations are known, we 
compute the magnitudes of these components and couples:

 IEa 5 mEk2
Ea 5 (4 kg) (0.085 m)2(40 rad/s2) 5 1.156 N ? m

 mOB(aOB) t 5 (3 kg) (8 m/s2) 5 24.0 N
 mOB(aOB)n 5 (3 kg) (12.8 m/s2) 5 38.4 N

IOBa 5 ( 1
12mOBL2)a 5 1

12(3 kg) (0.400 m)2(40 rad/s2) 5 1.600 N ? m

Expressing that the system of the external forces is equivalent to the system 
of the effective forces, we write the following equations:

1loMO 5 o(MO)eff :
 F(0.120 m) 5 IEa 1 mOB(aOB)t(0.200 m) 1 IOBa

 F(0.120 m) 5 1.156 N ? m 1 (24.0 N)(0.200 m) 1 1.600 N ? m

 F 5 63.0 N F 5 63.0 Nw ◀ 

y
1 oFx 5 o(Fx)eff : Rx 5 mOB(aOB)t

 Rx 5 24.0 N Rx 5 24.0 N y ◀

1xoFy 5 o(Fy)eff :   Ry 2 F 2 WE 2 WOB 5 mOB(aOB)n

 Ry 2 63.0 N 2 39.2 N 2 29.4 N 5 38.4 N

 Ry 5 170.0 N Ry 5 170.0 Nx ◀

O

400 mm

120 mm

D E
A

B

aw

B

O

GOB
(aOB)t

(aOB)n

⎯

⎯0.200 m

a⎯IOB

a⎯IE

B B

EE

A OO

0.120 mm

GOB
GOB

WOB

WE

R x

F

Ry
=

mOB(aOB)t⎯
0.200 m mOB(aOB)n⎯
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SAMPLE PROBLEM 16.7

A 6 3 8 in. rectangular plate weighing 60 lb is suspended from two pins A 
and B. If pin B is suddenly removed, determine (a) the angular acceleration 
of the plate, (b) the components of the reaction at pin A, immediately after 
pin B has been removed.

SOLUTION

a. Angular Acceleration. We observe that as the plate rotates about point 
A, its mass center G describes a circle of radius r with center at A.
 Since the plate is released from rest (v 5 0), the normal component 
of the acceleration of G is zero. The magnitude of the acceleration a of the 
mass center G is thus a 5 ra. We draw the diagram shown to express that 
the external forces are equivalent to the effective forces:

1ioMA 5 o(MA)eff : W x 5 (ma)r 1 Ia

Since a 5 ra, we have

 

W x 5 m(ra)r 1 Ia   a 5
W x

W
g

 r 2 1 I
 

(1)

The centroidal moment of inertia of the plate is

 I 5
m
12

(a2 1 b2) 5
60 lb

12(32 .2 ft/s2)
 [ ( 8

12 ft)2 1 ( 6
12 ft)2]

 5 0.1078 lb ? ft ? s2

Substituting this value of I together with W 5 60 lb, r 5 5
12 ft, and x 5 4

12 ft 
into Eq. (1), we obtain

 a 5 146.4 rad/s2 A 5 46.4 rad/s2 i ◀ 

b. Reaction at A. Using the computed value of a, we determine the mag-
nitude of the vector ma attached at G.

ma 5 mra 5
60 lb

32.2 ft/s2  ( 5
12 ft) (46.4 rad/s2) 5 36.0 lb

Showing this result on the diagram, we write the equations of motion

y
1 oFx 5 o(Fx)eff :  Ax 5 23

5 (36 lb)
 5 221.6 lb Ax 5 21.6 lb z ◀

1xoFy 5 o(Fy)eff :  Ay 2 60 lb 5 24
5 (36 lb)

 Ay 5 131.2 lb Ay 5 31.2 lbx ◀

The couple IA is not involved in the last two equations; nevertheless, it should 
be indicated on the diagram.

BA

6 in.

8 in.

⎯ r = 5 in.

⎯am

G

A

= a⎯I

36 lb

G

A

= a⎯I4

45

53

3

G

A

⎯a
a

⎯r

⎯x

w = 0

⎯x = 4 in.

A x

Ay

G

A

W
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SAMPLE PROBLEM 16.8

A sphere of radius r and weight W is released with no initial velocity on 
the incline and rolls without slipping. Determine (a) the minimum value of 
the coefficient of static friction compatible with the rolling motion, (b) the 
velocity of the center G of the sphere after the sphere has rolled 10 ft, 
(c) the velocity of G if the sphere were to move 10 ft down a frictionless 
30° incline.

SOLUTION

a. Minimum Ms for Rolling Motion. The external forces W, N, and F form 
a system equivalent to the system of effective forces represented by the vector 
ma and the couple IA. Since the sphere rolls without sliding, we have a 5 ra.

1ioMC 5 o(MC)eff :  (W sin u)r 5 (ma)r 1 Ia
(W sin u)r 5 (mra)r 1 Ia

Noting that m 5 W/g and I 5 2
5 mr2, we write

 (W sin u)r 5 aW
g

 rab r 1
2
5

 
W
g

 r2a     a 5 1
5g sin u

7r

 a 5 ra 5
5g sin u

7
5

5(32.2 ft/s2) sin 30°
7

5 11.50 ft /s2

1qoFx 5 o(Fx)eff :  W sin u 2 F 5 ma

W sin u 2 F 5
W
g

 
5g sin u

7
F 5 12

7W sin u 5 2
7W sin 30°   F 5 0.143W b 30°

1poFy 5 o(Fy)eff :  N 2 W cos u 5 0
N 5 W cos u 5 0.866W   N 5 0.866W a 60°

 
ms 5

F
N

5
0.143W
0.866W  

ms 5 0.165 ◀

b. Velocity of Rolling Sphere. We have uniformly accelerated motion:

 v0 5 0    a 5 11.50 ft/s2    x 5 10 ft    x0 5 0
 v2 5 v2

0 1 2a(x 2 x0)    v2 5 0 1 2(11.50 ft/s2)(10 ft)
 v 5 15.17 ft/s v 5 15.17 ft/s c 30° ◀

c. Velocity of Sliding Sphere. Assuming now no friction, we have F 5 0 
and obtain

1ioMG 5 o(MG)eff :    0 5 Ia     a 5 0

1qoFx 5 o(Fx)eff :    W sin 30° 5 ma     0.50W 5 
W
g

 a

a 5 116.1 ft/s2     a 5 16.1 ft/s2 c 30°

Substituting a 5 16.1 ft/s2 into the equations for uniformly accelerated 
motion, we obtain

v2 5 v2
0 1 2a(x 2 x0)   v2 5 0 1 2(16.1 ft/s2)(10 ft)

 v 5 17.94 ft/s v 5 17.94 ft/s c 30° ◀

q = 30°

r
G

C

= ⎯am

a⎯I

C

C

G
G

xx

yy

W

N

F
q

⎯a

a
G

C

r
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SAMPLE PROBLEM 16.9

A cord is wrapped around the inner drum of a wheel and pulled horizontally 
with a force of 200 N. The wheel has a mass of 50 kg and a radius of gyra-
tion of 70 mm. Knowing that ms 5 0.20 and mk 5 0.15, determine the 
acceleration of G and the angular acceleration of the wheel.

SOLUTION

a. Assume Rolling without Sliding. In this case, we have

a 5 ra 5 (0.100 m)a

We can determine whether this assumption is justified by comparing the 
friction force obtained with the maximum available friction force. The 
moment of inertia of the wheel is

I 5 mk2 5 (50 kg)(0.070 m)2 5 0.245 kg ? m2

Equations of Motion

1ioMC 5 o(MC)eff :    (200 N)(0.040 m) 5 ma(0.100 m) 1 Ia
 8.00 N ? m 5 (50 kg)(0.100 m)a(0.100 m) 1 (0.245 kg ? m2)a
 a 5 110.74 rad/s2

 a 5 ra 5 (0.100 m)(10.74 rad/s2) 5 1.074 m/s2

y
1 oFx 5 o(Fx)eff :    F 1 200 N 5 ma
  F 1 200 N 5 (50 kg)(1.074 m/s2)
  F 5 2146.3 N F 5 146.3 N z

1xoFy 5 o(Fy)eff :
N 2 W 5 0    N 2 W 5 mg 5 (50 kg)(9.81 m/s2) 5 490.5 N

N 5 490.5 Nx

Maximum Available Friction Force

Fmax 5 msN 5 0.20(490.5 N) 5 98.1 N

Since F . Fmax, the assumed motion is impossible.

b. Rotating and Sliding. Since the wheel must rotate and slide at the 
same time, we draw a new diagram, where a and A are independent and 
where

F 5 Fk 5 mkN 5 0.15(490.5 N) 5 73.6 N

From the computation of part a, it appears that F should be directed to the 
left. We write the following equations of motion:

y
1 oFx 5 o(Fx)eff :  200 N 2 73.6 N 5 (50 kg)a
 a 5 12.53 m/s2 a 5 2.53 m/s2 y ◀

1ioMG 5 o(MG)eff :
(73.6 N)(0.100 m) 2 (200 N)(0.060 m) 5 (0.245 kg ? m2)a

a 5 218.94 rad/s2  A 5 18.94 rad/s2  
l ◀

F = 73.6 N

= a⎯I ⎯am

C

G200 N

C

G

0.060 m

N

W

0.100 m

G

100 mm 60 mm

200 N

= a⎯I ⎯am

C

G200 N
C

G

0.040 mF

N

W

0.100 m

⎯a

a

G

C

r = 0.100 m
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SAMPLE PROBLEM 16.10

The extremities of a 4-ft rod weighing 50 lb can move freely and with no 
friction along two straight tracks as shown. If the rod is released with no 
velocity from the position shown, determine (a) the angular acceleration of 
the rod, (b) the reactions at A and B.

SOLUTION

Kinematics of Motion. Since the motion is constrained, the acceleration 
of G must be related to the angular acceleration A. To obtain this relation, 
we first determine the magnitude of the acceleration aA of point A in terms 
of a. Assuming that A is directed counterclockwise and noting that aB/A 5 
4a, we write

aB 5 aA 1 aB/A

[aB c 45°] 5 [aA y] 1 [4a d 60°]

Noting that f 5 75° and using the law of sines, we obtain

aA 5 5.46a    aB 5 4.90a

The acceleration of G is now obtained by writing

a 5 aG 5 aA 1 aG/A

a 5 [5.46a y] 1 [2a d 60°]

Resolving a into x and y components, we obtain

 ax 5 5.46a 2 2a cos 60° 5 4.46a    ax 5 4.46a y
 ay 5 22a sin 60° 5 21.732a        ay 5 1.732aw

Kinetics of Motion. We draw a free-body-diagram equation expressing that 
the system of the external forces is equivalent to the system of the effective 
forces represented by the vector of components max and may attached at G 
and the couple IA. We compute the following magnitudes:

I 5 1
12ml2 5

1
12

 
50 lb

32.2 ft/s2  (4 ft)2 5 2.07 lb ? ft ? s2      Ia 5 2.07a

max 5
50

32.2
 (4.46a) 5 6.93a     may 5 2

50
32.2

(1.732a) 5 22.69a

Equations of Motion

1loME 5 o(ME)eff :
(50)(1.732) 5 (6.93a)(4.46) 1 (2.69a)(1.732) 1 2.07a

a 5 12.30 rad/s2    A 5 2.30 rad/s2 l ◀

y
1 oFx 5 o(Fx)eff :    RB sin 45° 5 (6.93)(2.30) 5 15.94

RB 5 22.5 lb    RB 5 22.5 lb a 45° ◀

1xoFy 5 o(Fy)eff : RA 1 RB cos 45° 2 50 5 2(2.69)(2.30)
RA 5 26.19 2 15.94 1 50 5 27.9 lb    RA 5 27.9 lbx ◀

=

⎯aym

⎯axm
a⎯I

45°

45°

EE

50 lb

1.732 ft1.732 ft 1.732 ft

1 ft

RA

RB

4.46 ft

⎯a

⎯a

a

ay⎯

ax⎯

aB

aA

aA

aA

aB/A

aG/A

aB

45° 60°

60°

f

b

G

A

B

G

A

B

D

b = 45° 30°

4 ft
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we considered the plane motion of rigid bodies under constraints. 
We found that the types of constraints involved in engineering problems vary 

widely. For example, a rigid body may be constrained to rotate about a fixed axis or 
to roll on a given surface, or it may be pin-connected to collars or to other bodies.

1. Your solution of a problem involving the constrained motion of a rigid 
body, will, in general, consist of two steps. First, you will consider the kinematics 
of the motion, and then you will solve the kinetics portion of the problem.

2. The kinematic analysis of the motion is done by using the methods you 
learned in Chap. 15. Due to the constraints, linear and angular accelerations will 
be related. (They will not be independent, as they were in the last lesson.) You 
should establish relationships among the accelerations (angular as well as linear), 
and your goal should be to express all accelerations in terms of a single unknown 
acceleration. This is the first step taken in the solution of each of the sample 
problems in this lesson.
 a. For a body in noncentroidal rotation, the components of the acceleration 
of the mass center are at 5 ra and an 5 rv2, where v will generally be known 
[Sample Probs. 16.6 and 16.7].
 b. For a rolling disk or wheel, the acceleration of the mass center is a 5 ra 
[Sample Prob. 16.8].
 c. For a body in general plane motion, your best course of action, if neither 
a nor a is known or readily obtainable, is to express a in terms of a [Sample 
Prob. 16.10].

3. The kinetic analysis of the motion is carried out as follows.
 a. Start by drawing a free-body-diagram equation. This was done in all 
the sample problems of this lesson. In each case the left-hand diagram shows the 
external forces, including the applied forces, the reactions, and the weight of the 
body. The right-hand diagram shows the vector ma and the couple IA.
 b. Next, reduce the number of unknowns in the free-body-diagram equation 
by using the relationships among the accelerations that you found in your kine-
matic analysis. You will then be ready to consider equations that can be written 
by summing components or moments. Choose first an equation that involves a 
single unknown. After solving for that unknown, substitute the value obtained into 
the other equations, which you will then solve for the remaining unknowns.

(continued)
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4. When solving problems involving rolling disks or wheels, keep in mind the 
following.
 a. If sliding is impending, the friction force exerted on the rolling body has 
reached its maximum value, Fm 5 msN, where N is the normal force exerted on 
the body and ms is the coefficient of static friction between the surfaces of 
contact.
 b. If sliding is not impending, the friction force F can have any value smaller 
than Fm and should, therefore, be considered as an independent unknown. After 
you have determined F, be sure to check that it is smaller than Fm; if it is not, the 
body does not roll, but rotates and slides as described in the next paragraph.
 c. If the body rotates and slides at the same time, then the body is not 
rolling and the acceleration a of the mass center is independent of the angular 
acceleration a of the body: a fi ra. On the other hand, the friction force has a 
well-defined value, F 5 mkN, where mk is the coefficient of kinetic friction between 
the surfaces of contact.
 d. For an unbalanced rolling disk or wheel, the relation a 5 ra between 
the acceleration a of the mass center G and the angular acceleration a of the 
disk or wheel does not hold anymore. However, a similar relation holds between 
the acceleration aO of the geometric center O and the angular acceleration a of 
the disk or wheel: aO 5 ra. This relation can be used to express a in terms of 
a and v (Fig. 16.18).

5. For a system of connected rigid bodies, the goal of your kinematic analysis 
should be to determine all the accelerations from the given data, or to express 
them all in terms of a single unknown. (For systems with several degrees of free-
dom, you will need to use as many unknowns as there are degrees of freedom.)
  Your kinetic analysis will generally be carried out by drawing a free-body-
diagram equation for the entire system, as well as for one or several of the rigid 
bodies involved. In the latter case, both internal and external forces should be 
included, and care should be taken to represent with equal and opposite vectors 
the forces that two bodies exert on each other.

bee29400_ch16_1024-1079.indd Page 1062  12/16/08  10:33:06 AM user-s172bee29400_ch16_1024-1079.indd Page 1062  12/16/08  10:33:06 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



PROBLEMS
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 16.75 Show that the couple IA of Fig. 16.15 can be eliminated by attach-
ing the vectors mat and man at a point P called the center of per-
cussion, located on line OG at a distance GP 5 k2/r  from the mass 
center of the body.

 16.76 A uniform slender rod of length L 5 36 in. and weight W 5 4 lb hangs 
freely from a hinge at A. If a force P of magnitude 1.5 lb is applied 
at B horizontally to the left (h 5 L), determine (a) the angular 
acceleration of the rod, (b) the components of the reaction at A.

G

a

⎯r

m⎯a t

m⎯a n

P

O

Fig. P16.75

C

G

B

A

P

L
2

L
2

r⎯

Fig. P16.78

A

B

h

L

P

Fig. P16.76

A

A'

l

x

w

Fig. P16.80

 16.77 In Prob. 16.76, determine (a) the distance h for which the hori-
zontal component of the reaction at A is zero, (b) the correspond-
ing angular acceleration of the rod.

 16.78 A uniform slender rod of length L 5 900 mm and mass m 5 4 kg 
is suspended from a hinge at C. A horizontal force P of magnitude 
75 N is applied at end B. Knowing that r  5 225 mm, determine 
(a) the angular acceleration of the rod, (b) the components of the 
reaction at C.

 16.79 In Prob. 16.78, determine (a) the distance r  for which the hori-
zontal component of the reaction at C is zero, (b) the correspond-
ing angular acceleration of the rod.

 16.80 A uniform slender rod of length l and mass m rotates about a verti-
cal axis AA9 with a constant angular velocity V. Determine the 
tension in the rod at a distance x from the axis of rotation.
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1064 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.81 A large flywheel is mounted on a horizontal shaft and rotates at a 
constant rate of 1200 rpm. Experimental data indicate that the total 
force exerted by the flywheel on the shaft varies from 55 kN upward 
to 85 kN downward. Determine (a) the mass of the flywheel, 
(b) the distance from the center of the shaft to the mass center of 
the flywheel.

 16.82 A turbine disk of mass 26 kg rotates at a constant rate of 9600 rpm. 
Knowing that the mass center of the disk coincides with the  center 
of rotation O, determine the reaction at O immediately after a single 
blade at A, of mass 45 g, becomes loose and is thrown off.

 16.83 The shutter shown was formed by removing one quarter of a disk of 
0.75-in. radius and is used to interrupt a beam of light emanating 
from a lens at C. Knowing that the shutter weighs 0.125 lb and rotates 
at the constant rate of 24 cycles per second, determine the magnitude 
of the force exerted by the shutter on the shaft at A.

 16.84 and 16.85 A uniform rod of length L and mass m is supported 
as shown. If the cable attached at end B suddenly breaks, determine 
(a) the acceleration of end B, (b) the reaction at the pin support.

A
BC

L

b = L
4

Fig. P16.85

0.6 m

0.3 m

B

A

C

q

Fig. P16.87

B

C

A

r
w

Fig. P16.83

D

B

h

C

A

Fig. P16.86

A B

L

Fig. P16.84

AO 300 mm

Fig. P16.82

 16.86 A slender uniform cone of mass m can swing freely about the 
horizontal rod AB. If the cone is released from rest in the position 
shown, determine (a) the acceleration of the tip D, (b) the reaction 
at C.

 16.87 The object ABC consists of two slender rods welded together at 
point B. Rod AB has a mass of 1 kg and bar BC has a mass of 2 kg. 
Knowing the magnitude of the angular velocity of ABC is 10 rad/s 
when u 5 0, determine the components of the reaction at point C 
when u 5 0.
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1065Problems 16.88 An 8-lb slender rod AB and a 5-lb slender rod BC are connected 
by a pin at B and by the cord AC. The assembly can rotate in a 
vertical plane under the combined effect of gravity and a couple 
M applied to rod BC. Knowing that in the position shown the 
angular velocity of the assembly is zero and the tension in cord AC 
is equal to 6 lb, determine (a) the angular acceleration of the 
assembly, (b) the magnitude of the couple M.

A

B

D C E

200 mm

150 mm

150 mm

200 mm

M

Fig. P16.89

12 in.

9 in.

12 in.

M

BA

C

Fig. P16.88

A B80 mm

C

120 mm

Fig. P16.90

 16.89 Two uniform rods, ABC of mass 3 kg and DCE of mass 4 kg, 
are connected by a pin at C and by two cords BD and BE. The 
T-shaped assembly rotates in a vertical plane under the combined 
effect of gravity and of a couple M which is applied to rod ABC. 
Knowing that at the instant shown the tension is 8 N in cord BD, 
determine (a) the angular acceleration of the assembly, (b) the 
couple M.

 16.90 A 1.5-kg slender rod is welded to a 5-kg uniform disk as shown. 
The assembly swings freely about C in a vertical plane. Knowing 
that in the position shown the assembly has an angular velocity of 
10 rad/s clockwise, determine (a) the angular acceleration of the 
assembly, (b) the components of the reaction at C.

 16.91 A 5-kg uniform disk is attached to the 3-kg uniform rod BC by 
means of a frictionless pin AB. An elastic cord is wound around 
the edge of the disk and is attached to a ring at E. Both ring E 
and rod BC can rotate freely about the vertical shaft. Knowing that 
the system is released from rest when the tension in the elastic 
cord is 15 N, determine (a) the angular acceleration of the disk, 
(b) the acceleration of the center of the disk.

 16.92 Derive the equation oMC 5 ICa for the rolling disk of Fig. 16.17, 
where oMC represents the sum of the moments of the external 
forces about the instantaneous center C, and IC is the moment of 
inertia of the disk about C.

 16.93 Show that in the case of an unbalanced disk, the equation derived 
in Prob. 16.92 is valid only when the mass center G, the geometric 
center O, and the instantaneous center C happen to lie in a straight 
line.

D

z

B

75 mm A

150 mm C

x

y

E

Fig. P16.91
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1066 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.94 A wheel of radius r and centroidal radius of gyration k is released from 
rest on the incline and rolls without sliding. Derive an expression for 
the acceleration of the center of the wheel in terms of r, k, b, and g.

 16.95 A flywheel is rigidly attached to a shaft of 1.5-in. radius that can 
roll along parallel rails as shown. When released from rest, the 
system rolls 16 ft in 40 s. Determine the centroidal radius of gyra-
tion of the system.

b = 10°

S
C

P

Fig. P16.97

P

G

Fig. P16.99 and P16.103

b

r

Fig. P16.94

G
P

Fig. P16.98 and P16.102

P

G

Fig. P16.101 and P16.105

P

G

Fig. P16.100 and P16.104

r

15° Fig. P16.95 and P16.96

 16.96 A flywheel of centroidal radius of gyration k is rigidly attached to 
a shaft that can roll along parallel rails. Denoting by ms the coeffi-
cient of static friction between the shaft and the rails, derive an 
expression for the largest angle of inclination b for which no 
 slipping will occur.

 16.97 A homogeneous sphere S, a uniform cylinder C, and a thin pipe P 
are in contact when they are released from rest on the incline 
shown. Knowing that all three objects roll without slipping, deter-
mine, after 4 s of motion, the clear distance between (a) the pipe 
and the cylinder, (b) the cylinder and the sphere.

 16.98 through 16.101 A drum of 4-in. radius is attached to a disk of 
8-in. radius. The disk and drum have a combined weight of 10 lb 
and a combined radius of gyration of 6 in. A cord is attached as 
shown and pulled with a force P of magnitude 5 lb. Knowing that 
the coefficients of static and kinetic friction are ms 5 0.25 and 
mk 5 0.20, respectively, determine (a) whether or not the disk slides, 
(b) the angular acceleration of the disk and the  acceleration of G.

 16.102 through 16.105 A drum of 60-mm radius is attached to a disk 
of 120-mm radius. The disk and drum have a total mass of 6 kg and 
a combined radius of gyration of 90 mm. A cord is attached as 
shown and pulled with a force P of magnitude 20 N. Knowing that 
the disk rolls without sliding, determine (a) the angular acceleration 
of the disk and the acceleration of G, (b) the minimum value of the 
coefficient of static friction compatible with this motion.
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1067Problems 16.106 through 16.108 A bar of mass m is held as shown between 
four disks, each of mass m9 and radius r 5 75 mm. Determine the 
acceleration of the bar immediately after it has been released from 
rest, knowing that the normal forces on the disks are sufficient to 
prevent any slipping and assuming that (a) m 5 5 kg and m9 5 
2 kg, (b) the mass m9 of the disks is negligible, (c) the mass m of 
the bar is negligible.

B

A

Fig. P16.106 

B

A

Fig. P16.107 

B

A

Fig. P16.108 

 16.109 Two uniform disks A and B, each of weight 4 lb, are connected 
by a 3-lb rod CD as shown. A counterclockwise couple M of 
moment 1.5 lb ? ft is applied to disk A. Knowing that the disks 
roll without sliding, determine (a) the acceleration of the center 
of each disk, (b) the horizontal component of the force exerted on 
disk B by pin D.

 16.110 Gear C has a weight of 10 lb and a centroidal radius of gyration 
of 3 in. The uniform bar AB has a weight of 6 lb and gear D is 
stationary. If the system is released from rest in the position shown, 
determine (a) the angular acceleration of gear C, (b) the accelera-
tion of point B.

 16.111 A half section of a uniform cylinder of mass m is at rest when a 
force P is applied as shown. Assuming that the section rolls without 
sliding, determine (a) its angular acceleration, (b) the minimum 
value of ms compatible with the motion.

M
6 in.

2 in. A B

C D

6 in.
M

6 in.
A B

C D

6 in.

Fig. P16.109

10 in.

5 in.

D

B

C

A

Fig. P16.110O
BA

Gr

P

Fig. P16.111

 16.112 Solve Prob. 16.111, assuming that the force P applied at B is 
directed horizontally to the right.
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1068 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.113 A small clamp of mass mB is attached at B to a hoop of mass mh. 
The system is released from rest when u 5 90° and rolls without 
sliding. Knowing that mh 5 3mB, determine (a) the angular accel-
eration of the hoop, (b) the horizontal and vertical components of 
the acceleration of B.

 16.114 A small clamp of mass mB is attached at B to a hoop of mass mh. 
Knowing that the system is released from rest and rolls without 
sliding, derive an expression for the angular acceleration of the 
hoop in terms of mB, mh, r, and u.

 16.115 The center of gravity G of a 1.5-kg unbalanced tracking wheel is 
located at a distance r 5 18 mm from its geometric center B. The 
radius of the wheel is R 5 60 mm and its centroidal radius of 
gyration is 44 mm. At the instant shown the center B of the wheel 
has a velocity of 0.35 m/s and an acceleration of 1.2 m/s2, both 
directed to the left. Knowing that the wheel rolls without sliding 
and neglecting the mass of the driving yoke AB, determine the 
horizontal force P applied to the yoke.

 16.116 A 2-kg bar is attached to a 5-kg uniform cylinder by a square pin, 
P, as shown. Knowing that r 5 0.4 m, h 5 0.2 m, u 5 20°, L 5 
0.5 m and v 5 2 rad/s at the instant shown, determine the reac-
tions at P at this instant assuming that the cylinder rolls without 
sliding down the incline.

 16.117 The ends of the 10-kg uniform rod AB are attached to collars of 
negligible mass that slide without friction along fixed rods. If the 
rod is released from rest when u 5 25°, determine immediately 
after release (a) the angular acceleration of the rod, (b) the reaction 
at A, (b) the reaction at B.

B

A

r

q

Fig. P16.113 and P16.114

P

A

B G

r = 18 mm

R = 60 mm

Fig. P16.115

w

L

h
r

P

q

Fig. P16.116

A

B

q

l = 1.2 m

Fig. P16.117 and P16.118 

30 in.

30°
A

B

Fig. P16.119

 16.118 The ends of the 10-kg uniform rod AB are attached to collars of 
negligible mass that slide without friction along fixed rods. A verti-
cal force P is applied to collar B when u 5 25°, causing the collar 
to start from rest with an upward acceleration of 12 m/s2. Deter-
mine (a) the force P, (b) the reaction at A.

 16.119 The motion of the 8-lb uniform rod AB is guided by small wheels 
of negligible weight that roll along without friction in the slots 
shown. If the rod is released from rest in the position shown, deter-
mine immediately after release (a) the angular acceleration of the 
rod, (b) the reaction at B.
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1069Problems 16.120 The 4-lb uniform rod AB is attached to collars of negligible mass 
which may slide without friction along the fixed rods shown. Rod AB 
is at rest in the position u 5 25° when a horizontal force P is applied 
to collar A, causing it to start moving to the left with an acceleration 
of 12 ft/s2. Determine (a) the force P, (b) the reaction at B.

25 in.

q 70°

A

B

Fig. P16.120 and P16.121

60° q

L
A

B

Fig. P16.122

200 mm

200 mm

100 mm

A

B

D

C

Fig. P16.124

 16.121 The 4-lb uniform rod AB is attached to collars of negligible mass 
which may slide without friction along the fixed rods shown. If rod 
AB is released from rest in the position u 5 25°, determine imme-
diately after release (a) the angular acceleration of the rod, (b) the 
reaction at B.

 16.122 The motion of the uniform rod AB of mass 5 kg and length L 5 
750 mm is guided by small wheels of negligible mass that roll on 
the surface shown. If the rod is released from rest when u 5 20°, 
determine immediately after release (a) the angular acceleration of 
the rod, (b) the reaction at A.

 16.123 End A of the 8-kg uniform rod AB is attached to a collar that can 
slide without friction on a vertical rod. End B of the rod is attached 
to a vertical cable BC. If the rod is released from rest in the posi-
tion shown, determine immediately after release (a) the angular 
acceleration of the rod, (b) the reaction at A.

L = 750 mm

30° = q
A

B

C

Fig. P16.123

 16.124 The 4-kg uniform rod ABD is attached to the crank BC and is fit-
ted with a small wheel that can roll without friction along a vertical 
slot. Knowing that at the instant shown crank BC rotates with an 
angular velocity of 6 rad/s clockwise and an angular acceleration of 
15 rad/s2 counterclockwise, determine the reaction at A.
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1070 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.125 The 250-mm uniform rod BD, of mass 5 kg, is connected as shown 
to disk A and to a collar of negligible mass, which may slide freely 
along a vertical rod. Knowing that disk A rotates counterclockwise 
at a constant rate of 500 rpm, determine the reactions at D when 
u 5 0.

 16.126 Solve Prob. 16.125 when u 5 90°.

 16.127 The 15-in. uniform rod BD weighs 8 lb and is connected as shown 
to crank AB and to a collar D of negligible weight, which can slide 
freely along a horizontal rod. Knowing that crank AB rotates coun-
terclockwise at the constant rate of 300 rpm, determine the reac-
tion at D when u 5 0.

 16.128 Solve Prob. 16.127 when u 5 90°.

 16.129 The 3-kg uniform rod AB is connected to crank BD and to a collar 
of negligible weight, which can slide freely along rod EF. Knowing 
that in the position shown crank BD rotates with an angular veloc-
ity of 15 rad/s and an angular acceleration of 60 rad/s2, both clock-
wise, determine the reaction at A.

50 mm

150 mm

A

B

D

q

Fig. P16.125

D

A

B

q

3 in.
9 in.

Fig. P16.127

30°

80 mm

500 mm

B

D

A
E

F

Fig. P16.129

 16.130 In Prob. 16.129, determine the reaction at A, knowing that in 
the position shown crank BD rotates with an angular velocity of 
15 rad/s clockwise and an angular acceleration of 60 rad/s2 
counterclockwise.

 16.131 A driver starts his car with the door on the passenger’s side wide 
open (u 5 0). The 80-lb door has a centroidal radius of gyration 
k 5 12.5 in., and its mass center is located at a distance r 5 22 in. 
from its vertical axis of rotation. Knowing that the driver maintains 
a constant acceleration of 6 ft/s2, determine the angular velocity of 
the door as it slams shut (u 5 90°).

 16.132 For the car of Prob. 16.131, determine the smallest constant accel-
eration that the driver can maintain if the door is to close and latch, 
knowing that as the door hits the frame its angular velocity must be 
at least 2 rad/s for the latching mechanism to operate.

 16.133 Two 8-lb uniform bars are connected to form the linkage shown. 
Neglecting the effect of friction, determine the reaction at D 
immediately after the linkage is released from rest in the position 
shown.

A

B
q

a

w

Fig. P16.131

15 in. 15 in.

30 in.

A
C

B

D

Fig. P16.133
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1071Problems 16.134 The linkage ABCD is formed by connecting the 3-kg bar BC to 
the 1.5-kg bars AB and CD. The motion of the linkage is con-
trolled by the couple M applied to bar AB. Knowing that at the 
instant shown bar AB has an angular velocity of 24 rad/s clock-
wise and no angular acceleration, determine (a) the couple M, 
(b) the components of the force exerted at B on rod BC.

 16.135 Solve Prob. 16.134, assuming that at the instant shown bar AB has 
an angular velocity of 24 rad/s clockwise and an angular accelera-
tion of 160 rad/s2 counterclockwise.

 16.136 The 4-lb rod AB and the 6-lb rod BC are connected as shown to 
a disk that is made to rotate in a vertical plane at a constant angular 
velocity of 6 rad/s clockwise. For the position shown, determine 
the forces exerted at A and B on rod AB.

 16.137 The 4-lb rod AB and the 6-lb rod BC are connected as shown to 
a disk that is made to rotate in a vertical plane. Knowing that at 
the instant shown the disk has an angular acceleration of 18 rad/s2 
clockwise and no angular velocity, determine the components of 
the forces exerted at A and B on rod AB.

 16.138 In the engine system shown l 5 250 mm and b 5 100 mm. The 
connecting rod BD is assumed to be a 1.2-kg uniform slender rod 
and is attached to the 1.8-kg piston P. During a test of the system, 
crank AB is made to rotate with a constant angular velocity of 
600 rpm clockwise with no force applied to the face of the piston. 
Determine the forces exerted on the connecting rod at B and D 
when u 5 180°. (Neglect the effect of the weight of the rod.)

 16.139 Solve Prob. 16.138 when u 5 90°.

 16.140 Two identical rods AC and CE, each of weight W, are attached to 
form the linkage shown. Knowing that at the instant shown the 
force P causes the roller attached at D to move to the left with a 
constant velocity vD, determine the magnitude of the force P in 
terms of L, W, vD, and u.

A
C

B D

300 mm

125 mm

M

Fig. P16.134

O

C

A B

3 in.

9 in.

6 in.

Fig. P16.136 and P16.137

A

B

P

D

l

b
q

Fig. P16.138

q q

A E

D

C

B

L
2

L
2

P

Fig. P16.140
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1072 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.141 At the instant shown, the 6 m long, uniform 50-kg pole ABC has 
an angular velocity of 1 rad/s counterclockwise and point C is slid-
ing to the right. A 500 N horizontal force P acts at B. Knowing the 
coefficient of kinetic friction between the pole and the ground is 
0.3, determine at this instant (a) the acceleration of the center of 
gravity, (b) the normal force between the pole and the ground.

 * 16.142 A uniform disk of mass m 5 4 kg and radius r 5 150 mm is sup-
ported by a belt ABCD that is bolted to the disk at B and C. If 
the belt suddenly breaks at a point located between A and B, deter-
mine, (a) the acceleration of the center of the disk, (b) the tension 
in portion CD of the belt.

B

P

A

80°
2 m

C

w

Fig. P16.141

 * 16.143 Two disks, each of mass m and radius r are connected as shown 
by a continuous chain belt of negligible mass. If a pin at point C 
of the chain belt is suddenly removed, determine (a) the angular 
acceleration of each disk, (b) the tension in the left-hand portion 
of the belt, (c) the acceleration of the center of disk B.

 * 16.144 A uniform rod AB, of weight 30 lb and length 3 ft, is attached to 
the 40-lb cart C. Neglecting friction, determine immediately after 
the system has been released from rest, (a) the acceleration of the 
cart, (b) the angular acceleration of the rod.

r

G
30°30°

B

A D

C

Fig. P16.142

 * 16.145 A uniform slender bar AB of mass m is suspended as shown from 
a uniform disk of the same mass m. Neglecting the effect of fric-
tion, determine the accelerations of points A and B immediately 
after a horizontal force P has been applied at B.

A

B

C

r

r

Fig. P16.143

B

A

25�

C

Fig. P16.144

A

B

L

r

P

Fig. P16.145
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1073Problems * 16.146 The 5-kg slender rod AB is pin-connected to an 8-kg uniform disk 
as shown. Immediately after the system is released from rest, 
determine the acceleration of (a) point A, (b) point B.

 * 16.147 and *16.148 The 6-lb cylinder B and the 4-lb wedge A are held 
at rest in the position shown by cord C. Assuming that the cylinder 
rolls without sliding on the wedge and neglecting friction between 
the wedge and the ground, determine, immediately after cord C 
has been cut, (a) the acceleration of the wedge, (b) the angular 
acceleration of the cylinder.

250 mm

B
A

100 mm

C

Fig. P16.146

 * 16.149 Each of the 3-kg bars AB and BC is of length L 5 500 mm. A 
horizontal force P of magnitude 20 N is applied to bar BC as 
shown. Knowing that b 5 L (P is applied at C), determine the 
angular acceleration of each bar.

 * 16.150 Each of the 3-kg bars AB and BC is of length L 5 500 mm. A 
horizontal force P of magnitude 20 N is applied to bar BC. For 
the position shown, determine (a) the distance b for which the bars 
move as if they formed a single rigid body, (b) the corresponding 
angular acceleration of the bars.

 * 16.151 (a) Determine the magnitude and the location of the maximum 
bending moment in the rod of Prob. 16.76. (b) Show that the 
answer to part a is independent of the weight of the rod.

 * 16.152 Draw the shear and bending-moment diagrams for the beam of 
Prob. 16.84 immediately after the cable at B breaks.

A

B
Cr = 3 in.

20°

Fig. P16.147

A

B

C

r = 3 in.

20°

Fig. P16.148

L

C

A

B

L
b

P

Fig. P16.149 and P16.150
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1074

REVIEW AND SUMMARY

In this chapter, we studied the kinetics of rigid bodies, i.e., the rela-
tions existing between the forces acting on a rigid body, the shape 
and mass of the body, and the motion produced. Except for the first 
two sections, which apply to the most general case of the motion of 
a rigid body, our analysis was restricted to the plane motion of rigid 
slabs and rigid bodies symmetrical with respect to the reference 
plane. The study of the plane motion of nonsymmetrical rigid bodies 
and of the motion of rigid bodies in three-dimensional space will be 
considered in Chap. 18.

We first recalled [Sec. 16.2] the two fundamental equations derived 
in Chap. 14 for the motion of a system of particles and observed that 
they apply in the most general case of the motion of a rigid body. 
The first equation defines the motion of the mass center G of the 
body; we have

oF 5 ma (16.1)

where m is the mass of the body and a the acceleration of G. The 
second is related to the motion of the body relative to a centroidal 
frame of reference; we wrote

oMG 5 H
.

G (16.2)

where H
.

G is the rate of change of the angular momentum HG of the 
body about its mass center G. Together, Eqs. (16.1) and (16.2) 
express that the system of the external forces is equipollent to the 
system consisting of the vector ma attached at G and the couple of 
moment H

.
G (Fig. 16.19).

Restricting our analysis at this point and for the rest of the chapter 
to the plane motion of rigid slabs and rigid bodies symmetrical with 
respect to the reference plane, we showed [Sec. 16.3] that the angu-
lar momentum of the body could be expressed as

HG 5 IV (16.4)

where I is the moment of inertia of the body about a centroidal axis 
perpendicular to the reference plane and V is the angular velocity 
of the body. Differentiating both members of Eq. (16.4), we 
obtained

H
.

G 5 IV̇ 5 IA (16.5)

which shows that in the restricted case considered here, the rate of 
change of the angular momentum of the rigid body can be  represented 

Fundamental equations of motion 
for a rigid body

Fundamental equations of motion 
for a rigid body

Angular momentum in plane motionAngular momentum in plane motion

F4F1

F2

F3

==  ⎯am

HG
.

G

G

Fig. 16.19
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1075by a vector of the same direction as A (i.e., perpendicular to the 
plane of reference) and of magnitude Ia.

It follows from the above [Sec. 16.4] that the plane motion of a rigid 
slab or of a rigid body symmetrical with respect to the reference 
plane is defined by the three scalar equations

 oFx 5 max   oFy 5 may   oMG 5 Ia (16.6)

It further follows that the external forces acting on the rigid body 
are actually equivalent to the effective forces of the various particles 
forming the body. This statement, known as d’Alembert’s principle, 
can be expressed in the form of the vector diagram shown in Fig. 
16.20, where the effective forces have been represented by a vector 
ma attached at G and a couple IA. In the particular case of a slab 
in translation, the effective forces shown in part b of this figure 
reduce to the single vector ma, while in the particular case of a slab 
in centroidal rotation, they reduce to the single couple IA; in any 
other case of plane motion, both the vector ma and the couple IA 
should be included.

Any  problem involving the plane motion of a rigid slab may be solved 
by drawing a free-body-diagram equation similar to that of Fig. 16.20 
[Sec. 16.6]. Three equations of motion can then be obtained by 
equating the x components, y components, and moments about an 
arbitrary point A, of the forces and vectors involved [Sample Probs. 
16.1, 16.2, 16.4, and 16.5]. An alternative solution can be obtained by 
adding to the external forces an inertia vector 2ma of sense opposite 
to that of a, attached at G, and an inertia couple 2IA of sense oppo-
site to that of A. The system obtained in this way is equivalent to 
zero, and the slab is said to be in dynamic equilibrium.

The method described above can also be used to solve problems 
involving the plane motion of several connected rigid bodies [Sec. 
16.7]. A free-body-diagram equation is drawn for each part of the 
system and the equations of motion obtained are solved simultane-
ously. In some cases, however, a single diagram can be drawn for the 
entire system, including all the external forces as well as the vectors 
ma and the couples IA associated with the various parts of the sys-
tem [Sample Prob. 16.3].

In the second part of the chapter, we were concerned with rigid 
bodies moving under given constraints [Sec. 16.8]. While the kinetic 
analysis of the constrained plane motion of a rigid slab is the same 
as above, it must be supplemented by a kinematic analysis which has 
for its object to express the components ax and ay of the acceleration 
of the mass center G of the slab in terms of its angular acceleration a. 
Problems solved in this way included the noncentroidal rotation of 
rods and plates [Sample Probs. 16.6 and 16.7], the rolling motion of 
spheres and wheels [Sample Probs. 16.8 and 16.9], and the plane 
motion of various types of linkages [Sample Prob. 16.10].

Equations for the plane motion 
of a rigid body
Equations for the plane motion 
of a rigid body

D’Alembert’s principleD’Alembert’s principle

Free-body-diagram equationFree-body-diagram equation

Connected rigid bodiesConnected rigid bodies

Constrained plane motionConstrained plane motion

Review and Summary

A
G

A
G =

F1F2

F4
F3

(a) (b)

⎯am

a⎯I

Fig. 16.20
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1076

REVIEW PROBLEMS

 16.153 The axis of a 5-in.-radius disk is fitted into a slot that forms an 
angle u 5 30° with the vertical. The disk is at rest when it is placed 
in contact with a conveyor belt moving at constant speed. Knowing 
that the coefficient of kinetic friction between the disk and the belt 
is 0.20 and neglecting bearing friction, determine the angular 
acceleration of the disk while slipping occurs.

16.154 Solve Prob. 16.153, assuming that the direction of motion of the 
conveyor belt is reversed.

16.155 Identical cylinders of mass m and radius r are pushed by a series 
of moving arms. Assuming the coefficient of friction between all 
surfaces to be m , 1 and denoting by a the magnitude of the 
acceleration of the arms, derive an expression for (a) the maximum 
allowable value of a if each cylinder is to roll without sliding, 
(b) the minimum allowable value of a if each cylinder is to move 
to the right without rotating.

q

5 in.

v

Fig. P16.153 

a

Fig. P16.155

 16.156 A cyclist is riding a bicycle at a speed of 20 mph on a horizontal 
road. The distance between the axles is 42 in., and the mass center 
of the cyclist and the bicycle is located 26 in. behind the front axle 
and 40 in. above the ground. If the cyclist applies the brakes only 
on the front wheel, determine the shortest distance in which he 
can stop without being thrown over the front wheel.

 16.157 The uniform rod AB of weight W is released from rest when 
b 5 70°. Assuming that the friction force between end A and the 
surface is large enough to prevent sliding, determine immediately 
after release (a) the angular acceleration of the rod, (b) the normal 
reaction at A, (c) the friction force at A.

 16.158 The uniform rod AB of weight W is released from rest when 
b 5 70°. Assuming that the friction force is zero between end A 
and the surface, determine immediately after release (a) the angu-
lar acceleration of the rod, (b) the acceleration of the mass center 
of the rod, (c) the reaction at A.

B

b
A

L

Fig. P16.157 and P16.158
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1077Review Problems 16.159 A uniform plate of mass m is suspended in each of the ways shown. 
For each case determine immediately after the connection B has 
been released (a) the angular acceleration of the plate, (b) the 
acceleration of its mass center.

BA
A B

(1) (2) (3)

1
2 c

c

1
2 c

c

Pin supports Wires

BA

Springs

Fig. P16.159

 16.160 The slender bar AB of weight W is held in equilibrium by two 
counterweights each weighing 12 W. If the wire at B is cut,  determine 
the acceleration at that instant (a) of point A, (b) of point B.

L

A B

Fig. P16.160

 16.161 The mass center G of a 5-kg wheel of radius R 5 300 mm is 
located at a distance r 5 100 mm from its geometric center C. 
The centroidal radius of gyration is k 5 150 mm. As the wheel 
rolls without sliding, its angular velocity varies and it is observed 
that v 5 8 rad/s in the position shown. Determine the correspond-
ing angular acceleration of the wheel.

 16.162 Two slender rods, each of length l and mass m, are released from 
rest in the position shown. Knowing that a small knob at end B of 
rod AB bears on rod CD, determine immediately after release 
(a) the acceleration of end C of rod CD, (b) the force exerted on 
the knob.

w

CG

Fig. P16.161

C
D

A B

1
2 l 1

2 l 1
2 l

Fig. P16.162
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1078 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.163 The motion of a square plate of side 150 mm and mass 2.5 kg is 
guided by pins at corners A and B that slide in slots cut in a vertical 
wall. Immediately after the plate is released from rest in the posi-
tion shown, determine (a) the angular acceleration of the plate, 
(b) the reaction at corner A.

30°

B

A

Fig. P16.163

 16.164 Solve Prob. 16.163, assuming that the plate is fitted with a single 
pin at corner A.

30°

B

A

Fig. P16.164
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COMPUTER PROBLEMS

 16.C1 The 5-lb rod AB is released from rest in the position shown. 
 (a) Assuming that the friction force between end A and the surface is large 
enough to prevent sliding, using software calculate the normal reaction and 
the friction force at A immediately after release for values of b from 0 
to 85°. (b) Knowing that the coefficient of static friction between the rod 
and the floor is actually equal to 0.50, determine the range of values of b
for which the rod will slip immediately after being released from rest.

 16.C2 End A of the 5-kg rod AB is moved to the left at a constant speed 
vA 5 1.5 m/s. Using computational software calculate and plot the normal 
reactions at ends A and B of the rod for values of u from 0 to 50°. Determine 
the value of u at which end B of the rod loses contact with the wall.

 16.C3 A 30-lb cylinder of diameter b 5 8 in. and height h 5 6 in. is placed 
on a 10-lb platform CD that is held in the position shown by three cables. 
It is desired to determine the minimum value of ms between the cylinder 
and the platform for which the cylinder does not slip on the platform, imme-
diately after cable AB is cut. Using computational software calculate and 
plot the minimum allowable value of ms for values of u from 0 to 30°. Know-
ing that the actual value of ms is 0.60, determine the value of u at which 
slipping impends.

A

B

L

b

Fig. P16.C1

A

B

L = 450 mm

vA

q

Fig. P16.C2

 16.C4 For the engine system of Prob. 15.C3 of Chap. 15, the masses of 
piston P and the connecting rod BD are 2.5 kg and 3 kg, respectively. Know-
ing that during a test of the system no force is applied to the face of the 
piston, use computational software to calculate and plot the horizontal and 
vertical components of the dynamic reactions exerted on the connecting rod 
at B and D for values of u from 0 to 180°.

 16.C5 A uniform slender bar AB of mass m is suspended from springs AC
and BD as shown. Using computational software calculate and plot the 
accelerations of ends A and B, immediately after spring AC has broken, for 
values of u from 0 to 90°.

B

A C D

F E

h

b
q q

Fig. P16.C3

A B

DC

L

q q

Fig. P16.C5
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In this chapter the energy and 

momentum methods will be added to 

the tools available for your study of 

the motion of rigid bodies. For 

example, by using the principle of 

conservation of energy and direct 

application of Newton’s 2nd law the 

forces exerted on the hands of this 

gymnast can be determined as he 

swings from one stationary hold to 

another.

1080
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1082

17.1 INTRODUCTION
In this chapter the method of work and energy and the method of 
impulse and momentum will be used to analyze the plane motion of 
rigid bodies and of systems of rigid bodies.
 The method of work and energy will be considered first. In 
Secs. 17.2 through 17.5, the work of a force and of a couple will be 
defined, and an expression for the kinetic energy of a rigid body in 
plane motion will be obtained. The principle of work and energy will 
then be used to solve problems involving displacements and veloci-
ties. In Sec. 17.6, the principle of conservation of energy will be 
applied to the solution of a variety of engineering problems.
 In the second part of the chapter, the principle of impulse and 
momentum will be applied to the solution of problems involving veloc-
ities and time (Secs. 17.8 and 17.9) and the concept of conservation 
of angular momentum will be introduced and discussed (Sec. 17.10).
 In the last part of the chapter (Secs. 17.11 and 17.12), problems 
involving the eccentric impact of rigid bodies will be considered. As 
was done in Chap. 13, where we analyzed the impact of particles, 
the coefficient of restitution between the colliding bodies will be 
used together with the principle of impulse and momentum in the 
solution of impact problems. It will also be shown that the method 
used is applicable not only when the colliding bodies move freely 
after the impact but also when the bodies are partially constrained 
in their motion.

17.2  PRINCIPLE OF WORK AND ENERGY 
FOR A RIGID BODY

The principle of work and energy will now be used to analyze the 
plane motion of rigid bodies. As was pointed out in Chap. 13, the 
method of work and energy is particularly well adapted to the solu-
tion of problems involving velocities and displacements. Its main 
advantage resides in the fact that the work of forces and the kinetic 
energy of particles are scalar quantities.
 In order to apply the principle of work and energy to the analy-
sis of the motion of a rigid body, it will again be assumed that the 
rigid body is made of a large number n of particles of mass Dmi. 
Recalling Eq. (14.30) of Sec. 14.8, we write

 T1 1 U1y2 5 T2 (17.1)

where T1, T2 5  initial and final values of total kinetic energy of par-
ticles forming the rigid body

  U1y2 5  work of all forces acting on various particles of body 

 The total kinetic energy

 
T 5

1
2

 On

i51
¢mi v

2
i  

(17.2)

is obtained by adding positive scalar quantities and is itself a positive 
scalar quantity. You will see later how T can be determined for vari-
ous types of motion of a rigid body.

 Chapter 17 Plane Motion of Rigid 
Bodies: Energy and Momentum 
Methods

 17.1 Introduction
 17.2 Principle of Work and Energy for 

a Rigid Body
 17.3 Work of Forces Acting on a 

Rigid Body
 17.4 Kinetic Energy of a Rigid Body in 

Plane Motion
 17.5 Systems of Rigid Bodies
 17.6 Conservation of Energy
 17.7 Power
 17.8 Principle of Impulse and 

Momentum for the Plane Motion 
of a Rigid Body

 17.9 Systems of Rigid Bodies
 17.10 Conservation of Angular 

Momentum
 17.11 Impulsive Motion
 17.12 Eccentric Impact

Photo 17.1 The work done by friction reduces 
the kinetic energy of the wheel.
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1083 The expression U1y2 in (17.1) represents the work of all the 
forces acting on the various particles of the body, whether these forces 
are internal or external. However, as you will see presently, the total 
work of the internal forces holding together the particles of a rigid 
body is zero. Consider two particles A and B of a rigid body and the 
two equal and opposite forces F and 2F they exert on each other 
(Fig. 17.1). While, in general, small displacements dr and dr9 of the 
two particles are different, the components of these displacements 
along AB must be equal; otherwise, the particles would not remain at 
the same distance from each other and the body would not be rigid. 
Therefore, the work of F is equal in magnitude and opposite in sign 
to the work of 2F, and their sum is zero. Thus, the total work of the 
internal forces acting on the particles of a rigid body is zero, and the 
expression U1y2 in Eq. (17.1) reduces to the work of the external forces 
acting on the body during the displacement considered.

17.3 WORK OF FORCES ACTING ON A RIGID BODY
We saw in Sec. 13.2 that the work of a force F during a displacement 
of its point of application from A1 to A2 is

 
U1y2 5 #

A2

A1

 
F ? dr

 
(17.3)

or

 
U1y2 5 #

s2

s1

 
(F cos a) ds

 
(17.39)

where F is the magnitude of the force, a is the angle it forms with 
the direction of motion of its point of application A, and s is the 
variable of integration which measures the distance traveled by A 
along its path.
 In computing the work of the external forces acting on a rigid 
body, it is often convenient to determine the work of a couple with-
out considering separately the work of each of the two forces forming 
the couple. Consider the two forces F and 2F forming a couple of 
moment M and acting on a rigid body (Fig. 17.2). Any small displace-
ment of the rigid body bringing A and B, respectively, into A9 and B0 
can be divided into two parts: in one part points A and B undergo 
equal displacements dr1; in the other part A9 remains fixed while B9 
moves into B0 through a displacement dr2 of magnitude ds2 5 r du. 
In the first part of the motion, the work of F is equal in magnitude 
and opposite in sign to the work of 2F and their sum is zero. In the 
second part of the motion, only force F works, and its work is dU 5 
F ds2 5 Fr du. But the product Fr is equal to the magnitude M of 
the moment of the couple. Thus, the work of a couple of moment M 
acting on a rigid body is

 dU 5 M du (17.4)

where du is the small angle expressed in radians through which the 
body rotates. We again note that work should be expressed in units 
obtained by multiplying units of force by units of length. The work 

17.3 Work of Forces Acting on a 
Rigid Body

A

B

A'

B'

F

–F

dr

dr'

Fig. 17.1

r

A

F–F

B

A'
B'

B"dq

dr1
dr1

dr2

Fig. 17.2 
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1084 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

of the couple during a finite rotation of the rigid body is obtained 
by integrating both members of (17.4) from the initial value u1 of 
the angle u to its final value u2. We write

 
U1y2 5 #

u2

u1

 
M du

 
(17.5)

When the moment M of the couple is constant, formula (17.5) reduces 
to
 U1y2 5 M(u2 2 u1) (17.6)

 It was pointed out in Sec. 13.2 that a number of forces encoun-
tered in problems of kinetics do no work. They are forces applied to 
fixed points or acting in a direction perpendicular to the displacement 
of their point of application. Among the forces which do no work the 
following have been listed: the reaction at a frictionless pin when the 
body supported rotates about the pin, the reaction at a frictionless 
surface when the body in contact moves along the surface, and the 
weight of a body when its center of gravity moves horizontally. We 
can add now that when a rigid body rolls without sliding on a fixed 
surface, the friction force F at the point of contact C does no work. 
The velocity vC of the point of contact C is zero, and the work of the 
friction force F during a small displacement of the rigid body is

dU 5 F dsC 5 F(vC dt) 5 0

17.4  KINETIC ENERGY OF A RIGID BODY 
IN PLANE MOTION

Consider a rigid body of mass m in plane motion. We recall from Sec. 
14.7 that, if the absolute velocity vi of each particle Pi of the body is 
expressed as the sum of the velocity v of the mass center G of the body 
and of the velocity v9i of the particle relative to a frame Gx9y9 attached 
to G and of fixed orientation (Fig. 17.3), the kinetic energy of the sys-
tem of particles forming the rigid body can be written in the form

 
T 5 1

2 
mv 

2 1
1
2

 On

i51
 ¢miv¿i 2

 
(17.7)

But the magnitude v9i of the relative velocity of Pi is equal to the 
product r9iv of the distance r9i of Pi from the axis through G perpen-
dicular to the plane of motion and of the magnitude v of the angular 
velocity of the body at the instant considered. Substituting into 
(17.7), we have

 
T 5 1

2 
mv 

2 1
1
2

 aOn

i51
r¿i 2 ¢mib w2

 
(17.8)

or, since the sum represents the moment of inertia I  of the body 
about the axis through G,

 T 5 1
2 
mv 

2 1 1
2 Iv2 (17.9)

y

O x

y'

x'
G

Pi

r'i

v'i

(v'i = r'i w)

vi

⎯v

⎯v

w

Fig. 17.3 
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1085 We note that in the particular case of a body in translation 
(v 5 0), the expression obtained reduces to 1

2 mv 
2, while in the case 

of a centroidal rotation (v 5 0), it reduces to 1
2Iv2. We conclude that 

the kinetic energy of a rigid body in plane motion can be separated 
into two parts: (1) the kinetic energy 12 mv 

2 associated with the motion 
of the mass center G of the body, and (2) the kinetic energy 1

2Iv2 
associated with the rotation of the body about G.

Noncentroidal Rotation. The relation (17.9) is valid for any type 
of plane motion and can therefore be used to express the kinetic 
energy of a rigid body rotating with an angular velocity V about a 
fixed axis through O (Fig. 17.4). In that case, however, the kinetic 
energy of the body can be expressed more directly by noting that 
the speed vi of the particle Pi is equal to the product riv of the dis-
tance ri of Pi from the fixed axis and the magnitude v of the angular 
velocity of the body at the instant considered. Substituting into 
(17.2), we write

T 5
1
2

 On

i51
 ¢mi(riv)2 5

1
2

 aOn

i51
 r

2
i  ¢mib v2

or, since the last sum represents the moment of inertia IO of the 
body about the fixed axis through O,

 T 5 1
2 
IOv

2 (17.10)

 We note that the results obtained are not limited to the motion 
of plane slabs or to the motion of bodies which are symmetrical with 
respect to the reference plane, and can be applied to the study of 
the plane motion of any rigid body, regardless of its shape. However, 
since Eq. (17.9) is applicable to any plane motion while Eq. (17.10) 
is applicable only in cases involving noncentroidal rotation, Eq. (17.9) 
will be used in the solution of all the sample problems.

17.5 SYSTEMS OF RIGID BODIES
When a problem involves several rigid bodies, each rigid body can be 
considered separately and the principle of work and energy can be 
applied to each body. Adding the kinetic energies of all the particles 
and considering the work of all the forces involved, we can also write 
the equation of work and energy for the entire system. We have

 T1 1 U1y2 5 T2 (17.11)

where T represents the arithmetic sum of the kinetic energies of the 
rigid bodies forming the system (all terms are positive) and U1y2 
represents the work of all the forces acting on the various bodies, 
whether these forces are internal or external from the point of view 
of the system as a whole.
 The method of work and energy is particularly useful in solving 
problems involving pin-connected members, blocks and pulleys con-
nected by inextensible cords, and meshed gears. In all these cases, 

O

Pi
ri

vi
(vi = ri w)

w

Fig. 17.4

17.5 Systems of Rigid Bodies
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1086 Plane Motion of Rigid Bodies: Energy and 
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the internal forces occur by pairs of equal and opposite forces, and 
the points of application of the forces in each pair move through 
equal distances during a small displacement of the system. As a 
result, the work of the internal forces is zero and U1y2 reduces to 
the work of the forces external to the system.

17.6 CONSERVATION OF ENERGY
We saw in Sec. 13.6 that the work of conservative forces, such as the 
weight of a body or the force exerted by a spring, can be expressed 
as a change in potential energy. When a rigid body, or a system of rigid 
bodies, moves under the action of conservative forces, the principle of 
work and energy stated in Sec. 17.2 can be expressed in a modified 
form. Substituting for U1y2 from (13.199) into (17.1), we write

 T1 1 V1 5 T2 1 V2 (17.12)

Formula (17.12) indicates that when a rigid body, or a system of rigid 
bodies, moves under the action of conservative forces, the sum of the 
kinetic energy and of the potential energy of the system remains 
constant. It should be noted that in the case of the plane motion of 
a rigid body, the kinetic energy of the body should include both the 
translational term 1

2 mv 
2 and the rotational term 1

2Iv2.
 As an example of application of the principle of conservation 
of energy, let us consider a slender rod AB, of length l and mass m, 
whose extremities are connected to blocks of negligible mass sliding 
along horizontal and vertical tracks. We assume that the rod is released 
with no initial velocity from a horizontal position (Fig. 17.5a), and we 
wish to determine its angular velocity after it has rotated through an 
angle u (Fig. 17.5b).
 Since the initial velocity is zero, we have T1 5 0. Measuring the 
potential energy from the level of the horizontal track, we write V1 5 0. 
After the rod has rotated through u, the center of gravity G of the rod 
is at a distance 1

2 
l sin u below the reference level and we have

V2 5 21
2 
Wl sin u 5 21

2 
mgl sin u

⎯v

w

DatumDatum

l

G

G

AB A

B

(a) (b)

q

C

l sin q1
2

Fig. 17.5
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1087Observing that in this position the instantaneous center of the rod is 
located at C and that CG 5 1

2 
l, we write v2 5 1

2 
lv and obtain

 T2 5 1
2 
mv 

2
2 1 1

2 Iv2
2 5 1

2 
m(1

2 
lv)2 1 1

2( 1
12 

ml2)v2

 5
1
2

 
ml2

3
 v2

Applying the principle of conservation of energy, we write

 T1 1 V1 5 T2 1 V2

 0 5
1
2

 
ml2

3
 v2 2 1

2 
mgl sin u

 v 5 a3g

l
 sin ub1/2

 The advantages of the method of work and energy, as well as 
its shortcomings, were indicated in Sec. 13.4. Here we should add 
that the method of work and energy must be supplemented by the 
application of d’Alembert’s principle when reactions at fixed axles, 
rollers, or sliding blocks are to be determined. For example, in order 
to compute the reactions at the extremities A and B of the rod of 
Fig. 17.5b, a diagram should be drawn to express that the system 
of the external forces applied to the rod is equivalent to the vector 
ma and the couple IA. The angular velocity V of the rod, however, 
is determined by the method of work and energy before the equa-
tions of motion are solved for the reactions. The complete analysis 
of the motion of the rod and of the forces exerted on the rod 
requires, therefore, the combined use of the method of work and 
energy and of the principle of equivalence of the external and effec-
tive forces.

17.7 POWER
Power was defined in Sec. 13.5 as the time rate at which work is 
done. In the case of a body acted upon by a force F, and moving 
with a velocity v, the power was expressed as follows:

 
Power 5

dU
dt

5 F ? v
 

(13.13)

In the case of a rigid body rotating with an angular velocity V and 
acted upon by a couple of moment M parallel to the axis of rotation, 
we have, by (17.4),

 
Power 5

dU
dt

5
M  du

dt
5 Mv

 
(17.13)

The various units used to measure power, such as the watt and the 
horsepower, were defined in Sec. 13.5.

17.7 Power
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1088

SAMPLE PROBLEM 17.1

A 240-lb block is suspended from an inextensible cable which is wrapped 
around a drum of 1.25-ft radius rigidly attached to a flywheel. The drum and 
flywheel have a combined centroidal moment of inertia I 5 10.5 lb ? ft ? s2. 
At the instant shown, the velocity of the block is 6 ft/s directed downward. 
Knowing that the bearing at A is poorly lubricated and that the bearing 
friction is equivalent to a couple M of magnitude 60 lb ? ft, determine the 
velocity of the block after it has moved 4 ft downward.

SOLUTION

We consider the system formed by the flywheel and the block. Since the 
cable is inextensible, the work done by the internal forces exerted by the 
cable cancels. The initial and final positions of the system and the external 
forces acting on the system are as shown.

Kinetic Energy. Position 1.

Block:  v1 5 6 ft/s

Flywheel:
 

 w1 5
v1

r
5

6 ft/s
1.25 ft

5 4.80 rad/s

 T1 5 1
2 
mv 

2
1 1 1

2 Iv2
1

 5
1
2

 
240 lb

32.2 ft/s2 (6 ft/s)2 1 1
2(10.5 lb ? ft ? s2)(4.80 rad/s)2

 5 255 ft ? lb

Position 2. Noting that v2 5 v2 
/1.25, we write

 T2 5 1
2 
mv 

2
2 1 1

2 Iv2
2

 5
1
2

 
240
32.2

 (v2)2 1 (1
2)(10.5)a v2

1.25
b2

5 7.09v 
2
2

Work. During the motion, only the weight W of the block and the friction 
couple M do work. Noting that W does positive work and that the friction 
couple M does negative work, we write

 s1 5 0      s2 5 4 ft

 u1 5 0       u2 5
s2

r
5

4 ft
1.25 ft

5 3.20 rad

 U1y2 5 W(s2 2 s1) 2 M(u2 2 u1)
 5 (240 lb)(4 ft) 2 (60 lb ? ft)(3.20 rad)
 5 768 ft ? lb

Principle of Work and Energy

 T1 1 U1y2 5 T2
 255 ft ? lb 1 768 ft ? lb 5 7.09v 2

2

 v2 5 12.01 ft/s  v2 5 12.01 ft/sw ◀

A

1.25 ft

240 lb

⎯v1 = 6 ft /s

W = 240 lb

s1 = 0

Ax

Ay

w1 M = 60 lb⋅ft

⎯v2

W = 240 lb

4 ft

s1 = 0

s2 = 4 ft

Ax

Ay

w2 M = 60 lb⋅ft
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SAMPLE PROBLEM 17.2

Gear A has a mass of 10 kg and a radius of gyration of 200 mm; gear B has 
a mass of 3 kg and a radius of gyration of 80 mm. The system is at rest 
when a couple M of magnitude 6 N ? m is applied to gear B. Neglecting 
friction, determine (a) the number of revolutions executed by gear B before 
its angular velocity reaches 600 rpm, (b) the tangential force which gear B 
exerts on gear A.

SOLUTION

Motion of Entire System. Noting that the peripheral speeds of the gears 
are equal, we write

rAvA 5 rBvB      vA 5 vB 

rB

rA
5 vB 

100 mm
250 mm

5 0.40vB

For vB 5 600 rpm, we have

 vB 5 62.8 rad/s vA 5 0.40vB 5 25.1 rad/s
  IA 5 mAk 

2
A 5 (10 kg)(0.200 m)2 5 0.400 kg ? m2

  IB 5 mBk 
2
B 5 (3 kg)(0.080 m)2 5 0.0192 kg ? m2

Kinetic Energy. Since the system is initially at rest, T1 5 0. Adding the 
kinetic energies of the two gears when vB 5 600 rpm, we obtain

 T2 5 1
2 IAv

2
A 1 1

2 IBv
2
B

 5 1
2(0.400 kg ? m2)(25.1 rad/s)2 1 1

2(0.0192 kg ? m2)(62.8 rad/s)2

 5 163.9 J

Work. Denoting by uB the angular displacement of gear B, we have

U1y2 5 MuB 5 (6 N ? m)(uB rad) 5 (6uB) J

Principle of Work and Energy

 T1 1 U1y2 5 T2

 0 1 (6uB) J 5 163.9 J
 uB 5 27.32 rad uB 5 4.35 rev ◀ 

Motion of Gear A. Kinetic Energy. Initially, gear A is at rest, so T1 5 
0. When vB 5 600 rpm, the kinetic energy of gear A is

T2 5 1
2 IAv

2
A 5 1

2(0.400 kg ? m2)(25.1 rad/s)2 5 126.0  J

Work. The forces acting on gear A are as shown. The tangential force F 
does work equal to the product of its magnitude and of the length uArA of 
the arc described by the point of contact. Since uArA 5 uBrB, we have

U1y2 5 F(uBrB) 5 F(27.3 rad)(0.100 m) 5 F(2.73 m)

Principle of Work and Energy

 T1 1 U1y2 5 T2

 0 1 F(2.73 m) 5 126.0 J
 F 5 146.2 N F 5 46.2 N o ◀ 

A

B

rA = 250 mm

rB = 100 mm

M

rA

wA

wB

A
B rB

rA

WA

F

A x

Ay
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SAMPLE PROBLEM 17.3

A sphere, a cylinder, and a hoop, each having the same mass and the same 
radius, are released from rest on an incline. Determine the velocity of each 
body after it has rolled through a distance corresponding to a change in 
elevation h.

SOLUTION

The problem will first be solved in general terms, and then results for each 
body will be found. We denote the mass by m, the centroidal moment of 
inertia by I, the weight by W, and the radius by r.

Kinematics. Since each body rolls, the instantaneous center of rotation is 
located at C and we write

v 5
v
r

Kinetic Energy
 T1 5 0
 T2 5 1

2 mv2 1 1
2 Iv2

 5 1
2 mv2 1 1

2 I av
r
b2

5 1
2 am 1

I

r2b v2

Work. Since the friction force F in rolling motion does no work,

U1y2 5 Wh

Principle of Work and Energy

 T1 1 U1y2 5 T2

 
0 1 Wh 5 1

2 am 1
I

r2b v 2      v 
2 5

2Wh

m 1 I/r2

Noting that W 5 mg, we rearrange the result and obtain

v2 5
2gh

1 1 I/mr  

2

Velocities of Sphere, Cylinder, and Hoop. Introducing successively the 
particular expression for I, we obtain

Sphere: I 5 2
5 mr 

2 v 5 0.84512gh ◀ 

Cylinder: I 5 1
2 mr 

2 v 5 0.81612gh ◀ 

Hoop: I 5 mr 
2 v 5 0.70712gh ◀ 

Remark. Let us compare the results with the velocity attained by a fric-
tionless block sliding through the same distance. The solution is identical to 
the above solution except that v 5 0; we find v 5 12gh.
 Comparing the results, we note that the velocity of the body is inde-
pendent of both its mass and radius. However, the velocity does depend upon 
the quotient I/mr 

2 5 k 
2/r2, which measures the ratio of the rotational kinetic 

energy to the translational kinetic energy. Thus the hoop, which has the largest 
k for a given radius r, attains the smallest velocity, while the sliding block, 
which does not rotate, attains the largest velocity.

r

C

⎯v

w

W

W

F N

F N
q

h
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SAMPLE PROBLEM 17.4

A 30-lb slender rod AB is 5 ft long and is pivoted about a point O which is 
1 ft from end B. The other end is pressed against a spring of constant k 5 
1800 lb/in. until the spring is compressed 1 in. The rod is then in a hori-
zontal position. If the rod is released from this position, determine its angu-
lar velocity and the reaction at the pivot O as the rod passes through a 
vertical position.

SOLUTION

Position 1. Potential Energy. Since the spring is compressed 1 in., we 
have x1 5 1 in.

Ve 5 1
2 kx2

1 5 1
2(1800 lb/in.)(1 in.)2 5 900 in ? lb

Choosing the datum as shown, we have Vg 5 0; therefore,

V1 5 Ve 1 Vg 5 900 in ? lb 5 75 ft ? lb

Kinetic Energy. Since the velocity in position 1 is zero, we have T1 5 0.

Position 2. Potential Energy. The elongation of the spring is zero, and 
we have Ve 5 0. Since the center of gravity of the rod is now 1.5 ft above 
the datum,
 Vg 5 (30 lb)(11.5 ft) 5 45 ft ? lb
 V2 5 Ve 1 Vg 5 45 ft ? lb

Kinetic Energy. Denoting by V2 the angular velocity of the rod in posi-
tion 2, we note that the rod rotates about O and write v2 5 rv2 5 1.5v2.

 
 I 5 1

12 ml2 5
1

12
 

30 lb
32.2 ft/s2 (5 ft)2 5 1.941 lb ? ft ? s2

 T2 5 1
2mv2

2 1 1
2 Iv2

2 5
1
2 

30
32.2

 (1.5v2)2 1 1
2(1.941)v2

2 5 2.019v2
2

Conservation of Energy

 T1 1 V1 5 T2 1 V2

 0 1 75 ft ? lb 5 2.019v2
2 1 45 ft ? lb

V2 5 3.86 rad/si ◀

Reaction in Position 2. Since v2 5 3.86 rad/s, the components of the 
acceleration of G as the rod passes through position 2 are

 an 5 rv2
2 5 (1.5 ft)  (3.86 rad/s)2 5 22.3 ft/s2    an 5 22.3 ft/s2

 w

 at 5 ra    at 5 ray

We express that the system of external forces is equivalent to the system of 
effective forces represented by the vector of components mat and man 
attached at G and the couple IA.

1ioMO 5 o(MO)eff : 0 5 Ia 1 m(ra)r a 5 0
 y1 oFx 5 o(Fx)eff : Rx 5 m(ra) Rx 5 0
 1xoFy 5 o(Fy)eff :    Ry 2 30 lb 5 2man

 
Ry 2 30 lb 5 2

30 lb
32.2 ft/s2 (22.3 ft/s2)

Ry 5 19.22 lb  R 5 9.22 lbx ◀

A B
O

5 ft
1 ft

1.5 ft

Position 1

Position 2

Datum

30 lb

30 lb

⎯v2
⎯v1 = 0

w1 = 0

w2

w a

⎯r

G

⎯a n

⎯a t

Rx
Ry

30 lb

m⎯a t

m⎯a n

O O

G
G

a⎯I

=
⎯r
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SAMPLE PROBLEM 17.5

Each of the two slender rods shown is 0.75 m long and has a mass of 6 kg. 
If the system is released from rest with b 5 60°, determine (a) the angular 
velocity of rod AB when b 5 20°, (b) the velocity of point D at the same 
instant.

SOLUTION

Kinematics of Motion When B 5 20°. Since vB is perpendicular to the 
rod AB and vD is horizontal, the instantaneous center of rotation of rod BD 
is located at C. Considering the geometry of the figure, we obtain

BC 5 0.75 m  CD 5 2(0.75 m) sin 20° 5 0.513 m

Applying the law of cosines to triangle CDE, where E is located at the mass 
center of rod BD, we find EC 5 0.522 m. Denoting by v the angular veloc-
ity of rod AB, we have

 vAB 5 (0.375 m)v vAB 5 0.375v q
 vB 5 (0.75 m)v vB 5 0.75v q

Since rod BD seems to rotate about point C, we write

vB 5 (BC)vBD   (0.75 m)v 5 (0.75 m)vBD   VBD 5 v l
vBD 5 (EC)vBD 5 (0.522 m)v   vBD 5 0.522v q

Position 1. Potential Energy. Choosing the datum as shown, and observ-
ing that W 5 (6 kg)(9.81 m/s2) 5 58.86 N, we have

V1 5 2W y1 5 2(58.86 N)(0.325 m) 5 38.26 J

Kinetic Energy. Since the system is at rest, T1 5 0.

Position 2. Potential Energy

V2 5 2W y2 5 2(58.86 N)(0.1283 m) 5 15.10 J

Kinetic Energy

 IAB 5 IBD 5 1
12 ml2 5 1

12(6 kg)(0.75 m)2 5 0.281 kg ? m2

 T2 5 1
2 mv2

AB 1 1
2 IABv

2
AB 1 1

2 mv2
BD 1 1

2 IBDv
2
BD

 5 1
2 (6)(0.375v)2 1 1

2(0.281)v2 1 1
2(6)(0.522v)2 1 1

2 (0.281)v2

 5 1.520v2

Conservation of Energy

 T1 1 V1 5 T2 1 V2

 0 1 38.26 J 5 1.520v2 1 15.10 J
 v 5 3.90 rad/s VAB 5 3.90 rad/s i ◀

Velocity of Point D

vD 5 (CD)v 5 (0.513 m)(3.90 rad/s) 5 2.00 m/s
vD 5 2.00 m/s y ◀

A

B

D

l =
 0.

75
 m

l = 0.75 m

b

A

B

D

0.75 m

0.75 m

0.513 m
70°

E

C

20°

w

wBD

vB vD
b = 20°

A

B

⎯vAB = 0.375w ⎯vBD = 0.522w
DE

C

wAB = w

wBD = w

A x

Ay

A

B

D
b = 60°

Datum

Position 1

D

⎯y1 = 0.325 m

58.9 N58.9 N

A x

Ay

A

B

⎯y2 = 0.1283 m
D

b = 20°

58.9 N 58.9 N

Datum
Position 2

D
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SOLVING PROBLEMS 
ON YOUR OWN

In this lesson we introduced energy methods to determine the velocity of rigid 
bodies for various positions during their motion. As you found out previously 

in Chap. 13, energy methods should be considered for problems involving dis-
placements and velocities.

1. The method of work and energy, when applied to all of the particles forming 
a rigid body, yields the equation

T1 1 U1y2 5 T2 (17.1)

where T1 and T2 are, respectively, the initial and final values of the total kinetic 
energy of the particles forming the body and U1y2 is the work done by the external 
forces exerted on the rigid body.

a. Work of forces and couples. To the expression for the work of a force 
(Chap. 13), we added the expression for the work of a couple and wrote

U1y2 5 #
A2

A
1

 
F ? dr       U1y2 5 #

u2

u1

 
M  du

 
(17.3, 17.5)

When the moment of a couple is constant, the work of the couple is

U1y2 5 M(u2 2 u1) (17.6)

where u1 and u2 are expressed in radians [Sample Probs. 17.1 and 17.2].
 b. The kinetic energy of a rigid body in plane motion was found by con-
sidering the motion of the body as the sum of a translation with its mass center 
and a rotation about the mass center.

 T 5 1
2 mv 

2 1 1
2 Iv2 (17.9)

where v is the velocity of the mass center and v is the angular velocity of the body 
[Sample Probs. 17.3 and 17.4].

2. For a system of rigid bodies we again used the equation

 T1 1 U1y2 5 T2 (17.1)

where T is the sum the kinetic energies of the bodies forming the system and U 
is the work done by all the forces acting on the bodies, internal as well as external. 
Your computations will be simplified if you keep the following in mind.
 a. The forces exerted on each other by pin-connected members or by 
meshed gears are equal and opposite, and, since they have the same point of 
application, they undergo equal small displacements. Therefore, their total work 
is zero and can be omitted from your calculations [Sample Prob. 17.2].

(continued)
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 b. The forces exerted by an inextensible cord on the two bodies it connects 
have the same magnitude and their points of application move through equal dis-
tances, but the work of one force is positive and the work of the other is negative. 
Therefore, their total work is zero and can again be omitted from your calculations 
[Sample Prob. 17.1].
 c. The forces exerted by a spring on the two bodies it connects also have 
the same magnitude, but their points of application will generally move through 
different distances. Therefore, their total work is usually not zero and should be 
taken into account in your calculations.

3. The principle of conservation of energy can be expressed as

 T1 1 V1 5 T2 1 V2 (17.12)

where V represents the potential energy of the system. This principle can be used 
when a body or a system of bodies is acted upon by conservative forces, such as the 
force exerted by a spring or the force of gravity [Sample Probs. 17.4 and 17.5].

4. The last section of this lesson was devoted to power, which is the time rate 
at which work is done. For a body acted upon by a couple of moment M, the 
power can be expressed as

 Power 5 Mv (17.13)

where v is the angular velocity of the body expressed in rad/s. As you did in 
Chap. 13, you should express power either in watts or in horsepower (1 hp 5 
550 ft ? lb/s).
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PROBLEMS

17.1 It is known that 1500 revolutions are required for the 6000-lb 
flywheel to coast to rest from an angular velocity of 300 rpm. 
Knowing that the radius of gyration of the flywheel is 36 in., deter-
mine the average magnitude of the couple due to kinetic friction 
in the bearings.

 17.2 The rotor of an electric motor has an angular velocity of 3600 rpm 
when the load and power are cut off. The 50-kg rotor, which has 
a centroidal radius of gyration of 180 mm, then coasts to rest. 
Knowing that the kinetic friction of the rotor produces a couple 
of magnitude 3.5 N ? m, determine the number of revolutions that 
the rotor executes before coming to rest.

 17.3 Two disks of the same material are attached to a shaft as shown. 
Disk A is of radius r and has a thickness b, while disk B is of 
radius nr and thickness 3b. A couple M of constant magnitude 
is applied when the system is at rest and is removed after the 
system has executed 2 revolutions. Determine the value of n
which results in the largest final speed for a point on the rim 
of disk B.

 17.4 Two disks of the same material are attached to a shaft as shown. 
Disk A has a mass of 15 kg and a radius r 5 125 mm. Disk B is 
three times as thick as disk A. Knowing that a couple M of mag-
nitude 20 N ? m is to be applied to disk A when the system is at 
rest, determine the radius nr of disk B if the angular velocity of 
the system is to be 600 rpm after 4 revolutions.

 17.5 The flywheel of a punching machine has a mass of 300 kg and 
a radius of gyration of 600 mm. Each punching operation 
requires 2500 J of work. (a) Knowing that the speed of the 
f lywheel is 300 rpm just before a punching, determine 
the speed immediately after the punching. (b) If a constant 
25-N ? m couple is applied to the shaft of the flywheel, deter-
mine the number of revolutions executed before the speed is 
again 300 rpm.

 17.6 The flywheel of a small punching machine rotates at 360 rpm. Each 
punching operation requires 1500 ft ? lb of work and it is desired 
that the speed of the flywheel after each punching be not less than 
95 percent of the original speed. (a) Determine the required 
moment of inertia of the flywheel. (b) If a constant 18 lb ? ft couple 
is applied to the shaft of the flywheel, determine the number of 
revolutions that must occur between two successive punchings, 
knowing that the initial velocity is to be 360 rpm at the start of 
each punching.

B

nr

3b

Ab
r

M

Fig. P17.3 and P17.4
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1096 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.7 Disk A is of constant thickness and is at rest when it is placed in 
contact with belt BC, which moves with a constant velocity v. 
Denoting by mk the coefficient of kinetic friction between the disk 
and the belt, derive an expression for the number of revolutions 
executed by the disk before it attains a constant angular velocity.

 17.8 Disk A, of weight 10 lb and radius r 5 6 in., is at rest when it is 
placed in contact with belt BC, which moves to the right with a 
constant speed v 5 40 ft/s. Knowing that mk 5 0.20 between the 
disk and the belt, determine the number of revolutions executed 
by the disk before it attains a constant angular velocity.

 17.9 Each of the gears A and B has a mass of 2.4 kg and a radius of gyra-
tion of 60 mm, while gear C has a mass of 12 kg and a radius of 
gyration of 150 mm. A couple M of constant magnitude 10 N ? m is 
applied to gear C. Determine (a) the number of revolutions of gear 
C required for its angular velocity to increase from 100 to 450 rpm, 
(b) the corresponding tangential force acting on gear A.

 17.10 Solve Prob. 17.9, assuming that the 10-N ? m couple is applied to 
gear B.

 17.11 The double pulley shown weighs 30 lb and has a centroidal radius 
of gyration of 6.5 in. Cylinder A and block B are attached to cords 
that are wrapped on the pulleys as shown. The coefficient of 
kinetic friction between block B and the surface is 0.25. Knowing 
that the system is released from rest in the position shown, deter-
mine (a) the velocity of cylinder A as it strikes the ground, (b) the 
total distance that block B moves before coming to rest.

B

r
A

C

v

Fig. P17.7 and P17.8

A B

80 mm 80 mm

200 mm
C

M

Fig. P17.9

A

C

3 ft

25 lb

B
20 lb

10 in.

6 in.

Fig. P17.11

P

10 in.

15 in.

A

B

C

D

6 in.

8 in.

Fig. P17.12

 17.12 The 8-in.-radius brake drum is attached to a larger flywheel that 
is not shown. The total mass moment of inertia of the flywheel and 
drum is 14 lb ? ft ? s2 and the coefficient of kinetic friction between 
the drum and the brake shoe is 0.35. Knowing that the initial 
angular velocity of the flywheel is 360 rpm counterclockwise, 
determine the vertical force P that must be applied to the pedal 
C if the system is to stop in 100 revolutions.
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1097Problems 17.13 Solve Prob. 17.12, assuming that the initial angular velocity of the 
flywheel is 360 rpm clockwise.

 17.14 The gear train shown consists of four gears of the same thickness 
and of the same material; two gears are of radius r, and the other 
two are of radius nr. The system is at rest when the couple M0 is 
applied to shaft C. Denoting by I0 the moment of inertia of a gear 
of radius r, determine the angular velocity of shaft A if the couple 
M0 is applied for one revolution of shaft C. 

nrr

A
B

C

nr

M0

r

Fig. P17.14

 17.15 The three friction disks shown are made of the same material and 
have the same thickness. It is known that disk A weighs 12 lb 
and that the radii of the disks are rA 5 8 in., rB 5 6 in., and 
rC 5 4 in. The system is at rest when a couple M0 of constant magni-
tude 60 lb ? in. is applied to disk A. Assuming that no slipping occurs 
between disks, determine the number of revolutions required for 
disk A to reach an angular velocity of 150 rpm.

 17.16 and 17.17 A slender 4-kg rod can rotate in a vertical plane 
about a pivot at B. A spring of constant k 5 400 N/m and of 
unstretched length 150 mm is attached to the rod as shown. Know-
ing that the rod is released from rest in the position shown, deter-
mine its angular velocity after it has rotated through 90°.

A
B

CrA rB
rC

M0

Fig. P17.15

D

A

B

C

120 mm

600 mm

350 mm

Fig. P17.16

C

A

D

B

120 mm

600 mm

350 mm

Fig. P17.17
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1098 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.18 A slender rod of length l and weight W is pivoted at one end as 
shown. It is released from rest in a horizontal position and swings 
freely. (a) Determine the angular velocity of the rod as it passes 
through a vertical position and determine the corresponding reac-
tion at the pivot. (b) Solve part a for W 5 1.8 lb and l 5 3 ft.

 17.19 A slender rod of length l is pivoted about a point C located at a 
distance b from its center G. It is released from rest in a horizontal 
position and swings freely. Determine (a) the distance b for which 
the angular velocity of the rod as it passes through a vertical posi-
tion is maximum, (b) the corresponding values of its angular veloc-
ity and of the reaction at C.

A B

l

Fig. P17.18

A B
GC

l

b

Fig. P17.19
3.5 ft

3.5 ft

G

Fig. P17.20

h

B A

C

D

0.4 m

0.4 m

Fig. P17.21

L
d

A B

C

Fig. P17.22 and P17.23

250 mm

90 N
G

Fig. P17.24

 17.20 A 160-lb gymnast is executing a series of full-circle swings on the 
horizontal bar. In the position shown he has a small and negligible 
clockwise angular velocity and will maintain his body straight and 
rigid as he swings downward. Assuming that during the swing the 
centroidal radius of gyration of his body is 1.5 ft, determine his 
angular velocity and the force exerted on his hands after he has 
rotated through (a) 90°, (b) 180°.

 17.21 Two identical slender rods AB and BC are welded together to form 
an L-shaped assembly. The assembly is pressed against a spring at 
D and released from the position shown. Knowing that the maxi-
mum angle of rotation of the assembly in its subsequent motion is 
90° counterclockwise, determine the magnitude of the angular 
velocity of the assembly as it passes through the position where 
rod AB forms an angle of 30° with the horizontal.

 17.22 A collar with a mass of 1 kg is rigidly attached at a distance d 5 
300 mm from the end of a uniform slender rod AB. The rod has a 
mass of 3 kg and is of length L 5 600 mm. Knowing that the rod 
is released from rest in the position shown, determine the angular 
velocity of the rod after it has rotated through 90°. 

 17.23 A collar with a mass of 1 kg is rigidly attached to a slender rod AB 
of mass 3 kg and length L 5 600 mm. The rod is released from rest 
in the position shown. Determine the distance d for which the angu-
lar velocity of the rod is maximum after it has rotated through 90°. 

 17.24 A 20-kg uniform cylindrical roller, initially at rest, is acted upon 
by a 90-N force as shown. Knowing that the body rolls without 
slipping, determine (a) the velocity of its center G after it has 
moved 1.5 m, (b) the friction force required to prevent slipping.

bee29400_ch17_1080-1143.indd Page 1098  12/16/08  8:20:25 PM user-s172bee29400_ch17_1080-1143.indd Page 1098  12/16/08  8:20:25 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1099Problems 17.25 A rope is wrapped around a cylinder of radius r and mass m as 
shown. Knowing that the cylinder is released from rest, determine 
the velocity of the center of the cylinder after it has moved down-
ward a distance s.

 17.26 Solve Prob. 17.25, assuming that the cylinder is replaced by a thin-
walled pipe of radius r and mass m.

 17.27 The mass center G of a 3-kg wheel of radius R 5 180 mm is 
located at a distance r 5 60 mm from its geometric center C. The 
centroidal radius of gyration of the wheel is k 5 90 mm. As the 
wheel rolls without sliding, its angular velocity is observed to vary. 
Knowing that v 5 8 rad/s in the position shown, determine 
(a) the angular velocity of the wheel when the mass center G is 
directly above the geometric center C, (b) the reaction at the hori-
zontal surface at the same instant. 

 17.28 A collar B, of mass m and of negligible dimension, is attached to 
the rim of a hoop of the same mass m and of radius r that rolls 
without sliding on a horizontal surface. Determine the angular 
velocity v1 of the hoop in terms of g and r when B is directly above 
the center A, knowing that the angular velocity of the hoop is 3v1 
when B is directly below A.

r

Fig. P17.25

w

CG

Fig. P17.27

Fig. P17.28

B

A

OG

Fig. P17.29

 17.29 A half section of pipe of mass m and radius r is released from rest 
in the position shown. Knowing that the pipe rolls without sliding, 
determine (a) its angular velocity after it has rolled through 90°, 
(b) the reaction at the horizontal surface at the same instant. [Hint: 
Note that GO 5 2r/p and that, by the  parallel-axis theorem, I  5 
mr2 2 m(GO)2.]

 17.30 Two uniform cylinders, each of weight W 5 14 lb and radius 
r 5 5 in., are connected by a belt as shown. Knowing that the initial 
angular velocity of cylinder B is 30 rad/s counterclockwise, deter-
mine (a) the distance through which cylinder A will rise before the 
angular velocity of cylinder B is reduced to 5 rad/s, (b) the tension 
in the portion of belt connecting the two cylinders.

 17.31 Two uniform cylinders, each of weight W 5 14 lb and radius 
r 5 5 in., are connected by a belt as shown. If the system is 
released from rest, determine (a) the velocity of the center of cyl-
inder A after it has moved through 3 ft, (b) the tension in the 
portion of belt connecting the two cylinders.

r

r

A

B

Fig. P17.30 and P17.31
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1100 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.32 The 5-kg rod BC is attached by pins to two uniform disks as 
shown. The mass of the 150-mm-radius disk is 6 kg and that of 
the 75-mm-radius disk is 1.5 kg. Knowing that the system is 
released from rest in the position shown, determine the velocity 
of the rod after disk A has rotated through 90°.

 17.33 through 17.35 The 9-kg cradle is supported as shown by two 
uniform disks that roll without sliding at all surfaces of contact. 
The mass of each disk is m 5 6 kg and the radius of each disk is 
r 5 80 mm. Knowing that the system is initially at rest, determine 
the velocity of the cradle after it has moved 250 mm.

75 mm

75 mm

150 mm

A
B C

Fig. P17.32

A B

30 N

Fig. P17.33

A B

30 N

Fig. P17.34

A B

30 N

Fig. P17.35

 17.36 The motion of the slender 10-kg rod AB is guided by collars of 
negligible mass that slide freely on the vertical and horizontal rods 
shown. Knowing that the bar is released from rest when u 5 30°, 
determine the velocity of collars A and B when u 5 60°.

 17.37 The motion of the slender 10-kg rod AB is guided by collars of 
negligible mass that slide freely on the vertical and horizontal rods 
shown. Knowing that the bar is released from rest when u 5 20°, 
determine the velocity of collars A and B when u 5 90°.

 17.38 The ends of a 9-lb rod AB are constrained to move along slots cut in 
a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached 
to end A in such a way that its tension is zero when u 5 0. If the rod 
is released from rest when u 5 0, determine the angular velocity of 
the rod and the velocity of end B when u 5 30°.

 17.39 The ends of a 9-lb rod AB are constrained to move along slots cut 
in a vertical plate as shown. A spring of constant k 5 3 lb/in. is 
attached to end A in such a way that its tension is zero when u 5 0. 
If the rod is released from rest when u 5 50°, determine the angular 
velocity of the rod and the velocity of end B when u 5 0.

 17.40 The motion of the uniform rod AB is guided by small wheels of 
negligible mass that roll on the surface shown. If the rod is released 
from rest when u 5 0, determine the velocities of A and B when 
u 5 30°.

A

B

q

l = 1.2 m

Fig. P17.36 and P17.37

A

B

q

l = 25 in.

Fig. P17.38 and P17.39

60° q

L

B

A

Fig. P17.40 
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1101Problems 17.41 The motion of a slender rod of length R is guided by pins at A and 
B which slide freely in slots cut in a vertical plate as shown. If end 
B is moved slightly to the left and then released, determine the 
angular velocity of the rod and the velocity of its mass center 
(a) at the instant when the velocity of end B is zero, (b) as end B 
passes through point D. 

A

B

D

C

R
R

Fig. P17.41

 17.44 The uniform rods AB and BC weigh 2.4 lb and 4 lb, respectively, 
and the small wheel at C is of negligible weight. Knowing that in the 
position shown the velocity of wheel C is 6 ft/s to the right, determine 
the velocity of pin B after rod AB has rotated through 90°.

 17.45 The 4-kg rod AB is attached to a collar of negligible mass at A and 
to a flywheel at B. The flywheel has a mass of 16 kg and a radius 
of gyration of 180 mm. Knowing that in the position shown the 
angular velocity of the flywheel is 60 rpm clockwise, determine 
the velocity of the flywheel when point B is directly below C.

 17.46 If in Prob. 17.45 the angular velocity of the flywheel is to be the 
same in the position shown and when point B is directly above C, 
determine the required value of its angular velocity in the position 
shown.

A B

D

L

L

Fig. P17.42

A

B

C

18 in.

30 in.

Fig. P17.43 and P17.44

A

B

240 mm

720 mm

C

Fig. P17.45 and P17.46

 17.42 Two uniform rods, each of mass m and length L, are connected to 
form the linkage shown. End D of rod BD can slide freely in the 
horizontal slot, while end A of rod AB is supported by a pin and 
bracket. If end D is moved slightly to the left and then released, 
determine its velocity (a) when it is directly below A, (b) when rod 
AB is vertical.

 17.43 The uniform rods AB and BC weigh 2.4 lb and 4 lb, respectively, 
and the small wheel at C is of negligible weight. If the wheel is 
moved slightly to the right and then released, determine the veloc-
ity of pin B after rod AB has rotated through 90°.
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1102 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.47 The 80-mm-radius gear shown has a mass of 5 kg and a centroidal 
radius of gyration of 60 mm. The 4-kg rod AB is attached to the 
center of the gear and to a pin at B that slides freely in a vertical 
slot. Knowing that the system is released from rest when u 5 60°, 
determine the velocity of the center of the gear when u 5 20°.

 17.48 The motor shown rotates at a frequency of 22.5 Hz and runs a 
machine attached to the shaft at B. Knowing that the motor develops 
3 kW, determine the magnitude of the couple exerted (a) by the 
motor on pulley A, (b) by the shaft on pulley B.

320 mm

80 mm
A

B

q

Fig. P17.47 

 17.49 Knowing that the maximum allowable couple that can be applied 
to a shaft is 15.5 kip ? in., determine the maximum horsepower that 
can be transmitted by the shaft at (a) 180 rpm, (b) 480 rpm.

 17.50 Three shafts and four gears are used to form a gear train which will 
transmit 7.5 kW from the motor at A to a machine tool at F. (Bear-
ings for the shafts are omitted from the sketch.) Knowing that the 
frequency of the motor is 30 Hz, determine the magnitude of the 
couple which is applied to shaft (a) AB, (b) CD, (c) EF. 

 17.51 The shaft-disk-belt arrangement shown is used to transmit 2.4 kW 
from point A to point D. Knowing that the maximum allowable 
couples that can be applied to shafts AB and CD are 25 N ? m and 
80 N ? m, respectively, determine the required minimum speed of 
shaft AB.

B

A

180 mm

30 mm

Fig. P17.48

A

B

C

D

30 mm

120 mm

Fig. P17.51

75 mm

75 mm

180 mm

180 mm

C
E

F

D B

A

Fig. P17.50
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110317.8  PRINCIPLE OF IMPULSE AND MOMENTUM FOR 
THE PLANE MOTION OF A RIGID BODY

The principle of impulse and momentum will now be applied to the 
analysis of the plane motion of rigid bodies and of systems of rigid 
bodies. As was pointed out in Chap. 13, the method of impulse and 
momentum is particularly well adapted to the solution of problems 
involving time and velocities. Moreover, the principle of impulse 
and momentum provides the only practicable method for the solu-
tion of problems involving impulsive motion or impact (Secs. 17.11 
and 17.12).
 Considering again a rigid body as made of a large number of 
particles Pi, we recall from Sec. 14.9 that the system formed by the 
momenta of the particles at time t1 and the system of the impulses 
of the external forces applied from t1 to t2 are together equipollent 
to the system formed by the momenta of the particles at time t2. 
Since the vectors associated with a rigid body can be considered as 
sliding vectors, it follows (Sec. 3.19) that the systems of vectors 
shown in Fig. 17.6 are not only equipollent but truly equivalent in 

17.8 Principle of Impulse and Momentum for 
the Plane Motion of a Rigid Body

y

O x

Pi

(a)

y

O x

(b)

y

O x

Pi

(c)

(vi Δmi)1

(vi Δmi)2

+ =

��F dt

Fig. 17.6  

the sense that the vectors on the left-hand side of the equals sign 
can be transformed into the vectors on the right-hand side through 
the use of the fundamental operations listed in Sec. 3.13. We there-
fore write

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

 But the momenta vi Dmi of the particles can be reduced to a 
vector attached at G, equal to their sum

L 5 On

i51
 vi ¢mi

and a couple of moment equal to the sum of their moments about G

HG 5 On

i51
 r¿i 3 vi ¢mi

We recall from Sec. 14.3 that L and HG define, respectively, the 
linear momentum and the angular momentum about G of the system 

Photo 17.2 A Charpy impact test is used to 
determine the amount of energy absorbed by a 
material during impact by subtracting the final 
gravitation potential energy of the arm from its 
initial gravitational potential energy.

bee29400_ch17_1080-1143.indd Page 1103  12/16/08  10:21:21 AM user-s172bee29400_ch17_1080-1143.indd Page 1103  12/16/08  10:21:21 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1104 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

of particles forming the rigid body. We also note from Eq. (14.14) 
that L 5 mv. On the other hand, restricting the present analysis to 
the plane motion of a rigid slab or of a rigid body symmetrical with 
respect to the reference plane, we recall from Eq. (16.4) that 
HG 5 IV. We thus conclude that the system of the momenta vi Dmi 
is equivalent to the linear momentum vector mv attached at G and 
to the angular momentum couple IV  (Fig. 17.7). Observing that the 

Pi

vi Δmi

G=
HG = I w⎯

Fig. 17.7

system of momenta reduces to the vector mv in the particular case 
of a translation (V 5 0) and to the couple IV  in the particular case of 
a centroidal rotation (v 5 0), we verify once more that the plane 
motion of a rigid body symmetrical with respect to the reference 
plane can be resolved into a translation with the mass center G and 
a rotation about G.
 Replacing the system of momenta in parts a and c of Fig. 17.6 
by the equivalent linear momentum vector and angular momentum 
couple, we obtain the three diagrams shown in Fig. 17.8. This figure 

y

O x

(a)

y

O x

(b)

y

O x

(c)

+ =

��F dt

G

I w1⎯

G I w2⎯

1

2

Fig. 17.8

expresses as a free-body-diagram equation the fundamental relation 
(17.14) in the case of the plane motion of a rigid slab or of a rigid 
body symmetrical with respect to the reference plane.
 Three equations of motion can be derived from Fig. 17.8. Two 
equations are obtained by summing and equating the x and y com-
ponents of the momenta and impulses, and the third equation is 
obtained by summing and equating the moments of these vectors 
about any given point. The coordinate axes can be chosen fixed in 

bee29400_ch17_1080-1143.indd Page 1104  12/16/08  10:21:23 AM user-s172bee29400_ch17_1080-1143.indd Page 1104  12/16/08  10:21:23 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1105space, or allowed to move with the mass center of the body while 
maintaining a fixed direction. In either case, the point about which 
moments are taken should keep the same position relative to the 
coordinate axes during the interval of time considered.
 In deriving the three equations of motion for a rigid body, care 
should be taken not to add linear and angular momenta indiscrimi-
nately. Confusion can be avoided by remembering that mvx and mvy 
represent the components of a vector, namely, the linear momen-
tum vector mv, while Iv  represents the magnitude of a couple, namely, 
the angular momentum couple IV . Thus the quantity Iv  should be 
added only to the moment of the linear momentum mv, never to this 
vector itself nor to its components. All quantities involved will then be 
expressed in the same units, namely N ? m ? s or lb ? ft ? s.

Noncentroidal Rotation. In this particular case of plane motion, 
the magnitude of the velocity of the mass center of the body is 
v 5 rv, where r represents the distance from the mass center to the 
fixed axis of rotation and V represents the angular velocity of the 
body at the instant considered; the magnitude of the momentum 
vector attached at G is thus mv 5 mrv. Summing the moments 
about O of the momentum vector and momentum couple (Fig. 17.9) 

†Note that the sum HA of the moments about an arbitrary point A of the momenta of 
the particles of a rigid slab is, in general, not equal to IAV. (See Prob. 17.67.)

O

G

⎯rw

 I w⎯

Fig. 17.9

and using the parallel-axis theorem for moments of inertia, we find 
that the angular momentum HO of the body about O has the 
magnitude†

 Iv 1 (mrv)r 5 (I 1 mr 
2)v 5 IOv  (17.15)

Equating the moments about O of the momenta and impulses in 
(17.14), we write

 
IOv1 1 O #

t2

t1

 
MO dt 5 IOv2 

(17.16)

 In the general case of plane motion of a rigid body symmetrical 
with respect to the reference plane, Eq. (17.16) can be used with 
respect to the instantaneous axis of rotation under certain conditions. 
It is recommended, however, that all problems of plane motion be 
solved by the general method described earlier in this section.

17.8 Principle of Impulse and Momentum for 
the Plane Motion of a Rigid Body
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1106 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods 17.9 SYSTEMS OF RIGID BODIES

The motion of several rigid bodies can be analyzed by applying the 
principle of impulse and momentum to each body separately (Sam-
ple Prob. 17.6). However, in solving problems involving no more 
than three unknowns (including the impulses of unknown reactions), 
it is often convenient to apply the principle of impulse and momen-
tum to the system as a whole. The momentum and impulse diagrams 
are drawn for the entire system of bodies. For each moving part of 
the system, the diagrams of momenta should include a momentum 
vector, a momentum couple, or both. Impulses of forces internal to 
the system can be omitted from the impulse diagram, since they 
occur in pairs of equal and opposite vectors. Summing and equating 
successively the x components, y components, and moments of all 
vectors involved, one obtains three relations which express that the 
momenta at time t1 and the impulses of the external forces form a 
system equipollent to the system of the momenta at time t2.† Again, 
care should be taken not to add linear and angular momenta indis-
criminately; each equation should be checked to make sure that con-
sistent units have been used. This approach has been used in Sample 
Prob. 17.8 and, further on, in Sample Probs. 17.9 and 17.10.

17.10 CONSERVATION OF ANGULAR MOMENTUM
When no external force acts on a rigid body or a system of rigid 
bodies, the impulses of the external forces are zero and the system 
of the momenta at time t1 is equipollent to the system of the momenta 
at time t2. Summing and equating successively the x components, 
y components, and moments of the momenta at times t1 and t2, we 
conclude that the total linear momentum of the system is conserved 
in any direction and that its total angular momentum is conserved 
about any point.
 There are many engineering applications, however, in which the 
linear momentum is not conserved yet the angular momentum HO of 
the system about a given point O is conserved that is, in which

 (HO)1 5 (HO)2 (17.17)

Such cases occur when the lines of action of all external forces pass 
through O or, more generally, when the sum of the angular impulses 
of the external forces about O is zero.
 Problems involving conservation of angular momentum about a 
point O can be solved by the general method of impulse and momen-
tum, i.e., by drawing momentum and impulse diagrams as described 
in Secs. 17.8 and 17.9. Equation (17.17) is then obtained by summing 
and equating moments about O (Sample Prob. 17.8). As you will see 
later in Sample Prob. 17.9, two additional equations can be written 
by summing and equating x and y components and these equations 
can be used to determine two unknown linear impulses, such as the 
impulses of the reaction components at a fixed point.

†Note that as in Sec. 16.7, we cannot speak of equivalent systems since we are not 
dealing with a single rigid body.

Photo 17.3 A figure skater at the beginning 
and at the end of a spin. By using the principle 
of conservation of angular momentum you will 
find that her angular velocity is much higher at 
the end of the spin.
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1107

SAMPLE PROBLEM 17.6

Gear A has a mass of 10 kg and a radius of gyration of 200 mm, and gear B 
has a mass of 3 kg and a radius of gyration of 80 mm. The system is at rest 
when a couple M of magnitude 6 N ? m is applied to gear B. (These gears 
were considered in Sample Prob. 17.2.) Neglecting friction, determine 
(a) the time required for the angular velocity of gear B to reach 600 rpm, 
(b) the tangential force which gear B exerts on gear A.

rAA

AA A xt

Ayt

Ft

+ =
⎯IA(wA)1 = 0 ⎯IA(wA)2

SOLUTION

We apply the principle of impulse and momentum to each gear separately. 
Since all forces and the couple are constant, their impulses are obtained by 
multiplying them by the unknown time t. We recall from Sample Prob. 17.2 
that the centroidal moments of inertia and the final angular velocities are

 IA 5 0.400 kg ? m2 IB  5 0.0192 kg ? m2

 (vA)2 5 25.1 rad/s (vB)2 5 62.8 rad/s

Principle of Impulse and Momentum for Gear A. The systems of initial 
momenta, impulses, and final momenta are shown in three separate 
sketches.

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2
 1lmoments about B: 0 1 Mt 2 FtrB 5 IB(vB)2

1(6 N ? m)t 2 (40.2 N ? s)(0.100 m) 5 (0.0192 kg ? m2)(62.8 rad/s)
 t 5 0.871 s ◀

Recalling that Ft 5 40.2 N ? s, we write

F(0.871 s) 5 40.2 N ? s   F 5 146.2 N

Thus, the force exerted by gear B on gear A is F 5 46.2 N o ◀

rB

BB B
Bxt

Byt

Ft

Mt+ =
⎯IB(wB)1 = 0 ⎯IB(wB)2

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

 1lmoments about A: 0 2 FtrA 5 2IA(vA)2

 Ft(0.250 m) 5 (0.400 kg ? m2)(25.1 rad/s)
 Ft 5 40.2 N ? s

Principle of Impulse and Momentum for Gear B.

A

B

rA = 250 mm

rB = 100 mm

M
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SAMPLE PROBLEM 17.7

A uniform sphere of mass m and radius r is projected along a rough hori-
zontal surface with a linear velocity v1 and no angular velocity. Denoting by 
mk the coefficient of kinetic friction between the sphere and the surface, 
determine (a) the time t2 at which the sphere will start rolling without slid-
ing, (b) the linear and angular velocities of the sphere at time t2.

SOLUTION

While the sphere is sliding relative to the surface, it is acted upon by the nor-
mal force N, the friction force F, and its weight W of magnitude W 5 mg.

Principle of Impulse and Momentum. We apply the principle of impulse 
and momentum to the sphere from the time t1 5 0 when it is placed on 
the surface until the time t2 5 t when it starts rolling without sliding.

⎯v1

=+
w2⎯I

G ⎯v2m
G

CC C

G ⎯v1m
w1 = 0⎯I W t

N t

Ft

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

 1xy components: Nt 2 Wt 5 0 (1)
 1
y x components: mv1 2 Ft 5 mv2 (2)
 1i moments about G: Ftr 5 Iv2 (3)

From (1) we obtain N 5 W 5 mg. During the entire time interval consid-
ered, sliding occurs at point C and we have F 5 mkN 5 mkmg. Substituting 
CS for F into (2), we write

 mv1 2 mkmgt 5 mv2        v2 5 v1 2 mk 
gt (4)

Substituting F 5 mkmg and I 5 2
5 
mr2 into (3),

 
mkmgtr 5 2

5 
mr2v2         v2 5

5
2

 
mkg

r
 t

 
(5)

The sphere will start rolling without sliding when the velocity vC of the point 
of contact is zero. At that time, point C becomes the instantaneous center 
of rotation, and we have v2 5 rv2. Substituting from (4) and (5), we write

v2 5 rv2        v1 2 mkgt 5 r a5
2

 
mkg

r
 tb

   
t 5

2
7

 
v1

mkg
 ◀

Substituting this expression for t into (5),

 v2 5
5
2

 
mkg

r
 a2

7
 

v1

mkg
b       v2 5

5
7

 
v1

r      
 V2 5

5
7

 
v1

r
 i ◀

 
 v2 5 rv2

 
v2 5 r a5

7
 
v1

r
b  v2 5 5

7  v1y ◀
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SAMPLE PROBLEM 17.8

Two solid spheres of radius 3 in., weighing 2 lb each, are mounted at 
A and B on the horizontal rod A9B9, which rotates freely about the vertical 
with a counterclockwise angular velocity of 6 rad/s. The spheres are held in 
position by a cord which is suddenly cut. Knowing that the centroidal 
moment of inertia of the rod and pivot is IR 5 0.25 lb ? ft ? s2, determine 
(a) the angular velocity of the rod after the spheres have moved to positions 
A9 and B9, (b) the energy lost due to the plastic impact of the spheres and 
the stops at A9 and B9.

SOLUTION

a. Principle of Impulse and Momentum. In order to determine the final 
angular velocity of the rod, we will express that the initial momenta of the 
various parts of the system and the impulses of the external forces are 
together equipollent to the final momenta of the system.

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

 Observing that the external forces consist of the weights and the reac-
tion at the pivot, which have no moment about the y axis, and noting that 
vA 5 vB 5 rv, we equate moments about the y axis:

  2(mSr1v1)r1 1 2ISv1 1 IRv1 5 2(mSr2v2)r2 1 2ISv2 1 IRv2

  (2mSr 
2
1 1 2IS 1 IR)v1 5 (2mSr 

2
2 1 2IS 1 IR)v2  (1)

which expresses that the angular momentum of the system about the y axis 
is conserved. We now compute

IS 5 2
5mSa2 5 2

5(2 lb/32.2 ft/s2)( 3
12 ft)2 5 0.00155 lb ? ft ? s2

mSr 
2
1 5 (2/32.2)( 5

12)2 5 0.0108   mSr 
2
2 5 (2/32.2)(25

12)2 5 0.2696

Substituting these values, and IR  5 0.25 and v1 5 6 rad/s into (1):

 0.275(6 rad/s) 5 0.792v2    V2 5 2.08 rad/s l ◀

b. Energy Lost. The kinetic energy of the system at any instant is

T 5 2(1
2 
mSv 

2 1 1
2 
ISv

2) 1 1
2 IRv

2 5 1
2(2mSr 

2 1 2IS 1 IR)v2

Recalling the numerical values found above, we have

T1 5 1
2(0.275)(6)2 5 4.95 ft ? lb   T2 5 1

2(0.792)(2.08)2 5 1.713 ft ? lb
DT 5 T2 2 T1 5 1.71 2 4.95  ¢T 5 23.24 ft ? lb ◀

A
A'

B
B'

y

x

z

Cord

25 in.

25 in.
5 in.5 in.

=+

w2⎯IS

w2⎯IS

w1⎯IS

w1⎯IS

w1⎯IR w2⎯IRy
y

y

z

A

B
x

A'

B'

r1
r2

r2

(mSvA)1

(mSvB)1

(mSvA)2

(mSvB)2

�R x d t

�R z d t

r1
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1110

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to use the method of impulse and momentum to solve 
problems involving the plane motion of rigid bodies. As you found out previ-

ously in Chap. 13, this method is most effective when used in the solution of 
problems involving velocities and time.

1. The principle of impulse and momentum for the plane motion of a rigid 
body is expressed by the following vector equation:

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

where Syst Momenta represents the system of the momenta of the particles 
forming the rigid body, and Syst Ext Imp represents the system of all the external 
impulses exerted during the motion.
 a. The system of the momenta of a rigid body is equivalent to a linear 
momentum vector mv attached at the mass center of the body and an angular 
momentum couple IV  (Fig. 17.7).
 b. You should draw a free-body-diagram equation for the rigid body to 
express graphically the above vector equation. Your diagram equation will consist 
of three sketches of the body, representing respectively the initial momenta, the 
impulses of the external forces, and the final momenta. It will show that the system 
of the initial momenta and the system of the impulses of the external forces are 
together equivalent to the system of the final momenta (Fig. 17.8).
 c. By using the free-body-diagram equation, you can sum components in 
any direction and sum moments about any point. When summing moments about 
a point, remember to include the angular momentum Iv  of the body, as well as 
the moments of the components of its linear momentum. In most cases you will 
be able to select and solve an equation that involves only one unknown. This was 
done in all the sample problems of this lesson.

2. In problems involving a system of rigid bodies, you can apply the principle of 
impulse and momentum to the system as a whole. Since internal forces occur in equal 
and opposite pairs, they will not be part of your solution [Sample Prob. 17.8].

3. Conservation of angular momentum about a given axis occurs when, for 
a system of rigid bodies, the sum of the moments of the external impulses about 
that axis is zero. You can indeed easily observe from the free-body-diagram equa-
tion that the initial and final angular momenta of the system about that axis are 
equal and, thus, that the angular momentum of the system about the given axis is 
conserved. You can then sum the angular momenta of the various bodies of the 
system and the moments of their linear momenta about that axis to obtain an 
equation which can be solved for one unknown [Sample Prob. 17.8].
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PROBLEMS

1111

 17.52 The rotor of an electric motor has a mass of 25 kg and a radius of 
gyration of 180 mm. It is observed that 4.2 min is required for the 
rotor to coast to rest from an angular velocity of 3600 rpm. Deter-
mine the average magnitude of the couple due to kinetic friction 
in the bearings of the motor.

 17.53 A 4000-lb flywheel with a radius of gyration of 27 in. is allowed 
to coast to rest from an angular velocity of 450 rpm. Knowing that 
kinetic friction produces a couple of magnitude 125 lb ? in., deter-
mine the time required for the flywheel to coast to rest.

 17.54 Two disks of the same thickness and same material are attached 
to a shaft as shown. The 8-lb disk A has a radius rA 5 3 in., and 
disk B has a radius rB 5 4.5 in. Knowing that a couple M of mag-
nitude 20 lb ? in. is applied to disk A when the system is at rest, 
determine the time required for the angular velocity of the system 
to reach 960 rpm.

17.55 Two disks of the same thickness and same material are attached 
to a shaft as shown. The 3-kg disk A has a radius rA 5 100 mm, 
and disk B has a radius rB 5 125 mm. Knowing that the angular 
velocity of the system is to be increased from 200 rpm to 800 rpm 
during a 3-s interval, determine the magnitude of the couple M
that must be applied to disk A.

 17.56 A cylinder of radius r and weight W with an initial counterclock-
wise angular velocity V0 is placed in the corner formed by the 
floor and a vertical wall. Denoting by mk the coefficient of kinetic 
friction between the cylinder and the wall and the floor derive an 
expression for the time required for the cylinder to come to rest.

 17.57 A 3-kg cylinder of radius r 5 125 mm with an initial counterclockwise 
angular velocity V0 5 90 rad/s is placed in the corner formed by the 
floor and a vertical wall. Knowing that the coefficient of kinetic fric-
tion is 0.10 between the cylinder and the wall and the floor deter-
mine the time required for the cylinder to come to rest.

17.58 A disk of constant thickness, initially at rest, is placed in contact 
with a belt that moves with a constant velocity v. Denoting by mk

the coefficient of kinetic friction between the disk and the belt, 
derive an expression for the time required for the disk to reach a 
constant angular velocity.

 17.59 Disk A, of weight 5 lb and radius r 5 3 in., is at rest when it is 
placed in contact with a belt which moves at a constant speed
v 5 50 ft/s. Knowing that mk 5 0.20 between the disk and the 
belt, determine the time required for the disk to reach a constant 
angular velocity.

rB

B

A

rA

M

Fig. P17.54 and P17.55

w0

Fig. P17.56 and P17.58

A

r

v

Fig. P17.58 and P17.59
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1112 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.60 The 350-kg flywheel of a small hoisting engine has a radius of 
gyration of 600 mm. If the power is cut off when the angular 
velocity of the flywheel is 100 rpm clockwise, determine the time 
required for the system to come to rest.

 17.61 In Prob. 17.60, determine the time required for the angular veloc-
ity of the flywheel to be reduced to 40 rpm clockwise.

 17.62 A tape moves over the two drums shown. Drum A weighs 1.4 lb 
and has a radius of gyration of 0.75 in., while drum B weighs 3.5 lb 
and has a radius of gyration of 1.25 in. In the lower portion of 
the tape the tension is constant and equal to TA 5 0.75 lb. Know-
ing that the tape is initially at rest, determine (a) the required 
constant tension TB if the velocity of the tape is to be v 5 10 ft/s 
after 0.24 s, (b) the corresponding tension in the portion of the 
tape between the drums. 

A
225 mm

120 kg

Fig. P17.60 v TB

TA = 0.75 lb

0.9 in.

1.5 in.

A

B

Fig. P17.62

 17.63 Disk B has an initial angular velocity V0 when it is brought into 
contact with disk A which is at rest. Show that the final angular 
velocity of disk B depends only on v0 and the ratio of the masses 
mA and mB of the two disks.

 17.64 The 7.5-lb disk A has a radius rA 5 6 in. and is initially at rest. 
The 10-lb disk B has a radius rB 5 8 in. and an angular velocity 
V0 of 900 rpm when it is brought into contact with disk A. Neglect-
ing friction in the bearings, determine (a) the final angular velocity 
of each disk, (b) the total impulse of the friction force exerted on 
disk A.

 17.65 Show that the system of momenta for a rigid slab in plane motion 
reduces to a single vector, and express the distance from the mass 
center G to the line of action of this vector in terms of the cen-
troidal radius of gyration k of the slab, the magnitude v of the 
velocity of G, and the angular velocity V.

 17.66 Show that, when a rigid slab rotates about a fixed axis through O 
perpendicular to the slab, the system of the momenta of its parti-
cles is equivalent to a single vector of magnitude mrv, perpen-
dicular to the line OG, and applied to a point P on this line, called 
the center of percussion, at a distance GP 5 k2/  r from the mass 
center of the slab.

P

A

B

w0

rB

rA

Fig. P17.63 and P17.64

O

P

w

Gr⎯

m wr⎯

Fig. P17.66
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1113Problems 17.67 Show that the sum HA of the moments about a point A of the 
momenta of the particles of a rigid slab in plane motion is equal 
to IAV, where V is the angular velocity of the slab at the instant 
considered and IA

 the moment of inertia of the slab about A, if and 
only if one of the following conditions is satisfied: (a) A is the mass 
center of the slab, (b) A is the instantaneous center of rotation, 
(c) the velocity of A is directed along a line joining point A and 
the mass center G.

 17.68 Consider a rigid slab initially at rest and subjected to an impulsive 
force F contained in the plane of the slab. We define the center 
of percussion P as the point of intersection of the line of action of 
F with the perpendicular drawn from G. (a) Show that the instan-
taneous center of rotation C of the slab is located on line GP at a 
distance GC 5 k2/GP on the opposite side of G. (b) Show that if 
the center of percussion were located at C the instantaneous center 
of rotation would be located at P.

 17.69 A wheel of radius r and centroidal radius of gyration k is released 
from rest on the incline shown at time t 5 0. Assuming that the 
wheel rolls without sliding, determine (a) the velocity of its center 
at time t, (b) the coefficient of static friction required to prevent 
slipping.

 17.70 A flywheel is rigidly attached to a 1.5-in.-radius shaft that rolls 
without sliding along parallel rails. Knowing that after being 
released from rest the system attains a speed of 6 in./s in 30 s, 
determine the centroidal radius of gyration of the system.

C
G

P

F

Fig. P17.68

b

r

Fig. P17.69

r

15°

Fig. P17.70

 17.71 The double pulley shown has a mass of 3 kg and a radius of gyra-
tion of 100 mm. Knowing that when the pulley is at rest, a force P 
of magnitude 24 N is applied to cord B, determine (a) the velocity 
of the center of the pulley after 1.5 s, (b) the tension in cord C.

 17.72 Two uniform cylinders, each of weight W 5 14 lb and radius 
r 5 5 in., are connected by a belt as shown. If the system is 
released from rest when t 5 0, determine (a) the velocity of the 
center of cylinder B at t 5 3 s, (b) the tension in the portion of 
belt connecting the two cylinders.

 17.73 Two uniform cylinders, each of weight W 5 14 lb and radius r 5 
5 in., are connected by a belt as shown. Knowing that at the instant 
shown the angular velocity of cylinder A is 30 rad/s counterclock-
wise, determine (a) the time required for the angular velocity of 
cylinder A to be reduced to 5 rad/s, (b) the tension in the portion 
of belt connecting the two cylinders.

A

80 
mm

150 
mm

B C

P

Fig. P17.71

r

r

B

A

Fig. P17.72 and P17.73
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1114 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.74 and 17.75 A 240-mm-radius cylinder of mass 8 kg rests on a 
3-kg carriage. The system is at rest when a force P of magnitude 
10 N is applied as shown for 1.2 s. Knowing that the cylinder rolls 
without sliding on the carriage and neglecting the mass of the 
wheels of the carriage, determine the resulting velocity of (a) the 
carriage, (b) the center of the cylinder.

P

A

B

Fig. P17.74

PA

B

Fig. P17.75

 17.76 In the gear arrangement shown, gears A and C are attached to rod 
ABC, which is free to rotate about B, while the inner gear B is 
fixed. Knowing that the system is at rest, determine the magnitude 
of the couple M which must be applied to rod ABC, if 2.5 s later 
the angular velocity of the rod is to be 240 rpm clockwise. Gears 
A and C weigh 2.5 lb each and may be considered as disks of 
radius 2 in.; rod ABC weighs 4 lb. 

 17.77 A sphere of radius r and mass m is placed on a horizontal floor 
with no linear velocity but with a clockwise angular velocity V0. 
Denoting by mk the coefficient of kinetic friction between the 
sphere and the floor, determine (a) the time t1 at which the sphere 
will start rolling without sliding, (b) the linear and angular veloci-
ties of the sphere at time t1.

 17.78 A sphere of radius r and mass m is projected along a rough 
 horizontal surface with the initial velocities shown. If the final 
velocity of the sphere is to be zero, express (a) the required mag-
nitude of V0 in terms of v0 and r, (b) the time required for the 
sphere to come to rest in terms of v0 and the coefficient of kinetic 
friction mk.

2 in.

2 in.

8 in.

2 in.

A

B

C

Fig. P17.76

w0

Fig. P17.77

 17.79 A 2.5-lb disk of radius 4 in. is attached to the yoke BCD by means 
of short shafts fitted in bearings at B and D. The 1.5-lb yoke has a 
radius of gyration of 3 in. about the x axis. Initially the assembly is 
rotating at 120 rpm with the disk in the plane of the yoke (u 5 0). 
If the disk is slightly disturbed and rotates with respect to the yoke 
until u 5 90°, where it is stopped by a small bar at D, determine 
the final angular velocity of the assembly.

w0 v0⎯

Fig. P17.78A

DC

E

B

G

xq

Fig. P17.79
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1115Problems 17.80 Two panels A and B are attached with hinges to a rectangular plate 
and held by a wire as shown. The plate and the panels are made 
of the same material and have the same thickness. The entire assem-
bly is rotating with an angular velocity V0 when the wire breaks. 
Determine the angular velocity of the assembly after the panels 
have come to rest against the plate.

 17.81 A 1.6-kg tube AB can slide freely on rod DE which in turn can 
rotate freely in a horizontal plane. Initially the assembly is rotating 
with an angular velocity v 5 5 rad/s and the tube is held in posi-
tion by a cord. The moment of inertia of the rod and bracket about 
the vertical axis of rotation is 0.30 kg ? m2 and the centroidal moment 
of inertia of the tube about a vertical axis is 0.0025 kg ? m2. If the 
cord suddenly breaks, determine (a) the angular velocity of the 
assembly after the tube has moved to end E, (b) the energy lost 
during the plastic impact at E.

b

b

2b

b
b

b

w0

A

B

C

Fig. P17.80
B

E

C
D

w

A

375 mm

500 mm

125 mm

Fig. P17.81 

 17.82 Two 0.8-lb balls are to be put successively into the center C of the 
slender 4-lb tube AB. Knowing that when the first ball is put into 
the tube the initial angular velocity of the tube is 8 rad/s and 
neglecting the effect of friction, determine the angular velocity of 
the tube just after (a) the first ball has left the tube, (b) the second 
ball has left the tube.

B

C
w

A

18 in.

18 in.

Fig. P17.82
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1116 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.83 A 3-kg rod of length 800 mm can slide freely in the 240-mm 
cylinder DE, which in turn can rotate freely in a horizontal plane. 
In the position shown the assembly is rotating with an angular 
velocity of magnitude v 5 40 rad/s and end B of the rod is mov-
ing toward the cylinder at a speed of 75 mm/s relative to the cyl-
inder. Knowing that the centroidal mass moment of inertia of the 
cylinder about a vertical axis is 0.025 kg ? m2 and neglecting the 
effect of friction, determine the angular velocity of the assembly 
as end B of the rod strikes end E of the cylinder.

A

D

E
B

240 mm

320 mm

120 mm

w

C

Fig. P17.83

x
G

z

16 ft

y

Fig. P17.84

 17.84 In the helicopter shown, a vertical tail propeller is used to pre-
vent rotation of the cab as the speed of the main blades is 
changed. Assuming that the tail propeller is not operating, 
determine the final angular velocity of the cab after the speed 
of the main blades has been changed from 180 to 240 rpm. (The 
speed of the main blades is measured relative to the cab, and 
the cab has a centroidal moment of inertia of 650 lb ? ft ? s2. 
Each of the four main blades is assumed to be a slender 14-ft 
rod weighing 55 lb.)

 17.85 Assuming that the tail propeller in Prob. 17.84 is operating and 
that the angular velocity of the cab remains zero, determine the 
final horizontal velocity of the cab when the speed of the main 
blades is changed from 180 to 240 rpm. The cab weighs 1250 lb 
and is initially at rest. Also determine the force exerted by the tail 
propeller if the change in speed takes place uniformly in 12 s.

 17.86 The 4-kg disk B is attached to the shaft of a motor mounted on 
plate A, which can rotate freely about the vertical shaft C. The 
motor-plate-shaft unit has a moment of inertia of 0.20 kg ? m2 with 
respect to the axis of the shaft. If the motor is started when the 
system is at rest, determine the angular velocities of the disk and 
of the plate after the motor has attained its normal operating speed 
of 360 rpm.

A

B

C

Motor
180 mm

90 mm

90 mm

Fig. P17.86
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1117Problems 17.87 The circular platform A is fitted with a rim of 200-mm inner radius 
and can rotate freely about the vertical shaft. It is known that the 
platform-rim unit has a mass of 5 kg and a radius of gyration of 
175 mm with respect to the shaft. At a time when the platform is 
rotating with an angular velocity of 50 rpm, a 3-kg disk B of radius 
80 mm is placed on the platform with no velocity. Knowing that disk 
B then slides until it comes to rest relative to the platform against 
the rim, determine the final angular velocity of the platform.

200 mm

B

A

Fig. P17.87 R

q

C

Fig. P17.88

C

A

B

600 mm

w

vr

vq

Fig. P17.89

 17.88 A small 2-kg collar C can slide freely on a thin ring of mass 3 kg 
and radius 250 mm. The ring is welded to a short vertical shaft, 
which can rotate freely in a fixed bearing. Initially the ring has an 
angular velocity of 35 rad/s and the collar is at the top of the ring 
(u 5 0) when it is given a slight nudge. Neglecting the effect of 
friction, determine (a) the angular velocity of the ring as the collar 
passes through the position u 5 90°, (b) the corresponding velocity 
of the collar relative to the ring.

 17.89 Collar C has a mass of 8 kg and can slide freely on rod AB, which 
in turn can rotate freely in a horizontal plane. The assembly is 
rotating with an angular velocity V of 1.5 rad/s when a spring 
located between A and C is released, projecting the collar along 
the rod with an initial relative speed vr 5 1.5 m/s. Knowing that 
the combined mass moment of inertia about B of the rod and 
spring is 1.2 kg ? m2, determine (a) the minimum distance between 
the collar and point B in the ensuing motion, (b) the corresponding 
angular velocity of the assembly.

 17.90 In Prob. 17.89, determine the required magnitude of the initial 
relative speed vr if during the ensuing motion the minimum 
 distance between collar C and point B is to be 300 mm.
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1118 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

24 in.

C

A

B

10 in.

Fig. P17.91

 17.91 A 6-lb collar C is attached to a spring and can slide on rod AB, 
which in turn can rotate in a horizontal plane. The mass moment 
of inertia of rod AB with respect to end A is 0.35 lb ? ft ? s2. The 
spring has a constant k 5 15 lb/in. and an undeformed length of 
10 in. At the instant shown the velocity of the collar relative to the 
rod is zero and the assembly is rotating with an angular velocity of 
12 rad/s. Neglecting the effect of friction, determine (a) the angular 
velocity of the assembly as the collar passes through a point located 
7.5 in. from end A of the rod, (b) the corresponding velocity of the 
collar relative to the rod.

30°
B

A C

Fig. P17.92

 17.92 A uniform rod AB, of weight 15 lb and length 3.6 ft, is attached 
to the 25-lb cart C. Knowing that the system is released from rest 
in the position shown and neglecting friction, determine (a) the 
velocity of point B as rod AB passes through a vertical position, 
(b) the corresponding velocity of cart C.

 17.93 In Prob. 17.83, determine the velocity of rod AB relative to  cylinder 
DE as end B of the rod strikes end E of the cylinder.

 17.94 In Prob. 17.81, determine the velocity of the tube relative to the 
rod as the tube strikes end E of the assembly. 

 17.95 The 6-lb steel cylinder A and the 10-lb wooden cart B are at rest 
in the position shown when the cylinder is given a slight nudge, 
causing it to roll without sliding along the top surface of the cart. 
Neglecting friction between the cart and the ground, determine 
the velocity of the cart as the cylinder passes through the lowest 
point of the surface at C.

C

A

B
6 in.

Fig. P17.95

bee29400_ch17_1080-1143.indd Page 1118  12/16/08  10:21:36 AM user-s172bee29400_ch17_1080-1143.indd Page 1118  12/16/08  10:21:36 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



111917.11 IMPULSIVE MOTION
You saw in Chap. 13 that the method of impulse and momentum is 
the only practicable method for the solution of problems involving 
the impulsive motion of a particle. Now you will find that problems 
involving the impulsive motion of a rigid body are particularly well 
suited to a solution by the method of impulse and momentum. Since 
the time interval considered in the computation of linear impulses 
and angular impulses is very short, the bodies involved can be 
assumed to occupy the same position during that time interval, mak-
ing the computation quite simple.

17.12 ECCENTRIC IMPACT
In Secs. 13.13 and 13.14, you learned to solve problems of central 
impact, i.e., problems in which the mass centers of the two colliding 
bodies are located on the line of impact. You will now analyze the 
eccentric impact of two rigid bodies. Consider two bodies which col-
lide, and denote by vA and vB the velocities before impact of the two 
points of contact A and B (Fig. 17.10a). Under the impact, the two 

A
B

n

n

vA

vB

(a) (b) (c)

A
B

n

n

uA

uB

A
B

n

n

v'A

v'B

Fig. 17.10

bodies will deform, and at the end of the period of deformation, the 
velocities uA and uB of A and B will have equal components along 
the line of impact nn (Fig. 17.10b). A period of restitution will then 
take place, at the end of which A and B will have velocities v9A and 
v9B (Fig. 17.10c). Assuming that the bodies are frictionless, we find 
that the forces they exert on each other are directed along the line 
of impact. Denoting the magnitude of the impulse of one of these 
forces during the period of deformation by eP dt and the magnitude 
of its impulse during the period of restitution by eR dt, we recall 
that the coefficient of restitution e is defined as the ratio

 
e 5

eR dt
eP dt  

(17.18)

We propose to show that the relation established in Sec. 13.13 
between the relative velocities of two particles before and after 
impact also holds between the components along the line of impact 

17.12 Eccentric Impact
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1120 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

of the relative velocities of the two points of contact A and B. We 
propose to show, therefore, that

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (17.19)

 It will first be assumed that the motion of each of the two col-
liding bodies of Fig. 17.10 is unconstrained. Thus the only impulsive 
forces exerted on the bodies during the impact are applied at A and 
B, respectively. Consider the body to which point A belongs and 
draw the three momentum and impulse diagrams corresponding to 
the period of deformation (Fig. 17.11). We denote by v and u, 

respectively, the velocity of the mass center at the beginning and at 
the end of the period of deformation, and we denote by V and V* 
the angular velocity of the body at the same instants. Summing and 
equating the components of the momenta and impulses along the 
line of impact nn, we write

 mvn 2 eP dt 5 mun (17.20)

Summing and equating the moments about G of the momenta and 
impulses, we also write

 Iv 2 reP dt 5 Iv* (17.21)

where r represents the perpendicular distance from G to the line of 
impact. Considering now the period of restitution, we obtain in a 
similar way

  mun 2 eR dt 5 mv ¿n (17.22)
  Iv* 2 reR dt 5 Iv ¿  (17.23)

where v ¿ and V9 represent, respectively, the velocity of the mass 
center and the angular velocity of the body after impact. Solving 
(17.20) and (17.22) for the two impulses and substituting into (17.18), 
and then solving (17.21) and (17.23) for the same two impulses and 
substituting again into (17.18), we obtain the following two alterna-
tive expressions for the coefficient of restitution:

 
e 5

un 2 v ¿n
vn 2 un    

e 5
v* 2 v ¿
v 2 v*  

(17.24)

A

n

n

�P dt mvn

+ =A

n

n

G
G A

n

n

⎯
G

⎯ I w

⎯

 mun

 mu t

r

 mv t

 I w*

Fig. 17.11

Photo 17.4 When the rotating bat contacts 
the ball it applies an impulsive force to the ball 
requiring the method of impulse and momentum 
to be used to determine the final velocities 
of the ball and bat.
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1121Multiplying by r the numerator and denominator of the second 
expression obtained for e, and adding respectively to the numerator 
and denominator of the first expression, we have

 
e 5

un 1 rv* 2 (v ¿n 1 rv ¿)
vn 1 rv 2 (un 1 rv*)

 (17.25)

Observing that vn 1 rv represents the component (vA)n along nn of 
the velocity of the point of contact A and that, similarly, un 1 rv* 
and v ¿n 1 rv9 represent, respectively, the components (uA)n and (v9A)n, 
we write

 
e 5

(uA)n 2 (v ¿A)n

(vA)n 2 (uA)n
 (17.26)

The analysis of the motion of the second body leads to a similar 
expression for e in terms of the components along nn of the succes-
sive velocities of point B. Recalling that (uA)n 5 (uB)n, and eliminat-
ing these two velocity components by a manipulation similar to the 
one used in Sec. 13.13, we obtain relation (17.19).
 If one or both of the colliding bodies is constrained to rotate 
about a fixed point O, as in the case of a compound pendulum 
(Fig. 17.12a), an impulsive reaction will be exerted at O (Fig. 17.12b). 

17.12 Eccentric Impact

(a)

A

O

�P d t

n

n

(b)

�Qy d t

�Qx d t

A

O

r

Fig. 17.12

Let us verify that while their derivation must be modified, Eqs. (17.26) 
and (17.19) remain valid. Applying formula (17.16) to the period of 
deformation and to the period of restitution, we write

  IOv 2 reP dt 5 IOv* (17.27)
 IOv* 2 reR dt 5 IOv9 (17.28)

where r represents the perpendicular distance from the fixed point 
O to the line of impact. Solving (17.27) and (17.28) for the two 
impulses and substituting into (17.18), and then observing that rv, 
rv*, and rv9 represent the components along nn of the successive 
velocities of point A, we write

e 5
v* 2 v ¿
v 2 v*

5
rv* 2 rv ¿
rv 2 rv*

5
(uA)n 2 (v ¿A)n

(vA)n 2 (uA)n

and check that Eq. (17.26) still holds. Thus Eq. (17.19) remains valid 
when one or both of the colliding bodies is constrained to rotate 
about a fixed point O.
 In order to determine the velocities of the two colliding bodies 
after impact, relation (17.19) should be used in conjunction with one 
or several other equations obtained by applying the principle of 
impulse and momentum (Sample Prob. 17.10).
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1122

SAMPLE PROBLEM 17.9

A 0.05-lb bullet B is fired with a horizontal velocity of 1500 ft/s into the 
side of a 20-lb square panel suspended from a hinge at A. Knowing that the 
panel is initially at rest, determine (a) the angular velocity of the panel 
immediately after the bullet becomes embedded, (b) the impulsive reaction 
at A, assuming that the bullet becomes embedded in 0.0006 s.

SOLUTION

Principle of Impulse and Momentum. We consider the bullet and the 
panel as a single system and express that the initial momenta of the bullet 
and panel and the impulses of the external forces are together equipollent 
to the final momenta of the system. Since the time interval Dt 5 0.0006 s 
is very short, we neglect all nonimpulsive forces and consider only the exter-
nal impulses Ax Dt and Ay Dt.

18 in.

18 in.

14 in.

A

G

vB = 1500 ft/s

B

=

A

14 in.

G

AyΔt

A xΔt

+
ωω2⎯IPmBvB

A

G

A

G

9 in.

mPv2⎯

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about A: mBvB(14
12 ft) 1 0 5 mPv2(

9
12 ft) 1 IPv2 (1)

y
1 x components: mBvB 1 Ax Dt 5 mPv2 (2)
1xy components: 0 1 Ay Dt 5 0 (3)

The centroidal mass moment of inertia of the square panel is

IP 5 1
6mPb2 5

1
6

 a20 lb
32.2

b(18
12 ft)2 5 0.2329 lb ? ft ? s2

Substituting this value as well as the given data into (1) and noting that

v2 5 ( 9
12 ft)v2

we write

 
a0.05

32.2
b(1500)(14

12) 5 0.2329v2 1 a 20
32.2
b( 9

12v2)( 9
12)

 v2 5 4.67 rad/s v2 5 4.67 rad/sl ◀

 v2 5 ( 9
12 ft)v2 5 ( 9

12 ft)(4.67 rad/s) 5 3.50 ft/s

Substituting v2 5 3.50 ft/s, Dt 5 0.0006 s, and the given data into Eq. (2), 
we have

 
a0.05

32.2
b(1500) 1 Ax(0.0006) 5 a 20

32.2
b(3.50)

 Ax 5 2259 lb Ax 5 259 lb z ◀

From Eq. (3), we find  Ay 5 0 Ay 5 0 ◀
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1123

SAMPLE PROBLEM 17.10

A 2-kg sphere moving horizontally to the right with an initial velocity of 
5 m/s strikes the lower end of an 8-kg rigid rod AB. The rod is suspended 
from a hinge at A and is initially at rest. Knowing that the coefficient of 
restitution between the rod and the sphere is 0.80, determine the angular 
velocity of the rod and the velocity of the sphere immediately after the 
impact.

SOLUTION

Principle of Impulse and Momentum. We consider the rod and sphere as 
a single system and express that the initial momenta of the rod and sphere 
and the impulses of the external forces are together equipollent to the final 
momenta of the system. We note that the only impulsive force external to 
the system is the impulsive reaction at A.

A

G

B

vs

1.2 m

0.6 m

AyΔ t 

AxΔ t 

⎯vR = 0mR =+1.2 m

A

G

B

A

G

B

I w = 0⎯ I w' ⎯
⎯vmR

v'smsvsms

A

G

B

0.6 m
'R

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about A:

 msvs(1.2  m) 5 msv ¿s(1.2  m) 1 mRv ¿R(0.6  m) 1 Iv ¿ (1)

Since the rod rotates about A, we have v ¿R 5 rv ¿ 5 (0.6  m)v ¿. Also,

I 5 1
12mL2 5 1

12(8 kg)(1.2 m)2 5 0.96 kg ? m2

Substituting these values and the given data into Eq. (1), we have

(2 kg)(5 m/s)(1.2 m) 5 (2 kg)v9s (1.2 m) 1 (8 kg)(0.6 m)v9(0.6 m)
 1 (0.96 kg ? m2)v9

 12 5 2.4v9s 1 3.84v9 (2)

Relative Velocities. Choosing positive to the right, we write

v9B 2 v9s 5 e(vs 2 vB)

Substituting vs 5 5 m/s, vB 5 0, and e 5 0.80, we obtain

 v9B 2 v9s 5 0.80(5 m/s) (3)

Again noting that the rod rotates about A, we write

 v9B 5 (1.2 m)v9 (4)

Solving Eqs. (2) to (4) simultaneously, we obtain

 v9 5 3.21 rad/s V9 5 3.21 rad/s l ◀

 v9s 5 20.143 m/s v9s 5 20.143 m/s z ◀
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SAMPLE PROBLEM 17.11

A square package of side a and mass m moves down a conveyor belt A with 
a constant velocity v1. At the end of the conveyor belt, the corner of the 
package strikes a rigid support at B. Assuming that the impact at B is per-
fectly plastic, derive an expression for the smallest magnitude of the velocity 
v1 for which the package will rotate about B and reach conveyor belt C.

SOLUTION

Principle of Impulse and Momentum. Since the impact between the 
package and the support is perfectly plastic, the package rotates about B 
during the impact. We apply the principle of impulse and momentum to 
the package and note that the only impulsive force external to the package 
is the impulsive reaction at B.

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about B:  (mv1)(1
2a) 1 0 5 (mv2)(1

212a) 1 Iv2 (1)

Since the package rotates about B, we have v2 5 (GB)v2 5 1
212av2. We 

substitute this expression, together with I 5 1
6ma2, into Eq. (1):

 (mv1)(1
2a) 5 m(1

212av2)(1
212a) 1 1

6ma2v2     v1 5 4
3av2 (2)

Principle of Conservation of Energy. We apply the principle of conserva-
tion of energy between position 2 and position 3.

Position 2. V2 5 Wh2. Recalling that v2 5 1
212av2, we write

T2 5 1
2mv2

2 1 1
2Iv

2
2 5 1

2m(1
212av2)2 1 1

2(1
6ma2)v2

2 5 1
3ma2v2

2

Position 3. Since the package must reach conveyor belt C, it must pass 
through position 3 where G is directly above B. Also, since we wish to 
determine the smallest velocity for which the package will reach this posi-
tion, we choose v3 5 v3 5 0. Therefore T3 5 0 and V3 5 Wh3.

Conservation of Energy

 T2 1 V2 5 T3 1 V3
 1

3ma2v2
2 1 Wh2 5 0 1 Wh3

 
v2

2 5
3W

ma2 (h3 2 h2) 5
3g

a2  (h3 2 h2)
 

(3)

Substituting the computed values of h2 and h3 into Eq. (3), we obtain

v2
2 5

3g

a2  (0.707a 2 0.612a) 5
3g

a2  (0.095a)      v2 5 10.285g/a

 v1 5 4
3av2 5 4

3a10.285g/a v1 5 0.7121ga ◀

⎯v1

15°
A

B
C

a

a

Iw2

15°
G

B

⎯v1

BΔt

+ =m

15°

G

B
15°G

B

⎯v2

⎯

m

a√2
2

a

a

15°
45°

Datum

G

B

h2

GB =     √2a = 0.707a

  h2 = GB sin (45° + 15°)

       = 0.612a

Position 2

⎯v2

w2

1
2

a

a

G

B

h3

h3 = GB = 0.707a

Position 3

⎯v3

w3

a

a
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1125

SOLVING PROBLEMS
ON YOUR OWN

This lesson was devoted to the impulsive motion and to the eccentric impact of 
rigid bodies.

1. Impulsive motion occurs when a rigid body is subjected to a very large force F
for a very short interval of time Dt; the resulting impulse F Dt is both finite and 
different from zero. Such forces are referred to as impulsive forces and are encoun-
tered whenever there is an impact between two rigid bodies. Forces for which the 
impulse is zero are referred to as nonimpulsive forces. As you saw in Chap. 13, 
the following forces can be assumed to be nonimpulsive: the weight of a body, the 
force exerted by a spring, and any other force which is known to be small by 
comparison with the impulsive forces. Unknown reactions, however, cannot be 
assumed to be nonimpulsive.

2. Eccentric impact of rigid bodies. You saw that when two bodies collide, the 
velocity components along the line of impact of the points of contact A and B
before and after impact satisfy the following equation:

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (17.19)

where the left-hand member is the relative velocity after the impact, and the right-
hand member is the product of the coefficient of restitution and the relative veloc-
ity before the impact.

  This equation expresses the same relation between the velocity components 
of the points of contact before and after an impact that you used for particles in 
Chap. 13.

3. To solve a problem involving an impact you should use the method of impulse 
and momentum and take the following steps.
 a. Draw a free-body-diagram equation of the body that will express that 
the system consisting of the momenta immediately before impact and of the 
impulses of the external forces is equivalent to the system of the momenta imme-
diately after impact.

b. The free-body-diagram equation will relate the velocities before and after 
impact and the impulsive forces and reactions. In some cases, you will be able to 
determine the unknown velocities and impulsive reactions by solving equations 
obtained by summing components and moments [Sample Prob. 17.9].

c. In the case of an impact in which e . 0, the number of unknowns will 
be greater than the number of equations that you can write by summing compo-
nents and moments, and you should supplement the equations obtained from the 
free-body-diagram equation with Eq. (17.19), which relates the relative velocities 
of the points of contact before and after impact [Sample Prob. 17.10].

d. During an impact you must use the method of impulse and momentum. 
However, before and after the impact you can, if necessary, use some of the other 
methods of solution that you have learned, such as the method of work and energy 
[Sample Prob. 17.11].
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1126

PROBLEMS

 17.96 A bullet weighing 0.08 lb is fired with a horizontal velocity of 1800 ft/s 
into the lower end of a slender 15-lb bar of length L 5 30 in. Know-
ing that h 5 12 in. and that the bar is initially at rest, determine 
(a) the angular velocity of the bar immediately after the bullet 
becomes embedded, (b) the impulsive reaction at C, assuming 
that the bullet becomes embedded in 0.001 s.

v0

B

C

A

h

L

Fig. P17.96

v0h G

A

b

b
q

Fig. P17.98 and P17.99

 17.97 In Prob. 17.96, determine (a) the required distance h if the impul-
sive reaction at C is to be zero, (b) the corresponding angular 
velocity of the bar immediately after the bullet becomes 
embedded.

 17.98 A 45-g bullet is fired with a velocity of 400 m/s at u 5 30° into a 9-kg 
square panel of side b 5 200 mm. Knowing that h 5 150 mm and 
that the panel is initially at rest, determine (a) the velocity of the 
center of the panel immediately after the bullet becomes embedded, 
(b) the impulsive reaction at A, assuming that the bullet becomes 
embedded in 2 ms.

17.99 A 45-g bullet is fired with a velocity of 400 m/s at u 5 5° into a 9-kg 
square panel of side b 5 200 mm. Knowing that h 5 150 mm and 
that the panel is initially at rest, determine (a) the required distance 
h if the horizontal component of the impulsive reaction at A is to be 
zero, (b) the corresponding velocity of the center of the panel imme-
diately after the bullet becomes embedded.
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1127Problems 17.100 An 8-kg wooden panel is suspended from a pin support at A and 
is initially at rest. A 2-kg metal sphere is released from rest at B 
and falls into a hemispherical cup C attached to the panel at a 
point located on its top edge. Assuming that the impact is perfectly 
plastic, determine the velocity of the mass center G of the panel 
immediately after the impact. 

 17.101 An 8-kg wooden panel is suspended from a pin support at A and 
is initially at rest. A 2-kg metal sphere is released from rest at B9 
and falls into a hemispherical cup C9 attached to the panel at the 
same level as the mass center G. Assuming that the impact is 
perfectly plastic, determine the velocity of the mass center G of 
the panel immediately after the impact. 

 17.102 The gear shown has a radius R 5 150 mm and a radius of gyration 
k 5 125 mm. The gear is rolling without sliding with a velocity v1 
of magnitude 3 m/s when it strikes a step of height h 5 75 mm. 
Because the edge of the step engages the gear teeth, no slipping 
occurs between the gear and the step. Assuming perfectly plastic 
impact, determine the angular velocity of the gear immediately after 
the impact.

A

L

v0

B

C

Fig. P17.103

R

h

v1⎯

w1

Fig. P17.102

 17.103 A uniform slender rod AB of mass m is at rest on a frictionless 
horizontal surface when hook C engages a small pin at A. Knowing 
that the hook is pulled upward with a constant velocity v0, deter-
mine the impulse exerted on the rod (a) at A, (b) at B. Assume 
that the velocity of the hook is unchanged and that the impact is 
perfectly plastic.

250 mm

200 mm 200 mm

250 mm

500 mm

500 mm

G

C

B B�

C�

A

Fig. P17.100 and P17.101
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1128 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

A

B

A
B

b

L

90°

Fig. P17.107

 17.104 A uniform slender bar of length L and mass m is supported by a 
frictionless horizontal table. Initially the bar is spinning about its 
mass center G with a constant angular velocity V1. Suddenly latch 
D is moved to the right and is struck by end A of the bar. Assum-
ing that the impact of A and D is perfectly plastic, determine the 
angular velocity of the bar and the velocity of its mass center 
immediately after the impact.

A

B

L B

v1⎯

Fig. P17.106

 17.105 Solve Prob. 17.104, assuming that the impact of A and D is per-
fectly elastic.

 17.106 A uniform slender rod of length L is dropped onto rigid supports 
at A and B. Since support B is slightly lower than support A, the 
rod strikes A with a velocity v1 before it strikes B. Assuming per-
fectly elastic impact at both A and B, determine the angular veloc-
ity of the rod and the velocity of its mass center immediately after 
the rod (a) strikes support A, (b) strikes support B, (c) again strikes 
support A.

 17.107 A uniform slender rod AB is at rest on a frictionless horizontal 
table when end A of the rod is struck by a hammer which delivers 
an impulse that is perpendicular to the rod. In the subsequent 
motion, determine the distance b through which the rod will move 
each time it completes a full revolution.

A

D
G

w1

B

Fig. P17.104
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1129Problems 17.108 A uniform sphere of radius r rolls down the incline shown without 
slipping. It hits a horizontal surface and, after slipping for a while, 
it starts rolling again. Assuming that the sphere does not bounce 
as it hits the horizontal surface, determine its angular velocity and 
the velocity of its mass center after it has resumed rolling.

v1⎯

w1

G
b

Fig. P17.108

A

B

G

b
v1⎯

Fig. P17.109

B

ba

A
q0

Fig. P17.111

 17.109 The slender rod AB of length L forms an angle b with the vertical 
as it strikes the frictionless surface shown with a vertical velocity 
v1 and no angular velocity. Assuming that the impact is perfectly 
elastic, derive an expression for the angular velocity of the rod 
immediately after the impact.

 17.110 Solve Prob. 17.109, assuming that the impact between rod AB and 
the frictionless surface is perfectly plastic.

 17.111 A uniformly loaded rectangular crate is released from rest in the 
position shown. Assuming that the floor is sufficiently rough to 
prevent slipping and that the impact at B is perfectly plastic, deter-
mine the smallest value of the ratio a/b for which corner A will 
remain in contact with the floor.
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1130 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.112 and 17.113 A uniform slender rod AB of length L is falling 
freely with a velocity v0 when cord AC suddenly becomes taut. 
Assuming that the impact is perfectly plastic, determine the angu-
lar velocity of the rod and the velocity of its mass center immedi-
ately after the cord becomes taut.

10 in.

5 in.
BA q

v1

Fig. P17.115

 17.114 A slender rod of length L and mass m is released from rest in the 
position shown. It is observed that after the rod strikes the vertical 
surface it rebounds to form an angle of 30° with the vertical. 
(a) Determine the coefficient of restitution between knob K and 
the surface. (b) Show that the same rebound can be expected for 
any position of knob K.

 17.115 The uniform rectangular block shown is moving along a friction-
less surface with a velocity v1 when it strikes a small obstruction 
at B. Assuming that the impact between corner A and obstruction 
B is perfectly plastic, determine the magnitude of the velocity v1 
for which the maximum angle u through which the block will 
rotate is 30°.

 17.116 A slender rod of mass m and length L is released from rest in the 
position shown and hits edge D. Assuming perfectly plastic impact 
at D, determine for b 5 0.6L, (a) the angular velocity of the rod 
immediately after the impact, (b) the maximum angle through 
which the rod will rotate after the impact. 

30°

B

D

A

L

b

Fig. P17.116

C

A B

1
2

v0

Fig. P17.112

C

A

B

1
2

v0

Fig. P17.113

30°

L

b

A
K

B

Fig. P17.114
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1131Problems 17.117 A 30-g bullet is fired with a horizontal velocity of 350 m/s into the 
8-kg wooden beam AB. The beam is suspended from a collar of 
negligible mass that can slide along a horizontal rod. Neglecting 
friction between the collar and the rod, determine the maximum 
angle of rotation of the beam during its subsequent motion.

 17.118 For the beam of Prob. 17.117, determine the velocity of the 30-g 
bullet for which the maximum angle of rotation of the beam will 
be 90°.

 17.119 A uniformly loaded square crate is released from rest with its corner 
D directly above A; it rotates about A until its corner B strikes the 
floor, and then rotates about B. The floor is sufficiently rough to 
prevent slipping and the impact at B is perfectly plastic. Denoting 
by V0 the angular velocity of the crate immediately before B strikes 
the floor, determine (a) the angular velocity of the crate immediately 
after B strikes the floor, (b) the fraction of the kinetic energy of the 
crate lost during the impact, (c) the angle u through which the crate 
will rotate after B strikes the floor.

A

B

C D

h0h2

B1

B2

A2

A1

h1

b

Fig. P17.120

R

A

B

h

Fig. P17.121

A
A

B

C
D

B
C

D

A B

C D

q

(1) (2) (3)

Fig. P17.119

 17.120 A uniform slender rod AB of length L 5 30 in. is placed with its 
center equidistant from two supports that are located at a distance 
b 5 5 in. from each other. End B of the rod is raised a distance 
h0 5 4 in. and released; the rod then rocks on the supports as 
shown. Assuming that the impact at each support is perfectly plas-
tic and that no slipping occurs between the rod and the supports, 
determine (a) the height h1 reached by end A after the first impact, 
(b) the height h2 reached by end B after the second impact.

v0

B

A

1.2 m

Fig. P17.117

 17.121 A small plate B is attached to a cord that is wrapped around a 
uniform 8-lb disk of radius R 5 9 in. A 3-lb collar A is released 
from rest and falls through a distance h 5 15 in. before hitting 
plate B. Assuming that the impact is perfectly plastic and neglect-
ing the weight of the plate, determine immediately after the impact 
(a) the velocity of the collar, (b) the angular velocity of the disk.

 17.122 Solve Prob. 17.121, assuming that the coefficient of restitution 
between A and B is 0.8.
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1132 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.123 A slender rod AB is released from rest in the position shown. It 
swings down to a vertical position and strikes a second and identi-
cal rod CD which is resting on a frictionless surface. Assuming 
that the coefficient of restitution between the rods is 0.5, deter-
mine the velocity of rod CD immediately after the impact.

A
B

C D

L

L

L

Fig. P17.123

B

ED

L L

hA

C

Fig. P17.125

B
A C

D

L

v1

L
4

Fig. P17.127

 17.124 Solve Prob. 17.123, assuming that the impact between the rods is 
perfectly elastic.

 17.125 The plank CDE has a mass of 15 kg and rests on a small pivot at D. 
The 55-kg gymnast A is standing on the plank at C when the 70-kg 
gymnast B jumps from a height of 2.5 m and strikes the plank at 
E. Assuming perfectly plastic impact and that gymnast A is stand-
ing absolutely straight, determine the height to which gymnast A 
will rise.

 17.126 Solve Prob. 17.125, assuming that the gymnasts change places 
so that gymnast A jumps onto the plank while gymnast B stands 
at C.

 17.127 and 17.128 Member ABC has a mass of 2.4 kg and is attached 
to a pin support at B. An 800-g sphere D strikes the end of member 
ABC with a vertical velocity vl of 3 m/s. Knowing that L 5 750 mm 
and that the coefficient of restitution between the sphere and 
member ABC is 0.5, determine immediately after the impact 
(a) the angular velocity of member ABC, (b) the velocity of the 
sphere.

v1

A

B D

C

60°60°

Fig. P17.128
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1133Problems 17.129 A slender rod CDE of length L and mass m is attached to a pin 
support at its midpoint D. A second and identical rod AB is rotat-
ing about a pin support at A with an angular velocity V1 when its 
end B strikes end C of rod CDE. Denoting by e the coefficient of 
restitution between the rods, determine the angular velocity of 
each rod immediately after the impact.

w1

A B

v1⎯

Fig. P17.131

A
C

B D
E

L L
2

L
2

w1

Fig. P17.129

 17.130 The 5-lb slender rod AB is released from rest in the position shown 
and swings to a vertical position where it strikes the 3-lb slender 
rod CD. Knowing that the coefficient of restitution between the 
knob K attached to rod AB and rod CD is 0.8, determine the 
maximum angle um through which rod CD will rotate after 
the impact.

A C

D

K B

30 in.

30 in.

Fig. P17.130

 17.131 Sphere A of mass m and radius r rolls without slipping with a 
velocity v1 on a horizontal surface when it hits squarely an identical 
sphere B that is at rest. Denoting by mk the coefficient of kinetic 
friction between the spheres and the surface, neglecting friction 
between the spheres, and assuming perfectly elastic impact, deter-
mine (a) the linear and angular velocities of each sphere immedi-
ately after the impact, (b) the velocity of each sphere after it has 
started rolling uniformly.
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1134 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

60°
A

wA

vA⎯ vB⎯
60°

B

wB

Fig. P17.132

A B

q
x

y

v0⎯

Fig. P17.133

L

A

B

C

L

Q �t

Fig. P17.134

 17.132 A small rubber ball of radius r is thrown against a rough floor with 
a velocity vA of magnitude v0 and a backspin VA of magnitude v0. 
It is observed that the ball bounces from A to B, then from B to 
A, then from A to B, etc. Assuming perfectly elastic impact, deter-
mine the required magnitude v0 of the backspin in terms of v0 
and r.

 17.133 In a game of pool, ball A is rolling without slipping with a velocity 
v0 as it hits obliquely ball B, which is at rest. Denoting by r the 
radius of each ball and by mk the coefficient of kinetic friction 
between the balls, and assuming perfectly elastic impact, deter-
mine (a) the linear and angular velocity of each ball immediately 
after the impact, (b) the velocity of ball B after it has started rolling 
uniformly.

  *17.134 Each of the bars AB and BC is of length L 5 15 in. and weight 
W 5 2.5 lb. Determine the angular velocity of each bar immedi-
ately after the impulse QDt 5 (0.30 lb ? s)i is applied at C. 
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1135

REVIEW AND SUMMARY

In this chapter we again considered the method of work and energy 
and the method of impulse and momentum. In the first part of the 
chapter we studied the method of work and energy and its applica-
tion to the analysis of the motion of rigid bodies and systems of rigid 
bodies.

In Sec. 17.2, we first expressed the principle of work and energy for 
a rigid body in the form

T1 1 U1y2 5 T2 (17.1)

where T1 and T2 represent the initial and final values of the kinetic 
energy of the rigid body and U1y2 represents the work of the external 
forces acting on the rigid body.

In Sec. 17.3, we recalled the expression found in Chap. 13 for the 
work of a force F applied at a point A, namely

U1y2 5 #
s2

s1

 
(F cos a) ds

 
(17.39)

where F was the magnitude of the force, a the angle it formed with 
the direction of motion of A, and s the variable of integration mea-
suring the distance traveled by A along its path. We also derived the 
expression for the work of a couple of moment M applied to a rigid 
body during a rotation in u of the rigid body:

U1y2 5 #
u2

u1

 
M  du

 
(17.5)

We then derived an expression for the kinetic energy of a rigid body 
in plane motion [Sec. 17.4]. We wrote

T 5 1
2mv2 1 1

2 Iv2 (17.9)

where v is the velocity of the mass center G of the body, v is the 
angular velocity of the body, and I  is its moment of inertia about an 
axis through G perpendicular to the plane of reference (Fig. 17.13) 
[Sample Prob. 17.3]. We noted that the kinetic energy of a rigid body 
in plane motion can be separated into two parts: (1) the kinetic 
energy 1

2 mv2 associated with the motion of the mass center G of the 
body, and (2) the kinetic energy 1

2 I  v2 associated with the rotation of 
the body about G.

Principle of work and energy 
for a rigid body
Principle of work and energy 
for a rigid body

Work of a force or a coupleWork of a force or a couple

Kinetic energy in plane motionKinetic energy in plane motion

G

w

Fig. 17.13
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1136 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

For a rigid body rotating about a fixed axis through O with an angular 
velocity V, we had

 T 5 1
2IOv

2 (17.10)

where IO was the moment of inertia of the body about the fixed axis. 
We noted that the result obtained is not limited to the rotation of 
plane slabs or of bodies symmetrical with respect to the reference 
plane, but is valid regardless of the shape of the body or of the loca-
tion of the axis of rotation.

Equation (17.1) can be applied to the motion of systems of rigid 
bodies [Sec. 17.5] as long as all the forces acting on the various bod-
ies involved—internal as well as external to the system—are included 
in the computation of U1y2. However, in the case of systems consist-
ing of pin-connected members, or blocks and pulleys connected by 
inextensible cords, or meshed gears, the points of application of the 
internal forces move through equal distances and the work of these 
forces cancels out [Sample Probs. 17.1 and 17.2].

When a rigid body, or a system of rigid bodies, moves under the 
action of conservative forces, the principle of work and energy can 
be expressed in the form

 T1 1 V1 5 T2 1 V2 (17.12)

which is referred to as the principle of conservation of energy [Sec. 
17.6]. This principle can be used to solve problems involving conser-
vative forces such as the force of gravity or the force exerted by a 
spring [Sample Probs. 17.4 and 17.5]. However, when a reaction is 
to be determined, the principle of conservation of energy must be 
supplemented by the application of d’Alembert’s principle [Sample 
Prob. 17.4].

In Sec. 17.7, we extended the concept of power to a rotating body 
subjected to a couple, writing

 
Power 5

dU
dt

5
M  du

dt
5 Mv

 
(17.13)

where M is the magnitude of the couple and v the angular velocity 
of the body.

 The middle part of the chapter was devoted to the method of 
impulse and momentum and its application to the solution of various 
types of problems involving the plane motion of rigid slabs and rigid 
bodies symmetrical with respect to the reference plane.

We first recalled the principle of impulse and momentum as it was 
derived in Sec. 14.9 for a system of particles and applied it to the 
motion of a rigid body [Sec. 17.8]. We wrote

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

Kinetic energy in rotationKinetic energy in rotation

Systems of rigid bodiesSystems of rigid bodies

Conservation of energyConservation of energy

PowerPower

Principle of impulse and momentum 
for a rigid body

Principle of impulse and momentum 
for a rigid body
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1137Review and SummaryNext we showed that for a rigid slab or a rigid body symmetrical with 
respect to the reference plane, the system of the momenta of the 
particles forming the body is equivalent to a vector mv attached at the 
mass center G of the body and a couple IV  (Fig. 17.14). The vector  

P

(Δm)v

G

 mv

Iww=

Fig. 17.14

mv is associated with the translation of the body with G and repre-
sents the linear momentum of the body, while the couple IV  corre-
sponds to the rotation of the body about G and represents the 
angular momentum of the body about an axis through G.
 Equation (17.14) can be expressed graphically as shown in Fig. 
17.15 by drawing three diagrams representing respectively the system 
of the initial momenta of the body, the impulses of the external forces 
acting on the body, and the system of the final momenta of the body. 

(a)

�F dt

x

y

O

Iw1

Iw2G

(b)

x

y

O

(c)

x

y

O

 mv1

 mv2

+ =G

Fig. 17.15

Summing and equating respectively the x components, the y compo-
nents, and the moments about any given point of the vectors shown 
in that figure, we obtain three equations of motion which can be 
solved for the desired unknowns [Sample Probs. 17.6 and 17.7].
 In problems dealing with several connected rigid bodies [Sec. 
17.9], each body can be considered separately [Sample Prob. 17.6], or, 
if no more than three unknowns are involved, the principle of impulse 
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1138 Plane Motion of Rigid Bodies: Energy and 
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and momentum can be applied to the entire system, considering the 
impulses of the external forces only [Sample Prob. 17.8].

When the lines of action of all the external forces acting on a system 
of rigid bodies pass through a given point O, the angular momentum 
of the system about O is conserved [Sec. 17.10]. It was suggested 
that problems involving conservation of angular momentum be solved 
by the general method described above [Sample Prob. 17.8].

The last part of the chapter was devoted to the impulsive motion and 
the eccentric impact of rigid bodies. In Sec. 17.11, we recalled that 
the method of impulse and momentum is the only practicable method 
for the solution of problems involving impulsive motion and that the 
computation of impulses in such problems is particularly simple 
[Sample Prob. 17.9].

In Sec. 17.12, we recalled that the eccentric impact of two rigid 
bodies is defined as an impact in which the mass centers of the col-
liding bodies are not located on the line of impact. It was shown that 
in such a situation a relation similar to that derived in Chap. 13 for 
the central impact of two particles and involving the coefficient of 
restitution e still holds, but that the velocities of points A and B where 
contact occurs during the impact should be used. We have

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (17.19)

where (vA)n and (vB)n are the components along the line of impact 
of the velocities of A and B before the impact, and (v9A)n and (v9B)n 
are their components after the impact (Fig. 17.16). Equation (17.19) 

Conservation of angular momentum

Impulsive motion

Eccentric impact

is applicable not only when the colliding bodies move freely after the 
impact but also when the bodies are partially constrained in their 
motion. It should be used in conjunction with one or several other 
equations obtained by applying the principle of impulse and momen-
tum [Sample Prob. 17.10]. We also considered problems where the 
method of impulse and momentum and the method of work and 
energy can be combined [Sample Prob. 17.11].

(a) Before impact (b) After impact

A
B

n

n

vA

vB

A
B

n

n

v'A

v'B

Fig. 17.16
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1139

REVIEW PROBLEMS

 17.135 The motion of the slender 250-mm rod AB is guided by pins at A 
and B that slide freely in slots cut in a vertical plate as shown. 
Knowing that the rod has a mass of 2 kg and is released from rest 
when u 5 0, determine the reactions at A and B when u 5 90°.

 17.136 A uniform disk of constant thickness and initially at rest is placed in 
contact with the belt shown, which moves at a constant speed v 5 
25 m/s. Knowing that the coefficient of kinetic friction between the 
disk and the belt is 0.15, determine (a) the number of revolutions 
executed by the disk before it reaches a constant angular velocity, 
(b) the time required for the disk to reach that constant angular 
velocity.

q125 mm

B

C

A

Fig. P17.135

v

A B

120 mm

25°

Fig. P17.136

17.137 Solve Prob. 17.136, assuming that the direction of motion of the 
belt is reversed.

 17.138 A uniform slender rod is placed at corner B and is given a slight 
clockwise motion. Assuming that the corner is sharp and becomes 
slightly embedded in the end of the rod, so that the coefficient of 
static friction at B is very large, determine (a) the angle b through 
which the rod will have rotated when it loses contact with the cor-
ner, (b) the corresponding velocity of end A.

b

B

A

L

Fig. P17.138
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1140 Plane Motion of Rigid Bodies: Energy and 
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 17.139 A 35-g bullet B is fired with a velocity of 400 m/s into the side of 
a 3-kg square panel suspended as shown from a pin at A. Knowing 
that the panel is initially at rest, determine the components of the 
reaction at A after the panel has rotated 90°.

v0

500 mm

A

B

G

250 mm

250 mm

Fig. P17.139

 17.140 A square block of mass m is falling with a velocity v1 when it 
strikes a small obstruction at B. Assuming that the impact between 
corner A and the obstruction B is perfectly plastic, determine 
immediately after the impact (a) the angular velocity of the block 
(b) the velocity of its mass center G.

 17.141 Solve Prob. 17.140, assuming that the impact between corner A 
and the obstruction B is perfectly elastic.

 17.142 A 3-kg bar AB is attached by a pin at D to a 4-kg square plate, 
which can rotate freely about a vertical axis. Knowing that the 
angular velocity of the plate is 120 rpm when the bar is vertical, 
determine (a) the angular velocity of the plate after the bar has 
swung into a horizontal position and has come to rest against 
pin C, (b) the energy lost during the plastic impact at C.

A

b

b

B

1

G

v⎯

Fig. P17.140

w0

500 mm
A

B
C

D

Fig. P17.142

 17.143 A 6 3 8-in. rectangular plate is suspended by pins at A and B. The 
pin at B is removed and the plate swings freely about pin A. Deter-
mine (a) the angular velocity of the plate after it has rotated through 
90°, (b) the maximum angular velocity attained by the plate as it 
swings freely.

BA

6 in.

8 in.

Fig. P17.143
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1141Review Problems 17.144 Disks A and B are made of the same material and are of the same 
thickness; they can rotate freely about the vertical shaft. Disk B is 
at rest when it is dropped onto disk A, which is rotating with an 
angular velocity of 500 rpm. Knowing that disk A weighs 18 lb, 
determine (a) the final angular velocity of the disks, (b) the change 
in kinetic energy of the system.

4 in.

6 in.

500 rpm

A

B

Fig. P17.144

 17.145 At what height h above its center G should a billiard ball of radius r 
be struck horizontally by a cue if the ball is to start rolling without 
sliding?

G
h

Fig. P17.145

G

A B

L

r
ww0

v0

Fig. P17.146

 17.146 A large 3-lb sphere with a radius r 5 3 in. is thrown into a light 
basket at the end of a thin, uniform rod weighing 2 lb and length 
L 5 10 in. as shown. Immediately before the impact the angular 
velocity of the rod is 3 rad/s counterclockwise and the velocity of 
the sphere is 2 ft/s down. Assume the sphere sticks in the basket. 
Determine after the impact (a) the angular velocity of the bar and 
sphere, (b) the components of the reactions at A.
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COMPUTER PROBLEMS

 17.C1 Rod AB has a mass of 3 kg and is attached at A to a 5-kg cart C.
Knowing that the system is released from rest when u 5 30° and neglecting 
friction, use computational software to determine the velocity of the cart 
and the velocity of end B of the rod for values of u from 130° to 290°. 
Determine the value of u for which the velocity of the cart to the left is 
maximum and the corresponding value of the velocity.

 17.C2 The uniform slender rod AB of length L 5 800 mm and mass 5 kg 
rests on a small wheel at D and is attached to a collar of negligible mass 
that can slide freely on the vertical rod EF. Knowing that a 5 200 mm 
and that the rod is released from rest when u 5 0, use computational soft-
ware to calculate and plot the angular velocity of the rod and the velocity 
of end A for values of u from 0 to 50°. Determine the maximum angular 
velocity of the rod and the corresponding value of u.

A

B

C

1.2 m

O

q

x

y

Fig. P17.C1

 17.C3 A uniform 10-in.-radius sphere rolls over a series of parallel hori-
zontal bars equally spaced at a distance d. As it rotates without slipping 
about a given bar, the sphere strikes the next bar and starts rotating about 
that bar without slipping, until it strikes the next bar, and so on. Assuming 
perfectly plastic impact and knowing that the sphere has an angular velocity 
V0 of 1.5 rad/s as its mass center G is directly above bar A, use computa-
tional software to calculate values of the spacing d from 1 to 6 in. (a) the 
angular velocity V1 of the sphere as G passes directly above bar B, (b) the 
number of bars over which the sphere will roll after leaving bar A.

qA

B

D
F

E

L

a

Fig. P17.C2

A B

d d

A B

G

d d

A B

G

d d

w1
v1⎯

G

w0
v0⎯

(1) (2) (3)

Fig. P17.C3
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1143Computer Problems 17.C4 Collar C has a mass of 2.5 kg and can slide without friction on 
rod AB. A spring of constant 750 N/m and an unstretched length r0 5 
500 mm is attached as shown to the collar and to the hub B. The total mass 
moment of inertia of the rod, hub, and spring is known to be 0.3 kg ? m2 
about B. Initially the collar is held at a distance of 500 mm from the axis 
of rotation by a small pin protruding from the rod. The pin is suddenly 
removed as the assembly is rotating in a horizontal plane with an angular 
velocity V0 of 10 rad/s. Denoting by r the distance of the collar from the 
axis of rotation, use computational software to calculate and plot the angular 
velocity of the assembly and the velocity of the collar relative to the rod for 
values of r from 500 to 700 mm. Determine the maximum value of r in the 
ensuing motion.

 17.C5 Each of the two identical slender bars shown has a length L 5 30 in. 
Knowing that the system is released from rest when the bars are horizontal, 
use computational software to calculate and plot the angular velocity of rod 
AB and the velocity of point D for values of u from 0 to 90°.

A

B

r0

w0

C

Fig. P17.C4 

A

B

Dq

LL

Fig. P17.C5
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While the general principles that you 

learned in earlier chapters can be used 

again to solve problems involving the 

three-dimensional motion of rigid 

bodies, the solution of these problems 

requires a new approach and is 

considerably more involved than the 

solution of two-dimensional problems. 

One example is the determination of 

the forces acting on the space shuttle’s 

robotic arm.
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1146

*18.1 INTRODUCTION
In Chaps. 16 and 17 we were concerned with the plane motion of 
rigid bodies and of systems of rigid bodies. In Chap. 16 and in the 
second half of Chap. 17 (momentum method), our study was further 
restricted to that of plane slabs and of bodies symmetrical with 
respect to the reference plane. However, many of the fundamental 
results obtained in these two chapters remain valid in the case of the 
motion of a rigid body in three dimensions.
 For example, the two fundamental equations

  oF 5 ma  (18.1)
  oMG 5 H

.
G (18.2)

on which the analysis of the plane motion of a rigid body was based, 
remain valid in the most general case of motion of a rigid body. As 
indicated in Sec. 16.2, these equations express that the system of the 
external forces is equipollent to the system consisting of the vector 
ma attached at G and the couple of moment H

.
G (Fig. 18.1).  However, 

 Chapter 18 Kinetics of Rigid 
Bodies in Three Dimensions

 18.1 Introduction
 18.2 Angular Momentum of a Rigid 

Body in Three Dimensions
 18.3 Application of the Principle of 

Impulse and Momentum to the 
Three-Dimensional Motion of a 
Rigid Body

 18.4 Kinetic Energy of a Rigid Body 
in Three Dimensions

 18.5 Motion of a Rigid Body in Three 
Dimensions

 18.6 Euler’s Equations of Motion. 
Extension of D’Alembert’s 
Principle to the Motion of a Rigid 
Body in Three Dimensions

 18.7 Motion of a Rigid Body about a 
Fixed Point

 18.8 Rotation of a Rigid Body about a 
Fixed Axis

 18.9 Motion of a Gyroscope. Eulerian 
Angles

 18.10 Steady Precession of a 
Gyroscope

 18.11 Motion of an Axisymmetrical 
Body under No Force

the relation HG 5 IV, which enabled us to determine the angular 
momentum of a rigid slab and which played an important part in the 
solution of problems involving the plane motion of slabs and bodies 
symmetrical with respect to the reference plane, ceases to be valid 
in the case of nonsymmetrical bodies or three-dimensional motion. 
Thus in the first part of the chapter, in Sec. 18.2, a more general 
method for computing the angular momentum HG of a rigid body 
in three dimensions will be developed.
 Similarly, although the main feature of the impulse-momentum 
method discussed in Sec. 17.7, namely, the reduction of the momenta 
of the particles of a rigid body to a linear momentum vector mv 
attached at the mass center G of the body and an angular momentum 
couple HG, remains valid, the relation HG 5 IV must be discarded 
and replaced by the more general relation developed in Sec. 18.2 
before this method can be applied to the three-dimensional motion 
of a rigid body (Sec. 18.3).
 We also note that the work-energy principle (Sec. 17.2) and the 
principle of conservation of energy (Sec. 17.6) still apply in the case 

G =
⎯am

F1

F2

F3

F4

G

HG
.

Fig. 18.1

bee29400_ch18_1144-1211.indd Page 1146  12/16/08  1:17:05 PM user-s173bee29400_ch18_1144-1211.indd Page 1146  12/16/08  1:17:05 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1147of the motion of a rigid body in three dimensions. However, the 
expression obtained in Sec. 17.4 for the kinetic energy of a rigid body 
in plane motion will be replaced by a new expression developed in 
Sec. 18.4 for a rigid body in three-dimensional motion.
 In the second part of the chapter, you will first learn to deter-
mine the rate of change H

.
G of the angular momentum HG of a 

three-dimensional rigid body, using a rotating frame of reference 
with respect to which the moments and products of inertia of the 
body remain constant (Sec. 18.5). Equations (18.1) and (18.2) will 
then be expressed in the form of free-body-diagram equations, which 
can be used to solve various problems involving the three-dimensional 
motion of rigid bodies (Secs. 18.6 through 18.8).
 The last part of the chapter (Secs. 18.9 through 18.11) is 
devoted to the study of the motion of the gyroscope or, more gener-
ally, of an axisymmetrical body with a fixed point located on its axis 
of symmetry. In Sec. 18.10, the particular case of the steady preces-
sion of a gyroscope will be considered, and, in Sec. 18.11, the motion 
of an axisymmetrical body subjected to no force, except its own 
weight, will be analyzed.

*18.2  ANGULAR MOMENTUM OF A RIGID BODY 
IN THREE DIMENSIONS

In this section you will see how the angular momentum HG of a body 
about its mass center G can be determined from the angular velocity 
V of the body in the case of three-dimensional motion.
 According to Eq. (14.24), the angular momentum of the body 
about G can be expressed as

 
HG 5 On

i51
(r¿i 3 v ¿i ¢mi)  

(18.3)

where r9i and v9i denote, respectively, the position vector and the 
velocity of the particle Pi, of mass Δmi, relative to the centroidal 
frame Gxyz (Fig. 18.2). But v9i 5 V 3 r9i, where V is the angular 

G

Y

O
X

Z

y

x

z

Pi
r'i

v'i = w × r'i

w

Fig. 18.2

18.2 Angular Momentum of a Rigid Body 
in Three Dimensions
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1148 Kinetics of Rigid Bodies in Three Dimensions velocity of the body at the instant considered. Substituting into 
(18.3), we have

HG 5 On

i51
[r¿i 3 (V 3 r¿i) ¢mi]

Recalling the rule for determining the rectangular components of a 
vector product (Sec. 3.5), we obtain the following expression for the 
x component of the angular momentum:

 Hx 5 On

i51
[yi(V 3 r¿i)z 2 zi(V 3 r¿i)y] ¢mi

 5 On

i51
[yi(vxyi 2 vyxi) 2 zi(vzxi 2 vxzi)] ¢mi

 5 vx O
i

(y2
i 1 z2

i ) ¢mi 2 vy O
i

xiyi ¢mi 2 vz O
i

zixi ¢mi

Replacing the sums by integrals in this expression and in the two 
similar expressions which are obtained for Hy and Hz, we have

 Hx 5 vxe(y2 1 z2) dm 2 vyexy dm 2 vzezx dm
 Hy 5 2vxexy dm 1 vye(z2 1 x2) dm 2 vzeyz dm (18.4)
 Hz 5 2vxezx dm 2 vyeyz dm 1 vze(x2 1 y2) dm

We note that the integrals containing squares represent the centroi-
dal mass moments of inertia of the body about the x, y, and z axes, 
respectively (Sec. 9.11); we have

 Ix 5 e(y2 1 z2) dm   Iy 5 e(z2 1 x2) dm 
(18.5)

Iz 5 e(x2 1 y2) dm

Similarly, the integrals containing products of coordinates represent 
the centroidal mass products of inertia of the body (Sec. 9.16); we 
have

 IIxy 5 e xy dm  Iyz5 e yz dm  Izx5 e zx dm (18.6)

Substituting from (18.5) and (18.6) into (18.4), we obtain the com-
ponents of the angular momentum HG of the body about its mass 
center:

 Hx 5 1Ix vx 2 Ixyvy 2 Ixzvz

 Hy 5 2IIyxvx 1 Iy vy 2 IIyzvz (18.7)
 Hz 5 2Izx vx 2 IIzyvy 1 Iz vz
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1149 The relations (18.7) show that the operation which transforms 
the vector V into the vector HG (Fig. 18.3) is characterized by the 
array of moments and products of inertia

 
°

  Ix 2Ixy 2Ixz

2Iyx Iy 2Iyz

2Izx 2Izy    Iz

¢
 

(18.8)

The array (18.8) defines the inertia tensor of the body at its mass 
center G.† A new array of moments and products of inertia would 
be obtained if a different system of axes were used. The transforma-
tion characterized by this new array, however, would still be the 
same. Clearly, the angular momentum HG corresponding to a given 
angular velocity V is independent of the choice of the coordinate 
axes. As was shown in Secs. 9.17 and 9.18, it is always possible to 
select a system of axes Gx9y9z9, called principal axes of inertia, with 
respect to which all the products of inertia of a given body are zero. 
The array (18.8) takes then the diagonalized form

 
°

Ix¿ 0 0
0 Iy¿ 0
0 0 Iz¿

¢  (18.9)

where Ix¿, Iy¿, Iz¿ represent the principal centroidal moments of iner-
tia of the body, and the relations (18.7) reduce to

 Hx9 5 Ix¿vx9   Hy9 5 Iy¿vy9   Hz9 5 Iz¿vz9 (18.10)

 We note that if the three principal centroidal moments of inertia 
Ix¿, Iy¿, Iz¿ are equal, the components Hx9, Hy9, Hz9 of the angular 
momentum about G are proportional to the components vx9, vy9, vz9 
of the angular velocity, and the vectors HG and V are collinear. In 
general, however, the principal moments of inertia will be different, 
and the vectors HG and V will have different directions, except when 
two of the three components of V happen to be zero, i.e., when V is 
directed along one of the coordinate axes. Thus, the angular momentum 
HG of a rigid body and its angular velocity V have the same direction 
if, and only if, V is directed along a principal axis of inertia.‡

†Setting Ix 5 I11, Iy 5 I22, Iz 5 I33, and 2Ixy 5 I12, 2Ixz 5 I13, etc., we may write the 
inertia tensor (18.8) in the standard form

°
I11 I12 I13

I21 I22 I23

I31 I32 I33

¢

Denoting by H1 , H2 , H3 the components of the angular momentum HG and by v1, v2, v3 
the components of the angular velocity V, we can write the relations (18.7) in the form

Hi 5O
j

Ii jvj

where i and j take the values 1, 2, 3. The quantities Iij are said to be the components of the 
inertia tensor. Since Iij 5 Ij i, the inertia tensor is a symmetric tensor of the second order.

‡In the particular case when Ix¿ 5 Iy¿ 5 Iz¿, any line through G can be considered as a 
principal axis of inertia, and the vectors HG and V are always collinear.

G

Y

O
X

Z

y

x

z

w

HG

Fig. 18.3

18.2 Angular Momentum of a Rigid Body 
in Three Dimensions
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1150 Kinetics of Rigid Bodies in Three Dimensions Since this condition is satisfied in the case of the plane motion of a 
rigid body symmetrical with respect to the reference plane, we were 
able in Secs. 16.3 and 17.8 to represent the angular momentum HG 
of such a body by the vector IV. We must realize, however, that this 
result cannot be extended to the case of the plane motion of a non-
symmetrical body, or to the case of the three-dimensional motion of 
a rigid body. Except when V happens to be directed along a principal 
axis of inertia, the angular momentum and angular velocity of a rigid 
body have different directions, and the relation (18.7) or (18.10) 
must be used to determine HG from V.

Reduction of the Momenta of the Particles of a Rigid Body to 
a Momentum Vector and a Couple at G. We saw in Sec. 17.8 
that the system formed by the momenta of the various particles of 
a rigid body can be reduced to a vector L attached at the mass center 
G of the body, representing the linear momentum of the body, and 
to a couple HG, representing the angular momentum of the body 
about G (Fig. 18.4). We are now in a position to determine the vector L 

HG

G

Z

X

Y

O

L = m⎯v

⎯r

Fig. 18.4

and the couple HG in the most general case of three-dimensional 
motion of a rigid body. As in the case of the two-dimensional motion 
considered in Sec. 17.8, the linear momentum L of the body is equal to 
the product mv of its mass m and the velocity v of its mass center G. 
The angular momentum HG, however, can no longer be obtained by 
simply multiplying the angular velocity V of the body by the scalar 
I; it must now be obtained from the components of V and from the 
centroidal moments and products of inertia of the body through the 
use of Eq. (18.7) or (18.10).
 We should also note that once the linear momentum mv and 
the angular momentum HG of a rigid body have been determined, 
its angular momentum HO about any given point O can be obtained 
by adding the moments about O of the vector mv and of the couple 
HG. We write

 HO 5 r 3 mv 1 HG (18.11)

Photo 18.1 The design of a robotic welder 
for an automobile assembly line requires 
a three-dimensional study of both kinematics 
and kinetics.
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1151

Angular Momentum of a Rigid Body Constrained to Rotate 
about a Fixed Point. In the particular case of a rigid body con-
strained to rotate in three-dimensional space about a fixed point O 
(Fig. 18.5a), it is sometimes convenient to determine the angular 
momentum HO of the body about the fixed point O. While HO could 
be obtained by first computing HG as indicated above and then using 
Eq. (18.11), it is often advantageous to determine HO directly from 
the angular velocity V of the body and its moments and products of 
inertia with respect to a frame Oxyz centered at the fixed point O. 
Recalling Eq. (14.7), we write

 
HO 5 On

i51
(ri 3 vi ¢mi)  

(18.12)

where ri and vi denote, respectively, the position vector and the 
velocity of the particle Pi with respect to the fixed frame Oxyz. Sub-
stituting vi 5 V 3 ri, and after manipulations similar to those used 
in the earlier part of this section, we find that the components of the 
angular momentum HO (Fig. 18.5b) are given by the relations

 Hx 5 1Ix vx 2 Ixyvy 2 Ixzvz

 Hy 5 2Iyxvx 1 Iy vy 2 Iyzvz (18.13)
 Hz 5 2Izxvx 2 Izyvy 1 Iz vz

where the moments of inertia Ix, Iy, Iz and the products of inertia 
Ixy, Iyz, Izx are computed with respect to the frame Oxyz centered at 
the fixed point O.

*18.3  APPLICATION OF THE PRINCIPLE OF IMPULSE 
AND MOMENTUM TO THE THREE-
DIMENSIONAL MOTION OF A RIGID BODY

Before we can apply the fundamental equation (18.2) to the solution 
of problems involving the three-dimensional motion of a rigid body, 
we must learn to compute the derivative of the vector HG. This will 
be done in Sec. 18.5. The results obtained in the preceding section 
can, however, be used right away to solve problems by the impulse-
momentum method.
 Recalling that the system formed by the momenta of the par-
ticles of a rigid body reduces to a linear momentum vector mv 

18.3 Application of the Principle of Impulse 
and Momentum to the Three-Dimensional 

Motion of a Rigid Body

Photo 18.2 As a result of the impulsive force 
applied by the bowling ball, a pin acquires both 
linear momentum and angular momentum.

O

y

x

z

Pi

ri

vi = w × ri

w

(a)

HO

O

y

x

z

w

(b)

Fig. 18.5
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1152 Kinetics of Rigid Bodies in Three Dimensions

attached at the mass center G of the body and an angular momentum 
couple HG, we represent graphically the fundamental relation

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.4)

by means of the three sketches shown in Fig. 18.6. To solve a given 
problem, we can use these sketches to write appropriate component 
and moment equations, keeping in mind that the components of the 
angular momentum HG are related to the components of the angular 
velocity V by Eqs. (18.7) of the preceding section.
 In solving problems dealing with the motion of a body rotating 
about a fixed point O, it will be convenient to eliminate the impulse of 
the reaction at O by writing an equation involving the moments of the 
momenta and impulses about O. We recall that the angular momentum 
HO of the body about the fixed point O can be obtained either directly 
from Eqs. (18.13) or by first computing its linear momentum mv and 
its angular momentum HG and then using Eq. (18.11).

*18.4  KINETIC ENERGY OF A RIGID BODY 
IN THREE DIMENSIONS

Consider a rigid body of mass m in three-dimensional motion. We 
recall from Sec. 14.6 that if the absolute velocity vi of each particle 
Pi of the body is expressed as the sum of the velocity v of the mass 
center G of the body and of the velocity v9i of the particle relative to 
a frame Gxyz attached to G and of fixed orientation (Fig. 18.7), the 
kinetic energy of the system of particles forming the rigid body can 
be written in the form

 
T 5 1

2 
mv 

2 1
1
2

 On

i51
¢miv ¿i 2

 
(18.14)

where the last term represents the kinetic energy T9 of the body 
relative to the centroidal frame Gxyz. Since v9i 5 uv9iu 5 uV 3 r9iu, we 
write

T ¿ 5
1
2 O

n

i51
¢miv ¿i 2 5

1
2

 On

i51
|V 3 r¿i|2 ¢mi

G =+

⎯v1m

⎯v2m

(HG)1

(HG)2

(a)

G

(b)

G

(c)

    F dt

Fig. 18.6 
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1153Expressing the square in terms of the rectangular components of the 
vector product, and replacing the sums by integrals, we have

 T ¿ 5 1
2 e 3(vxy 2 vyx)2 1 (vyz 2 vzy)2 1 (vzx 2 vxz)2 4  dm

 5 1
2 3v2

x e(y2 1 z2) dm 1 v2
y e(z2 1 x2) dm 1 v2

z e(x2 1 y2) dm
2 2vxvy exy dm 2 2vyvz eyz dm 2 2vzvx ezx dm 4

or, recalling the relations (18.5) and (18.6),

T ¿ 5 1
2(Ixv

2
x 1 Iyv

2
y 1 Izv

2
z 2 2Ixyvxvy 2 2Iyzvyvz 2 2Izxvzvx)

(18.15)

Substituting into (18.14) the expression (18.15) we have just obtained 
for the kinetic energy of the body relative to centroidal axes, we write

T 5 1
2mv2 1 1

2(Ixv
2
x 1 Iyv

2
y 1 Izv

2
z 2 2Ixyvxvy

 2 2Iyzvyvz 2 2Izxvzvx) (18.16)

 If the axes of coordinates are chosen so that they coincide at 
the instant considered with the principal axes x9, y9, z9 of the body, 
the relation obtained reduces to

 T 5 1
2mv 2 1 1

2(Ix¿v
2
x¿ 1 Iy¿v

2
y¿ 1 Iz¿v

2
z¿) (18.17)

where  v 5 velocity of mass center
 V 5 angular velocity
 m 5 mass of rigid body
Ix¿, Iy¿, Iz¿ 5 principal centroidal moments of inertia

 The results we have obtained enable us to apply to the three-
dimensional motion of a rigid body the principles of work and energy 
(Sec. 17.2) and conservation of energy (Sec. 17.6).

Kinetic Energy of a Rigid Body with a Fixed Point. In the 
particular case of a rigid body rotating in three-dimensional space 
about a fixed point O, the kinetic energy of the body can be expressed 
in terms of its moments and products of inertia with respect to axes 
attached at O (Fig. 18.8). Recalling the definition of the kinetic 
energy of a system of particles, and substituting vi 5 uviu 5 uV 3 riu, 
we write

 
T 5

1
2 O

n

i51
¢miv

2
i 5

1
2 O

n

i51
|V 3 ri|

2 ¢mi 
(18.18)

Manipulations similar to those used to derive Eq. (18.15) yield

T 5 1
2(Ixv

2
x 1 Iyv

2
y 1 Izv

2
z 2 2Ixyvxvy 2 2Iyzvyvz 2 2Izxvzvx)

(18.19)

or, if the principal axes x9, y9, z9 of the body at the origin O are 
chosen as coordinate axes,

 T 5 1
2(Ix¿v

2
x¿ 1 Iy¿v

2
y¿ 1 Iz¿v

2
z¿) (18.20)

O

y

x

z

Pi
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vi = w × ri

w

Fig. 18.8

18.4 Kinetic Energy of a Rigid Body in 
Three Dimensions
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SAMPLE PROBLEM 18.1

A rectangular plate of mass m suspended from two wires at A and B is hit 
at D in a direction perpendicular to the plate. Denoting by F Δt the impulse 
applied at D, determine immediately after the impact (a) the velocity of the 
mass center G, (b) the angular velocity of the plate.

SOLUTION

Assuming that the wires remain taut and thus that the components vy of v 
and vz of V are zero after the impact, we have

v 5 vxi 1 vzk   V 5 vxi 1 vy j

and since the x, y, z axes are principal axes of inertia,

 HG 5 Ixvxi 1 Iyvy j   HG 5 1
12 

mb2vxi 1 1
12 

ma2vy j (1)

Principle of Impulse and Momentum. Since the initial momenta are zero, 
the system of the impulses must be equivalent to the system of the final 
momenta:

x

y

z

x

y

z

m⎯vzk m⎯vxi
GG

F Δ t W Δ t

TA Δ t TB Δ t

=

a
2 Hyj

Hxi

b
2

a. Velocity of Mass Center. Equating the components of the impulses 
and momenta in the x and z directions:

x components:  0 5 mvx  vx 5 0
z components:  2F ¢t 5 mvz  vz 5 2F ¢t/m

v 5 vxi 1 vzk   v 5 2(F ¢t/m)k ◀

b. Angular Velocity. Equating the moments of the impulses and momenta 
about the x and y axes:

About x axis: 1
2bF ¢t 5 Hx

About y axis: 21
2aF ¢t 5 Hy

 HG 5 Hxi 1 Hy j   HG 5 1
2bF ¢ti 2 1

2aF ¢tj (2)

Comparing Eqs. (1) and (2), we conclude that

vx 5 6F ¢t/mb   vy 5 26F ¢t/ma
 V 5 vxi 1 vy j V 5 (6F ¢t/mab)(ai 2 bj) ◀

We note that V is directed along the diagonal AC.
Remark: Equating the y components of the impulses and momenta, and 
their moments about the z axis, we obtain two additional equations which 
yield TA 5 TB 5 1

2W . We thus verify that the wires remain taut and that 
our assumption was correct.

x

y

A B

CD

G
b
2

HG ww

a
2

x

z

y

⎯v

A
B

CD

G

ww

A B

C
D

a

bG

F Δ t
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SAMPLE PROBLEM 18.2

A homogeneous disk of radius r and mass m is mounted on an axle OG of 
length L and negligible mass. The axle is pivoted at the fixed point O, and 
the disk is constrained to roll on a horizontal floor. Knowing that the disk 
rotates counterclockwise at the rate v1 about the axle OG, determine 
(a) the angular velocity of the disk, (b) its angular momentum about O, 
(c) its kinetic energy, (d) the vector and couple at G equivalent to the 
momenta of the particles of the disk.

SOLUTION

a. Angular Velocity. As the disk rotates about the axle OG it also rotates 
with the axle about the y axis at a rate v2 clockwise. The total angular veloc-
ity of the disk is therefore

 V 5 v1i 2 v2 j (1)

To determine v2 we write that the velocity of C is zero:

vC 5 V 3 rC 5 0
(v1i 2 v2 j) 3 (Li 2 rj) 5 0

(Lv2 2 rv1)k 5 0   v2 5 rv1/L

Substituting into (1) for v2:  V 5 v1i 2 (rv1/L)j ◀

b. Angular Momentum about O. Assuming the axle to be part of the 
disk, we can consider the disk to have a fixed point at O. Since the x, y, 
and z axes are principal axes of inertia for the disk,

 Hx 5 Ixvx 5 (1
2mr2)v1

 Hy 5 Iyvy 5 (mL2 1 1
4mr2)(2rv1/L)

 Hz 5 Izvz 5 (mL2 1 1
4mr2)0 5 0

HO 5 1
2mr2v1i 2 m(L2 1 1

4r2)(rv1/L)j ◀

c. Kinetic Energy. Using the values obtained for the moments of inertia 
and the components of V, we have

T 5 1
2(Ixv

2
x 1 Iyv

2
y 1 Izv

2
z ) 5 1

2 3 12mr2v2
1 1 m(L2 1 1

4r2)(2rv1/L)2 4
T 5 1

8mr2 a6 1
r2

L2b v2
1 ◀

d. Momentum Vector and Couple at G. The linear momentum vector 
mv and the angular momentum couple HG are

mv 5 mrv1k ◀

and

HG 5 Ix¿vxi 1 Iy¿vyj 1 Iz¿vzk 5 1
2mr2v1i 1 1

4mr2(2rv1/L)j

HG 5 1
2mr2v1 ai 2

r
2L

jb ◀

L

O
G

rw1

L

xO
G

r

y

z C

rC

w1i

– w2j

G
x'

y'

z'

(HG)x

(HG)y

m⎯v
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1156

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to compute the angular momentum of a rigid body in 
three dimensions and to apply the principle of impulse and momentum to the 

three-dimensional motion of a rigid body. You also learned to compute the kinetic 
energy of a rigid body in three dimensions. It is important for you to keep in mind 
that, except for very special situations, the angular momentum of a rigid body in 
three dimensions cannot be expressed as the product IV  and, therefore, will not 
have the same direction as the angular velocity V (Fig. 18.3).

1. To compute the angular momentum HG of a rigid body about its mass 
center G, you must first determine the angular velocity V of the body with respect 
to a system of axes centered at G and of fixed orientation. Since you will be asked in 
this lesson to determine the angular momentum of the body at a given instant only, 
select the system of axes which will be most convenient for your computations.
 a. If the principal axes of inertia of the body at G are known, use these 
axes as coordinate axes x9, y9, and z9, since the corresponding products of inertia 
of the body will be equal to zero. Resolve V into components vx9, vy9, and vz9 along 
these axes and compute the principal moments of inertia Ix¿, Iy¿, and Iz¿ . The corre-
sponding components of the angular momentum HG are
 Hx¿ 5 Ix¿vx¿   Hy¿ 5 Iy¿vy¿   Hz¿ 5 Iz¿vz¿ (18.10)

 b. If the principal axes of inertia of the body at G are not known, you 
must use Eqs. (18.7) to determine the components of the angular momentum 
HG. These equations require prior computation of the products of inertia of the 
body as well as prior computation of its moments of inertia with respect to 
the selected axes.
 c. The magnitude and direction cosines of HG are obtained from formulas 
similar to those used in Statics [Sec. 2.12]. We have

HG 5 2H2
x 1 H2

y 1 H2
z

cos ux 5
Hx

HG
  cos uy 5

Hy

HG
  cos uz 5

Hz

HG

 d. Once HG has been determined, you can obtain the angular momentum 
of the body about any given point O by observing from Fig. (18.4) that
 HO 5 r 3 mv 1 HG (18.11)
where r is the position vector of G relative to O, and mv is the linear momentum 
of the body.

2. To compute the angular momentum HO of a rigid body with a fixed 
point O, follow the procedure described in paragraph 1, except that you should 
now use axes centered at the fixed point O.
 a. If the principal axes of inertia of the body at O are known, resolve V into 
components along these axes [Sample Prob. 18.2]. The corresponding components 
of the angular momentum HG are obtained from equations similar to Eqs. (18.10).
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1157

 b. If the principal axes of inertia of the body at O are not known, you must 
compute the products as well as the moments of inertia of the body with respect 
to the axes that you have selected and use Eqs. (18.13) to determine the compo-
nents of the angular momentum HO.

3. To apply the principle of impulse and momentum to the solution of a prob-
lem involving the three-dimensional motion of a rigid body, you will use the same 
vector equation that you used for plane motion in Chap. 17,
 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.4)
where the initial and final systems of momenta are each represented by a linear-
momentum vector mv and an angular-momentum couple HG. Now, however, these 
vector-and-couple systems should be represented in three dimensions as shown in 
Fig. 18.6, and HG should be determined as explained in paragraph 1.
 a. In problems involving the application of a known impulse to a rigid body, 
draw the free-body-diagram equation corresponding to Eq. (17.4). Equating the 
components of the vectors involved, you will determine the final linear momentum 
mv of the body and, thus, the corresponding velocity v of its mass center. Equating 
moments about G, you will determine the final angular momentum HG of the body. 
You will then substitute the values obtained for the components of HG into 
Eqs. (18.10) or (18.7) and solve these equations for the corresponding values of the 
components of the angular velocity V of the body [Sample Prob. 18.1].
 b. In problems involving unknown impulses, draw the free-body-diagram 
equation corresponding to Eq. (17.4) and write equations which do not involve 
the unknown impulses. Such equations can be obtained by equating moments 
about the point or line of impact.

4. To compute the kinetic energy of a rigid body with a fixed point O, resolve 
the angular velocity V into components along axes of your choice and compute the 
moments and products of inertia of the body with respect to these axes. As was the 
case for the computation of the angular momentum, use the principal axes of inertia 
x9, y9, and z9 if you can easily determine them. The products of inertia will then be 
zero [Sample Prob. 18.2], and the expression for the kinetic energy will reduce to
 T 5 1

2(Ix¿v
2
x¿ 1 Iy¿v

2
y¿ 1 Iz¿v

2
x¿) (18.20)

If you must use axes other than the principal axes of inertia, the kinetic energy of 
the body should be expressed as shown in Eq. (18.19).

5. To compute the kinetic energy of a rigid body in general motion, consider the 
motion as the sum of a translation with the mass center G and a rotation about G. The 
kinetic energy associated with the translation is 12mv 

2. If principal axes of inertia can 
be used, the kinetic energy associated with the rotation about G can be expressed in 
the form used in Eq. (18.20). The total kinetic energy of the rigid body is then
 T 5 1

2mv 
2 1 1

2(Ix¿v
2
x¿ 1 Iy¿v

2
y¿ 1 Iz¿v

2
z¿) (18.17)

If you must use axes other than the principal axes of inertia to determine the 
kinetic energy associated with the rotation about G, the total kinetic energy of the 
body should be expressed as shown in Eq. (18.16).
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1158

PROBLEMS

 18.1 Two uniform rods AB and CE, each of mass 1.5 kg and length 
600 mm, are welded to each other at their midpoints. Knowing 
that this assembly has an angular velocity of constant magnitude 
v 5 12 rad/s, determine the magnitude and direction of the angu-
lar momentum HD of the assembly about D.
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B

C

D

E
x

y

z
w

75 mm

75 mm

225 mm
225 mm

Fig. P18.1

ww2

x

y

z

G

w1

Fig. P18.2

 18.2 A thin, homogeneous disk of mass m and radius r spins at the 
constant rate v1 about an axle held by a fork-ended vertical rod 
which rotates at the constant rate v2. Determine the angular 
momentum HG of the disk about its mass center G.

 18.3 A thin homogeneous square of mass m and side a is welded to a 
vertical shaft AB with which it forms an angle of 45°. Knowing 
that the shaft rotates with an angular velocity V, determine the 
angular momentum of the plate about A. 

x

y

z

A

B

45°

w

Fig. P18.3
w

B

x

z

b

G

y

A

Fig. P18.4

18.4 A homogeneous disk of mass m and radius r is mounted on the verti-
cal shaft AB. The normal to the disk at G forms an angle b 5 25° with 
the shaft. Knowing that the shaft has a constant angular velocity V, 
determine the angle u formed by the shaft AB and the angular 
momentum HG of the disk about its mass center G.
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1159Problems 18.5 A thin disk of weight W 5 10 lb rotates at the constant rate 
v2 5 15 rad/s with respect to arm ABC, which itself rotates at the 
constant rate v1 5 5 rad/s about the y axis. Determine the angular 
momentum of the disk about its center C.

A B

x

y

 r = 6 in.

18 in.

9 in.

z

ww1 C

ww2

Fig. P18.5
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 18.6 A homogeneous disk of weight W 5 6 lb rotates at the constant 
rate v1 5 16 rad/s with respect to arm ABC, which is welded to 
a shaft DCE rotating at the constant rate v2 5 8 rad/s. Determine 
the angular momentum HA of the disk about its center A.

 18.7 A solid rectangular parallelepiped of mass m has a square base 
of side a and a length 2a. Knowing that it rotates at the constant 
rate v about its diagonal AC9 and that its rotation is observed from 
A as counterclockwise, determine (a) the magnitude of the angular 
momentum HG of the parallelepiped about its mass center G, 
(b) the angle that HG forms with the diagonal AC9.

 18.8 Solve Prob. 18.7, assuming that the solid rectangular parallelepiped 
has been replaced by a hollow one consisting of six thin metal 
plates welded together.

 18.9 Determine the angular momentum of the disk of Prob. 18.5 about 
point A. 

 18.10 Determine the angular momentum HD of the disk of Prob. 18.6 
about point D.
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1160 Kinetics of Rigid Bodies in Three Dimensions  18.11 The 30-kg projectile shown has a radius of gyration of 60 mm about 
its axis of symmetry Gx and a radius of gyration of 250 mm about 
the transverse axis Gy. Its angular velocity V can be resolved into 
two components; one component, directed along Gx, measures the 
rate of spin of the projectile, while the other component, directed 
along GD, measures its rate of precession. Knowing that u 5 5° and 
that the angular momentum of the projectile about its mass center G 
is HG 5 (320 g ? m2/s)i 2 (9 g ? m2/s)j, determine (a) the rate of spin, 
(b) the rate of precession.
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Fig. P18.11
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Fig. P18.16 and P18.17

 18.12 Determine the angular momentum HA of the projectile of Prob. 18.11 
about the center A of its base, knowing that its mass center G has 
a velocity v of 650 m/s. Give your answer in terms of components 
respectively parallel to the x and y axes shown and to a third axis z 
pointing toward you.

 18.13 (a) Show that the angular momentum HB of a rigid body about 
point B can be obtained by adding to the angular momentum HA of 
that body about point A the vector product of the vector rA/B drawn 
from B to A and the linear momentum mv of the body:

HB 5 HA 1 rA/B 3 mv

  (b) Further show that when a rigid body rotates about a fixed axis, 
its angular momentum is the same about any two points A and B 
located on the fixed axis (HA 5 HB) if, and only if, the mass 
center G of the body is located on the fixed axis.

 18.14 Determine the angular momentum HO of the disk of Sample 
Prob. 18.2 from the expressions obtained for its linear momentum 
mv and its angular momentum HG, using Eqs. (18.11). Verify 
that the result obtained is the same as that obtained by direct 
computation.

 18.15 A rod of uniform cross section is used to form the shaft shown. 
Denoting by m the total mass of the shaft and knowing that the shaft 
rotates with a constant angular velocity V, determine (a) the angu-
lar momentum HG of the shaft about its mass center G, (b) the angle 
formed by HG and the axis AB.

 18.16 The triangular plate shown has a mass of 7.5 kg and is welded to 
a vertical shaft AB. Knowing that the plate rotates at the constant 
rate v 5 12 rad/s, determine its angular momentum about 
(a) point C, (b) point A. (Hint: To solve part b find v and use the 
property indicated in part a of Prob. 18.13.)

 18.17 The triangular plate shown has a mass of 7.5 kg and is welded to 
a vertical shaft AB. Knowing that the plate rotates at the constant 
rate v 5 12 rad/s, determine its angular momentum about 
(a) point C, (b) point B. (See hint of Prob. 18.16.)
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1161Problems 18.18 Determine the angular momentum of the shaft of Prob. 18.15 
about (a) point A, (b) point B.

 18.19 Two L-shaped arms, each weighing 4 lb, are welded at the third 
points of the 2-ft shaft AB. Knowing that shaft AB rotates at the 
constant rate v 5 240 rpm, determine (a) the angular momentum 
of the body about A, (b) the angle formed by the angular momen-
tum and shaft AB.

 18.20 For the body of Prob. 18.19, determine (a) the angular momentum 
about B, (b) the angle formed by the angular momentum about 
shaft BA. 

 18.21 One of the sculptures displayed on a university campus consists of 
a hollow cube made of six aluminum sheets, each 5 3 5 ft, welded 
together and reinforced with internal braces of negligible weight. 
The cube is mounted on a fixed base at A and can rotate freely 
about its vertical diagonal AB. As she passes by this display on 
the way to a class in mechanics, an engineering student grabs 
corner C of the cube and pushes it for 1.2 s in a direction per-
pendicular to the plane ABC with an average force of 12.5 lb. 
Having observed that it takes 5 s for the cube to complete one 
full revolution, she flips out her calculator and proceeds to deter-
mine the weight of the cube. What is the result of her calculation? 
(Hint: The perpendicular distance from the diagonal joining two 
vertices of a cube to any of its other six vertices can be obtained 
by multiplying the side of the cube by 12/3.)
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Fig. P18.19
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A

Fig. P18.21

 18.22 If the aluminum cube of Prob. 18.21 were replaced by a cube of 
the same size, made of six plywood sheets weighing 20 lb each, 
how long would it take for that cube to complete one full revolution 
if the student pushed its corner C in the same way that she pushed 
the corner of the aluminum cube?
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1162 Kinetics of Rigid Bodies in Three Dimensions  18.23 Two circular plates, each of mass 4 kg, are rigidly connected by a 
rod AB of negligible mass and are suspended from point A as 
shown. Knowing that an impulse F ¢t 5 2(2.4 N ? s)k is applied 
at point D, determine (a) the velocity of the mass center G of the 
assembly, (b) the angular velocity of the assembly.

 18.24 Two circular plates, each of mass 4 kg, are rigidly connected by a 
rod AB of negligible mass and are suspended from point A as 
shown. Knowing that an impulse F ¢t 5 (2.4 N ? s)j is applied at 
point D, determine (a) the velocity of the mass center G of the 
assembly, (b) the angular velocity of the assembly.

 18.25 A uniform rod of mass m is bent into the shape shown and is sus-
pended from a wire attached at its mass center G. The bent rod 
is hit at A in a direction perpendicular to the plane containing the 
rod (in the positive x direction). Denoting the corresponding 
impulse by F ¢t, determine immediately after the impact (a) the 
velocity of the mass center G, (b) the angular velocity of the rod.

 18.26 Solve Prob. 18.25, assuming that the bent rod is hit at B.

 18.27 Three slender rods, each of mass m and length 2a, are welded 
together to form the assembly shown. The assembly is hit at A in 
a vertical downward direction. Denoting the corresponding 
impulse by F ¢t, determine immediately after the impact (a) the 
velocity of the mass center G, (b) the angular velocity of the rod.
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Fig. P18.23 and P18.24

 18.28 Solve Prob. 18.27, assuming that the assembly is hit at B in a direc-
tion opposite to that of the x axis.

 18.29 A square plate of side a and mass m supported by a ball-and-socket 
joint at A is rotating about the y axis with a constant angular velocity 
V 5 v0 j when an obstruction is suddenly introduced at B in the xy 
plane. Assuming the impact at B to be perfectly plastic (e 5 0), 
determine immediately after the impact (a) the angular velocity of 
the plate, (b) the velocity of its mass center G.

 18.30 Determine the impulse exerted on the plate of Prob. 18.29 during 
the impact by (a) the obstruction at B, (b) the support at A.
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1163Problems 18.31 A rectangular plate of mass m is falling with a velocity v0 and no 
angular velocity when its corner C strikes an obstruction. Assum-
ing the impact to be perfectly plastic (e 5 0), determine the angu-
lar velocity of the plate immediately after the impact.

 18.32 For the plate of Prob. 18.31, determine (a) the velocity of its mass 
center G immediately after the impact, (b) the impulse exerted on 
the plate by the obstruction during the impact.

 18.33 A 2500-kg probe in orbit about the moon is 2.4 m high and has 
octagonal bases of sides 1.2 m. The coordinate axes shown are the 
principal centroidal axes of inertia of the probe, and its radii of 
gyration are kx 5 0.98 m, ky 5 1.06 m, and kz 5 1.02 m. The 
probe is equipped with a main 500-N thruster E and with four 
20-N thrusters A, B, C, and D which can expel fuel in the positive 
y direction. The probe has an angular velocity V 5 (0.040 rad/s)i 1 
(0.060 rad/s)k when two of the 20-N thrusters are used to reduce 
the angular velocity to zero. Determine (a) which of the thrusters 
should be used, (b) the operating time of each of these thrusters, 
(c) for how long the main thruster E should be activated if the 
velocity of the mass  center of the probe is to remain unchanged.

 18.34 Solve Prob. 18.33, assuming that the angular velocity of the probe 
is V 5 (0.060 rad/s)i 2 (0.040 rad/s)k.

 18.35 The coordinate axes shown represent the principal centroidal axes 
of inertia of a 3000-lb space probe whose radii of gyration are 
kx 5 1.375 ft, ky 5 1.425 ft, and kz 5 1.250 ft. The probe has no 
angular velocity when a 5-oz meteorite strikes one of its solar pan-
els at point A with a velocity v0 5 (2400 ft/s)i 2 (3000 ft/s)j 1 
(3200 ft/s)k relative to the probe. Knowing that the meteorite 
emerges on the other side of the panel with no change in the 
direction of its velocity, but with a speed reduced by 20 percent, 
determine the final angular velocity of the probe.
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 18.36 The coordinate axes shown represent the principal centroidal axes 
of inertia of a 3000-lb space probe whose radii of gyration are 
kx 5 1.375 ft, ky 5 1.425 ft, and kz 5 1.250 ft. The probe has no 
angular velocity when a 5-oz meteorite strikes one of its solar 
panels at point A and emerges on the other side of the panel 
with no change in the direction of its velocity, but with a speed 
reduced by 25 percent. Knowing that the final angular velocity of 
the probe is V 5 (0.05 rad/s)i 2 (0.12 rad/s)j 1 vzk and that the 
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1164 Kinetics of Rigid Bodies in Three Dimensions x component of the resulting change in the velocity of the mass 
center of the probe is 20.675 in./s, determine (a) the component vz 
of the final angular velocity of the probe, (b) the relative velocity v0 
with which the meteorite strikes the panel.

 18.37 Denoting, respectively, by V, HO, and T the angular velocity, the 
angular momentum, and the kinetic energy of a rigid body with a 
fixed point O, (a) prove that HO ? V 5 2T; (b) show that the angle u 
between v and HO will always be acute.

 18.38 Show that the kinetic energy of a rigid body with a fixed point O 
can be expressed as T 5 1

2 IOLv
2, where V is the instantaneous 

angular velocity of the body and IOL is its moment of inertia 
about the line of action OL of V. Derive this expression (a) from 
Eqs. (9.46) and (18.19), (b) by considering T as the sum of the 
kinetic energies of particles Pi describing circles of radius ri 
about line OL.

 18.39 Determine the kinetic energy of the assembly of Prob. 18.1.

 18.40 Determine the kinetic energy of the disk of Prob. 18.2.

 18.41 Determine the kinetic energy of the plate of Prob. 18.3.

 18.42 Determine the kinetic energy of the disk of Prob. 18.4.

 18.43 Determine the kinetic energy of the rod of Prob. 18.15.

 18.44 Determine the kinetic energy of the triangular plate of Prob. 18.16.

 18.45 Determine the kinetic energy of the body of Prob. 18.19.

 18.46 Determine the kinetic energy imparted to the cube of Prob. 18.21.

 18.47 Determine the kinetic energy of the disk of Prob. 18.5.

 18.48 Determine the kinetic energy of the disk of Prob. 18.6.

 18.49 Determine the kinetic energy of the solid parallelepiped of 
Prob. 18.7.

 18.50 Determine the kinetic energy of the hollow parallelepiped of 
Prob. 18.8.

 18.51 Determine the kinetic energy lost when the plate of Prob. 18.29 
hits the obstruction at B.

 18.52 Determine the kinetic energy lost when corner C of the plate of 
Prob. 18.31 hits the obstruction.

 18.53 Determine the kinetic energy of the space probe of Prob. 18.35 
in its motion about its mass center after its collision with the 
meteorite.

 18.54 Determine the kinetic energy of the space probe of Prob. 18.36 
in its motion about its mass center after its collision with the 
meteorite.
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1165*18.5  MOTION OF A RIGID BODY 
IN THREE DIMENSIONS

As indicated in Sec. 18.2, the fundamental equations

 oF 5 ma (18.1)
 oMG 5 H

.
G (18.2)

remain valid in the most general case of the motion of a rigid body. 
Before Eq. (18.2) could be applied to the three-dimensional motion 
of a rigid body, however, it was necessary to derive Eqs. (18.7), which 
relate the components of the angular momentum HG and those of 
the angular velocity V. It still remains for us to find an effective and 
convenient way for computing the components of the derivative H

.
G 

of the angular momentum.
 Since HG represents the angular momentum of the body in its 
motion relative to centroidal axes GX9Y9Z9 of fixed orientation (Fig. 
18.9), and since H

.
G represents the rate of change of HG with respect 

to the same axes, it would seem natural to use components of V 
and HG along the axes X9, Y9, Z9 in writing the relations (18.7). But 
since the body rotates, its moments and products of inertia would 
change continually, and it would be necessary to determine their 
values as functions of the time. It is therefore more convenient to 
use axes x, y, z attached to the body, ensuring that its moments and 
products of inertia will maintain the same values during the motion. 
This is permissible since, as indicated earlier, the transformation of 
V into HG is independent of the system of coordinate axes selected. 
The angular velocity V, however, should still be defined with respect 
to the frame GX9Y9Z9 of fixed orientation. The vector V may then 
be resolved into components along the rotating x, y, and z axes. 
Applying the relations (18.7), we obtain the components of the vec-
tor HG along the rotating axes. The vector HG, however, represents 
the angular momentum about G of the body in its motion relative 
to the frame GX9Y9Z9.
 Differentiating with respect to t the components of the angular 
momentum in (18.7), we define the rate of change of the vector HG 
with respect to the rotating frame Gxyz:

 (H
.

G)Gxyz 5 H
.

xi 1 H
.

yj 1 H
.

zk (18.21)

where i, j, k are the unit vectors along the rotating axes. Recalling 
from Sec. 15.10 that the rate of change H

.
G of the vector HG with 

respect to the frame GX9Y9Z9 is found by adding to (H
.

G)Gxyz the 
vector product V 3 HG, where V denotes the angular velocity of 
the rotating frame, we write

 H
.

G 5 (H
.

G)Gxyz 1 V 3 HG (18.22)

where HG 5  angular momentum of body with respect to frame 
GX9Y9Z9 of fixed orientation

(H
.

G)Gxyz 5  rate of change of HG with respect to rotating frame Gxyz, 
to be computed from the relations (18.7) and (18.21)

V 5 angular velocity of rotating frame Gxyz

G

Y

O X

Z

Y'

y

X'

x

z

Z'

w

HG

Fig. 18.9

18.5 Motion of a Rigid Body
in Three Dimensions
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1166 Kinetics of Rigid Bodies in Three Dimensions Substituting for H
.

G from (18.22) into (18.2), we have

 ©MG 5 (H
.

G)Gxyz 1 V 3 HG (18.23)

 If the rotating frame is attached to the body, as has been 
assumed in this discussion, its angular velocity V is identically equal 
to the angular velocity V of the body. There are many applications, 
however, where it is advantageous to use a frame of reference which 
is not actually attached to the body but rotates in an independent 
manner. For example, if the body considered is axisymmetrical, as in 
Sample Prob. 18.5 or Sec. 18.9, it is possible to select a frame of 
reference with respect to which the moments and products of inertia 
of the body remain constant, but which rotates less than the body 
itself.† As a result, it is possible to obtain simpler expressions for the 
angular velocity V and the angular momentum HG of the body than 
could have been obtained if the frame of reference had actually been 
attached to the body. It is clear that in such cases the angular velocity 
V of the rotating frame and the angular velocity V of the body are 
different.

*18.6  EULER’S EQUATIONS OF MOTION. EXTENSION 
OF D’ALEMBERT’S PRINCIPLE TO THE MOTION 
OF A RIGID BODY IN THREE DIMENSIONS

If the x, y, and z axes are chosen to coincide with the principal axes 
of inertia of the body, the simplified relations (18.10) can be used to 
determine the components of the angular momentum HG. Omitting 
the primes from the subscripts, we write

 HG 5 Ixvxi 1 Iyvy j 1 Izvzk (18.24)

where Ix, Iy, and Iz  denote the principal centroidal moments of iner-
tia of the body. Substituting for HG from (18.24) into (18.23) and 
setting V 5 V, we obtain the three scalar equations

  ©Mx 5 Ixv
.

x  2 (Iy 2 Iz)vyvz

  ©My 5 Iyv
.

y 2 (Iz  2 Ix)vzvx  (18.25)
  ©Mz 5 Izv

.
z  2 (Ix  2 Iy)vxvy

These equations, called Euler9s equations of motion after the Swiss 
mathematician Leonhard Euler (1707–1783), can be used to analyze 
the motion of a rigid body about its mass center. In the following 
sections, however, Eq. (18.23) will be used in preference to Eqs. 
(18.25), since the former is more general and the compact vectorial 
form in which it is expressed is easier to remember.
 Writing Eq. (18.1) in scalar form, we obtain the three additional 
equations

 ©Fx 5 max   ©Fy 5 may   ©Fz 5 maz (18.26)

which, together with Euler9s equations, form a system of six differen-
tial equations. Given appropriate initial conditions, these differential 

†More specifically, the frame of reference will have no spin (see Sec. 18.9).
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1167equations have a unique solution. Thus, the motion of a rigid body in 
three dimensions is completely defined by the resultant and the moment 
resultant of the external forces acting on it. This result will be recog-
nized as a generalization of a similar result obtained in Sec. 16.4 in the 
case of the plane motion of a rigid slab. It follows that in three as well 
as two dimensions, two systems of forces which are equipollent are also 
equivalent; that is, they have the same effect on a given rigid body.

=

(a)

Pi

G

(b)

(Δmi)a i

G

F1

F2

F3

F4

Fig. 18.10

 Considering in particular the system of the external forces act-
ing on a rigid body (Fig. 18.10a) and the system of the effective forces 
associated with the particles forming the rigid body (Fig. 18.10b), 
we can state that the two systems—which were shown in Sec. 14.2 
to be equipollent—are also equivalent. This is the extension of 
d’Alembert’s principle to the three-dimensional motion of a rigid 
body. Replacing the effective forces in Fig. 18.10b by an equivalent 
force-couple system, we verify that the system of the external forces 
acting on a rigid body in three-dimensional motion is equivalent to 
the system consisting of the vector ma attached at the mass center G 
of the body and the couple of moment H

.
G (Fig. 18.11), where H

.
G is 

obtained from the relations (18.7) and (18.22). Note that the equiva-
lence of the systems of vectors shown in Fig. 18.10 and in Fig. 18.11 
has been indicated by red equals signs. Problems involving the three-
dimensional motion of a rigid body can be solved by considering the 
free-body-diagram equation represented in Fig. 18.11 and writing 
appropriate scalar equations relating the components or moments of 
the external and effective forces (see Sample Prob. 18.3).

*18.7  MOTION OF A RIGID BODY 
ABOUT A FIXED POINT

When a rigid body is constrained to rotate about a fixed point O, it 
is desirable to write an equation involving the moments about O of 
the external and effective forces, since this equation will not contain 
the unknown reaction at O. While such an equation can be obtained 
from Fig. 18.11, it may be more convenient to write it by considering 
the rate of change of the angular momentum HO of the body about 
the fixed point O (Fig. 18.12). Recalling Eq. (14.11), we write

 ©MO 5 H
.

O (18.27)

where H
.

O denotes the rate of change of the vector HO with respect 
to the fixed frame OXYZ. A derivation similar to that used in Sec. 18.5 

G

= ⎯am

F1

F2

F3

F4

G

HG
.

Fig. 18.11

18.7 Motion of a Rigid Body about 
a Fixed Point
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O
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Fig. 18.12
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1168 Kinetics of Rigid Bodies in Three Dimensions enables us to relate H
.

O to the rate of change (H
.

O)Oxyz of HO with 
respect to the rotating frame Oxyz. Substitution into (18.27) leads to 
the equation

 ©MO 5 (H
.

O)Oxyz 1 V 3 HO (18.28)

where oMO 5  sum of moments about O of forces applied to rigid 
body

HO 5  angular momentum of body with respect to fixed 
frame OXYZ

(H
.

O)Oxyz 5  rate of change of HO with respect to rotating frame 
Oxyz, to be computed from relations (18.13)

V 5 angular velocity of rotating frame Oxyz

 If the rotating frame is attached to the body, its angular velocity 
V is identically equal to the angular velocity V of the body. However, 
as indicated in the last paragraph of Sec. 18.5, there are many applica-
tions where it is advantageous to use a frame of reference which is not 
actually attached to the body but rotates in an independent manner.

*18.8  ROTATION OF A RIGID BODY 
ABOUT A FIXED AXIS

Equation (18.28), which was derived in the preceding section, will 
be used to analyze the motion of a rigid body constrained to rotate 
about a fixed axis AB (Fig. 18.13). First, we note that the angular 
velocity of the body with respect to the fixed frame OXYZ is repre-
sented by the vector V directed along the axis of rotation. Attaching 
the moving frame of reference Oxyz to the body, with the z axis along 
AB, we have V 5 vk. Substituting vx 5 0, vy 5 0, vz 5 v into the 
relations (18.13), we obtain the components along the rotating axes 
of the angular momentum HO of the body about O:

Hx 5 2Ixzv   Hy 5 2Iyzv   Hz 5 Izv

Since the frame Oxyz is attached to the body, we have V 5 V and 
Eq. (18.28) yields

 ©MO 5 (H
.

O)Oxyz 1 V 3 HO

 5 (2Ixzi 2 Iyz j 1 Izk)v. 1 vk 3 (2Ixzi 2 Iyz j 1 Izk)v
 5 (2Ixzi 2 Iyz j 1 Izk)a 1 (2Ixz j 1 Iyzi)v

2

The result obtained can be expressed by the three scalar equations

  ©Mx 5 2Ixza 1 Iyzv
2

  ©My 5 2Iyza 2 Ixzv
2 (18.29)

  ©Mz 5 Iza

 When the forces applied to the body are known, the angular 
acceleration a can be obtained from the last of Eqs. (18.29). The 
angular velocity v is then determined by integration and the values 
obtained for a and v substituted into the first two equations (18.29). 
These equations plus the three equations (18.26) which define the 
motion of the mass center of the body can then be used to determine 
the reactions at the bearings A and B.

X

Z

Y

B

O

w

A

x

y

z

Fig. 18.13

Photo 18.3 The revolving radio telescope is 
an example of a structure constrained to rotate 
about a fixed point.
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1169 It is possible to select axes other than the ones shown in Fig. 
18.13 to analyze the rotation of a rigid body about a fixed axis. In 
many cases, the principal axes of inertia of the body will be found 
more advantageous. It is therefore wise to revert to Eq. (18.28) and 
to select the system of axes which best fits the problem under 
consideration.
 If the rotating body is symmetrical with respect to the xy plane, 
the products of inertia Ixz and Iyz are equal to zero and Eqs. (18.29) 
reduce to

 oMx 5 0  oMy 5 0  oMz 5 Iza (18.30)

which is in accord with the results obtained in Chap. 16. If, on 
the other hand, the products of inertia Ixz and Iyz are different 
from zero, the sum of the moments of the external forces about 
the x and y axes will also be different from zero, even when the 
body rotates at a constant rate v. Indeed, in the latter case, Eqs. 
(18.29) yield

 oMx 5 Iyzv
2  oMy 5 2Ixzv

2  oMz 5 0 (18.31)

 This last observation leads us to discuss the balancing of rotat-
ing shafts. Consider, for instance, the crankshaft shown in Fig. 18.14a, 
which is symmetrical about its mass center G. We first observe that 
when the crankshaft is at rest, it exerts no lateral thrust on its sup-
ports, since its center of gravity G is located directly above A. The 
shaft is said to be statically balanced. The reaction at A, often referred 
to as a static reaction, is vertical and its magnitude is equal to the 
weight W of the shaft. Let us now assume that the shaft rotates with 
a constant angular velocity V. Attaching our frame of reference to 
the shaft, with its origin at G, the z axis along AB, and the y axis in 
the plane of symmetry of the shaft (Fig. 18.14b), we note that Ixz is 
zero and that Iyz is positive. According to Eqs. (18.31), the external 
forces include a couple of moment Iyzv

2i. Since this couple is formed 
by the reaction at B and the horizontal component of the reaction 
at A, we have

 
Ay 5

Iyzv
2

l
 j      B 5 2

Iyzv
2

l
 j

 
(18.32)

Since the bearing reactions are proportional to v2, the shaft will have 
a tendency to tear away from its bearings when rotating at high speeds. 
Moreover, since the bearing reactions Ay and B, called dynamic reac-
tions, are contained in the yz plane, they rotate with the shaft and 
cause the structure supporting it to vibrate. These undesirable effects 
will be avoided if, by rearranging the distribution of mass around 
the shaft or by adding corrective masses, we let Iyz become equal to 
zero. The dynamic reactions Ay and B will vanish and the reactions 
at the bearings will reduce to the static reaction Az, the direction of 
which is fixed. The shaft will then be dynamically as well as statically 
balanced.

Photo 18.4 The forces exerted by a rotating 
automobile crankshaft on its bearings are the 
static and dynamic reactions. The crankshaft can 
be designed to be dynamically as well as 
statically balanced.
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Fig. 18.14

18.8 Rotation of a Rigid Body about 
a Fixed Axis
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1170

SOLUTION

The effective forces reduce to the vector ma attached at G and the couple 
H
.

G. Since G describes a horizontal circle of radius r 5 1
2L cos b at the 

constant rate v, we have

 a 5 an 5 2rv2I 5 2(1
2L cos b)v2I 5 2(450 ft/s2)I

 ma 5
40
g

 (2450I) 5 2(559 lb)I

Determination of ḢG. We first compute the angular momentum HG. 
Using the principal centroidal axes of inertia x, y, z, we write

 Ix 5 1
12mL2 Iy 5 0 Iz 5 1

12mL2

vx 5 2v cos b  vy 5 v sin b  vz 5 0
HG 5 Ixvxi 1 Iyvyj 1 Izvzk

HG 5 2 1
12mL2v cos b i

The rate of change H
.

G of HG with respect to axes of fixed orientation is 
obtained from Eq. (18.22). Observing that the rate of change (H

.
G)Gxyz of HG 

with respect to the rotating frame Gxyz is zero, and that the angular velocity 
V of that frame is equal to the angular velocity V of the rod, we have

 H
.

G 5 (H
.

G)Gxyz 1 V 3 HG

 H
.

G 5 0 1 (2v cos b i 1 v sin b j) 3 (2 1
12mL2v cos b i)

 H
.

G 5 1
12mL2v2 sin b cos b k 5 (645 lb ? ft) k

Equations of Motion. Expressing that the system of the external forces is 
equivalent to the system of the effective forces, we write

oMA 5 o(MA)eff:
  6.93J 3 (2TI) 1 2I 3 (240J) 5 3.46J 3 (2559I) 1 645K

(6.93T 2 80)K 5 (1934 1 645)K  T 5 384 lb ◀

oF 5 oFeff:  AXI 1 AYJ 1 AZK 2 384I 2 40J 5 2559I
A 5 2(175 lb)I 1 (40 lb)J ◀

Remark. The value of T could have been obtained from HA and Eq. 
(18.28). However, the method used here also yields the reaction at A. More-
over, it draws attention to the effect of the asymmetry of the rod on the 
solution of the problem by clearly showing that both the vector ma and the 
couple H

.
G must be used to represent the effective forces.

SAMPLE PROBLEM 18.3

A slender rod AB of length L 5 8 ft and weight W 5 40 lb is pinned at 
A to a vertical axle DE which rotates with a constant angular velocity V of 
15 rad/s. The rod is maintained in position by means of a horizontal wire 
BC attached to the axle and to the end B of the rod. Determine the tension 
in the wire and the reaction at A.

A

BC

D

E

L = 8 ft

b = 60°

ww

x

y

z

⎯r

A

ww

b

X

Y

Z

G

m⎯a = –559I

X

Y

Z

X

Y

Z

A

A

G

G

6.93 ft

60°

2 ft

T = –TI

W = –40J

AXI
AZK

AYJ

3.46 ft
= HG = 645K

.
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SAMPLE PROBLEM 18.4

Two 100-mm rods A and B, each of mass 300 g, are welded to shaft CD which 
is supported by bearings at C and D. If a couple M of magnitude equal to 
6 N ? m is applied to the shaft, determine the components of the dynamic 
reactions at C and D at the instant when the shaft has reached an angular 
velocity at 1200 rpm. Neglect the moment of inertia of the shaft itself.

SOLUTION

Angular Momentum about O. We attach to the body the frame of refer-
ence Oxyz and note that the axes chosen are not principal axes of inertia 
for the body. Since the body rotates about the x axis, we have vx 5 v and 
vy 5 vz 5 0. Substituting into Eqs. (18.13),

Hx 5 Ixv   Hy 5 2Ixyv   Hz 5 2Ixzv

HO 5 (Ixi 2 Ixyj 2 Ixzk)v

Moments of the External Forces about O. Since the frame of reference 
rotates with the angular velocity V, Eq. (18.28) yields

 oMO 5 (H
.

O)Oxyz 1 V 3 HO

 5 (Ixi 2 Ixyj 2 Ixzk)a 1 vi 3 (Ixi 2 Ixyj 2 Ixzk)v
 5 Ixai 2 (Ixya 2 Ixzv

2)j 2 (Ixza 1 Ixyv
2)k (1)

Dynamic Reaction at D. The external forces consist of the weights of the 
shaft and rods, the couple M, the static reactions at C and D, and the 
dynamic reactions at C and D. Since the weights and static reactions are 
balanced, the external forces reduce to the couple M and the dynamic reac-
tions C and D as shown in the figure. Taking moments about O, we have

 oMO 5 Li 3 (Dyj 1 Dzk) 1 Mi 5 Mi 2 DzLj 1 DyLk (2)

Equating the coefficients of the unit vector i in (1) and (2),

M 5 Ixa   M 5 2(1
3mc2)a   a 5 3M/2mc2

Equating the coefficients of k and j in (1) and (2):

 Dy 5 2(Ixza 1 Ixyv
2)/L   Dz 5 (Ixya 2 Ixzv

2)/L (3)

 Using the parallel-axis theorem, and noting that the product of inertia 
of each rod is zero with respect to centroidal axes, we have

 Ixy 5 omx y 5 m(1
2L)(1

2c) 5 1
4mLc

 Ixz 5 omx z 5 m(1
4L)(1

2c) 5 1
8mLc

Substituting into (3) the values found for Ixy, Ixz, and a:

Dy 5 2 3
16(M/c) 2 1

4mcv2         Dz 5 3
8(M/c) 2 1

8mcv2

Substituting v 5 1200 rpm 5 125.7 rad/s, c 5 0.100 m, M 5 6 N ? m, and 
m 5 0.300 kg, we have

Dy 5 2129.8 N  Dz 5 236.8 N ◀

Dynamic Reaction at C. Using a frame of reference attached at D, we 
obtain equations similar to Eqs. (3), which yield

Cy 5 2152.2 N  Cz 5 2155.2 N ◀

150 mm
150 mm

100 mm
100 mm

300 mm
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SAMPLE PROBLEM 18.5

A homogeneous disk of radius r and mass m is mounted on an axle OG of 
length L and negligible mass. The axle is pivoted at the fixed point O and 
the disk is constrained to roll on a horizontal floor. Knowing that the disk 
rotates counterclockwise at the constant rate v1 about the axle, determine 
(a) the force (assumed vertical) exerted by the floor on the disk, (b) the 
reaction at the pivot O.

SOLUTION

The effective forces reduce to the vector ma attached at G and the couple 
H
.

G. Recalling from Sample Prob. 18.2 that the axle rotates about the y axis 
at the rate v2 5 rv1/L, we write

 ma 5 2mLv2
2i 5 2mL(rv1/L)2i 5 2(mr2v2

1/L)i (1)

Determination of ḢG. We recall from Sample Prob. 18.2 that the angular 
momentum of the disk about G is

HG 5 1
2mr2v1 ai 2

r
2L

 jb
where HG is resolved into components along the rotating axes x9, y9, z9, with 
x9 along OG and y9 vertical. The rate of change H

.
G of HG with respect to 

axes of fixed orientation is obtained from Eq. (18.22). Noting that the rate 
of change (H

.
G)Gx9y9z9 of HG with respect to the rotating frame is zero, and 

that the angular velocity V of that frame is

V 5 2v2 j 5 2
rv1

L
 j

we have

  H
.

G 5 (H
.

G)Gx¿y¿z¿ 1 V 3 HG

 
 5 0 2

rv1

L
 j 3 1

2mr2v1 ai 2
r

2L
 jb

  5 1
2mr2(r/L)v2

1k  (2)

Equations of Motion. Expressing that the system of the external forces is 
equivalent to the system of the effective forces, we write

oMO 5 o(MO)eff: Li 3 (Nj 2 Wj) 5 H
.

G

(N 2 W)Lk 5 1
2mr2(r/L)v2

1k
N 5 W 1 1

2mr(r/L)2v2
1  N 5 [W 1 1

2mr(r/L)2v2
1]j (3) ◀

oF 5 oFeff: R 1 Nj 2 Wj 5 ma

Substituting for N from (3), for ma from (1), and solving for R, we have

R 5 2(mr2v2
1/L)i 2 1

2mr(r/L)2v2
1 j

R 5 2
mr2v2

1

L
 ai 1

r
2L

 jb ◀

L

O
G

rw1

G
x'

y'

z'
HG

Ω = − w2j

O

z

L

x

x

O
G

y

z

G
x'

y'y

z'

m⎯a

Ryj

Rxi
Rzk

HG 
.

–Wj

Nj

=
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you will be asked to solve problems involving the three-dimensional 
motion of rigid bodies. The method you will use is basically the same that you 

used in Chap. 16 in your study of the plane motion of rigid bodies. You will draw a 
free-body-diagram equation showing that the system of the external forces is equiva-
lent to the system of the effective forces, and you will equate sums of components 
and sums of moments on both sides of this equation. Now, however, the system of 
the effective forces will be represented by the vector ma and a couple vector H

.
G, 

the determination of which will be explained in paragraphs 1 and 2 below.

To solve a problem involving the three-dimensional motion of a rigid body, you 
should take the following steps:

1. Determine the angular momentum HG of the body about its mass center G
from its angular velocity V with respect to a frame of reference GX9Y9Z9 of fixed 
orientation. This is an operation you learned to perform in the preceding lesson. 
However, since the configuration of the body will be changing with time, it will 
now be necessary for you to use an auxiliary system of axes Gx9y9z9 (Fig. 18.9) to 
compute the components of V and the moments and products of inertia of the 
body. These axes may be rigidly attached to the body, in which case their angular 
velocity is equal to V [Sample Probs. 18.3 and 18.4], or they may have an angular 
velocity V of their own [Sample Prob. 18.5].

Recall the following from the preceding lesson:
a. If the principal axes of inertia of the body at G are known, use these 

axes as coordinate axes x9, y9, and z9, since the corresponding products of inertia 
of the body will be equal to zero. (Note that if the body is axisymmetric, these 
axes do not need to be rigidly attached to the body.) Resolve V into components 
vx9, vy9, and vz9 along these axes and compute the principal moments of inertia 
Ix¿, Iy¿, and Iz¿. The corresponding components of the angular momentum HG are

 Hx¿ 5 Ix¿vx¿   Hy¿ 5 Iy¿vy¿   Hz¿ 5 Iz¿vz¿ (18.10)

 b. If the principal axes of inertia of the body at G are not known, you 
must use Eqs. (18.7) to determine the components of the angular momentum HG. 
These equations require your prior computation of the products of inertia of the 
body, as well as of its moments of inertia, with respect to the selected axes.

(continued)
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2. Compute the rate of change ḢG of the angular momentum HG with respect 
to the frame GX9Y9Z9. Note that this frame has a fixed orientation, while the 
frame Gx9y9z9 you used when you calculated the components of the vector V was 
a rotating frame. We refer you to our discussion in Sec. 15.10 of the rate of change 
of a vector with respect to a rotating frame. Recalling Eq. (15.31), you will express 
the rate of change H

.
G as follows:

 H
.

G 5 (H
.

G)Gx¿y¿z¿ 1 V 3 HG (18.22)

The first term in the right-hand member of Eq. (18.22) represents the rate of 
change of HG with respect to the rotating frame Gx9y9z9. This term will drop out 
if V—and, thus, HG—remain constant in both magnitude and direction when 
viewed from that frame. On the other hand, if any of the time derivatives 
v
.

x¿, v
.

y¿, and v. z¿ is different from zero, (H
.

G)Gx9y9z9 will also be different from zero, 
and its components should be determined by differentiating Eqs. (18.10) with 
respect to t. Finally, we remind you that if the rotating frame is rigidly attached 
to the body, its angular velocity will be the same as that of the body, and V can 
be replaced by V.

3. Draw the free-body-diagram equation for the rigid body, showing that the 
system of the external forces exerted on the body is equivalent to the vector ma 
applied at G and the couple vector H

.
G (Fig. 18.11). By equating components in 

any direction and moments about any point, you can write as many as six inde-
pendent scalar equations of motion [Sample Probs. 18.3 and 18.5].

4. When solving problems involving the motion of a rigid body about a fixed 
point O, you may find it convenient to use the following equation, derived in Sec. 
18.7, which eliminates the components of the reaction at the support O,

 ©MO 5 (H
.

O)Oxyz 1 V 3 HO (18.28)

where the first term in the right-hand member represents the rate of change of 
HO with respect to the rotating frame Oxyz, and where V is the angular velocity 
of that frame.

5. When determining the reactions at the bearings of a rotating shaft, use 
Eq. (18.28) and take the following steps:
 a. Place the fixed point O at one of the two bearings supporting the shaft 
and attach the rotating frame Oxyz to the shaft, with one of the axes directed along 
it. Assuming, for instance, that the x axis has been aligned with the shaft, you will 
have V 5 V 5 vi [Sample Prob. 18.4].
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 b. Since the selected axes, usually, will not be the principal axes of 
inertia at O, you must compute the products of inertia of the shaft, as well as its 
moments of inertia, with respect to these axes, and use Eqs. (18.13) to determine 
HO. Assuming again that the x axis has been aligned with the shaft, Eqs. (18.13) 
reduce to

 Hx 5 Ixv   Hy 5 2Iyxv   Hz 5 2Izxv (18.139)

which shows that HO will not be directed along the shaft.
 c. To obtain ḢO, substitute the expressions obtained into Eq. (18.28), and 
let V 5 V 5 vi. If the angular velocity of the shaft is constant, the first term in 
the right-hand member of the equation will drop out. However, if the shaft has 
an angular acceleration A 5 ai, the first term will not be zero and must be deter-
mined by differentiating with respect to t the expressions in (18.139). The result 
will be equations similar to Eqs. (18.139), with v replaced by a.
 d. Since point O coincides with one of the bearings, the three scalar equa-
tions corresponding to Eq. (18.28) can be solved for the components of the dynamic 
reaction at the other bearing. If the mass center G of the shaft is located on the 
line joining the two bearings, the effective force ma will be zero. Drawing the 
free-body-diagram equation of the shaft, you will then observe that the compo-
nents of the dynamic reaction at the first bearing must be equal and opposite to 
those you have just determined. If G is not located on the line joining the two 
bearings, you can determine the reaction at the first bearing by placing the fixed 
point O at the second bearing and repeating the earlier procedure [Sample Prob. 
18.4]; or you can obtain additional equations of motion from the free-body-diagram 
equation of the shaft, making sure to first determine and include the effective 
force ma applied at G.
 e. Most problems call for the determination of the “dynamic reactions” at 
the bearings, that is, for the additional forces exerted by the bearings on the shaft 
when the shaft is rotating. When determining dynamic reactions, ignore the effect 
of static loads, such as the weight of the shaft.
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PROBLEMS

18.55 Determine the rate of change H
.

D of the angular momentum HD

of the assembly of Prob. 18.1.

18.56 Determine the rate of change H
.

G of the angular momentum HG

of the disk of Prob. 18.2.

18.57 Determine the rate of change H
.

A of the angular momentum HA

of the plate of Prob. 18.3, knowing that its angular velocity V
remains constant.

18.58 Determine the rate of change H
.

G of the angular momentum HG

of the disk of Prob. 18.4.

18.59 Determine the rate of change H
.

G of the angular momentum HG

of the disk of Prob. 18.5.

18.60 Determine the rate of change H
.

A of the angular momentum HA

of the disk of Prob. 18.6.

18.61 Determine the rate of change H
.

D of the angular momentum HD

of the assembly of Prob. 18.1, assuming that at the instant consid-
ered the assembly has an angular velocity V 5 (12 rad/s)i and an 
angular acceleration A 5 (96 rad/s2)i.

 18.62 Determine the rate of change H
.

D of the angular momentum HD 
of the assembly of Prob. 18.1, assuming that at the instant consid-
ered the assembly has an angular velocity V 5 (12 rad/s)i and an 
angular acceleration A 5 2(96 rad/s2)i.

 18.63 Determine the rate of change H
.

A of the angular momentum HA 
of the assembly of the plate of Prob. 18.3, assuming that it has an 
angular velocity V 5 vj and an angular acceleration A 5 aj. 

 18.64 Determine the rate of change H
.

G of the angular momentum HG 
of the disk of Prob. 18.4, assuming that at the instant considered 
the assembly has an angular velocity V 5 vj and an angular accel-
eration A 5 aj.

 18.65 A thin homogeneous triangular plate of mass 2.5 kg is welded to 
a light vertical axle supported by bearings at A and B. Knowing 
that the plate rotates at the constant rate v 5 8 rad/s, determine 
the dynamic reactions at A and B.

 18.66 A slender, uniform rod AB of mass m and a vertical shaft CD, each 
of length 2b, are welded together at their midpoints G. Knowing 
that the shaft rotates at the constant rate v, determine the dynamic 
reactions at C and D.

B

A

y

x

z

600 mm

300 mm

w

Fig. P18.65

b
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A
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C

D

G

x
z

b

y

w

Fig. P18.66
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 18.67 The 16-lb shaft shown has a uniform cross section. Knowing that 
the shaft rotates at the constant rate v 5 12 rad/s, determine the 
dynamic reactions at A and B.

 18.68 The assembly shown consists of pieces of sheet aluminum of uni-
form thickness and of total weight 2.7 lb welded to a light axle 
supported by bearings at A and B. Knowing that the assembly 
rotates at the constant rate v 5 240 rpm, determine the dynamic 
reactions at A and B.

A

B

x

y

z 9 in.
9 in.

9 in.
9 in. 9 in.

9 in.

w

Fig. P18.67
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D
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6 in.
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6 in.

6 in.
6 in.

6 in.

6 in.

w

Fig. P18.68

 18.69 When the 18-kg wheel shown is attached to a balancing machine 
and made to spin at a rate of 12.5 rev/s, it is found that the forces 
exerted by the wheel on the machine are equivalent to a force-
couple system consisting of a force F 5 (160 N)j applied at C and 
a couple MC 5 (14.7 N ? m)k, where the unit vectors form a triad 
which rotates with the wheel. (a) Determine the distance from the 
axis of rotation to the mass center of the wheel and the products 
of inertia Ixy and Izx. (b) If only two corrective masses are to be 
used to balance the wheel statically and dynamically, what should 
these masses be and at which of the points A, B, D, or E should 
they be placed?

 18.70 After attaching the 18-kg wheel shown to a balancing machine and 
making it spin at the rate of 15 rev/s, a mechanic has found that 
to balance the wheel both statically and dynamically, he should 
use two corrective masses, a 170-g mass placed at B and a 56-g 
mass placed at D. Using a right-handed frame of reference rotating 
with the wheel (with the z axis perpendicular to the plane of the 
figure), determine before the corrective masses have been attached 
(a) the distance from the axis of rotation to the mass center of the 
wheel and the products of inertia Ixy and Izx, (b) the force-couple 
system at C equivalent to the forces exerted by the wheel on the 
machine.

 18.71 Knowing that the plate of Prob. 18.65 is initially at rest (v 5 0) 
when a couple of moment M0 5 (0.75 N ? m)j is applied to it, 
determine (a) the resulting angular acceleration of the plate, 
(b) the dynamics reactions A and B immediately after the couple 
has been applied. 

 18.72 Knowing that the assembly of Prob. 18.66 is initially at rest (v 5 0) 
when a couple of moment M0 5 M0j is applied to shaft CD, deter-
mine (a) the resulting angular acceleration of the assembly, (b) the 
dynamic reactions at C and D immediately after the couple is 
applied.

x

y

A B

C

D
E

182 mm

182 mm

75 mm 75 mm

Fig. P18.69 and P18.70

Problems 1177
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1178 Kinetics of Rigid Bodies in Three Dimensions  18.73 The sheet-metal component shown is of uniform thickness and has 
a mass of 600 g. It is attached to a light axle supported by bearings 
at A and B located 150 mm apart. The component is at rest when 
it is subjected to a couple M0 as shown. If the resulting angular 
acceleration is A 5 (12 rad/s2)k, determine (a) the couple M0, 
(b) the dynamic reactions A and B immediately after the couple 
has been applied. 

y

z

A

B

x

G

75 mm

75 mm

75 mm

75 mm

75 mm

M0

Fig. P18.73

 18.74 For the sheet-metal component of Prob. 18.73, determine (a) the 
angular velocity of the component 0.6 s after the couple M0 has 
been applied to it, (b) the magnitude of the dynamic reactions at 
A and B at that time. 

 18.75 The shaft of Prob. 18.67 is initially at rest (v 5 0) when a couple 
M0 is applied to it. Knowing that the resulting angular accelera-
tion of the shaft is A 5 (20 rad/s2)i, determine (a) the couple M0, 
(b) the dynamic reactions at A and B immediately after the cou-
ple is applied.

 18.76 The assembly of Prob. 18.68 is initially at rest (v 5 0) when a 
couple M0 is applied to axle AB. Knowing that the resulting angu-
lar acceleration of the assembly is A 5 (150 rad/s2)i, determine 
(a) the couple M0, (b) the dynamic reactions at A and B immedi-
ately after the couple is applied.

 18.77 The assembly shown weighs 12 lb and consists of 4 thin 16-in.-
diameter semicircular aluminum plates welded to a light 40-in.-
long shaft AB. The assembly is at rest (v 5 0) at time t 5 0 when 
a couple M0 is applied to it as shown, causing the assembly to 
complete one full revolution in 2 s. Determine (a) the couple M0, 
(b) the dynamic reactions at A and B at t 5 0.

 18.78 For the assembly of Prob. 18.77, determine the dynamic reactions 
at A and B at t 5 2 s.

A

z

y

x

B
C

M0

4 in.

8 in.
8 in.

8 in.
8 in. 4 in.

Fig. P18.77
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1179Problems 18.79 The flywheel of an automobile engine, which is rigidly attached to 
the crankshaft, is equivalent to a 400-mm-diameter, 15-mm-thick 
steel plate. Determine the magnitude of the couple exerted by the 
flywheel on the horizontal crankshaft as the automobile travels 
around an unbanked curve of 200-m radius at a speed of 90 km/h, 
with the flywheel rotating at 2700 rpm. Assume the automobile to 
have (a) a rear-wheel drive with the engine mounted longitudinally, 
(b) a front-wheel drive with the engine mounted transversely. 
(Density of steel 5 7860 kg/m3.)

 18.80 A four-bladed airplane propeller has a mass of 160 kg and a radius 
of gyration of 800 mm. Knowing that the propeller rotates at 
1600 rpm as the airplane is traveling in a circular path of 600-m 
radius at 540 km/h, determine the magnitude of the couple exerted 
by the propeller on its shaft due to the rotation of the airplane.

 18.81 The blade of a portable saw and the rotor of its motor have a total 
weight of 2.5 lb and a combined radius of gyration of 1.5 in. Knowing 
that the blade rotates as shown at the rate v1 5 1500 rpm, deter-
mine the magnitude and direction of the couple M that a worker 
must exert on the handle of the saw to rotate it with a constant 
angular velocity v2 5 2(2.4 rad/s)j.

 18.82 The blade of an oscillating fan and the rotor of its motor have a total 
weight of 8 oz and a combined radius of gyration of 3 in. They are 
supported by bearings at A and B, 5 in. apart, and rotate at the rate 
v1 5 1800 rpm. Determine the dynamic reactions at A and B when 
the motor casing has an angular velocity v2 5 (0.6 rad/s)j.

 18.83 Each wheel of an automobile has a mass of 22 kg, a diameter of 
575 mm, and a radius of gyration of 225 mm. The automobile 
travels around an unbanked curve of radius 150 m at a speed of 
95 km/h. Knowing that the transverse distance between the wheels 
is 1.5 m, determine the additional normal force exerted by the 
ground on each outside wheel due to the motion of the car.

 18.84 The essential structure of a certain type of aircraft turn indicator 
is shown. Each spring has a constant of 500 N/m, and the 200-g 
uniform disk of 40-mm radius spins at the rate of 10 000 rpm. The 
springs are stretched and exert equal vertical forces on yoke AB 
when the airplane is traveling in a straight path. Determine the 
angle through which the yoke will rotate when the pilot executes 
a horizontal turn of 750-m radius to the right at a speed of 
800 km/h. Indicate whether point A will move up or down.
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z x

w1

Fig. P18.81
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Fig. P18.84
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1180 Kinetics of Rigid Bodies in Three Dimensions  18.85 A uniform semicircular plate of radius 120 mm is hinged at A and 
B to a clevis which rotates with a constant angular velocity V about 
a vertical axis. Determine (a) the angle b that the plate forms with 
the horizontal x axis when v 5 15 rad/s, (b) the largest value of 
v for which the plate remains vertical (b 5 90°).

 18.86 A uniform semicircular plate of radius 120 mm is hinged at A and 
B to a clevis which rotates with a constant angular velocity V about 
a vertical axis. Determine the value of v for which the plate forms 
an angle b 5 50° with the horizontal x axis.

 18.87 A slender rod is bent to form a square frame of side 6 in. The 
frame is attached by a collar at A to a vertical shaft which rotates 
with a constant angular velocity V. Determine (a) the angle b that 
line AB forms with the horizontal x axis when v 5 9.8 rad/s, 
(b) the largest value of v for which b 5 90°.

y

x

b

C
B

A

w

z

Fig. P18.85 and P18.86
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B 3 in.

3 in.

6 in.

b

w

Fig. P18.87 and P18.88

 18.88 A slender rod is bent to form a square frame of side 6 in. The 
frame is attached by a collar at A to a vertical shaft which rotates 
with a constant angular velocity V. Determine the value of v 
for which line AB forms an angle b 5 48° with the horizontal 
x axis.

 18.89 The 950-g gear A is constrained to roll on the fixed gear B, but is 
free to rotate about axle AD. Axle AD, of length 400 mm and 
negligible mass, is connected by a clevis to the vertical shaft DE 
which rotates as shown with a constant angular velocity V1. Assum-
ing that gear A can be approximated by a thin disk of radius 
80 mm, determine the largest allowable value of v1 if gear A is not 
to lose contact with gear B.

 18.90 Determine the force F exerted by gear B on gear A of Prob. 18.89 
when shaft DE rotates with the constant angular velocity V1 5 
4rad/s. (Hint: The force F must be perpendicular to the line 
drawn from D to C.)

B C

D

E
w1

w2

r = 80 mm

L = 400 mm

A

30°

Fig. P18.89
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1181Problems 18.91 and 18.92 The slender rod AB is attached by a clevis to arm 
BCD which rotates with a constant angular velocity V about the 
centerline of its vertical portion CD. Determine the magnitude of 
the angular velocity V.

A

B
C

D

30°

5 in.

15 in.

w w 

Fig. P18.91
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B C

D

5 in.

w w 

15 in.

30°

Fig. P18.92

 18.93 Two disks, each of mass 5 kg and radius 100 mm, spin as shown 
at the rate v1 5 1500 rpm about a rod AB of negligible mass which 
rotates about a vertical axis at the rate v2 5 45 rpm. (a) Determine 
the dynamic reactions at C and D. (b) Solve part a assuming that 
the direction of spin of disk B is reversed.

ww2
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300 mm
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250 mm
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B

A

w1

w1

z

Fig. P18.93 and P18.94

 18.94 Two disks, each of mass 5 kg and radius 100 mm, spin as shown 
at the rate v1 5 1500 rpm about a rod AB of negligible mass which 
rotates about a vertical axis at a rate v2. Determine the maximum 
allowable value of v2 if the dynamic reactions at C and D are not 
to exceed 250 N each.
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1182 Kinetics of Rigid Bodies in Three Dimensions  18.95 The 10-oz disk shown spins at the rate v1 5 750 rpm, while axle 
AB rotates as shown with an angular velocity V2 of 6 rad/s. Deter-
mine the dynamic reactions at A and B.
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 *18.99 A 48-kg advertising panel of length 2a 5 2.4 m and width 2b 5 1.6 m 
is kept rotating at a constant rate v1 about its horizontal axis by a 
small electric motor attached at A to frame ACB. This frame itself 
is kept rotating at a constant rate v2 about a vertical axis by a 
second motor attached at C to the column CD. Knowing that the 
panel and the frame complete a full revolution in 6 s and 12 s, 
respectively, express, as a function of the angle u, the dynamic 
reaction exerted on column CD by its support at D.

 18.96 The 10-oz disk shown spins at the rate v1 5 750 rpm, while axle 
AB rotates as shown with an angular velocity V2. Determine the 
maximum allowable magnitude of V2 if the dynamic reactions at 
A and B are not to exceed 0.25 lb each.

 18.97 A thin disk of weight W 5 10 lb rotates with an angular velocity 
V2 with respect to arm ABC, which itself rotates with an angular 
velocity V1 about the y axis. Knowing that v1 5 5 rad/s and v2 5 
15 rad/s and that both are constant, determine the force-couple 
system representing the dynamic reaction at the support at A. 

 18.98 A homogeneous disk of weight W 5 6 lb rotates at the constant 
rate v1 5 16 rad/s with respect to arm ABC, which is welded to 
a shaft DCE rotating at the constant rate v2 5 8 rad/s. Determine 
the dynamic reactions at D and E.

bee29400_ch18_1144-1211.indd Page 1182  12/16/08  1:19:04 PM user-s173bee29400_ch18_1144-1211.indd Page 1182  12/16/08  1:19:04 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1183Problems  *18.100 For the system of Prob. 18.99, show that (a) the dynamic reaction 
at D is independent of the length 2a of the panel, (b) the ratio 
M1/M2 of the magnitudes of the couples exerted by the motors at 
A and C, respectively, is independent of the dimensions and mass 
of the panel and is equal to v2 /2v1 at any given instant.

 18.101 A 3-kg homogeneous disk of radius 60 mm spins as shown at the 
constant rate v1 5 60 rad/s. The disk is supported by the fork-
ended rod AB, which is welded to the vertical shaft CBD. The 
system is at rest when a couple M0 5 (0.40 N ? m)j is applied to 
the shaft for 2 s and then removed. Determine the dynamic reac-
tions at C and D after the couple has been removed.

 18.102 A 3-kg homogeneous disk of radius 60 mm spins as shown at the 
constant rate v1 5 60 rad/s. The disk is supported by the fork-
ended rod AB, which is welded to the vertical shaft CBD. The 
system is at rest when a couple M0 is applied as shown to the shaft 
for 3 s and then removed. Knowing that the maximum angular veloc-
ity reached by the shaft is 18 rad/s, determine (a) the couple M0, 
(b) the dynamic reactions at C and D after the couple has been 
removed.

 18.103 For the disk of Prob. 18.97, determine (a) the couple M1 j which 
should be applied to arm ABC to give it an angular acceleration 
A1 5 2(7.5 rad/s2)j when v1 5 5 rad/s, knowing that the disk 
rotates at the constant rate v2 5 15 rad/s, (b) the force-couple 
system representing the dynamic reaction at A at that instant. 
Assume that ABC has a negligible mass.

 18.104 It is assumed that at the instant shown shaft DCE of Prob. 18.98 
has an angular velocity V2 5 (8 rad/s)i and an angular acceleration 
A2 5 (6 rad/s2)i. Recalling that the disk rotates with a constant 
angular velocity V1 5 (16 rad/s)j, determine (a) the couple which 
must be applied to shaft DCE to produce the given angular accel-
eration, (b) the corresponding dynamic reactions at D and E.

 18.105 A 2.5-kg homogeneous disk of radius 80 mm rotates with an angular 
velocity V1 with respect to arm ABC, which is welded to a shaft 
DCE rotating as shown at the constant rate v2 5 12 rad/s. Friction 
in the bearing at A causes v1 to decrease at the rate of 15 rad/s2. 
Determine the dynamic reactions at D and E at a time when v1 has 
decreased to 50 rad/s.

  *18.106 A slender homogeneous rod AB of mass m and length L is made 
to rotate at a constant rate v2 about the horizontal z axis, while 
frame CD is made to rotate at the constant rate v1 about the 
y axis. Express as a function of the angle u (a) the couple M1 
required to maintain the rotation of the frame, (b) the couple M2 
required to maintain the rotation of the rod, (c) the dynamic reac-
tions at the supports C and D.
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1184 Kinetics of Rigid Bodies in Three Dimensions *18.9 MOTION OF A GYROSCOPE. EULERIAN ANGLES
A gyroscope consists essentially of a rotor which can spin freely 
about its geometric axis. When mounted in a Cardan’s suspension 
(Fig. 18.15), a gyroscope can assume any orientation, but its mass 
center must remain fixed in space. In order to define the position 
of a gyroscope at a given instant, let us select a fixed frame of ref-
erence OXYZ, with the origin O located at the mass center of the 
gyroscope and the Z axis directed along the line defined by the 
bearings A and A9 of the outer gimbal. We will consider a reference 
position of the gyroscope in which the two gimbals and a given 
diameter DD9 of the rotor are located in the fixed YZ plane (Fig. 
18.15a). The gyroscope can be brought from this reference position 
into any arbitrary position (Fig. 18.15b) by means of the following 
steps: (1) a rotation of the outer gimbal through an angle f about 
the axis AA9, (2) a rotation of the inner gimbal through u about 
BB9, and (3) a rotation of the rotor through c about CC9. The 
angles f, u, and c are called the Eulerian angles; they completely 
characterize the position of the gyroscope at any given instant. 
Their derivatives ḟ, u̇, and ċ define, respectively, the rate of pre-
cession, the rate of nutation, and the rate of spin of the gyroscope 
at the instant considered.
 In order to compute the components of the angular velocity 
and of the angular momentum of the gyroscope, we will use a rotat-
ing system of axes Oxyz attached to the inner gimbal, with the y axis 
along BB9 and the z axis along CC9 (Fig. 18.16). These axes are 
principal axes of inertia for the gyroscope. While they follow it in its 
precession and nutation, however, they do not spin; for that reason, 
they are more convenient to use than axes actually attached to the 
gyroscope. The angular velocity V of the gyroscope with respect to 
the fixed frame of reference OXYZ will now be expressed as the sum 
of three partial angular velocities corresponding, respectively, to the 
precession, the nutation, and the spin of the gyroscope. Denoting by 
i, j, and k the unit vectors along the rotating axes, and by K the unit 
vector along the fixed Z axis, we have

 V 5 f
.
K 1 u

.
j 1 c

.
k (18.33)

Since the vector components obtained for V in (18.33) are not 
orthogonal (Fig. 18.16), the unit vector K will be resolved into com-
ponents along the x and z axes; we write

 K 5 2sin u i 1 cos u k (18.34)

and, substituting for K into (18.33),

 v 5 2ḟ  sin u i 1 u̇ j 1 (ċ  1 ḟ  cos u)k (18.35)

Since the coordinate axes are principal axes of inertia, the compo-
nents of the angular momentum HO can be obtained by multiplying 
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1185the components of V by the moments of inertia of the rotor about 
the x, y, and z axes, respectively. Denoting by I the moment of inertia 
of the rotor about its spin axis, by I9 its moment of inertia about a 
transverse axis through O, and neglecting the mass of the gimbals, 
we write

 HO 5 2I9ḟ sin u i 1 I9u̇j 1 I(ċ 1 ḟ  cos u)k (18.36)

 Recalling that the rotating axes are attached to the inner gimbal 
and thus do not spin, we express their angular velocity as the sum

 V 5 ḟK 1 u̇ j (18.37)

or, substituting for K from (18.34),

 V 5 2ḟ  sin u i 1 u̇ j 1 ḟ  cos u k (18.38)

Substituting for HO and V from (18.36) and (18.38) into the 
equation

 oMO 5 ( ḢO)Oxyz 1 V 3 HO (18.28)

we obtain the three differential equations

  oMx 5 2I9(f̈ sin u 1 2u̇ḟ  cos u) 1 Iu̇  (ċ  1 ḟ  cos u)
oMy 5 I9(ü 2 ḟ 2 sin u cos u) 1 Iḟ  sin u (ċ  1 ḟ  cos u) (18.39)

  
oMz 5 I 

d
dt

 (c
.

1 f
.
 cos u)

 The equations (18.39) define the motion of a gyroscope sub-
jected to a given system of forces when the mass of its gimbals is 
neglected. They can also be used to define the motion of an axisym-
metrical body (or body of revolution) attached at a point on its axis 
of symmetry, and to define the motion of an axisymmetrical body 
about its mass center. While the gimbals of the gyroscope helped us 
visualize the Eulerian angles, it is clear that these angles can be used 
to define the position of any rigid body with respect to axes centered 
at a point of the body, regardless of the way in which the body is 
actually supported.
 Since the equations (18.39) are nonlinear, it will not be possi-
ble, in general, to express the Eulerian angles f, u, and c as analyti-
cal functions of the time t, and numerical methods of solution may 
have to be used. However, as you will see in the following sections, 
there are several particular cases of interest which can be analyzed 
easily.

18.9 Motion of a Gyroscope. Eulerian 
Angles

Photo 18.5 A gyroscope can be used 
for measuring orientation and is capable of 
maintaining the same absolute direction in space.
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1186 Kinetics of Rigid Bodies in Three Dimensions *18.10 STEADY PRECESSION OF A GYROSCOPE
Let us now investigate the particular case of gyroscopic motion in 
which the angle u, the rate of precession ḟ , and the rate of spin  ċ 
remain constant. We propose to determine the forces which must be 
applied to the gyroscope to maintain this motion, known as the 
steady precession of a gyroscope.
 Instead of applying the general equations (18.39), we will deter-
mine the sum of the moments of the required forces by computing 
the rate of change of the angular momentum of the gyroscope in 
the particular case considered. We first note that the angular velocity 
V of the gyroscope, its angular momentum HO, and the angular 
velocity V of the rotating frame of reference (Fig. 18.17) reduce, 
respectively, to

 V 5 2ḟ  sin u i 1 vzk (18.40)
 HO 5 2I9ḟ  sin u i 1 Ivzk (18.41)
 V 5 2ḟ  sin u i 1 ḟ  cos u k (18.42)

where vz 5   ċ 1 ḟ  cos u 5 rectangular component along spin axis 
of total angular velocity of gyroscope

Since u, ḟ , and  ċ are constant, the vector HO is constant in magni-
tude and direction with respect to the rotating frame of reference 
and its rate of change (H

.
O)Oxyz with respect to that frame is zero. 

Thus Eq. (18.28) reduces to

 oMO 5 V 3 HO (18.43)

which yields, after substitutions from (18.41) and (18.42),

 oMO 5 (Ivz 2 I9ḟ  cos u)ḟ  sin u j (18.44)

 Since the mass center of the gyroscope is fixed in space, we 
have, by (18.1), oF 5 0; thus, the forces which must be applied to 
the gyroscope to maintain its steady precession reduce to a couple 
of moment equal to the right-hand member of Eq. (18.44). We note 
that this couple should be applied about an axis perpendicular to the 
precession axis and to the spin axis of the gyroscope (Fig. 18.18).
 In the particular case when the precession axis and the spin 
axis are at a right angle to each other, we have u 5 90° and Eq. 
(18.44) reduces to

 oMO 5 Iċ ḟ j (18.45)

Thus, if we apply to the gyroscope a couple MO about an axis per-
pendicular to its axis of spin, the gyroscope will precess about an axis 
perpendicular to both the spin axis and the couple axis, in a sense 
such that the vectors representing the spin, the couple, and the pre-
cession, respectively, form a right-handed triad (Fig. 18.19).
 Because of the relatively large couples required to change the 
orientation of their axles, gyroscopes are used as stabilizers in torpedoes 
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1187and ships. Spinning bullets and shells remain tangent to their trajec-
tory because of gyroscopic action. And a bicycle is easier to keep 
balanced at high speeds because of the stabilizing effect of its spin-
ning wheels. However, gyroscopic action is not always welcome and 
must be taken into account in the design of bearings supporting 
rotating shafts subjected to forced precession. The reactions exerted 
by its propellers on an airplane which changes its direction of flight 
must also be taken into consideration and compensated for whenever 
possible.

*18.11  MOTION OF AN AXISYMMETRICAL BODY 
UNDER NO FORCE

In this section you will analyze the motion about its mass center of 
an axisymmetrical body under no force except its own weight. Exam-
ples of such a motion are furnished by projectiles, if air resistance is 
neglected, and by artificial satellites and space vehicles after burnout 
of their launching rockets.
 Since the sum of the moments of the external forces about the 
mass center G of the body is zero, Eq. (18.2) yields H

.
G 5 0. It fol-

lows that the angular momentum HG of the body about G is con-
stant. Thus, the direction of HG is fixed in space and can be used to 
define the Z axis, or axis of precession (Fig. 18.20). Selecting a rotat-
ing system of axes Gxyz with the z axis along the axis of symmetry 
of the body, the x axis in the plane defined by the Z and z axes, and 
the y axis pointing away from you, we have

 Hx 5 2HG sin u   Hy 5 0   Hz 5 HG cos u (18.46)

where u represents the angle formed by the Z and z axes, and HG 
denotes the constant magnitude of the angular momentum of the 
body about G. Since the x, y, and z axes are principal axes of inertia 
for the body considered, we can write

 Hx 5 I9vx   Hy 5 I9vy   Hz 5 Ivz (18.47)

where I denotes the moment of inertia of the body about its axis of 
symmetry and I9 denotes its moment of inertia about a transverse 
axis through G. It follows from Eqs. (18.46) and (18.47) that

 
vx 5 2

HG sin u
I¿

      vy 5 0       v2 5
HG cos u

I  
(18.48)

The second of the relations obtained shows that the angular velocity 
V has no component along the y axis, i.e., along an axis perpendicu-
lar to the Zz plane. Thus, the angle u formed by the Z and z axes 
remains constant and the body is in steady precession about the 
Z axis.
 Dividing the first and third of the relations (18.48) member by 
member, and observing from Fig. 18.21 that 2vx /vz 5 tan g, we 
obtain the following relation between the angles g and u that the 
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1188 Kinetics of Rigid Bodies in Three Dimensions

vectors V and HG, respectively, form with the axis of symmetry of 
the body:

 
tan g 5

I
I¿

 tan u
 

(18.49)

There are two particular cases of motion of an axisymmetrical body 
under no force which involve no precession: (1) If the body is set 
to spin about its axis of symmetry, we have vx 5 0 and, by (18.47), 
Hx 5 0; the vectors V and HG have the same orientation and the 
body keeps spinning about its axis of symmetry (Fig. 18.22a). (2) If 
the body is set to spin about a transverse axis, we have vz 5 0 
and, by (18.47), Hz 5 0; again V and HG have the same orientation 
and the body keeps spinning about the given transverse axis (Fig. 
18.22b).
 Considering now the general case represented in Fig. 18.21, 
we recall from Sec. 15.12 that the motion of a body about a fixed 
point—or about its mass center—can be represented by the motion 
of a body cone rolling on a space cone. In the case of steady preces-
sion, the two cones are circular, since the angles g and u 2 g that 
the angular velocity V forms, respectively, with the axis of symmetry 
of the body and with the precession axis are constant. Two cases 
should be distinguished:

 1. I , I9. This is the case of an elongated body, such as the space 
vehicle of Fig. 18.23. By (18.49) we have g , u; the vector V 
lies inside the angle ZGz; the space cone and the body cone 
are tangent externally; the spin and the precession are both 
observed as counterclockwise from the positive z axis. The pre-
cession is said to be direct.

  2. I . I9. This is the case of a flattened body, such as the satellite 
of Fig. 18.24. By (18.49) we have g . u; since the vector V 
must lie outside the angle ZGz, the vector  ċk has a sense 
opposite to that of the z axis; the space cone is inside the body 
cone; the precession and the spin have opposite senses. The 
precession is said to be retrograde.
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1189

SAMPLE PROBLEM 18.6

A space satellite of mass m is known to be dynamically equivalent to two thin 
disks of equal mass. The disks are of radius a 5 800 mm and are rigidly con-
nected by a light rod of length 2a. Initially the satellite is spinning freely about 
its axis of symmetry at the rate v0 5 60 rpm. A meteorite, of mass m0 5 
m/1000 and traveling with a velocity v0 of 2000 m/s relative to the satellite, 
strikes the satellite and becomes embedded at C. Determine (a) the angular 
velocity of the satellite immediately after impact, (b) the precession axis of the 
ensuing motion, (c) the rates of precession and spin of the ensuing motion.

SOLUTION

Moments of Inertia. We note that the axes shown are principal axes of 
inertia for the satellite and write

I 5 Iz 5 1
2 
ma2       I ¿ 5 Ix 5 Iy 5 2[1

4(1
2 
m)a2 1 (1

2 
m)a2] 5 5

4 
ma2

Principle of Impulse and Momentum. We consider the satellite and the 
meteorite as a single system. Since no external force acts on this system, 
the momenta before and after impact are equipollent. Taking moments 
about G, we write
 2aj 3 m0v0k 1 Iv0k 5 HG

 HG 5 2m0v0ai 1 Iv0k (1)

Angular Velocity after Impact. Substituting the values obtained for the 
components of HG and for the moments of inertia into

Hx 5 Ixvx   Hy 5 Iyvy   Hz 5 Izvz

we write
  2m0v0a 5 I ¿vx 5 5

4 
ma2vx            0 5 I ¿vy         Iv0 5 Ivz

 
 vx 5 2

4
5

 
m0v0

ma
         vy 5 0    vz 5 v0  

(2)

For the satellite considered we have v0 5 60 rpm 5 6.283 rad/s, m0/m 5 
1

1000, a 5 0.800 m, and v0 5 2000 m/s; we find

vx 5 22 rad/s   vy 5 0   vz 5 6.283 rad/s

v 5 2v2
x 1 v2

z 5 6.594 rad/s       tan g 5
2vx

vz
5 10.3183

v 5 63.0 rpm  g 5 17.7° ◀

Precession Axis. Since in free motion the direction of the angular momen-
tum HG is fixed in space, the satellite will precess about this direction. The 
angle u formed by the precession axis and the z axis is

 tan u 5
2Hx

Hz
5

m0v0a
Iv0

5
2m0v0

mav0
5 0.796      u 5 38.5° ◀

Rates of Precession and Spin. We sketch the space and body cones for 
the free motion of the satellite. Using the law of sines, we compute the rates 
of precession and spin.

v

sin u
5
f
.

sin g
5

c
.

sin (u 2 g)
ḟ  5 30.8 rpm   ċ 5 35.9 rpm ◀
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1190

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we analyzed the motion of gyroscopes and of other axisymmetrical 
bodies with a fixed point O. In order to define the position of these bodies at 

any given instant, we introduced the three Eulerian angles f, u, and c (Fig. 18.15), 
and noted that their time derivatives define, respectively, the rate of precession, 
the rate of nutation, and the rate of spin (Fig. 18.16). The problems you will 
encounter fall into one of the following categories.

1. Steady precession. This is the motion of a gyroscope or other axisymmetrical 
body with a fixed point located on its axis of symmetry, in which the angle u, the 
rate of precession ḟ, and the rate of spin ċ all remain constant.
 a. Using the rotating frame of reference Oxyz shown in Fig. 18.17, which 
precesses with the body, but does not spin with it, we obtained the following 
expressions for the angular velocity V of the body, its angular momentum HO, and 
the angular velocity V of the frame Oxyz:

 V 5 2ḟ  sin u i 1 vzk (18.40)
 HO 5 2I9ḟ  sin u i 1 I vzk (18.41)
 V 5 2ḟ  sin u i 1 ḟ  cos u k (18.42)

where I 5 moment of inertia of body about its axis of symmetry
 I9 5 moment of inertia of body about a transverse axis through O
 vz 5 rectangular component of V along z axis 5 ċ 1 ḟ cos u

 b. The sum of the moments about O of the forces applied to the body is 
equal to the rate of change of its angular momentum, as expressed by Eq. 
(18.28). But, since u and the rates of change ḟ and ċ are constant, it follows from 
Eq. (18.41) that HO remains constant in magnitude and direction when viewed 
from the frame Oxyz. Thus, its rate of change is zero with respect to that frame 
and you can write

 oMO 5 V 3 HO (18.43)

where V and HO are defined, respectively by Eq. (18.42) and Eq. (18.41). The equa-
tion obtained shows that the moment resultant at O of the forces applied to the body 
is perpendicular to both the axis of precession and the axis of spin (Fig. 18.18).
 c. Keep in mind that the method described applies, not only to gyroscopes, 
where the fixed point O coincides with the mass center G, but also to any axisym-
metrical body with a fixed point O located on its axis of symmetry. This method, 
therefore, can be used to analyze the steady precession of a top on a rough 
floor.
 d. When an axisymmetrical body has no fixed point, but is in steady 
precession about its mass center G, you should draw a free-body-diagram equa-
tion showing that the system of the external forces exerted on the body (including 
the body’s weight) is equivalent to the vector ma applied at G and the couple vector
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1191

H
.

G. You can use Eqs. (18.40) through (18.42), replacing HO with HG, and express 
the moment of the couple as

H
.

G 5 V 3 HG

You can then use the free-body-diagram equation to write as many as six indepen-
dent scalar equations.

2. Motion of an axisymmetrical body under no force, except its own weight. 
We have oMG 5 0 and, thus, H

.
G 5 0; it follows that the angular momentum HG 

is constant in magnitude and direction (Sec. 18.11). The body is in steady preces-
sion with the precession axis GZ directed along HG (Fig. 18.20). Using the rotating 
frame Gxyz and denoting by g the angle that V forms with the spin axis Gz (Fig. 
18.21), we obtained the following relation between g and the angle u formed by 
the precession and spin axes:

 
tan g 5

I
I¿

 tan u
 

(18.49)

The precession is said to be direct if I , I9 (Fig. 18.23) and retrograde if I . I9 
(Fig. 18.24).
 a. In many of the problems dealing with the motion of an axisymmetrical body 
under no force, you will be asked to determine the precession axis and the rates of 
precession and spin of the body, knowing the magnitude of its angular velocity V and 
the angle g that it forms with the axis of symmetry Gz (Fig. 18.21). From Eq. (18.49) 
you will determine the angle u that the precession axis GZ forms with Gz and resolve 
V into its two oblique components ḟK and ċk. Using the law of sines, you will then 
determine the rate of precession ḟ and the rate of spin ċ.
 b. In other problems, the body will be subjected to a given impulse and you 
will first determine the resulting angular momentum HG. Using Eqs. (18.10), you 
will calculate the rectangular components of the angular velocity V, its magnitude 
v, and the angle g that it forms with the axis of symmetry. You will then determine 
the precession axis and the rates of precession and spin as described above [Sample 
Prob. 18.6].

3. General motion of an axisymmetric body with a fixed point O located on 
its axis of symmetry, and subjected only to its own weight. This is a motion 
in which the angle u is allowed to vary. At any given instant you should take into 
account the rate of precession ḟ, the rate of spin ċ, and the rate of nutation u̇, 
none of which will remain constant. An example of such a motion is the motion 
of a top, which is discussed in Probs. 18.139 and 18.140. The rotating frame of 
reference Oxyz that you will use is still the one shown in Fig. 18.18, but this frame 

(continued)
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1192

will now rotate about the y axis at the rate u̇ . Equations (18.40), (18.41), and 
(18.42), therefore, should be replaced by the following equations:

 V 5 2ḟ  sin u i 1 u̇ j 1 (ċ  1  ḟ  cos u) k (18.409)
 HO 5 2I9ḟ  sin u i 1 I9u̇ j 1 I(ċ  1 ḟ  cos u) k (18.419)
 V 5 2ḟ  sin u i 1 u̇ j 1 ḟ  cos u k (18.429)

Since substituting these expressions into Eq. (18.44) would lead to nonlinear dif-
ferential equations, it is preferable, whenever feasible, to apply the following con-
servation principles.
 a. Conservation of energy. Denoting by c the distance between the fixed point 
O and the mass center G of the body, and by E the total energy, you will write

T 1 V 5 E: 1
2(I¿v2

x 1 I¿v2
y 1 Iv2

z ) 1 mgc cos u 5 E

and substitute for the components of V the expressions obtained in Eq. (18.409). 
Note that c will be positive or negative, depending upon the position of G relative 
to O. Also, c 5 0 if G coincides with O; the kinetic energy is then conserved.
 b. Conservation of the angular momentum about the axis of precession. 
Since the support at O is located on the Z axis, and since the weight of the body 
and the Z axis are both vertical and, thus, parallel to each other, it follows that 
oMZ 5 0 and, thus, that HZ remains constant. This can be expressed by writing 
that the scalar product K ? HO is constant, where K is the unit vector along the 
Z axis.
 c. Conservation of the angular momentum about the axis of spin. Since the 
support at O and the center of gravity G are both located on the z axis, it follows 
that oMz 5 0 and, thus, that Hz remains constant. This is expressed by writing that 
the coefficient of the unit vector k in Eq. (18.419) is constant. Note that this last 
conservation principle cannot be applied when the body is restrained from spinning 
about its axis of symmetry, but in that case the only variables are u and f.
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PROBLEMS

1193

 18.107 A solid aluminum sphere of radius 3 in. is welded to the end of a 
6-in.-long rod AB of negligible mass which is supported by a ball-
and-socket joint at A. Knowing that the sphere is observed to pre-
cess about a vertical axis at the constant rate of 60 rpm in the 
sense indicated and that rod AB forms an angle b 5 30° with the 
vertical, determine the rate of spin of the sphere about line AB.

 18.108 A solid aluminum sphere of radius 3 in. is welded to the end of a 
6-in.-long rod AB of negligible mass which is supported by a ball-
and-socket joint at A. Knowing that the sphere spins as shown 
about line AB at the rate of 700 rpm, determine the angle b for 
which the sphere will precess about a vertical axis at the constant 
rate of 60 rpm in the sense indicated.

 18.109 A solid cone of height 9 in. with a circular base of radius 3 in, is 
supported by a ball-and-socket joint at A. Knowing that the cone 
is observed to precess about the vertical axis AC at the constant 
rate of 40 rpm in the sense indicated and that its axis of symmetry 
AB forms an angle b 5 40° with AC, determine the rate at which 
the cone spins about the axis AB.

 18.110 A solid cone of height 9 in. with a circular base of radius 3 in. is 
supported by a ball-and-socket joint at A. Knowing that the cone 
is spinning about its axis of symmetry AB at the rate of 3000 rpm 
and that AB forms an angle b 5 60° with the vertical axis AC, 
determine the two possible rates of steady precession of the cone 
about the axis AC.

 18.111 The 85-g top shown is supported at the fixed point O. The radii 
of gyration of the top with respect to its axis of symmetry and 
with respect to a transverse axis through O are 21 mm and 45 mm, 
respectively. Knowing that c 5 37.5 mm and that the rate of 
spin of the top about its axis of symmetry is 1800 rpm, deter-
mine the two possible rates of steady precession corresponding 
to u 5 30°.

 18.112 The top shown is supported at the fixed point O and its moments 
of inertia about its axis of symmetry and about a transverse axis 
through O are denoted, respectively, by I and I9. (a) Show that the 
condition for steady precession of the top is

(Ivz 2 I9 ḟ cos u)ḟ 5 Wc

  where  ḟ is the rate of precession and vz is the rectangular compo-
nent of the angular velocity along the axis of symmetry of the top.
(b) Show that if the rate of spin  ċ of the top is very large com-
pared with its rate of precession  ḟ, the condition for steady preces-
sion is I ċ ḟ < Wc. (c) Determine the percentage error introduced 
when this last relation is used to approximate the slower of the two 
rates of precession obtained for the top of Prob. 18.111.
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1194 Kinetics of Rigid Bodies in Three Dimensions  18.113 A solid cube of side c 5 80 mm is attached as shown to cord AB. 
It is observed to spin at the rate  ċ 5 40 rad/s about its diagonal 
BC and to precess at the constant rate  ḟ 5 5 rad/s about the verti-
cal axis AD. Knowing that b 5 30°, determine the angle u that 
the diagonal BC forms with the vertical. (Hint: The moment of 
inertia of a cube about an axis through its center is independent 
of the orientation of that axis.)

 18.114 A solid cube of side c 5 120 mm is attached as shown to a cord 
AB of length 240 mm. The cube spins about its diagonal BC and 
precesses about the vertical axis AD. Knowing that u 5 25° and 
b 5 40°, determine (a) the rate of spin of the cube, (b) its rate of 
precession. (See hint of Prob. 18.113.)

 18.115 A solid sphere of radius c 5 3 in. is attached as shown to cord AB. 
The sphere is observed to precess at the constant rate  ḟ 5 6 rad/s 
about the vertical axis AD. Knowing that b 5 40°, determine the 
angle u that the diameter BC forms with the vertical when the sphere 
(a) has no spin, (b) spins about its diameter BC at the rate  ċ 5 
50 rad/s, (c) spins about BC at the rate  ċ 5 250 rad/s.

 18.116 A solid sphere of radius c 5 3 in. is attached as shown to a cord 
AB of length 15 in. The sphere spins about its diameter BC and 
precesses about the vertical axis AD. Knowing that u 5 20° and 
b 5 35°, determine (a) the rate of spin of the sphere, (b) its rate 
of precession.

 18.117 If the earth were a sphere, the gravitational attraction of the sun, 
moon, and planets would at all times be equivalent to a single 
force R acting at the mass center of the earth. However, the earth 
is actually an oblate spheroid and the gravitational system acting 
on the earth is equivalent to a force R and a couple M. Knowing 
that the effect of the couple M is to cause the axis of the earth 
to precess about the axis GA at the rate of one revolution in 
25 800 years, determine the average magnitude of the couple M 
applied to the earth. Assume that the average density of the earth 
is 5.51 g/cm3, that the average radius of the earth is 6370 km, and 
that I 5 2

5 mr2. (Note: This forced precession is known as the pre-
cession of the equinoxes and is not to be confused with the free 
precession discussed in Prob. 18.123.)
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1195Problems 18.118 A high-speed photographic record shows that a certain projectile 
was fired with a horizontal velocity v of 600 m/s and with its axis 
of symmetry forming an angle b 5 3° with the horizontal. The 
rate of spin  ċ of the projectile was 6000 rpm, and the atmospheric 
drag was equivalent to a force D of 120 N acting at the center of 
pressure CP located at a distance c 5 150 mm from G. (a) Knowing 
that the projectile has a mass of 20 kg and a radius of gyration of 
50 mm with respect to its axis of symmetry, determine its approxi-
mate rate of steady precession. (b) If it is further known that the 
radius of gyration of the projectile with respect to a transverse axis 
through G is 200 mm, determine the exact values of the two pos-
sible rates of precession.

 18.119 Show that for an axisymmetrical body under no force, the rates of 
precession and spin can be expressed, respectively, as

f
.

5
HG

I ¿
  and

c
.

5
HG cos u(I ¿ 2 I)

II ¿

  where HG is the constant value of the angular momentum of the 
body.

 18.120 (a) Show that for an axisymmetrical body under no force, the rate 
of precession can be expressed as

f
.

5
Ivz

I ¿ cos u

  where vz is the rectangular component of V along the axis of sym-
metry of the body. (b) Use this result to check that the condition 
(18.44) for steady precession is satisfied by an axisymmetrical body 
under no force.

 18.121 Show that the angular velocity vector V of an axisymmetrical body 
under no force is observed from the body itself to rotate about the 
axis of symmetry at the constant rate

h 5
(I ¿ 2 I)

I ¿
 vz

  where vz is the rectangular component of V along the axis of 
symmetry of the body.

 18.122 For an axisymmetrical body under no force, prove (a) that the rate 
of retrograde precession can never be less than twice the rate of spin 
of the body about its axis of symmetry, (b) that in Fig. 18.24 the axis 
of symmetry of the body can never lie within the space cone.

 18.123 Using the relation given in Prob. 18.121, determine the period of 
precession of the north pole of the earth about the axis of symmetry 
of the earth. The earth may be approximated by an oblate spheroid 
of axial moment of inertia I and of transverse moment of inertia I9 
5 0.9967I. (Note: Actual observations show a period of precession 
of the north pole of about 432.5 mean solar days; the difference 
between the observed and computed periods is due to the fact that 
the earth is not a perfectly rigid body. The free precession consid-
ered here should not be confused with the much slower precession 
of the equinoxes, which is a forced precession. See Prob. 18.117.)
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1196 Kinetics of Rigid Bodies in Three Dimensions
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Fig. P18.124

 18.124 The angular velocity vector of a football which has just been kicked 
is horizontal, and its axis of symmetry OC is oriented as shown. 
Knowing that the magnitude of the angular velocity is 200 rpm 
and that the ratio of the axis and transverse moments of inertia is 
I/I ¿ 5 1

3 , determine (a) the orientation of the axis of precession 
OA, (b) the rates of precession and spin.
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 18.125 A 2500-kg satellite is 2.4 m high and has octagonal bases of sides 
1.2 m. The coordinate axes shown are the principal centroidal axes 
of inertia of the satellite, and its radii of gyration are kx 5 kz 5 
0.90 m and ky 5 0.98 m. The satellite is equipped with a main 
500-N thruster E and four 20-N thrusters A, B, C, and D which 
can expel fuel in the positive y direction. The satellite is spinning 
at the rate of 36 rev/h about its axis of symmetry Gy, which main-
tains a fixed direction in space, when thrusters A and B are acti-
vated for 2 s. Determine (a) the precession axis of the satellite, 
(b) its rate of precession, (c) its rate of spin.

 18.126 Solve Prob. 18.125, assuming that thrusters A and D (instead of A 
and B) are activated for 2 s.

 18.127 An 800-lb geostationary satellite is spinning with an angular veloc-
ity V0 5 (1.5 rad/s)j when it is hit at B by a 6-oz meteorite traveling 
with a velocity v0 5 2(1600 ft/s)i 1 (1300 ft/s)j 1 (4000 ft/s)k 
relative to the satellite. Knowing that b 5 20 in. and that the radii 
of gyration of the satellite are kx 5 kz 5 28.8 in. and ky 5 32.4 in., 
determine the precession axis and the rates of precession and spin 
of the satellite after the impact. 

 18.128 Solve Prob. 18.127, assuming that the meteorite hits the satellite 
at A instead of B. 

 18.129 A coin is tossed into the air. It is observed to spin at the rate of 
600 rpm about an axis GC perpendicular to the coin and to pre-
cess about the vertical direction GD. Knowing that GC forms an 
angle of 15° with GD, determine (a) the angle that the angular 
velocity V of the coin forms with GD, (b) the rate of precession of 
the coin about GD.
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1197Problems 18.130 Solve Sample Prob. 18.6, assuming that the meteorite strikes the 
satellite at C with a velocity v0 5 (2000 m/s)i.

 18.131 A homogeneous disk of mass m is connected at A and B to a fork-
ended shaft of negligible mass which is supported by a bearing at 
C. The disk is free to rotate about its horizontal  diameter AB and 
the shaft is free to rotate about a vertical axis through C. Initially 
the disk lies in a vertical plane (u0 5 90°) and the shaft has an angu-
lar velocity  ḟ0 5 8 rad/s. If the disk is slightly disturbed, determine 
for the ensuing motion (a) the minimum value of  ḟ, (b) the maxi-
mum value of  u̇.

 18.132 The slender homogeneous rod AB of mass m and length L is free 
to rotate about a horizontal axle through its mass center G. The 
axle is supported by a frame of negligible mass which is free to 
rotate about the vertical CD. Knowing that, initially, u 5 u0,
 u̇ 5 0, and  ḟ 5  ḟ0, show that the rod will oscillate about the 
horizontal axle and determine (a) the range of values of angle u 
during this motion, (b) the maximum value of  u̇, (c) the minimum 
value of  ḟ.

 18.133 A homogeneous rectangular plate of mass m and sides c and 2c 
is held at A and B by a fork-ended shaft of negligible mass which 
is supported by a bearing at C. The plate is free to rotate about 
AB, and the shaft is free to rotate about a horizontal axis through 
C. Knowing that, initially, u0 5 30°,  u̇0 5 0, and  ḟ0 5 6 rad/s, 
determine for the ensuing motion (a) the range of values of u, 
(b) the minimum value of  ḟ, (c) the maximum value of  u̇.
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 18.134 A homogeneous rectangular plate of mass m and sides c and 2c is 
held at A and B by a fork-ended shaft of negligible mass which is 
supported by a bearing at C. The plate is free to rotate about AB, 
and the shaft is free to rotate about a horizontal axis through C. 
Initially the plate lies in the plane of the fork (u0 5 0) and the shaft 
has an angular velocity  ḟ0 5 6 rad/s. If the plate is slightly dis-
turbed, determine for the ensuing motion (a) the minimum value 
of  ḟ, (b) the maximum value of  u̇.
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1198 Kinetics of Rigid Bodies in Three Dimensions  18.135 A homogeneous disk of radius 180 mm is welded to a rod AG of 
length 360 mm and of negligible mass which is connected by a 
clevis to a vertical shaft AB. The rod and disk can rotate freely 
about a horizontal axis AC, and shaft AB can rotate freely about a 
vertical axis. Initially rod AG is horizontal (u0 5 90°) and has no 
angular velocity about AC. Knowing that the maximum value
 ḟm of the angular velocity of shaft AB in the ensuing motion is 
twice its initial value  ḟ0, determine (a) the minimum value of u, 
(b) the initial angular velocity  ḟ0 of shaft AB.

 18.136 A homogeneous disk of radius 180 mm is welded to a rod AG of 
length 360 mm and of negligible mass which is connected by a 
clevis to a vertical shaft AB. The rod and disk can rotate freely 
about a horizontal axis AC, and shaft AB can rotate freely about a 
vertical axis. Initially rod AG is horizontal (u0 5 90°) and has no 
angular velocity about AC. Knowing that the smallest value of u 
in the ensuing motion is 30°, determine (a) the initial angular 
velocity of shaft AB, (b) its maximum angular velocity.

  *18.137 A homogeneous disk of radius 180 mm is welded to a rod AG 
of length 360 mm and of negligible mass which is supported by a 
ball and socket at A. The disk is released with a rate of spin  ċ0 5 50 
rad/s, with zero rates of precession and nutation, and with rod AG 
horizontal (u0 5 90°). Determine (a) the smallest value of u in the 
ensuing motion, (b) the rates of precession and spin as the disk 
passes through its lowest position.
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  *18.138 A homogeneous disk of radius 180 mm is welded to a rod AG of 
length 360 mm and of negligible mass which is supported by a ball 
and socket at A. The disk is released with a rate of spin  ċ0, coun-
terclockwise as seen from A, with zero rates of precession and 
nutation, and with rod AG horizontal (u0 5 90°). Knowing that the 
smallest value of u in the ensuing motion is 30°, determine (a) the 
rate of spin  ċ0 of the disk in its initial position, (b) the rates of 
precession and spin as the disk passes through its lowest 
position.
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1199Problems  *18.139 The top shown is supported at the fixed point O. Denoting 
by f, u, and c the Eulerian angles defining the position 
of the top with respect to a fixed frame of reference, 
consider the general motion of the top in which all Eulerian 
angles vary.

   (a) Observing that oMZ 5 0 and oMz 5 0, and denoting 
by I and I9, respectively, the moments of inertia of the top about 
its axis of symmetry and about a transverse axis through O, 
derive the two first-order differential equations of motion

I9 ḟ sin2 u 1 I( ċ 1  ḟ cos u) cos u 5 a
I( ċ 1  ḟ cos u) 5 b

  where a and b are constants depending upon the initial conditions. 
These equations express that the angular momentum of the top is 
conserved about both the Z and z axes, i.e., that the rectangular 
component of HO along each of these axes is constant.

   (b) Use Eqs. (1) and (2) to show that the rectangular com-
ponent vz of the angular velocity of the top is constant and that 
the rate of precession  ḟ depends upon the value of the angle of 
nutation u.

  *18.140 (a) Applying the principle of conservation of energy, derive a 
third differential equation for the general motion of the top of 
Prob. 18.139. 

   (b) Eliminating the derivatives  ḟ and  ċ from the equation 
obtained and from the two equations of Prob. 18.139, show that the 
rate of nutation  u̇  is defined by the differential equation 
 u̇2 5 f(u), where

f(u) 5
1
I ¿

 a2E 2
b2

I
2 2mgc cos ub 2 aa 2 b cos u

I ¿ sin u
b2

   (c) Further show, by introducing the auxiliary variable 
x 5 cos u, that the maximum and minimum values of u can 
be obtained by solving for x the cubic equation

a2E 2
b2

I
2 2mgcxb(1 2 x2) 2

1
I ¿

 (a 2 bx)2 5 0

  *18.141 A homogeneous sphere of mass m and radius a is welded to a rod 
AB of negligible mass, which is held by a ball-and-socket support 
at A. The sphere is released in the position b 5 0 with a rate of 
precession f

.
0 5 117g/11a with no spin or nutation. Determine 

the largest value of b in the ensuing motion.

  *18.142 A homogeneous sphere of mass m and radius a is welded to a rod 
AB of negligible mass, which is held by a ball-and-socket support 
at A. The sphere is released in the position b 5 0 with a rate of 
precession  ḟ 5  ḟ0 with no spin or nutation. Knowing that the 
largest value of b in the ensuing motion is 30°, determine (a) the 
rate of precession  ḟ0 of the sphere in its initial position, (b) the rates 
of precession and spin when b 5 30°.
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1200 Kinetics of Rigid Bodies in Three Dimensions   *18.143 Consider a rigid body of arbitrary shape which is attached at its 
mass center O and subjected to no force other than its weight and 
the reaction of the support at O.

   (a) Prove that the angular momentum HO of the body about 
the fixed point O is constant in magnitude and direction, that the 
kinetic energy T of the body is constant, and that the projection 
along HO of the angular velocity V of the body is constant.

   (b) Show that the tip of the vector V describes a curve on a 
fixed plane in space (called the invariable plane), which is perpen-
dicular to HO and at a distance 2T/HO from O.

   (c) Show that with respect to a frame of reference attached to 
the body and coinciding with its principal axes of inertia, the tip of 
the vector V appears to describe a curve on an ellipsoid of equation

Ixvx
2 1 Iyv

2
y 1 Izvz

2 5 2T 5 constant

  The ellipsoid (called the Poinsot ellipsoid) is rigidly attached to 
the body and is of the same shape as the ellipsoid of inertia, but 
of a different size.

  *18.144 Referring to Prob. 18.143, (a) prove that the Poinsot ellipsoid is tan-
gent to the invariable plane, (b) show that the motion of the rigid 
body must be such that the Poinsot ellipsoid appears to roll on the 
invariable plane. [Hint: In part a, show that the normal to the 
 Poinsot ellipsoid at the tip of V is parallel to HO. It is recalled that 
the direction of the normal to a surface of equation F(x, y, z) 5 
constant at a point P is the same as that of grad F at point P.]

  *18.145 Using the results obtained in Probs. 18.143 and 18.144, show that for 
an axisymmetrical body attached at its mass center O and under no 
force other than its weight and the reaction at O, the Poinsot ellipsoid 
is an ellipsoid of revolution and the space and body cones are both 
circular and are tangent to each other. Further show that (a) the two 
cones are tangent externally, and the precession is direct, when I , 
I9, where I and I9 denote, respectively, the axial and transverse moment 
of inertia of the body, (b) the space cone is inside the body cone, and 
the precession is retrograde, when I . I9.

  *18.146 Refer to Probs. 18.143 and 18.144.
   (a) Show that the curve (called polhode) described by the tip 

of the vector V with respect to a frame of reference coinciding 
with the principal axes of inertia of the rigid body is defined by 
the equations

   Ixv x
2 1 Iyv

2
y 1 Izvz

2 5 2T 5 constant (1)
   Ix

2vx
2 1 I2

yv
2
y 1 Iz

2vz
2 5 H2

O 5 constant (2)

  and that this curve can, therefore, be obtained by intersecting the 
Poinsot ellipsoid with the ellipsoid defined by Eq. (2).

   (b) Further show, assuming Ix . Iy . Iz, that the polhodes 
obtained for various values of HO have the shapes indicated in the 
figure.

   (c) Using the result obtained in part b, show that a rigid body 
under no force can rotate about a fixed centroidal axis if, and only 
if, that axis coincides with one of the principal axes of inertia of 
the body, and that the motion will be stable if the axis of rotation 
coincides with the major or minor axis of the Poinsot ellipsoid 
(z or x axis in the figure) and unstable if it coincides with the 
intermediate axis (y axis).
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1201

REVIEW AND SUMMARY

This chapter was devoted to the kinetic analysis of the motion of 
rigid bodies in three dimensions.

We first noted [Sec. 18.1] that the two fundamental equations derived 
in Chap. 14 for the motion of a system of particles

 oF 5 ma (18.1)
 oMG 5 H

.
G (18.2)

provide the foundation of our analysis, just as they did in Chap. 16 
in the case of the plane motion of rigid bodies. The computation of 
the angular momentum HG of the body and of its derivative ḢG, 
however, are now considerably more involved.

In Sec. 18.2, we saw that the rectangular components of the angular 
momentum HG of a rigid body can be expressed as follows in terms 
of the components of its angular velocity V and of its centroidal 
moments and products of inertia:

 Hx 5 1I x vx 2 I xyvy 2 I xzvz

 Hy 5 2I yxvx 1 I y vy 2 I yzvz (18.7)
 Hz 5 2I zxvx 2 I zyvy 1 I z vz

If principal axes of inertia Gx9y9z9 are used, these relations reduce to

 Hx9 5 I x9vx9   Hy9 5 I y9vy9   Hz9 5 I z9vz9 (18.10)

We observed that, in general, the angular momentum HG and the 
angular velocity V do not have the same direction (Fig. 18.25). They 
will, however, have the same direction if V is directed along one of 
the principal axes of inertia of the body.

Fundamental equations of motion 
for a rigid body
Fundamental equations of motion 
for a rigid body

Angular momentum of a rigid body 
in three dimensions
Angular momentum of a rigid body 
in three dimensions
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Fig. 18.25
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1202 Kinetics of Rigid Bodies in Three Dimensions Recalling that the system of the momenta of the particles forming a 
rigid body can be reduced to the vector mv attached at G and the 
couple HG (Fig. 18.26), we noted that, once the linear momentum 
mv and the angular momentum HG of a rigid body have been deter-
mined, the angular momentum HO of the body about any given point 
O can be obtained by writing

 HO 5 r 3 mv 1 HG (18.11)

In the particular case of a rigid body constrained to rotate about a 
fixed point O, the components of the angular momentum HO of the 
body about O can be obtained directly from the components of its 
angular velocity and from its moments and products of inertia with 
respect to axes through O. We wrote

 Hx 5 1Ix vx 2 Ixyvy 2 Ixzvz

 Hy 5 2Iyxvx 1 Iy vy 2 Iyzvz (18.13)
 Hz 5 2Izxvx 2 Izyvy 1 Iz vz

The principle of impulse and momentum for a rigid body in three-
dimensional motion [Sec. 18.3] is expressed by the same fundamental 
formula that was used in Chap. 17 for a rigid body in plane motion,

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.4)

but the systems of the initial and final momenta should now be rep-
resented as shown in Fig. 18.26, and HG should be computed from 
the relations (18.7) or (18.10) [Sample Probs. 18.1 and 18.2].

The kinetic energy of a rigid body in three-dimensional motion can 
be divided into two parts [Sec. 18.4], one associated with the motion 
of its mass center G and the other with its motion about G. Using 
principal centroidal axes x9, y9, z9, we wrote

 T 5 1
2 mv 

2 1 1
2(Ix¿v

2
x¿ 1 Iy¿v

2
y¿ 1 Iz¿v

2
z¿)  (18.17)

where v 5 velocity of mass center
 V 5 angular velocity
 m 5 mass of rigid body
Ix¿, Iy¿, Iz¿, 5 principal centroidal moments of inertia

Angular momentum about
a given point

Angular momentum about
a given point

Rigid body with a fixed pointRigid body with a fixed point

Principle of impulse and momentumPrinciple of impulse and momentum

Kinetic energy of a rigid body in 
three dimensions

Kinetic energy of a rigid body in 
three dimensions

HG

G

Z

X

Y

O

m⎯v

⎯r

Fig. 18.26
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1203We also noted that, in the case of a rigid body constrained to rotate 
about a fixed point O, the kinetic energy of the body can be ex-
pressed as

 T 5 1
2(Ix¿v

2
x¿ 1 Iy¿v

2
y¿ 1 Iz¿v

2
z¿) (18.20)

where the x9, y9, and z9 axes are the principal axes of inertia of the 
body at O. The results obtained in Sec. 18.4 make it possible to 
extend to the three-dimensional motion of a rigid body the applica-
tion of the principle of work and energy and of the principle of 
conservation of energy.

The second part of the chapter was devoted to the application of the 
fundamental equations

  oF 5 ma (18.1)

  oMG 5 H
.

G (18.2)

to the motion of a rigid body in three dimensions. We first recalled 
[Sec. 18.5] that HG represents the angular momentum of the body 
relative to a centroidal frame GX9Y9Z9 of fixed orientation (Fig. 18.27) 

Using a rotating frame to write the 
equations of motion of a rigid body 
in space 

Using a rotating frame to write the 
equations of motion of a rigid body 
in space 

G

Y

O X

Z

Y'

y

X'

x

z

Z'

ww

HG

Fig. 18.27

and that  ḢG in Eq. (18.2) represents the rate of change of HG with 
respect to that frame. We noted that, as the body rotates, its moments 
and products of inertia with respect to the frame GX9Y9Z9 change 
continually. Therefore, it is more convenient to use a rotating frame 
Gxyz when resolving V into components and computing the moments 
and products of inertia that will be used to determine HG from Eqs. 
(18.7) or (18.10). However, since  ḢG in Eq. (18.2) represents the rate 
of change of HG with respect to the frame GX9Y9Z9 of fixed orienta-
tion, we must use the method of Sec. 15.10 to determine its value. 
Recalling Eq. (15.31), we wrote

  ḢG 5 ( ḢG)Gxyz 1 V 3 HG (18.22)

where HG 5  angular momentum of body with respect to frame 
GX9Y9Z9 of fixed orientation

 ( ḢG)Gxyz 5  rate of change of HG with respect to rotating frame
 Gxyz, to be computed from relations (18.7)

 V 5 angular velocity of the rotating frame Gxyz

Review and Summary
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1204 Kinetics of Rigid Bodies in Three Dimensions Substituting for  ḢG from (18.22) into (18.2), we obtained

 oMG 5 ( ḢG)Gxyz 1 V 3 HG (18.23)

If the rotating frame is actually attached to the body, its angular 
velocity V is identically equal to the angular velocity V of the body. 
There are many applications, however, where it is advantageous to 
use a frame of reference which is not attached to the body but rotates 
in an independent manner [Sample Prob. 18.5].

Setting V 5 V in Eq. (18.23), using principal axes, and writing this 
equation in scalar form, we obtained Euler’s equations of motion 
[Sec. 18.6]. A discussion of the solution of these equations and of 
the scalar equations corresponding to Eq. (18.1) led us to extend 
d’Alembert’s principle to the three-dimensional motion of a rigid 
body and to conclude that the system of the external forces acting 
on the rigid body is not only equipollent, but actually equivalent to 
the effective forces of the body represented by the vector ma and 
the couple  ḢG (Fig. 18.28). Problems involving the three-dimensional 
motion of a rigid body can be solved by considering the free-body-
diagram equation represented in Fig. 18.28 and writing appropriate 
scalar equations relating the components or moments of the external 
and effective forces [Sample Probs. 18.3 and 18.5].

Euler’s equations of motion. 
D’Alembert’s principle

Euler’s equations of motion. 
D’Alembert’s principle

Free-body-diagram equation =G

F1

F2

F3

F4

⎯am

G

HG
.

Fig. 18.28

In the case of a rigid body constrained to rotate about a fixed point O, 
an alternative method of solution, involving the moments of the forces 
and the rate of change of the angular momentum about point O, can 
be used. We wrote [Sec. 18.7]:

 oMO 5 ( ḢO)Oxyz 1 V 3 HO (18.28)

where oMO 5  sum of moments about O of forces applied to rigid 
body

 HO 5  angular momentum of body with respect to fixed
 frame OXYZ

 ( ḢO)Oxyz 5  rate of change of HO with respect to rotating frame 
 Oxyz, to be computed from relations (18.13)

 V 5 angular velocity of rotating frame Oxyz

This approach can be used to solve certain problems involving the 
rotation of a rigid body about a fixed axis [Sec. 18.8], for example, 
an unbalanced rotating shaft [Sample Prob. 18.4].

Rigid body with a fixed pointRigid body with a fixed point
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In the last part of the chapter, we considered the motion of gyro-
scopes and other axisymmetrical bodies. Introducing the Eulerian 
angles f, u, and c to define the position of a gyroscope (Fig. 18.29), 
we observed that their derivatives ḟ, u̇, and ċ  represent, respectively, 
the rates of precession, nutation, and spin of the gyroscope [Sec. 
18.9]. Expressing the angular velocity V in terms of these derivatives, 
we wrote

 V 5 2 ḟ  sin u i 1 u̇ j 1 (ċ  1 ḟ  cos u)k (18.35)

Motion of a gyroscopeMotion of a gyroscope

Review and Summary
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where the unit vectors are associated with a frame Oxyz attached to 
the inner gimbal of the gyroscope (Fig. 18.30) and rotate, therefore, 
with the angular velocity

 V 5 2ḟ  sin u i 1 u̇ j 1 ḟ  cos u k (18.38)

Denoting by I the moment of inertia of the gyroscope with respect 
to its spin axis z and by I9 its moment of inertia with respect to a 
transverse axis through O, we wrote

 HO 5 2I9 ḟ  sin u i 1 I9 u̇ j 1 I(ċ  1 ḟ cos u)k (18.36)

Substituting for HO and V into Eq. (18.28) led us to the differential 
equations defining the motion of the gyroscope.

In the particular case of the steady precession of a gyroscope [Sec. 
18.10], the angle u, the rate of precession ḟ , and the rate of spin ċ 
remain constant. We saw that such a motion is possible only if the 
moments of the external forces about O satisfy the relation

 oMO 5 (Ivz 2 I9 ḟ  cos u)ḟ  sin uj (18.44)

i.e., if the external forces reduce to a couple of moment equal to the 
right-hand member of Eq. (18.44) and applied about an axis perpen-
dicular to the precession axis and to the spin axis (Fig. 18.31). The 
chapter ended with a discussion of the motion of an axisymmetrical 
body spinning and precessing under no force [Sec. 18.11; Sample 
Prob. 18.6].

Steady precessionSteady precession

Fig. 18.31

bee29400_ch18_1144-1211.indd Page 1205  12/16/08  1:20:07 PM user-s173bee29400_ch18_1144-1211.indd Page 1205  12/16/08  1:20:07 PM user-s173 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1206

REVIEW PROBLEMS

 18.147 A homogeneous disk of mass m 5 5 kg rotates at the constant rate
v1 5 8 rad/s with respect to the bent axle ABC, which itself rotates 
at the constant rate v2 5 3 rad/s about the y axis. Determine the 
angular momentum HC of the disk about its center C.

 18.148 Two L-shaped arms, each weighing 5 lb, are welded to the one-
third points of the 24-in. shaft AB. Knowing that shaft AB rotates 
at the constant rate v 5 180 rpm, determine (a) the angular 
momentum HA of the body about A, (b) the angle that HA forms 
with the shaft.

Fig. P18.147

z

y

x

A

B

300 mm400 mm
ww1

ww2

r = 250 mm

C

18.149 A  uniform rod of mass m and length 5a is bent into the shape 
shown and is suspended from a wire attached at B. Knowing that 
the rod is hit at C in the negative z direction and denoting the 
corresponding impulse by 2(F ¢t)k, determine immediately after 
the impact (a) the angular velocity of the rod, (b) the velocity of 
its mass center G.

 18.150 A homogeneous disk of radius a and mass m supported by a ball-
and-socket joint at A is rotating about its vertical diameter with a 
constant angular velocity V 5 v0 j when an obstruction is suddenly 
introduced at B. Assuming the impact to be perfectly plastic 
(e 5 0), determine immediately after the impact (a) the angular 
velocity of the disk, (b) the velocity of its mass center G.
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1207Review Problems 18.151 Determine the kinetic energy lost when the disk of Prob. 18.150 
hits the obstruction at B.

 18.152 Each of the two triangular plates shown has a mass of 5 kg and 
is welded to a vertical shaft AB. Knowing that the assembly rotates 
at the constant rate v 5 8 rad/s, determine the dynamic reactions 
at A and B.

 18.153 A 2.4-kg piece of sheet steel with dimensions 160 3 640 mm was 
bent to form the component shown. The component is at rest 
(v 5 0) when a couple M0 5 (0.8 N ? m)k is applied to it. Deter-
mine (a) the angular acceleration of the component, (b) the dynamic 
reactions at A and B immediately after the couple is applied.
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 18.154 A thin ring of 3-in. radius is attached by a collar at A to a vertical 
shaft which rotates at the constant rate v. Determine (a) the con-
stant angle b that the plane of the ring forms with the vertical 
when v 5 12 rad/s, (b) the maximum value of v for which the ring 
will remain vertical (b 5 0).

A

r = 3 in.

b

w

x

y

z

Fig. P18.154
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 18.155 A thin disk of weight W 5 8 lb rotates with an angular velocity 
v2 with respect to arm OA, which itself rotates with an angular 
velocity v1 about the y axis. Determine (a) the couple M1 j which 
should be applied to arm OA to give it an angular acceleration A1 5 
(6 rad/s2)j with v1 5 4 rad/s, knowing that the disk rotates at the 
constant rate v2 5 12 rad/s, (b) the force-couple system represent-
ing the dynamic reaction at O at that instant. Assume that arm 
OA has negligible mass. 
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1208 Kinetics of Rigid Bodies in Three Dimensions  18.156 An experimental Fresnel-lens solar-energy concentrator can rotate 
about the horizontal axis AB which passes through its mass center 
G. It is supported at A and B by a steel framework which can rotate 
about the vertical y axis. The concentrator has a mass of 30 Mg, a 
radius of gyration of 12 m about its axis of symmetry CD, and a radius 
of gyration of 10 m about any transverse axis through G. Knowing 
that the angular velocities V1 and V2 have constant magnitudes equal 
to 0.20 rad/s and 0.25 rad/s, respectively, determine for the position 
u 5 60° (a) the forces exerted on the concentrator at A and B, 
(b) the couple M2k applied to the concentrator at that instant.

 18.157 A 2-kg disk of 150-mm diameter is attached to the end of a rod 
AB of negligible mass which is supported by a ball-and-socket joint 
at A. If the disk is observed to precess about the vertical in the 
sense indicated at a constant rate of 36 rpm, determine the rate 
of spin  ċ of the disk about AB.
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 18.158 The essential features of the gyrocompass are shown. The rotor 
spins at the rate  ċ about an axis mounted in a single gimbal, which 
may rotate freely about the vertical axis AB. The angle formed by 
the axis of the rotor and the plane of the meridian is denoted by u, 
and the latitude of the position on the earth is denoted by l. We 
note that line OC is parallel to the axis of the earth, and we denote 
by Ve the angular velocity of the earth about its axis.

   (a) Show that the equations of motion of the gyrocompass are

I ¿ü 1 Ivzve cos l sin u 2 I ¿v2
e cos2 l sin u cos u 5 0

Iv
.

z 5 0

  where vz is the rectangular component of the total angular velocity 
V along the axis of the rotor, and I and I9 are the moments of 
inertia of the rotor with respect to its axis of symmetry and a 
transverse axis through O, respectively.

   (b) Neglecting the term containing v2
e, show that for small 

values of u, we have

ü 1
Ivzve cos l

I ¿
 u 5 0

  and that the axis of the gyrocompass oscillates about the north-
south direction.
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1209

COMPUTER PROBLEMS

 18.C1 A wire of uniform cross section weighing 5
8 oz/ft is used to form the 

wire figure shown, which is suspended from cord AD. An impulse F ¢t 5 
(0.5 lb ? s)j is applied to the wire figure at point E. Use computational 
software to calculate and plot immediately after the impact, for values of 
u from 0 to 180°, (a) the velocity of the mass center of the wire figure, 
(b) the angular velocity of the figure.
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Fig. P18.C2

 18.C2 A 2500-kg probe in orbit about the moon is 2.4 m high and has octago-
nal bases of sides 1.2 m. The coordinate axes shown are the principal centroidal 
axes of inertia of the probe, and its radii of gyration are kx 5 0.98 m, ky 5 
1.06 m, and kz 5 1.02 m. The probe is equipped with a main 500-N thruster 
E and four 20-N thrusters A, B, C, and D that can expel fuel in the positive 
y direction. The probe has an angular velocity V 5 vx i 1 Vz k when two of 
the 20-N thrusters are used to reduce the angular velocity to zero. Use 
computational software to determine for any pair of values of vx and vz less 
than or equal to 0.06 rad/s, which of the thrusters should be used and for 
how long each of them should be activated. Apply this program assuming v 
to be (a) the angular velocity given in Prob. 18.33, (b) the angular velocity 
given in Prob. 18.34, (c) V 5 (0.06 rad/s)i 1 (0.02 rad/s)k, (d) V 5 
2(0.06 rad/s)i 2 (0.02 rad/s)k.
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1210 Kinetics of Rigid Bodies in Three Dimensions  18.C3 A couple M0 5 (0.03 lb ? ft)i is applied to an assembly consisting 
of pieces of sheet aluminum of uniform thickness and of total weight 2.7 lb, 
which are welded to a light axle supported by bearings at A and B. Use 
computational software to determine the dynamic reactions exerted by 
the bearings on the axle at any time t after the couple has been applied. 
Resolve these reactions into components directed along y and z axes rotating 
with the assembly. (a) calculate and plot the components of the reactions 
from t 5 0 to t 5 2 s at 0.1-s intervals. (b) Determine the time at which 
the z components of the reactions at A and B are equal to zero.

 18.C4 A 2.5-kg homogeneous disk of radius 80 mm can rotate with respect 
to arm ABC, which is welded to a shaft DCE supported by bearings at D 
and E. Both the arm and the shaft are of negligible mass. At time t 5 0 a 
couple M0 5 (0.5 N ? m)k is applied to shaft DCE. Knowing that at t 5 0 
the angular velocity of the disk is V1 5 (60 rad/s)j and that friction in the 
bearing at A causes the magnitude of V1 to decrease at the rate of 15 rad/s2, 
determine the dynamic reactions exerted on the shaft by the bearings at 
D and E at any time t. Resolve these reactions into components directed 
along x and y axes rotating with the shaft. Use computational software 
(a) to calculate the components of the reactions from t 5 0 to t 5 4 s 
(b) to determine the times t1 and t2 at which the x and y components of 
the reaction at E are respectively equal to zero.
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1211Computer Problems 18.C5 A homogeneous disk of radius 180 mm is welded to a rod AG of 
length 360 mm and of negligible mass which is connected by a clevis to a 
vertical shaft AB. The rod and disk can rotate freely about a horizontal axis 
AC, and shaft AB can rotate freely about a vertical axis. Initially rod AG 
forms a given angle u0 with the downward vertical and its angular velocity  
 u̇0 about AC is zero. Shaft AB is then given an angular velocity  ḟ0 about 
the vertical. Use computational software (a) to calculate the minimum value 
um of the angle u in the ensuing motion and the period of oscillation in u, 
that is, the time required for u to regain its initial value u0, (b) to compute 
the angular velocity  ḟ of shaft AB for values of u from u0 to um. Apply this 
program with the initial conditions (i) u0 5 90°,  ̇f0 5 5 rad/s, (ii) u0 5 90°, 
ḟ0 5 10 rad/s, (iii) u0 5 60°,  ḟ0 5 5 rad/s. [Hint: Use the principle of con-
servation of energy and the fact that the angular momentum of the body 
about the vertical through A is conserved to obtain an equation of the form  
u̇2 5 f(u). This equation can be integrated by a numerical method.]

 18.C6 A homogeneous disk of radius 180 mm is welded to a rod AG of 
length 360 mm and of negligible mass which is supported by a ball-and-
socket joint at A. The disk is released in the position u 5 u0 with a rate of 
spin  ċ0, a rate of precession  ḟ0, and a zero rate of nutation. Use computa-
tional software (a) to calculate the minimum value um of the angle u in the 
ensuing motion and the period of oscillation in u, that is, the time required 
for u to regain its initial value u0, (b) to compute the rate of spin  ċ and the 
rate of precession  ḟ for values of u from u0 to um, using 2° decrements. 
Apply this program with the initial conditions (i) u0 5 90°,  ċ0 5 50 rad/s,
 ḟ0 5 0, (ii) u0 5 90°,  ċ0 5 0,  ḟ0 5 5 rad/s, (iii) u0 5 90°,  ċ0 5 50 rad/s,
  ḟ0 5 5 rad/s, (iv) u0 5 90°,  ċ0 5 10 rad/s,  ḟ0 5 5 rad/s, (v) u0 5 60°, 
 ċ0 5 50 rad/s,  ḟ0 5 5 rad/s. [Hint: Use the principle of conservation of 
energy and the fact that the angular momentum of the body is conserved 
about both the Z and z axes to obtain an equation of the form  u̇2 5 f(u). 
This equation can be integrated by a numerical method.]

360 mm

r = 180 mmq

A

C

G

B

f
•

Fig. P18.C5

y•

f
•

360 mm

r = 180 mm

q

A

G

Z

z

Fig. P18.C6

bee29400_ch18_1144-1211.indd Page 1211  12/16/08  5:55:39 PM user-s172bee29400_ch18_1144-1211.indd Page 1211  12/16/08  5:55:39 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



The Wind Damper inside of Taipei 101 

helps protect against typhoons and 

earthquakes by reducing the effects of 

wind and vibrations on the building. 

Mechanical systems may undergo free 

vibrations or they may be subject to 

forced vibrations. The vibrations are 

damped when there is energy  dissipation 

and undamped otherwise. This chapter 

is an introduction to many fundamental 

concepts in vibration analysis.
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19C H A P T E R

1213

Mechanical Vibrations
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1214

19.1 INTRODUCTION
A mechanical vibration is the motion of a particle or a body which oscil-
lates about a position of equilibrium. Most vibrations in machines and 
structures are undesirable because of the increased stresses and energy 
losses which accompany them. They should therefore be eliminated or 
reduced as much as possible by appropriate design. The analysis of 
vibrations has become increasingly important in recent years owing to 
the current trend toward higher-speed machines and lighter structures. 
There is every reason to expect that this trend will continue and that 
an even greater need for vibration analysis will develop in the future.
 The analysis of vibrations is a very extensive subject to which 
entire texts have been devoted. Our present study will therefore be 
limited to the simpler types of vibrations, namely, the vibrations of 
a body or a system of bodies with one degree of freedom.
 A mechanical vibration generally results when a system is dis-
placed from a position of stable equilibrium. The system tends to 
return to this position under the action of restoring forces (either 
elastic forces, as in the case of a mass attached to a spring, or gravi-
tational forces, as in the case of a pendulum). But the system gener-
ally reaches its original position with a certain acquired velocity which 
carries it beyond that position. Since the process can be repeated 
indefinitely, the system keeps moving back and forth across its posi-
tion of equilibrium. The time interval required for the system to 
complete a full cycle of motion is called the period of the vibration. 
The number of cycles per unit time defines the frequency, and the 
maximum displacement of the system from its position of equilib-
rium is called the amplitude of the vibration.
 When the motion is maintained by the restoring forces only, 
the vibration is said to be a free vibration (Secs. 19.2 to 19.6). When 
a periodic force is applied to the system, the resulting motion is 
described as a forced vibration (Sec. 19.7). When the effects of fric-
tion can be neglected, the vibrations are said to be undamped. How-
ever, all vibrations are actually damped to some degree. If a free 
vibration is only slightly damped, its amplitude slowly decreases 
until, after a certain time, the motion comes to a stop. But if damp-
ing is large enough to prevent any true vibration, the system then 
slowly regains its original position (Sec. 19.8). A damped forced 
vibration is maintained as long as the periodic force which produces 
the vibration is applied. The amplitude of the vibration, however, is 
affected by the magnitude of the damping forces (Sec. 19.9).

VIBRATIONS WITHOUT DAMPING

19.2  FREE VIBRATIONS OF PARTICLES. SIMPLE 
HARMONIC MOTION

Consider a body of mass m attached to a spring of constant k (Fig. 
19.1a). Since at the present time we are concerned only with the 
motion of its mass center, we will refer to this body as a particle. 
When the particle is in static equilibrium, the forces acting on it are 
its weight W and the force T exerted by the spring, of magnitude 
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 19.3 Simple Pendulum (Approximate 
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 19.9 Damped Forced Vibrations
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1215T 5 kdst, where dst denotes the elongation of the spring. We have, 
therefore,

W 5 kdst

Suppose now that the particle is displaced through a distance xm from 
its equilibrium position and released with no initial velocity. If xm has 
been chosen smaller than dst, the particle will move back and forth 
through its equilibrium position; a vibration of amplitude xm has been 
generated. Note that the vibration can also be produced by imparting 
a certain initial velocity to the particle when it is in its equilibrium 
position x 5 0 or, more generally, by starting the particle from any 
given position x 5 x0 with a given initial velocity v0.
 To analyze the vibration, let us consider the particle in a position 
P at some arbitrary time t (Fig. 19.1b). Denoting by x the displacement 
OP measured from the equilibrium position O (positive downward), 
we note that the forces acting on the particle are its weight W and the 
force T exerted by the spring which, in this position, has a magnitude 
T 5 k(dst 1 x). Recalling that W 5 kdst, we find that the magnitude of 
the resultant F of the two forces (positive downward) is

 F 5 W 2 k(dst 1 x) 5 2kx (19.1)

Thus the resultant of the forces exerted on the particle is proportional 
to the displacement OP measured from the equilibrium position. 
Recalling the sign convention, we note that F is always directed toward 
the equilibrium position O. Substituting for F into the fundamental 
equation F 5 ma and recalling that a is the second derivative ẍ of x 
with respect to t, we write

 mẍ 1 kx 5 0 (19.2)

Note that the same sign convention should be used for the accelera-
tion ẍ and for the displacement x, namely, positive downward.
 The motion defined by Eq. (19.2) is called a simple harmonic 
motion. It is characterized by the fact that the acceleration is propor-
tional to the displacement and of opposite direction. We can verify that 
each of the functions x1 5 sin (1k/m t) and x2 5 cos (1k/m t) satis-
fies Eq. (19.2). These functions, therefore, constitute two particular solu-
tions of the differential equation (19.2). The general solution of Eq. (19.2) 
is obtained by multiplying each of the particular solutions by an arbitrary 
constant and adding. Thus, the general solution is expressed as

 
x 5 C1x1 1 C2x2 5 C1 sin a

A
k
m

 tb 1 C2 cos a
A

k
m

 tb
 

(19.3)

We note that x is a periodic function of the time t and does, there-
fore, represent a vibration of the particle P. The coefficient of t in 
the expression we have obtained is referred to as the natural circular 
frequency of the vibration and is denoted by vn. We have

 
Natural circular frequency 5 vn 5

A
k
m  

(19.4)

Fig. 19.1

Unstretched

Equilibrium

(a)

(b)

W

W

T = kdst

T = k(dst + x)

− xm

+ xm

x

P

O

+

=

ma = mx..

dst

Equilibrium

19.2 Free Vibrations of Particles. Simple 
Harmonic Motion
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1216 Mechanical Vibrations Substituting for 1k/m into Eq. (19.3), we write

 x 5 C1 sin vnt 1 C2 cos vnt (19.5)

This is the general solution of the differential equation

 ẍ 1 v2
n x 5 0 (19.6)

which can be obtained from Eq. (19.2) by dividing both terms by m 
and observing that k/m 5 v2

n. Differentiating twice both members 
of Eq. (19.5) with respect to t, we obtain the following expressions 
for the velocity and the acceleration at time t:

 v 5 ẋ 5 C1vn cos vnt 2 C2vn sin vnt (19.7)
 a 5 ẍ 5 2C1v

2
n sin vnt 2 C2v

2
n cos vnt (19.8)

 The values of the constants C1 and C2 depend upon the initial 
conditions of the motion. For example, we have C1 5 0 if the particle 
is displaced from its equilibrium position and released at t 5 0 with 
no initial velocity, and we have C2 5 0 if the particle is started from O 
at t 5 0 with a certain initial velocity. In general, substituting t 5 0 
and the initial values x0 and v0 of the displacement and the velocity 
into Eqs. (19.5) and (19.7), we find that C1 5 v0/vn and C2 5 x0.
 The expressions obtained for the displacement, velocity, and 
acceleration of a particle can be written in a more compact form if 
we observe that Eq. (19.5) expresses that the displacement x 5 OP 
is the sum of the x components of two vectors C1 and C2, respectively, 
of magnitude C1 and C2, directed as shown in Fig. 19.2a. As t varies, 
both vectors rotate clockwise; we also note that the magnitude of their 
resultant OQ

¡
 is equal to the maximum displacement xm. The simple 

harmonic motion of P along the x axis can thus be obtained by pro-
jecting on this axis the motion of a point Q describing an auxiliary 
circle of radius xm with a constant angular velocity vn (which explains 
the name of natural circular frequency given to vn). Denoting by f 
the angle formed by the vectors OQ

¡
 and C1, we write

 OP 5 OQ sin (vnt 1 f) (19.9)

which leads to new expressions for the displacement, velocity, and 
acceleration of P:

 x 5 xm sin (vnt 1 f) (19.10)

 v 5 ẋ 5 xmvn cos (vnt 1 f) (19.11)
 a 5 ẍ 5 2xmv

2
n sin (vnt 1 f) (19.12)

The displacement-time curve is represented by a sine curve (Fig. 
19.2b); the maximum value xm of the displacement is called the 
amplitude of the vibration, and the angle f which defines the initial 
position of Q on the circle is called the phase angle. We note from 
Fig. 19.2 that a full cycle is described as the angle vnt increases by 
2p rad. The corresponding value of t, denoted by tn, is called the 
period of the free vibration and is measured in seconds. We have
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1217

 
period 5 tn 5

2p
vn  

(19.13)

The number of cycles described per unit of time is denoted by fn 
and is known as the natural frequency of the vibration. We write

 
Natural frequency 5 fn 5

1
tn

5
vn

2p  
(19.14)

The unit of frequency is a frequency of 1 cycle per second, corre-
sponding to a period of 1 s. In terms of base units the unit of fre-
quency is thus 1/s or s21. It is called a hertz (Hz) in the SI system 
of units. It also follows from Eq. (19.14) that a frequency of 1 s21 
or 1 Hz corresponds to a circular frequency of 2p rad/s. In problems 
involving angular velocities expressed in revolutions per minute 
(rpm), we have 1 rpm 5 1

60 s
21 5 1

60 Hz, or 1 rpm 5 (2p/60) rad/s.
 Recalling that vn was defined in (19.4) in terms of the constant k 
of the spring and the mass m of the particle, we observe that the 
period and the frequency are independent of the initial conditions 
and of the amplitude of the vibration. Note that tn and fn depend 
on the mass rather than on the weight of the particle and thus are 
independent of the value of g.
 The velocity-time and acceleration-time curves can be repre-
sented by sine curves of the same period as the displacement-time 
curve, but with different phase angles. From Eqs. (19.11) and (19.12), 
we note that the maximum values of the magnitudes of the velocity 
and acceleration are

 vm 5 xmvn  am 5 xmv
2
n (19.15)

Since the point Q describes the auxiliary circle, of radius xm, at the 
constant angular velocity vn, its velocity and acceleration are equal, 
respectively, to the expressions (19.15). Recalling Eqs. (19.11) and 
(19.12), we find, therefore, that the velocity and acceleration of P 
can be obtained at any instant by projecting on the x axis vectors 
of magnitudes vm 5 xmvn and am 5 xmv

2
n representing, respectively, 

the velocity and acceleration of Q at the same instant (Fig. 19.3).

(a) (b)

C1

− xm

+ xm

x
m

+

O

Q
P

t

C2
f

t

x
wnt

wnt

Fig. 19.2

Fig. 19.3

O

P

x

x
am = xmwn

2

vm = xmwn

wnt

wnt + f

a

v

f

Q

Q0

xm

19.2 Free Vibrations of Particles. Simple 
Harmonic Motion
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1218 Mechanical Vibrations  The results obtained are not limited to the solution of the prob-
lem of a mass attached to a spring. They can be used to analyze the 
rectilinear motion of a particle whenever the resultant F of the forces 
acting on the particle is proportional to the displacement x and directed 
toward O. The fundamental equation of motion F 5 ma can then 
be written in the form of Eq. (19.6), which is characteristic of a simple 
harmonic motion. Observing that the coefficient of x must be equal 
to v2

n, we can easily determine the natural circular frequency vn of the 
motion. Substituting the value obtained for vn into Eqs. (19.13) and 
(19.14), we then obtain the period tn and the natural frequency fn 
of the motion.

19.3 SIMPLE PENDULUM (APPROXIMATE SOLUTION)
Most of the vibrations encountered in engineering applications can 
be represented by a simple harmonic motion. Many others, although 
of a different type, can be approximated by a simple harmonic motion, 
provided that their amplitude remains small. Consider, for example, 
a simple pendulum, consisting of a bob of mass m attached to a cord 
of length l, which can oscillate in a vertical plane (Fig. 19.4a). At a 
given time t, the cord forms an angle u with the vertical. The forces 
acting on the bob are its weight W and the force T exerted by the 
cord (Fig. 19.4b). Resolving the vector ma into tangential and 
normal components, with mat directed to the right, i.e., in the direc-
tion  corresponding to increasing values of u, and observing that at 5 
la 5 lü, we write

oFt 5 mat: 2W sin u 5 ml ü

Noting that W 5 mg and dividing through by ml, we obtain

 
ü 1

g

l
 sin u 5 0

 
(19.16)

For oscillations of small amplitude, we can replace sin u by u, expressed 
in radians, and write

 
ü 1

g

l
 u 5 0

 
(19.17)

Comparison with Eq. (19.6) shows that the differential equation 
(19.17) is that of a simple harmonic motion with a natural circular 
frequency vn equal to (g/l)1/2. The general solution of Eq. (19.17) 
can, therefore, be expressed as

u 5 um sin (vnt 1 f)

where um is the amplitude of the oscillations and f is a phase angle. 
Substituting into Eq. (19.13) the value obtained for vn, we get the 
following expression for the period of the small oscillations of a pen-
dulum of length l:

 
tn 5

2p
vn

5 2p
A

l
g 

(19.18)

Fig. 19.4

=

l

m

W

T

q

ma n

ma t

(a)

(b)
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1219*19.4 SIMPLE PENDULUM (EXACT SOLUTION)
Formula (19.18) is only approximate. To obtain an exact expression 
for the period of the oscillations of a simple pendulum, we must 
return to Eq. (19.16). Multiplying both terms by 2u̇ and integrating 
from an initial position corresponding to the maximum deflection, 
that is, u 5 um and u̇ 5 0, we write

adu
dt
b2

5
2g

l
(cos u 2 cos um)

Replacing cos u by 1 2 2 sin2 (u/2) and cos um by a similar expression, 
solving for dt, and integrating over a quarter period from t 5 0, u 5 0 
to t 5 tn/4, u 5 um, we have

tn 5 2
A

l
g #

um

0

 
du

2sin2(um/2) 2 sin2(u/2)
The integral in the right-hand member is known as an elliptic integral; 
it cannot be expressed in terms of the usual algebraic or trigonometric 
functions. However, setting

sin (u/2) 5 sin (um/2) sin f

we can write

 
tn 5 4

A
l
g #

p/2

0

 
df

21 2 sin2(um/2) sin2 f  
(19.19)

where the integral obtained, commonly denoted by K, can be calcu-
lated by using a numerical method of integration. It can also be 
found in tables of elliptic integrals for various values of um/2.† In 
order to compare the result just obtained with that of the preceding 
section, we write Eq. (19.19) in the form

 
tn 5

2K
p

 a2p
A

l
g
b

 
(19.20)

Formula (19.20) shows that the actual value of the period of a simple 
pendulum can be obtained by multiplying the approximate value 
given in Eq. (19.18) by the correction factor 2K /p. Values of the cor-
rection factor are given in Table 19.1 for various values of the ampli-
tude um. We note that for ordinary engineering computations the 
correction factor can be omitted as long as the amplitude does not 
exceed 10°.

†See, for example, Standard Mathematical Tables, Chemical Rubber Publishing  Company, 
Cleveland, Ohio.

TABLE 19.1  Correction Factor for the Period of a Simple 
Pendulum

um 0° 10° 20° 30° 60° 90° 120° 150° 180°

K 1.571 1.574 1.583 1.598 1.686 1.854 2.157 2.768 `

2K/p 1.000 1.002 1.008 1.017 1.073 1.180 1.373 1.762 `

19.4 Simple Pendulum (Exact Solution)
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SAMPLE PROBLEM 19.1

A 50-kg block moves between vertical guides as shown. The block is pulled 
40 mm down from its equilibrium position and released. For each spring 
arrangement, determine the period of the vibration, the maximum velocity 
of the block, and the maximum acceleration of the block.

SOLUTION

a. Springs Attached in Parallel. We first determine the constant k of a 
single spring equivalent to the two springs by finding the magnitude of the 
force P required to cause a given deflection d. Since for a deflection d the 
magnitudes of the forces exerted by the springs are, respectively, k1d and 
k2d, we have

P 5 k1d 1 k2d 5 (k1 1 k2)d

The constant k of the single equivalent spring is

k 5
P
d

5 k1 1 k2 5 4 kN/m 1 6 kN/m 5 10 kN/m 5 104 N/m

Period of Vibration: Since m 5 50 kg, Eq. (19.4) yields

v2
n 5

k
m

5
104 N/m

50 kg
   vn 5 14.14 rad/s

 tn 5 2pyvn tn 5 0.444 s ◀

Maximum Velocity: vm 5 xmvn 5 (0.040 m)(14.14 rad/s)

vm 5 0.566 m/s  vm 5 0.566 m/s  D ◀

Maximum Acceleration: am 5 xmv
2
n 5 (0.040 m)(14.14 rad/s)2

am 5 8.00 m/s2  am 5 8.00 m/s2 D ◀

b. Springs Attached in Series. We first determine the constant k of a 
single spring equivalent to the two springs by finding the total elongation d 
of the springs under a given static load P. To facilitate the computation, a 
static load of magnitude P 5 12 kN is used.

d 5 d1 1 d2 5
P
k1

1
P
k2

5
12 kN

4 kN/m
1

12 kN
6 kN/m

5 5 m

k 5
P
d

5
12 kN
5 m

5 2.4 kN/m 5 2400 N/m

Period of Vibration:    v2
n 5

k
m

5
2400 N/m

50 kg
   vn 5 6.93 rad/s

 tn 5
2p
vn

 tn 5 0.907 s ◀

Maximum Velocity: vm 5 xmvn 5 (0.040 m)(6.93 rad/s)
 vm 5 0.277 m/s vm 5 0.277 m/s  D ◀

Maximum Acceleration: am 5 xmv
2
n 5 (0.040 m)(6.93 rad/s)2

 am 5 1.920 m/s2 am 5 1.920 m/s2 D ◀

k1 = 4 kN/m

k2 = 6 kN/m

(a)

(b)

l1 + d1

l2 + d2

l1

l2

d

P

k1d k2d

d

P

bee29400_ch19_1212-1287.indd Page 1220  12/16/08  12:39:33 PM user-s172bee29400_ch19_1212-1287.indd Page 1220  12/16/08  12:39:33 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1221

SOLVING PROBLEMS
ON YOUR OWN

This chapter deals with mechanical vibrations, i.e., with the motion of a particle 
or body oscillating about a position of equilibrium.

In this first lesson, we saw that a free vibration of a particle occurs when the par-
ticle is subjected to a force proportional to its displacement and of opposite direc-
tion, such as the force exerted by a spring (Fig. 19.1). The resulting motion, called 
a simple harmonic motion, is characterized by the differential equation

mẍ 1 kx 5 0 (19.2)

where x is the displacement of the particle, ẍ is its acceleration, m is its mass, and 
k is the constant of the spring. The solution of this differential equation was found 
to be

 x 5 xm sin (vnt 1 f) (19.10)

 where xm 5 amplitude of the vibration
 vn 5 1k/m 5 natural circular frequency (rad/s)
 f 5 phase angle (rad)

We also defined the period of the vibration as the time tn 5 2p/vn needed for 
the particle to complete one cycle, and the natural frequency as the number of 
cycles per second, fn 5 1/tn 5 vn /2p, expressed in Hz or s21. Differentiating 
Eq. (19.10) twice yields the velocity and the acceleration of the particle at any 
time. The maximum values of the velocity and acceleration were found to be

 vm 5 xmvn   am 5 xmv
2
n (19.15)

To determine the parameters in Eq. (19.10) you can follow these steps.

1. Draw a free-body diagram showing the forces exerted on the particle 
when the particle is at a distance x from its position of equilibrium. The resultant 
of these forces will be proportional to x and its direction will be opposite to the 
positive direction of x [Eq. (19.1)].

2. Write the differential equation of motion by equating to mẍ the resultant of 
the forces found in step 1. Note that once a positive direction for x has been chosen, 
the same sign convention should be used for the acceleration ẍ. After transposition, 
you will obtain an equation of the form of Eq. (19.2).

(continued)
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3. Determine the natural circular frequency Vn by dividing the coefficient of x 
by the coefficient of ẍ in this equation and taking the square root of the result 
obtained. Make sure that vn is expressed in rad/s.

4. Determine the amplitude xm and the phase angle F by substituting the 
value obtained for vn and the initial values of x and x

.  into Eq. (19.10) and the 
equation obtained by differentiating Eq. (19.10) with respect to t.

Equation (19.10) and the two equations obtained by differentiating Eq. (19.10) twice 
with respect to t can now be used to find the displacement, velocity, and accelera-
tion of the particle at any time. Equations (19.15) yield the maximum velocity vm 
and the maximum acceleration am.

5. You also saw that for the small oscillations of a simple pendulum, the 
angle u that the cord of the pendulum forms with the vertical satisfies the differ-
ential equation

 
ü 1

g

l
 u 5 0

 
(19.17)

where l is the length of the cord and where u is expressed in radians [Sec. 19.3]. 
This equation defines again a simple harmonic motion, and its solution is of the 
same form as Eq. (19.10),

u 5 um sin (vnt 1 f)

where the natural circular frequency vn 5 1g/l is expressed in rad/s. The deter-
mination of the various constants in this expression is carried out in a manner 
similar to that described above. Remember that the velocity of the bob is tangent 
to the path and that its magnitude is v 5 lu̇, while the acceleration of the bob has 
a tangential component at, of magnitude at 5 lü, and a normal component an 
directed toward the center of the path and of magnitude an 5 lu̇ 2.
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PROBLEMS

1223

 19.1 Determine the maximum velocity and maximum acceleration of a 
particle which moves in simple harmonic motion with an ampli-
tude of 0.2 in. and a period of 0.1 s.

 19.2 Determine the amplitude and maximum velocity of a particle 
which moves in simple harmonic motion with a maximum accel-
eration of 60 m/s2 and a frequency of 40 Hz.

 19.3 A particle moves in simple harmonic motion. Knowing that the 
amplitude is 300 mm and the maximum acceleration is 5 m/s2, 
determine the maximum velocity of the particle and the frequency 
of its motion.

 19.4 A 30-lb block is supported by the spring shown. If the block is 
moved vertically downward from its equilibrium position and 
released, determine (a) the period and frequency of the resulting 
motion, (b) the maximum velocity and acceleration of the block if 
the amplitude of its motion is 2.1 in.

 19.5 A 32-kg block is attached to a spring and can move without friction 
in a slot as shown. The block is in its equilibrium position when it 
is struck by a hammer which imparts to the block an initial velocity 
of 250 mm/s. Determine (a) the period and frequency of the 
resulting motion, (b) the amplitude of the motion and the maxi-
mum acceleration of the block.

 19.6 A simple pendulum consisting of a bob attached to a cord oscillates 
in a vertical plane with a period of 1.3 s. Assuming simple har-
monic motion and knowing that the maximum velocity of the bob 
is 15 in./s, determine (a) the amplitude of the motion in degrees, 
(b) the maximum tangential acceleration of the bob.

19.7 A simple pendulum consisting of a bob attached to a cord of length 
l 5 800 mm oscillates in a vertical plane. Assuming simple har-
monic motion and knowing that the bob is released from rest when 
u 5 6°, determine (a) the frequency of oscillation, (b) the maxi-
mum velocity of the bob.

 19.8 An instrument package A is bolted to a shaker table as shown. The 
table moves vertically in simple harmonic motion at the same 
 frequency as the variable-speed motor which drives it. The pack-
age is to be tested at a peak acceleration of 150 ft/s2. Knowing that 
the amplitude of the shaker table is 2.3 in., determine (a) the 
required speed of the motor in rpm, (b) the maximum velocity of 
the table.

 19.9 The motion of a particle is described by the equation x 5 5 sin 2t 1 
4 cos 2t, where x is expressed in meters and t in seconds. Deter-
mine (a) the period of the motion, (b) its amplitude, (c) its phase 
angle.

l

m

q

 Fig. P19.6 and P19.7

20 lb/in.

30 lb

 Fig. P19.4

A

 Fig. P19.8

32 kg

k = 12 kN/m

 Fig. P19.5
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1224 Mechanical Vibrations  19.10 An instrument package B is placed on the shaking table C as 
shown. The table is made to move horizontally in simple harmonic 
motion with a frequency of 3 Hz. Knowing that the  coefficient of 
static friction is ms 5 0.40 between the package and the table, 
determine the largest allowable amplitude of the motion if the 
package is not to slip on the table. Give the answers in both SI 
and U.S. customary units. 

 19.11 A 32-kg block attached to a spring of constant k 5 12 kN/m can 
move without friction in a slot as shown. The block is given an 
initial 300-mm displacement downward from its equilibrium posi-
tion and released. Determine 1.5 s after the block has been 
released (a) the total distance traveled by the block, (b) the accel-
eration of the block.

m

k

A

 Fig. P19.1  2

32 kg

k = 12 kN/m

 Fig. P19.1  1

C

B

 Fig. P19.1  0

l

m

q

 Fig. P19.14

 19.12 A 3-lb block is supported as shown by a spring of constant k 5 
2 lb/in. which can act in tension or compression. The block is in 
its equilibrium position when it is struck from below by a hammer 
which imparts to the block an upward velocity of 90 in./s. Deter-
mine (a) the time required for the block to move 3 in. upward, 
(b) the corresponding velocity and acceleration of the block.

 19.13 In Prob. 19.12, determine the position, velocity, and acceleration 
of the block 0.90 s after it has been struck by the hammer.

 19.14 The bob of a simple pendulum of length l 5 800 mm is released 
from rest when u 5 15°. Assuming simple harmonic motion, 
determine 1.6 s after release (a) the angle u, (b) the magnitudes of 
the velocity and acceleration of the bob.
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1225Problems 19.15 A 5-kg collar rests on but is not attached to the spring shown. It 
is observed that when the collar is pushed down 180 mm or more 
and released, it loses contact with the spring. Determine (a) the 
spring constant, (b) the position, velocity, and acceleration of the 
collar 0.16 s after it has been pushed down 180 mm and 
released.

 19.16 An 8-kg collar C can slide without friction on a horizontal rod 
between two identical springs A and B to which it is not attached. 
Each spring has a constant of 600 N/m. The collar is pushed to 
the left against spring A, compressing that spring 20 mm, and 
released in the position shown. It then slides along the rod to the 
right and hits spring B. After compressing that spring 20 mm, the 
collar slides to the left and hits spring A, which it compresses 20 mm. 
The cycle is then repeated. Determine (a) the period of the motion 
of the collar, (b) the position of the collar 1.5 s after it was pushed 
against spring A and released. (Note: This is a periodic motion, but 
not a simple harmonic motion.)

20 mm

A
C

B

60 mm

 Fig. P19.1  6

A m

k

 Fig. P19.15

 19.17 and 19.18 A 35-kg block is supported by the spring arrange-
ment shown. The block is moved vertically downward from its 
equilibrium position and released. Knowing that the amplitude of 
the resulting motion is 45 mm, determine (a) the period and fre-
quency of the motion, (b) the maximum velocity and maximum 
acceleration of the block.

35 kg

16 kN/m

8 kN/m8 kN/m

 Fig. P19.17

35 kg

16 kN/m

16 kN/m

 Fig. P19.18

30 lb

20 lb/in.

12 lb/in.

16 lb/in.

 Fig. P19.19

 19.19 A 30-lb block is supported by the spring arrangement shown. If 
the block is moved from its equilibrium position 1.75 in. vertically 
downward and released, determine (a) the period and frequency 
of the resulting motion, (b) the maximum velocity and acceleration 
of the block.
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1226 Mechanical Vibrations  19.20 A 5-kg block, attached to the lower end of a spring whose upper 
end is fixed, vibrates with a period of 6.8 s. Knowing that the con-
stant k of a spring is inversely proportional to its length, determine 
the period of a 3-kg block which is attached to the center of the 
same spring if the upper and lower ends of the spring are fixed.

 19.21 A 30-lb block is supported by the spring arrangement shown. The 
block is moved from its equilibrium position 0.8 in. vertically 
downward and released. Knowing that the period of the resulting 
motion is 1.5 s, determine (a) the constant k, (b) the maximum 
velocity and maximum acceleration of the block.

 19.22 Two springs of constants k1 and k2 are connected in series to a 
block A that vibrates in simple harmonic motion with a period of 
5 s. When the same two springs are connected in parallel to the 
same block, the block vibrates with a period of 2 s. Determine the 
ratio k1/k2 of the two spring constants.

A

k1

k2 = 20 lb/in.

 Fig. P19.25

A

k1

k2

k1k2

A

 Fig. P19.22

A

B3 lb

 Fig. P19.23

30 lb

2k

k

k

 Fig. P19.21

3 kg

3 kg A

B

C

 Fig. P19.24

 19.23 The period of vibration of the system shown is observed to be 0.6 s. 
After cylinder B has been removed, the period is observed to be 
0.5 s. Determine (a) the weight of cylinder A, (b) the  constant of 
the spring.

 19.24 The period of vibration of the system shown is observed to be 0.8 s. 
If block A is removed, the period is observed to be 0.7 s. Deter-
mine (a) the mass of block C, (b) the period of vibration when both 
blocks A and B have been removed. 

 19.25 The period of vibration of the system shown is observed to be 0.2 s. 
After the spring of constant k2 5 20 lb/in. is removed and block 
A is connected to the spring of constant k1, the period is observed 
to be 0.12 s. Determine (a) the constant k1 of the remaining spring, 
(b) the weight of block A.
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1227Problems 19.26 The 100-lb platform A is attached to springs B and D, each of 
which has a constant k 5 120 lb/ft. Knowing that the frequency 
of vibration of the platform is to remain unchanged when an 80-lb 
block is placed on it and a third spring C is added between springs 
B and D, determine the required constant of spring C.

 19.27 From mechanics of materials it is known that when a static load P 
is applied at the end B of a uniform metal rod fixed at end A, the 
length of the rod will increase by an amount d 5 PL/AE, where 
L is the length of the undeformed rod, A is its cross- sectional area, 
and E is the modulus of elasticity of the metal. Knowing that 
L 5 450 mm and E 5 200 GPa and that the diameter of the rod 
is 8 mm, and neglecting the mass of the rod, determine (a) the 
equivalent spring constant of the rod, (b) the frequency of the 
vertical vibrations of a block of mass m 5 8 kg attached to end B 
of the same rod.

A

B

m

L

A

B

L

P

d

(a) (b)

 Fig. P19.27

B C D

A

 Fig. P19.26

A

B
L

dB

P

 Fig. P19.28

 19.28 From mechanics of materials it is known that for a cantilever beam 
of constant cross section a static load P applied at end B will cause a 
deflection dB 5 PL3/3EI, where L is the length of the beam, E is the 
modulus of elasticity, and I is the moment of inertia of the cross-sec-
tional area of the beam. Knowing that L 5 10 ft, E 5 29 3 106 lb/in2, 
and I 5 12.4 in4, determine (a) the equivalent spring constant of the 
beam, (b) the frequency of vibration of a 520-lb block attached to end 
B of the same beam.

 19.29 A 1.6-in. deflection of the second floor of a building is measured 
directly under a newly installed 8200-lb piece of rotating machinery 
which has a slightly unbalanced rotor. Assuming that the deflection 
of the floor is proportional to the load it supports, determine (a) the 
equivalent spring constant of the floor system, (b) the speed in rpm 
of the rotating machinery that should be avoided if it is not to coin-
cide with the natural frequency of the floor-machinery system.

 19.30 The force-deflection equation for a nonlinear spring fixed at one 
end is F 5 5x1/2 where F is the force, expressed in newtons, applied 
at the other end and x is the deflection expressed in meters. 
(a) Determine the deflection x0 if a 120-g block is suspended from 
the spring and is at rest. (b) Assuming that the slope of the force-
deflection curve at the point corresponding to this loading can be 
used as an equivalent spring constant, determine the frequency of 
vibration of the block if it is given a very small downward displace-
ment from its equilibrium position and released.
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 19.31 If h 5 700 mm and d 5 500 mm and each spring has a constant 
k 5 600 N/m, determine the mass m for which the period of small 
oscillations is (a) 0.50 s, (b) infinite. Neglect the mass of the rod and 
assume that each spring can act in either tension or compression.

 19.32 Denoting by dst the static deflection of a beam under a given load, 
show that the frequency of vibration of the load is

f 5
1

2p
 

A

g

dst

  Neglect the mass of the beam, and assume that the load remains 
in contact with the beam.

 *19.33 Expanding the integrand in Eq. (19.19) of Sec. 19.4 into a series of 
even powers of sin w and integrating, show that the period of a 
simple pendulum of length l may be approximated by the formula

t 5 2p  

A
l
g

 a1 1 1
4 sin2 

um

2
b

  where um is the amplitude of the oscillations.

 *19.34 Using the formula given in Prob. 19.33, determine the amplitude 
um for which the period of a simple pendulum is 1

2 percent longer 
than the period of the same pendulum for small oscillations.

 *19.35 Using the data of Table 19.1, determine the period of a simple 
pendulum of length l 5 750 mm (a) for small oscillations, (b) for 
oscillations of amplitude um 5 60°, (c) for oscillations of amplitude 
um 5 90°.

 *19.36 Using the data of Table 19.1, determine the length in inches of a 
simple pendulum which oscillates with a period of 2 s and an 
amplitude of 90°.

19.5 FREE VIBRATIONS OF RIGID BODIES
The analysis of the vibrations of a rigid body or of a system or rigid 
bodies possessing a single degree of freedom is similar to the analysis 
of the vibrations of a particle. An appropriate variable, such as a 
distance x or an angle u, is chosen to define the position of the body 
or system of bodies, and an equation relating this variable and its 
second derivative with respect to t is written. If the equation obtained 
is of the same form as (19.6), i.e., if we have

 ẍ 1 v2
n x 5 0  or  ü 1 v2

nu 5 0 (19.21)

the vibration considered is a simple harmonic motion. The period 
and natural frequency of the vibration can then be obtained by iden-
tifying vn and substituting its value into Eqs. (19.13) and (19.14).
 In general, a simple way to obtain one of Eqs. (19.21) is to 
express that the system of the external forces is equivalent to the 
system of the effective forces by drawing a free-body-diagram equa-
tion for an arbitrary value of the variable and writing the appropriate 
equation of motion. We recall that our goal should be the  determination 

A

d

B

m

h

 Fig. P19.31

1228 Mechanical Vibrations
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1229of the coefficient of the variable x or u, not the determination of the 
variable itself or of the derivative ẍ or  ü. Setting this coefficient equal 
to v2

n, we obtain the natural circular frequency vn, from which tn and 
fn can be determined.
 The method we have outlined can be used to analyze vibrations 
which are truly represented by a simple harmonic motion, or vibra-
tions of small amplitude which can be approximated by a simple 
harmonic motion. As an example, let us determine the period of the 
small oscillations of a square plate of side 2b which is suspended 
from the midpoint O of one of its sides (Fig. 19.5a). We consider the 
plate in an arbitrary position defined by the angle u that the line OG 
forms with the vertical and draw a free-body-diagram equation to 
express that the weight W of the plate and the components Rx and Ry 
of the reaction at O are equivalent to the vectors mat and man and to 
the couple IA (Fig. 19.5b). Since the angular velocity and angular 
acceleration of the plate are equal, respectively, to u̇ and  ü, the mag-
nitudes of the two vectors are, respectively, mb ü and mbu̇2, while the 
moment of the couple is I ̈u. In previous applications of this method 
(Chap. 16), we tried whenever possible to assume the correct sense 
for the acceleration. Here, however, we must assume the same posi-
tive sense for u and  ü in order to obtain an equation of the form 
(19.21). Consequently, the angular acceleration  ü will be assumed 
positive counterclockwise, even though this assumption is obviously 
unrealistic. Equating moments about O, we write

1l 2W(b sin u) 5 (mbü)b 1 I ü

Noting that I 5 1
12 m[(2b)2 1 (2b)2] 5 2

3 mb2 and W 5 mg, we obtain

 
ü 1

3
5

 
g

b
 sin u 5 0

 
(19.22)

For oscillations of small amplitude, we can replace sin u by u, 
expressed in radians, and write

 
ü 1

3
5

 
g

b
 u 5 0

 
(19.23)

Comparison with (19.21) shows that the equation obtained is that of 
a simple harmonic motion and that the natural circular frequency vn 
of the oscillations is equal to (3g/5b)1/2. Substituting into (19.13), we 
find that the period of the oscillations is

 
tn 5

2p
vn

5 2p
A

5b
3g  

(19.24)

 The result obtained is valid only for oscillations of small ampli-
tude. A more accurate description of the motion of the plate is 
obtained by comparing Eqs. (19.16) and (19.22). We note that the 
two equations are identical if we choose l equal to 5b/3. This means 
that the plate will oscillate as a simple pendulum of length l 5 5b/3 
and the results of Sec. 19.4 can be used to correct the value of the 
period given in (19.24). The point A of the plate located on line OG 
at a distance l 5 5b/3 from O is defined as the center of oscillation 
corresponding to O (Fig. 19.5a).

19.5 Free Vibrations of Rigid Bodies

(a)

O

G

W

q

O

A

G

b

b

b

2b

5b
3

Ry

R x

=

m⎯a t

(b)

O

G

m⎯a n

⎯Ia

Fig. 19.5
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1230

SOLUTION

Kinematics of Motion. We express the linear displacement and the accel-
eration of the cylinder in terms of the angular displacement u. Choosing the 
positive sense clockwise and measuring the displacements from the equilib-
rium position, we write

 x 5 ru   d 5 2 x 5 2ru

 A 5 üi   a 5 ra 5 rü   a 5 rüw (1)

Equations of Motion. The system of external forces acting on the cylinder 
consists of the weight W and of the forces T1 and T2 exerted by the cord. 
We express that this system is equivalent to the system of effective forces 
represented by the vector ma attached at G and the couple IA.

 1ioMA 5 o(MA)eff:  Wr 2 T2(2r) 5 mar 1 Ia (2)

When the cylinder is in its position of equilibrium, the tension in the cord 
is T0 5 1

2W. We note that for an angular displacement u, the magnitude of 
T2 is

 T2 5 T0 1 kd 5 1
2W 1 kd 5 1

2W 1 k(2ru) (3)

Substituting from (1) and (3) into (2), and recalling that I 5 1
2 mr2, we write

Wr 2 (1
2W 1 2kru)(2r) 5 m(r ü)r 1 1

2mr2ü

ü 1
8
3

 
k
m

 u 5 0

The motion is seen to be simple harmonic, and we have

v2
n 5

8
3

 
k
m   

vn 5
A

8
3

 
k
m

 
tn 5

2p
vn  

tn 5 2p
A

3
8

 
m
k

 ◀

 
fn 5

vn

2p  
fn 5

1
2pA

8
3

 
k
m

 ◀

SAMPLE PROBLEM 19.2

A cylinder of weight W and radius r is suspended from a looped cord as 
shown. One end of the cord is attached directly to a rigid support, while 
the other end is attached to a spring of constant k. Determine the period 
and natural frequency of the vibrations of the cylinder.

B

r

B

B

d

q

a

⎯a
⎯x

A

2r

A GG

W

T1 T2

⎯am
⎯Ia=
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1231

SOLUTION

a. Vibration of Disk. Denoting by u the angular displacement of the 
disk, we express that the magnitude of the couple exerted by the wire is 
M 5 Ku, where K is the torsional spring constant of the wire. Since this 
couple must be equivalent to the couple IA representing the effective 
forces of the disk, we write

1loMO 5 o(MO)eff:  1Ku 5 2I ü

 
 ü 1

K

I
 u 5 0

The motion is seen to be simple harmonic, and we have

 
v2

n 5
K

I
      tn 5

2p
vn

      tn 5 2p
B

I
K  

(1)

For the disk, we have

tn 5 1.13 s       I 5 1
2 
mr2 5

1
2

 a 20 lb
32.2 ft/s2b a 8

12
 ftb2

5 0.138 lb ? ft ? s2

Substituting into (1), we obtain

1.13 5 2p
A

0.138
K

    K 5 4.27 lb ? ft/rad ◀

b. Vibration of Gear. Since the period of vibration of the gear is 1.93 s 
and K 5 4.27 lb · ft/rad, Eq. (1) yields

1.93 5 2p
B

I
4.27

      Igear 5 0.403 lb ? ft ? s2 ◀

c. Maximum Angular Velocity of Gear. Since the motion is simple har-
monic, we have

u 5 um sin vnt   v 5 umvn cos vnt   vm 5 umvn

Recalling that um 5 90° 5 1.571 rad and t 5 1.93 s, we write

vm 5 umvn 5 um  
a2p
t
b 5 (1.571 rad) a 2p

1.93 s
b

vm 5 5.11 rad/s ◀

SAMPLE PROBLEM 19.3

A circular disk, weighing 20 lb and of radius 8 in., is suspended from a wire 
as shown. The disk is rotated (thus twisting the wire) and then released; the 
period of the torsional vibration is observed to be 1.13 s. A gear is then 
suspended from the same wire, and the period of torsional vibration for 
the gear is observed to be 1.93 s. Assuming that the moment of the couple 
exerted by the wire is proportional to the angle of twist, determine (a) the 
torsional spring constant of the wire, (b) the centroidal moment of inertia 
of the gear, (c) the maximum angular velocity reached by the gear if it is 
rotated through 90° and released.

8 in.

O

M = Kq

O=
⎯Ia =⎯Iq  

..

O
q

a = q
..
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1232

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you saw that a rigid body, or a system of rigid bodies, whose posi-
tion can be defined by a single coordinate x or u, will execute a simple harmonic 

motion if the differential equation obtained by applying Newton’s second law is of 
the form

ẍ 1 v2
nx 5 0  or  ü 1 v2

nu 5 0 (19.21)

Your goal should be to determine vn, from which you can obtain the period tn 
and the natural frequency fn. Taking into account the initial conditions, you can 
then write an equation of the form

 x 5 xm sin (vnt 1 f) (19.10)

where x should be replaced by u if a rotation is involved. To solve the problems 
in this lesson, you will follow these steps:

1. Choose a coordinate which will measure the displacement of the body 
from its equilibrium position. You will find that many of the problems in this les-
son involve the rotation of a body about a fixed axis and that the angle measuring 
the rotation of the body from its equilibrium position is the most convenient coor-
dinate to use. In problems involving the general plane motion of a body, where a 
coordinate x (and possibly a coordinate y) is used to define the position of the mass 
center G of the body, and a coordinate u is used to measure its rotation about G, 
find kinematic relations which will allow you to express x (and y) in terms of u 
[Sample Prob. 19.2].

2. Draw a free-body-diagram equation to express that the system of the exter-
nal forces is equivalent to the system of the effective forces, which consists of the 
vector ma and the couple IA, where a 5 ẍ  and a 5 ü . Be sure that each applied 
force or couple is drawn in a direction consistent with the assumed displacement 
and that the senses of a and A are, respectively, those in which the coordinates x 
and u are increasing.
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3. Write the differential equations of motion by equating the sums of the com-
ponents of the external and effective forces in the x and y directions and the sums 
of their moments about a given point. If necessary, use the kinematic relations 
developed in step 1 to obtain equations involving only the coordinate u. If u is a 
small angle, replace sin u by u and cos u by 1, if these functions appear in your 
equations. Eliminating any unknown reactions, you will obtain an equation of the 
type of Eqs. (19.21). Note that in problems involving a body rotating about a fixed 
axis, you can immediately obtain such an equation by equating the moments of 
the external and effective forces about the fixed axis.

4. Comparing the equation you have obtained with one of Eqs. (19.21), you 
can identify v2

n and, thus, determine the natural circular frequency vn. Remember 
that the object of your analysis is not to solve the differential equation you have 
obtained, but to identify v2

n.

5. Determine the amplitude and the phase angle F by substituting the value 
obtained for vn and the initial values of the coordinate and its first derivative into 
Eq. (19.10) and the equation obtained by differentiating (19.10) with respect to t. 
From Eq. (19.10) and the two equations obtained by differentiating (19.10) twice 
with respect to t, and using the kinematic relations developed in step 1, you will 
be able to determine the position, velocity, and acceleration of any point of the 
body at any given time.

6. In problems involving torsional vibrations, the torsional spring constant K is 
expressed in N ? m/rad or lb ? ft/rad. The product of K and the angle of twist u, 
expressed in radians, yields the moment of the restoring couple, which should be 
equated to the sum of the moments of the effective forces or couples about the 
axis of rotation [Sample Prob. 19.3].
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PROBLEMS

1234

 19.37 The 5-kg uniform rod AC is attached to springs of constant 
k 5 500 N/m at B and k 5 620 N/m at C, which can act in tension 
or compression. If the end C of the rod is depressed slightly and 
released, determine (a) the frequency of vibration, (b) the ampli-
tude of the motion of point C, knowing that the maximum velocity 
of that point is 0.9 m/s.

 19.38 The uniform rod shown weighs 15 lb and is attached to a spring 
of constant k 5 4 lb/in. If end B of the rod is depressed 0.4 in. 
and released, determine (a) the period of vibration, (b) the maxi-
mum velocity of end B. 

A
B

C

1.4 m

0.7 m

Fig. P19.37
C

A B

30 in.
b = 18 in.

Fig. P19.38

 19.39 A 30-lb uniform cylinder can roll without sliding on a 15°-incline. 
A belt is attached to the rim of the cylinder, and a spring holds the 
cylinder at rest in the position shown. If the center of the cylinder 
is moved 2 in. down the incline and released, determine (a) the 
period of vibration, (b) the maximum acceleration of the center of 
the cylinder.

 19.40 A 15-lb slender rod AB is riveted to a 12-lb uniform disk as shown.  
A belt is attached to the rim of the disk and to a spring which 
holds the rod at rest in the position shown. If end A of the rod is 
moved 0.75 in. down and released, determine (a) the period of 
vibration, (b) the maximum velocity of end A. 

O

B

A

k = 30 lb/in.

15°

5 in.

Fig. P19.39

D

A

C

B

36 in.

10 in.

k = 30 lb/in.

Fig. P19.40
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1235Problems 19.41 An 8-kg uniform rod AB is hinged to a fixed support at A and 
is attached by means of pins B and C to a 12-kg disk of radius 
400 mm. A spring attached at D holds the rod at rest in the position 
shown. If point B is moved down 25 mm and released, determine 
(a) the period of vibration, (b) the maximum velocity of point B.

 19.42 Solve Prob. 19.41, assuming that pin C is removed and that the 
disk can rotate freely about pin B.

 19.43 A belt is placed around the rim of a 240-kg flywheel and attached 
as shown to two springs, each of constant k 5 15 kN/m. If end C 
of the belt is pulled 40 mm down and released, the period of 
vibration of the flywheel is observed to be 0.5 s. Knowing that the 
initial tension in the belt is sufficient to prevent slipping, deter-
mine (a) the maximum angular velocity of the  flywheel, (b) the 
centroidal radius of gyration of the flywheel. 

 19.44 A 75-mm-radius hole is cut in a 200-mm-radius uniform disk 
which is attached to a frictionless pin at its geometric center O. 
Determine (a) the period of small oscillations of the disk, (b) the 
length of a simple pendulum which has the same period.

A
D

k = 800 N/m

600 mm

1200 mm

C

B

400 mm

Fig. P19.41

450 mm

C

BA

Fig. P19.43

 19.45 Two small weights w are attached at A and B to the rim of a uni-
form disk of radius r and weight W. Denoting by t0 the period of 
small oscillations when b 5 0, determine the angle b for which 
the period of small oscillations is 2t0.

100 mm
200 mm

75 mm

O

Fig. P19.44

r

A B

C

b b

Fig. P19.45 and P19.46

 19.46 Two 0.1-lb weights are attached at A and B to the rim of a 3-lb 
uniform disk of radius r 5 4 in. Determine the frequency of small 
oscillations when b 5 60°.
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1236 Mechanical Vibrations  19.47 For the uniform square plate of side b 5 300 mm, determine 
(a) the period of small oscillations if the plate is suspended as 
shown, (b) the distance c from O to a point A from which the plate 
should be suspended for the period to be a minimum.

 19.48 A connecting rod is supported by a knife-edge at point A; the 
period of its small oscillations is observed to be 0.87 s. The rod is 
then inverted and supported by a knife edge at point B and the 
period of its small oscillations is observed to be 0.78 s. Knowing 
that ra 1 rb 5 10 in., determine (a) the location of the mass center 
G, (b) the centroidal radius of gyration k.

b

c

O

b

A

G

Fig. P19.47

A

B

G

rb

ra

Fig. P19.48

 19.49 For the uniform equilateral triangular plate of side l 5 300 mm, 
determine the period of small oscillations if the plate is suspended 
from (a) one of its vertices, (b) the midpoint of one of its sides.

 19.50 A uniform disk of radius r 5 250 mm is attached at A to a 650-mm 
rod AB of negligible mass which can rotate freely in a vertical plane 
about B. Determine the period of small oscillations (a) if the disk 
is free to rotate in a bearing at A, (b) if the rod is riveted to the 
disk at A.

O

l

l

Fig. P19.49

A

B

r = 250 mm

q

Fig. P19.50

 19.51 A small collar weighing 2 lb is rigidly attached to a 6-lb uniform 
rod of length L 5 3 ft. Determine (a) the distance d to maximize 
the frequency of oscillation when the rod is given a small initial 
displacement, (b) the corresponding period of oscillation.

C

B

A

d

L

Fig. P19.51
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1237Problems 19.52 A compound pendulum is defined as a rigid slab which oscillates 
about a fixed point O, called the center of suspension. Show that 
the period of oscillation of a compound pendulum is equal to the 
period of a simple pendulum of length OA, where the distance 
from A to the mass center G is GA 5 k2/r. Point A is defined as 
the center of oscillation and coincides with the center of percus-
sion defined in Prob. 17.66.

O

G

A

⎯r

Fig. P19.52 and P19.53

C

G

k

250 mm
40 mm

B

A

Fig. P19.55

A

C

G

B
kk

Fig. P19.56

A

B DC

k k

L
2

L
2

L

Fig. P19.57

 19.53 A rigid slab oscillates about a fixed point O. Show that the smallest 
period of oscillation occurs when the distance r from point O to 
the mass center G is equal to k.

 19.54 Show that if the compound pendulum of Prob. 19.52 is suspended 
from A instead of O, the period of oscillation is the same as before 
and the new center of oscillation is located at O.

 19.55 The 8-kg uniform bar AB is hinged at C and is attached at A to a 
spring of constant k 5 500 N/m. If end A is given a small displace-
ment and released, determine (a) the frequency of small oscilla-
tions, (b) the smallest value of the spring constant k for which 
oscillations will occur.

 19.56 A 45-lb uniform square plate is suspended from a pin located at 
the midpoint A of one of its 1.2-ft edges and is attached to 
springs, each of constant k 5 8 lb/in. If corner B is given a small 
displacement and released, determine the frequency of the 
resulting vibration. Assume that each spring can act in either 
tension or compression.

 19.57 Two uniform rods, each of mass m 5 12 kg and length L 5 800 mm, 
are welded together to form the assembly shown. Knowing that the 
constant of each spring is k 5 500 N/m and that end A is given a 
small displacement and released, determine the frequency of the 
resulting motion.
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1238 Mechanical Vibrations  19.58 The rod ABC of total mass m is bent as shown and is supported 
in a vertical plane by a pin at B and by a spring of constant k at 
C. If end C is given a small displacement and released, determine 
the frequency of the resulting motion in terms of m, L, and k.

 19.59 A uniform disk of radius r 5 250 mm is attached at A to a 650-mm 
rod AB of negligible mass which can rotate freely in a vertical 
plane about B. If the rod is displaced 2° from the position shown 
and released, determine the magnitude of the maximum velocity 
of point A, assuming that the disk (a) is free to rotate in a bearing 
at A, (b) is riveted to the rod at A.

A

B C

L

L

k

Fig. P19.58

A

B

r = 250 mm

q

Fig. P19.59

 19.60 A 6-lb slender rod is suspended from a steel wire which is known 
to have a torsional spring constant K 5 1.5 ft ? lb/rad. If the rod 
is rotated through 180° about the vertical and released, determine 
(a) the period of oscillation, (b) the maximum velocity of end A of 
the rod. 

 19.61 A homogeneous wire bent to form the figure shown is attached to 
a pin support at A. Knowing that r 5 220 mm and that point B 
is pushed down 20 mm and released, determine the magnitude of 
the velocity of B, 8 s later.

B

G

A

4 in.

4 in.

Fig. P19.60

 19.62 A homogeneous wire bent to form the figure shown is attached to 
a pin support at A. Knowing that r 5 16 in. and that point B is 
pushed down 1.5 in. and released, determine the magnitude of the 
acceleration of B, 10 s later.

A
B

r

Fig. P19.61 and P19.62
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1239Problems

 19.65 A 1.8-kg uniform plate in the shape of an equilateral triangle is 
suspended at its center of gravity from a steel wire which is known 
to have a torsional constant K 5 35 mN ? m/rad. If the plate is 
rotated 360° about the vertical and then released, determine 
(a) the period of oscillation, (b) the maximum velocity of one of 
the vertices of the triangle.

 19.63 A uniform disk of radius r 5 120 mm is welded at its center to 
two elastic rods of equal length with fixed ends at A and B. Know-
ing that the disk rotates through an 8° angle when a 500-mN ? m 
couple is applied to the disk and that it oscillates with a period of 
1.3 s when the couple is removed, determine (a) the mass of the 
disk, (b) the period of vibration if one of the rods is removed.

 19.64 A 10-lb uniform rod CD of length l 5 2.2 ft is welded at C to two 
elastic rods, which have fixed ends at A and B and are known to 
have a combined torsional spring constant K 5 18 lb · ft/rad. 
Determine the period of small oscillations, if the equilibrium posi-
tion of CD is (a) vertical as shown, (b) horizontal.

A

B

Fig. P19.63

D

A

C

B

l

Fig. P19.64

150 mm

G

Fig. P19.65

P

A

Fig. P19.66

 19.66 A horizontal platform P is held by several rigid bars which are 
connected to a vertical wire. The period of oscillation of the plat-
form is found to be 2.2 s when the platform is empty and 3.8 s 
when an object A of unknown moment of inertia is placed on the 
platform with its mass center directly above the center of the plate. 
Knowing that the wire has a torsional constant K 5 20 lb ? ft/rad, 
determine the centroidal moment of inertia of object A.
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 19.67 A thin rectangular plate of sides a and b is suspended from four 
vertical wires of the same length l. Determine the period of small 
oscillations of the plate when (a) it is rotated through a small angle 
about a vertical axis through its mass center G, (b) it is given a 
small horizontal displacement in a direction perpendicular to AB, 
(c) it is given a small horizontal displacement in a direction per-
pendicular to BC.

l

A

D C

B

b

a

G

Fig. P19.67

 19.68 A circular disk of radius r 5 0.8 m is suspended at its center C 
from wires AB and BC soldered together at B. The torsional spring 
constants of the wires are K1 5 100 N ? m/rad for AB and K2 5 
50 N ? m/rad for BC. If the period of oscillation is 0.5 s about the 
axis AC, determine the mass of the disk.

C

B

r

K2

A

K1

Fig. P19.68

19.6  APPLICATION OF THE PRINCIPLE 
OF CONSERVATION OF ENERGY

We saw in Sec. 19.2 that when a particle of mass m is in simple 
harmonic motion, the resultant F of the forces exerted on the parti-
cle has a magnitude proportional to the displacement x measured 
from the position of equilibrium O and is directed toward O; we 
write F 5 2kx. Referring to Sec. 13.6, we note that F is a conserva-
tive force and that the corresponding potential energy is V 5 1

2 
kx2, 

where V is assumed equal to zero in the equilibrium position x 5 0. 
Since the velocity of the particle is equal to ẋ, its kinetic energy is 
T 5 1

2 
mx

.2 and we can express that the total energy of the particle is 
conserved by writing

T 1 V 5 constant      1
2 
mx

. 2 1 1
2 
kx2 5 constant

Dividing through by m/2 and recalling from Sec. 19.2 that k/m 5 v2
n, 

where vn is the natural circular frequency of the vibration, we have

 ẋ2 1 v2
nx2 5 constant (19.25)

1240 Mechanical Vibrations

bee29400_ch19_1212-1287.indd Page 1240  12/16/08  12:40:18 PM user-s172bee29400_ch19_1212-1287.indd Page 1240  12/16/08  12:40:18 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1241Equation (19.25) is characteristic of a simple harmonic motion, since 
it can be obtained from Eq. (19.6) by multiplying both terms by 2ẋ 
and integrating.
 The principle of conservation of energy provides a convenient 
way for determining the period of vibration of a rigid body or of a 
system of rigid bodies possessing a single degree of freedom, once 
it has been established that the motion of the system is a simple 
harmonic motion or that it can be approximated by a simple har-
monic motion. Choosing an appropriate variable, such as a distance 
x or an angle u, we consider two particular positions of the system:

 1. The displacement of the system is maximum; we have T1 5 0, 
and V1 can be expressed in terms of the amplitude xm or um 
(choosing V 5 0 in the equilibrium position).

 2. The system passes through its equilibrium position; we have 
V2 5 0, and T2 can be expressed in terms of the maximum 
velocity ẋm or the maximum angular velocity u̇m.

 We then express that the total energy of the system is con-
served and write T1 1 V1 5 T2 1 V2. Recalling from (19.15) that for 
simple harmonic motion the maximum velocity is equal to the prod-
uct of the amplitude and of the natural circular frequency vn, we 
find that the equation obtained can be solved for vn.
 As an example, let us consider again the square plate of Sec. 19.5. 
In the position of maximum displacement (Fig. 19.6a), we have

T1 5 0  V1 5 W(b 2 b cos um) 5 Wb(1 2 cos um)

or, since 1 2 cos um 5 2 sin2 (um/2) < 2(um/2)2 5 u2
m/2 for oscilla-

tions of small amplitude,

 T1 5 0   V1 5 1
2Wbu2

m (19.26)

As the plate passes through its position of equilibrium (Fig. 19.6b), 
its velocity is maximum and we have

T2 5 1
2 
mv 

2
m 1 1

2 Iv2
m 5 1

2 
mb2u

.
2
m 1 1

2Iu
.

2
m       V2 5 0

or, recalling from Sec. 19.5 that I 5 2
3 
mb2,

 T2 5 1
2(5

3 mb2)u
.

2 
m      V2 5 0 (19.27)

Substituting from (19.26) and (19.27) into T1 1 V1 5 T2 1 V2, and 
noting that the maximum velocity u̇m is equal to the product umvn, 
we write

 1
2 
Wbu2

m 5 1
2 
(5

3 
mb2)u2

mv
2
n (19.28)

which yields v2
n 5 3g/5b and

 
tn 5

2p
vn

5 2p
A

5b
3g  

(19.29)

as previously obtained.

O

O

G1

G2

b

b

(b)

(a)

W

W
Datum

q = 0

qm b cos qm

qm
.

Datum

.

Fig. 19.6

19.6 Application of the Principle of 
Conservation of Energy
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1242

SOLUTION

We denote by u the angle which line OG forms with the vertical. Since the 
cylinder rolls without slipping, we may apply the principle of conservation of 
energy between position 1, where u 5 um, and position 2, where u 5 0.

Position 1
Kinetic Energy. Since the velocity of the cylinder is zero, T1 5 0.
Potential Energy. Choosing a datum as shown and denoting by W the 
weight of the cylinder, we have

V1 5 Wh 5 W(R 2 r)(1 2 cos u)

Noting that for small oscillations (1 2 cos u) 5 2 sin2 (u/2) < u2/2, we have

V1 5 W(R 2 r)
u2

m

2

Position 2. Denoting by u̇m the angular velocity of line OG as the cylinder 
passes through position 2, and observing that point C is the instantaneous 
center of rotation of the cylinder, we write

vm 5 (R 2 r)u
.

m      vm 5
vm

r
5

R 2 r
r

 u
.

m

Kinetic Energy

 T2 5 1
2 
mv 

2
m 1 1

2Iv2
m

 5 1
2 
m(R 2 r)2u

.
2
m 1 1

2(1
2 
mr2)aR 2 r

r
b2

u
.

2
m

 5 3
4 
m(R 2 r)2u

.
2
m

Potential Energy

V2 5 0

Conservation of Energy

 T1 1 V1 5 T2 1 V2

0 1 W(R 2 r)
u2

m

2
5 3

4 
m(R 2 r)2u

.
2
m 1 0

Since u̇m 5 vnum and W 5 mg, we write

 
 mg(R 2 r)

u2
m

2
5 3

4 
m(R 2 r)2(vnum)2   v2

n 5
2
3

 
g

R 2 r

 tn 5
2p
vn

  tn 5 2p
A

3
2

 
R 2 r

g
 ◀

SAMPLE PROBLEM 19.4

Determine the period of small oscillations of a cylinder of radius r which 
rolls without slipping inside a curved surface of radius R.r

R

qm
R

r

R – r (R – r) cos qm

O

G

G

h
Position 1

Position 2
W

W

Datum

⎯vm
wm r

G

C

O

Position 2

qm
.
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1243

SOLVING PROBLEMS
ON YOUR OWN

In the problems which follow you will be asked to use the principle of conserva-
tion of energy to determine the period or natural frequency of the simple har-

monic motion of a particle or rigid body. Assuming that you choose an angle u to 
define the position of the system (with u 5 0 in the equilibrium position), as you 
will in most of the problems in this lesson, you will express that the total energy 
of the system is conserved, T1 1 V1 5 T2 1 V2, between the position 1 of  maximum 
displacement (u1 5 um, u̇1 5 0) and the position 2 of maximum velocity (u̇2 5 u̇m, 
u2 5 0). It follows that T1 and V2 will both be zero, and the energy equation will 
reduce to V1 5 T2, where V1 and T2 are homogeneous quadratic expressions in um 
and u̇m, respectively. Recalling that, for a simple harmonic motion, u̇m 5 umvn 
and substituting this product into the energy equation, you will obtain, after reduc-
tion, an equation that you can solve for v2

n. Once you have determined the natural 
circular frequency vn, you can obtain the period tn and the natural frequency fn 
of the vibration.

The steps that you should take are as follows:

1. Calculate the potential energy V1 of the system in its position of maximum 
displacement. Draw a sketch of the system in its position of maximum displace-
ment and express the potential energy of all the forces involved (internal as well 
as external) in terms of the maximum displacement xm or um.
 a. The potential energy associated with the weight W of a body is Vg 5 
Wy, where y is the elevation of the center of gravity G of the body above its 
equilibrium position. If the problem you are solving involves the oscillation of a 
rigid body about a horizontal axis through a point O located at a distance b from 
G (Fig. 19.6), express y in terms of the angle u that the line OG forms with the 
vertical: y 5 b(1 2 cos u). But, for small values of u, you can replace this expres-
sion with y 5 1

2 
bu2 [Sample Prob. 19.4]. Therefore, when u reaches its maximum 

value um, and for oscillations of small amplitude, you can express Vg as

Vg 5 1
2Wbu2

m

Note that if G is located above O in its equilibrium position (instead of below O, 
as we have assumed), the vertical displacement y will be negative and should be 
approximated as y 5 21

2 
bu2, which will result in a negative value for Vg. In the 

absence of other forces, the equilibrium position will be unstable, and the system 
will not oscillate. (See, for instance, Prob. 19.91.)
 b. The potential energy associated with the elastic force exerted by a 
spring is Ve 5 1

2kx2, where k is the constant of the spring and x its deflection. In 
problems involving the rotation of a body about an axis, you will generally have 
x 5 au, where a is the distance from the axis of rotation to the point of the body 

(continued)
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1244

where the spring is attached, and where u is the angle of rotation. Therefore, when 
x reaches its maximum value xm and u reaches its maximum value um, you can 
express Ve as

Ve 5 1
2 
kx2

m 5 1
2 
ka2u2

m

 c. The potential energy V1 of the system in its position of maximum dis-
placement is obtained by adding the various potential energies that you have 
computed. It will be equal to the product of a constant and u2

m.

2. Calculate the kinetic energy T2 of the system in its position of maximum 
velocity. Note that this position is also the equilibrium position of the system.
 a. If the system consists of a single rigid body, the kinetic energy T2 of the 
system will be the sum of the kinetic energy associated with the motion of the 
mass center G of the body and the kinetic energy associated with the rotation of 
the body about G. You will write, therefore,

T2 5 1
2 
mv 

2
m 1 1

2 Iv2
m

Assuming that the position of the body has been defined by an angle u, express 
vm and vm in terms of the rate of change u̇m of u as the body passes through its 
equilibrium position. The kinetic energy of the body will thus be expressed as the 
product of a constant and u̇2

m. Note that if u measures the rotation of the body 
about its mass center, as was the case for the plate of Fig. 19.6, then vm 5 u̇m. In 
other cases, however, the kinematics of the motion should be used to derive a 
relation between vm and u̇m [Sample Prob. 19.4].
 b. If the system consists of several rigid bodies, repeat the above computa-
tion for each of the bodies, using the same coordinate u, and add the results 
obtained.

3. Equate the potential energy V1 of the system to its kinetic energy T2,

V1 5 T2

and, recalling the first of Eqs. (19.15), replace u̇m in the right-hand term by the 
product of the amplitude um and the circular frequency vn. Since both terms now 
contain the factor u2

m, this factor can be canceled and the resulting equation can 
be solved for the circular frequency vn.
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PROBLEMS

1245

All problems are to be solved using the method of Sec. 19.6.

 19.69 Determine the period of small oscillations of a small particle which 
moves without friction inside a cylindrical surface of radius R.

 19.70 A 14-oz sphere A and a 10-oz sphere C are attached to the ends 
of a rod AC of negligible weight which can rotate in a vertical plane 
about an axis at B. Determine the period of small oscillations of 
the rod.

 19.71 A 1.8-kg collar A is attached to a spring of constant 800 N/m and 
can slide without friction on a horizontal rod. If the collar is moved 
70 mm to the left from its equilibrium position and released, deter-
mine the maximum velocity and maximum acceleration of the col-
lar during the resulting motion.

R

Fig. P19.69

A

C

B

8 in.

5 in.

Fig. P19.70

A

Fig. P19.71 and P19.72

 19.72 A 3-lb collar A is attached to a spring of constant 5 lb/in. and can 
slide without friction on a horizontal rod. The collar is at rest when 
it is struck with a mallet and given an initial velocity of 35 in./s. 
Determine the amplitude of the resulting motion and the maxi-
mum acceleration of the collar.

 19.73 A uniform rod AB can rotate in a vertical plane about a horizontal 
axis at C located at a distance c above the mass center G of the 
rod. For small oscillations determine the value of c for which the 
frequency of the motion will be maximum.

19.74 A homogeneous wire of length 2l is bent as shown and allowed to 
oscillate about a frictionless pin at B. Denoting by t0 the period 
of small oscillations when b 5 0, determine the angle b for which 
the period of small oscillations is 2 t0. 

A

C

B

G l

c

Fig. P19.73

A

B

C

bb

ll

Fig. P19.74
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1246 Mechanical Vibrations  19.75 The inner rim of an 85-lb flywheel is placed on a knife edge, and 
the period of its small oscillations is found to be 1.26 s. Determine 
the centroidal moment of inertia of the flywheel.

 19.76 A connecting rod is supported by a knife edge at point A; the 
period of its small oscillations is observed to be 1.03 s. Knowing 
that the distance ra is 150 mm, determine the centroidal radius of 
gyration of the connecting rod.

14 in.

Fig. P19.75

 19.77 The rod ABC of total mass m is bent as shown and is supported 
in a vertical plane by a pin at B and a spring of constant k at C. 
If end C is given a small displacement and released, determine the 
frequency of the resulting motion in terms of m, L, and k.

 19.78 A 15-lb uniform cylinder can roll without sliding on an incline and 
is attached to a spring AB as shown. If the center of the cylinder 
is moved 0.4 in. down the incline and released, determine (a) the 
period of vibration, (b) the maximum velocity of the center of the 
cylinder.

A

B

G

rb

ra

Fig. P19.76

A

B C

L

L

k

Fig. P19.77

A

B
k = 4.5 lb/in.

b = 14°

4 in.

Fig. P19.78

 19.79 Two uniform rods, each of weight W 5 1.2 lb and length l 5 8 in., 
are welded together to form the assembly shown. Knowing that 
the constant of each spring is k 5 0.6 lb/in. and that end A is given 
a small displacement and released, determine the frequency of the 
resulting motion.

A

B DC

k k

l
2

l
2

l

Fig. P19.79
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1247Problems 19.80 A slender 8-kg rod AB of length l 5 600 mm is connected to two 
collars of negligible mass. Collar A is attached to a spring of con-
stant k 5 1.2 kN/m and can slide on a vertical rod, while collar B 
can slide freely on a horizontal rod. Knowing that the system is in 
equilibrium and that u 5 40°, determine the period of vibration 
if collar B is given a small displacement and released.

 19.81 A slender rod AB of length l 5 600 mm and negligible mass is 
connected to two collars, each of mass 8 kg. Collar A is attached 
to a spring of constant k 5 1.2 kN/m and can slide on a vertical 
rod, while collar B can slide freely on a horizontal rod. Knowing 
that the system is in equilibrium and that u 5 40°, determine the 
period of vibration if collar A is given a small displacement and 
released.

 19.82 A 3-kg slender rod AB is bolted to a 5-kg uniform disk. A spring of 
constant 280 N/m is attached to the disk and is unstretched in the 
position shown. If end B of the rod is given a small displacement 
and released, determine the period of vibration of the system.

k

A

B

l

q

Fig. P19.80 and P19.81

A

B

80 mm

300 mm

Fig. P19.82

 19.83 A 14-oz sphere A and a 10-oz sphere C are attached to the ends 
of a 20-oz rod AC which can rotate in a vertical plane about an 
axis at B. Determine the period of small oscillations of the rod.

 19.84 Three identical rods are connected as shown. If b 5 3
4 l, determine 

the frequency of small oscillations of the system. 

 19.85 An 800-g rod AB is bolted to a 1.2-kg disk. A spring of constant 
k 5 12 N/m is attached to the center of the disk at A and to the 
wall at C. Knowing that the disk rolls without sliding, determine 
the period of small oscillations of the system.

A

C

B

8 in.

5 in.

Fig. P19.83

l

l

b

Fig. P19.84

A
C

B

r = 250 mm k

600 mm

Fig. P19.85
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1248 Mechanical Vibrations  19.86 and 19.87 Two uniform rods AB and CD, each of length l and 
mass m, are attached to gears as shown. Knowing that the mass 
of gear C is m and that the mass of gear A is 4m, determine the 
period of small oscillations of the system.

 19.88 A 10-lb uniform rod CD is welded at C to a shaft of negligible 
mass which is welded to the centers of two 20-lb uniform disks A 
and B. Knowing that the disks roll without sliding, determine the 
period of small oscillations of the system.

 19.89 Four bars of the same mass m and equal length l are connected 
by pins at A, B, C, and D and can move in a horizontal plane. The 
bars are attached to four springs of the same constant k and are 
in equilibrium in the position shown (u 5 45°). Determine the 
period of vibration if corners A and C are given small and equal 
displacements toward each other and released.

2r
r

DB

A
C

l

Fig. P19.86

2r

A

B

D

r C

l

l

Fig. P19.87

3 ft1 ft

A

C

D

1 ft

B

Fig. P19.88 

ll

k

k

D

Cq

k

k

B

A

Fig. P19.89 

 19.90 The 20-lb rod AB is attached to two 8-lb disks as shown. Knowing 
that the disks roll without sliding, determine the frequency of 
small oscillations of the system. 

A B

6 in. 6 in.

4 in.

18 in.

Fig. P19.90
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1249Problems 19.91 An inverted pendulum consisting of a sphere of weight W and a 
rigid bar ABC of length l and negligible weight is supported by a 
pin and bracket at C. A spring of constant k is attached to the bar 
at B and is undeformed when the bar is in the vertical position 
shown. Determine (a) the frequency of small oscillations, (b) the 
smallest value of a for which these oscillations will occur.

 19.92 For the inverted pendulum of Prob. 19.91 and for given values of 
k, a, and l, it is observed that f 5 1.5 Hz when W 5 2 lb and that 
f 5 0.8 Hz when W 5 4 lb. Determine the largest value of W for 
which small oscillations will occur.

 19.93 A uniform rod of length L is supported by a ball-and-socket joint 
at A and by a vertical wire CD. Derive an expression for the period 
of oscillation of the rod if end B is given a small  horizontal dis-
placement and then released.

A

B

C

k

a

l

Fig. P19.91 and P19.92

 19.94 A 2-kg uniform rod ABC is supported by a pin at B and is attached 
to a spring at C. It is connected at A to a 2-kg block DE which is 
attached to a spring and can roll without friction. Knowing that 
each spring can act in tension or compression, determine the fre-
quency of small oscillations of the system when the rod is rotated 
through a small angle and released.

b

h

L

C B

D

A

Fig. P19.93

A

B

C

D E

600 mm

300 mm

k = 50 N/m

k = 50 N/m

Fig. P19.94

B

A

C

D

W

k = 2 lb/in.

k = 1.5 lb/in.

8 in.

12 in.

Fig. P19.95

 19.95 A 1.4-lb uniform arm ABC is supported by a pin at B and is 
attached to a spring at A. It is connected at C to a 3-lb weight W 
which is attached to a spring. Knowing that each spring can act in 
tension or compression, determine the frequency of small oscilla-
tions of the system when the weight is given a small vertical dis-
placement and released.
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 *19.96 Two uniform rods AB and BC, each of mass m and length l, are 
pinned together at A and are pin-connected to small rollers at B 
and C. A spring of constant k is attached to the pins at B and C, 
and the system is observed to be in equilibrium when each rod 
forms an angle b with the vertical. Determine the period of small 
oscillations when point A is given a small downward deflection and 
released.

 *19.97 As a submerged body moves through a fluid, the particles of the 
fluid flow around the body and thus acquire kinetic energy. In the 
case of a sphere moving in an ideal fluid, the total kinetic energy 
acquired by the fluid is 1

4rVv2, where r is the mass density of the 
fluid, V is the volume of the sphere, and v is the velocity of the 
sphere. Consider a 500-g hollow spherical shell of radius 80 mm 
which is held submerged in a tank of water by a spring of constant 
500 N/m. (a) Neglecting fluid friction, determine the period of 
vibration of the shell when it is displaced vertically and then 
released. (b) Solve part a, assuming that the tank is accelerated 
upward at the constant rate of 8 m/s2.

l

k

CB

A

b bl

Fig. P19.96

 *19.98 A thin plate of length l rests on a half cylinder of radius r. Derive 
an expression for the period of small oscillations of the plate.

Fig. P19.97

r

l

Fig. P19.98 

19.7 FORCED VIBRATIONS
The most important vibrations from the point of view of engineering 
applications are the forced vibrations of a system. These vibrations 
occur when a system is subjected to a periodic force or when it is 
elastically connected to a support which has an alternating motion.
 Consider first the case of a body of mass m suspended from 
a spring and subjected to a periodic force P of magnitude P 5 
Pm sin vf t, where vf is the circular frequency of P and is referred 
to as the forced circular frequency of the motion (Fig. 19.7). This 
force may be an actual external force applied to the body, or it may 
be a centrifugal force produced by the rotation of some unbalanced 
part of the body (see Sample Prob. 19.5). Denoting by x the displace-
ment of the body measured from its equilibrium position, we write 
the equation of motion,

 1woF 5 ma: Pm sin vf t 1 W 2 k(dst 1 x) 5 mẍ

Recalling that W 5 kdst, we have

 mẍ 1 kx 5 Pm sin vf t (19.30)

=
Equilibrium

P
W

T = k(dst + x)

P = Pm sin wf t

ma = mx..

x

Fig. 19.7 

1250 Mechanical Vibrations
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1251Next we consider the case of a body of mass m suspended from a 
spring attached to a moving support whose displacement d is equal 
to dm sin vf t (Fig. 19.8). Measuring the displacement x of the body 
from the position of static equilibrium corresponding to vf t 5 0, we 
find that the total elongation of the spring at time t is dst 1 x 2 dm 
sin vf t. The equation of motion is thus

 1woF 5 ma:  W 2 k(dst 1 x 2 dm sin vf t) 5 mẍ

Recalling that W 5 kdst, we have

 mẍ 1 kx 5 kdm sin vf t (19.31)

We note that Eqs. (19.30) and (19.31) are of the same form and that 
a solution of the first equation will satisfy the second if we set Pm 5 
kdm.
 A differential equation such as (19.30) or (19.31), possessing a 
right-hand member different from zero, is said to be nonhomoge-
neous. Its general solution is obtained by adding a particular solution 
of the given equation to the general solution of the corresponding 
homogeneous equation (with right-hand member equal to zero). A 
particular solution of (19.30) or (19.31) can be obtained by trying a 
solution of the form

 xpart 5 xm sin vf t (19.32)

Substituting xpart for x into (19.30), we find

2mvf
2xm sin vf t 1 kxm sin vf t 5 Pm sin vf t

which can be solved for the amplitude,

xm 5
Pm

k 2 mv2
f

Recalling from (19.4) that k/m 5 v2
n, where vn is the natural circular 

frequency of the system, we write

 
xm 5

Pm/k
1 2 (vf 

 /vn)2 
(19.33)

Substituting from (19.32) into (19.31), we obtain in a similar way

 xm 5
dm

1 2 (vf 
/vn)2 (19.339)

 The homogeneous equation corresponding to (19.30) or (19.31) 
is Eq. (19.2), which defines the free vibration of the body. Its general 
solution, called the complementary function, was found in Sec. 19.2:

 xcomp 5 C1 sin vnt 1 C2 cos vnt (19.34)

19.7 Forced Vibrations

=
Equilibrium

W

ma = mx..

x

dm

T = k(dst + x
             −dm sin wf t)  

dm sin wf t

wf t
wf t = 0

Fig. 19.8

Photo 19.1 A seismometer operates by 
measuring the amount of electrical energy 
needed to keep a mass centered in the housing 
in the presence of strong ground shaking.
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1252 Mechanical Vibrations Adding the particular solution (19.32) to the complementary 
 function (19.34), we obtain the general solution of Eqs. (19.30) 
and (19.31):

 x 5 C1 sin vnt 1 C2 cos vnt 1 xm sin vf t (19.35)

 We note that the vibration obtained consists of two superposed 
vibrations. The first two terms in Eq. (19.35) represent a free vibra-
tion of the system. The frequency of this vibration is the natural 
frequency of the system, which depends only upon the constant k of 
the spring and the mass m of the body, and the constants C1 and C2 
can be determined from the initial conditions. This free vibration is 
also called a transient vibration, since in actual practice it will soon 
be damped out by friction forces (Sec. 19.9).
 The last term in (19.35) represents the steady-state vibration 
produced and maintained by the impressed force or impressed sup-
port movement. Its frequency is the forced frequency imposed by 
this force or movement, and its amplitude xm, defined by (19.33) or 
(19.339), depends upon the frequency ratio vf /vn. The ratio of the 
amplitude xm of the steady-state vibration to the static deflection Pm/k 
caused by a force Pm, or to the amplitude dm of the support move-
ment, is called the magnification factor. From (19.33) and (19.339), 
we obtain

 
Magnification factor 5

xm

Pm/k
5

xm

dm
5

1
1 2 (vf  

/vn)2 
(19.36)

The magnification factor has been plotted in Fig. 19.9 against the 
frequency ratio vf /vn. We note that when vf 5 vn, the amplitude 
of the forced vibration becomes infinite. The impressed force or 
impressed support movement is said to be in resonance with the 
given system. Actually, the amplitude of the vibration remains 
finite because of damping forces (Sec. 19.9); nevertheless, such a 
situation should be avoided, and the forced frequency should not 
be chosen too close to the natural frequency of the system. We 
also note that for vf , vn the coefficient of sin vf t in (19.35) is 
positive, while for vf . vn this coefficient is negative. In the first 
case the forced vibration is in phase with the impressed force or 
impressed support movement, while in the second case it is 180° 
out of phase.
 Finally, let us observe that the velocity and the acceleration in 
the steady-state vibration can be obtained by differentiating twice 
with respect to t the last term of Eq. (19.35). Their maximum values 
are given by expressions similar to those of Eqs. (19.15) of Sec. 19.2, 
except that these expressions now involve the amplitude and the 
circular frequency of the forced vibration:

 vm 5 xmvf  am 5 xmvf
2 (19.37)

4

3

2

1

0

321

– 1

– 2

– 3

wf
wn

xm

Pm/k

xm

dm

or

Fig. 19.9 
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1253

SOLUTION

a. Resonance Speed. The resonance speed is equal to the natural circular 
frequency vn (in rpm) of the free vibration of the motor. The mass of the 
motor and the equivalent constant of the supporting springs are

 m 5
350 lb

32.2 ft/s2 5 10.87 lb ?  s2/ft

 k 5 4(750 lb/in.) 5 3000 lb/in. 5 36,000 lb/ft

 vn 5
A

k
m

5
A

36,000
10.87

5 57.5 rad/s 5 549 rpm

Resonance speed 5 549 rpm ◀

b. Amplitude of Vibration at 1200 rpm. The angular velocity of the 
motor and the mass of the equivalent 1-oz weight are

 v 5 1200 rpm 5 125.7 rad/s

 m 5 (1 oz)
1 lb

16 oz
 

1
32.2 ft/s2 5 0.001941 lb ?  s2/ft

The magnitude of the centrifugal force due to the unbalance of the rotor is

Pm 5 man 5 mrv2 5 (0.001941 lb ? s2/ft)( 6
12 ft)(125.7 rad/s)2 5 15.33 lb

The static deflection that would be caused by a constant load Pm is

Pm

k
5

15.33 lb
3000 lb/in.

5 0.00511 in.

The forced circular frequency vf of the motion is the angular velocity of 
the motor,

vf  5 v 5 125.7 rad/s

Substituting the values of Pm/k, vf, and vn into Eq. (19.33), we obtain

xm 5
Pm/k

1 2 (vf /vn)2 5
0.00511 in.

1 2 (125.7/57.5)2 5 20.001352 in.

xm 5 0.001352 in. (out of phase) ◀

Note. Since vf . vn, the vibration is 180° out of phase with the centrifugal 
force due to the unbalance of the rotor. For example, when the unbalanced 
mass is directly below the axis of rotation, the position of the motor is 
xm 5 0.001352 in. above the position of equilibrium.

SAMPLE PROBLEM 19.5

A motor weighing 350 lb is supported by four springs, each having a con-
stant of 750 lb/in. The unbalance of the rotor is equivalent to a weight of 
1 oz located 6 in. from the axis of rotation. Knowing that the motor is con-
strained to move vertically, determine (a) the speed in rpm at which reso-
nance will occur, (b) the amplitude of the vibration of the motor at a speed 
of 1200 rpm.

m

Pm sin wf t Pm

wf t
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1254

SOLVING PROBLEMS
ON YOUR OWN

This lesson was devoted to the analysis of the forced vibrations of a mechanical 
system. These vibrations occur either when the system is subjected to a peri-

odic force P (Fig. 19.7), or when it is elastically connected to a support which has 
an alternating motion (Fig. 19.8). In the first case, the motion of the system is 
defined by the differential equation

mẍ 1 kx 5 Pm sin vf t (19.30)

where the right-hand member represents the magnitude of the force P at a given 
instant. In the second case, the motion is defined by the differential equation

mẍ 1 kx 5 kdm sin vf t (19.31)

where the right-hand member is the product of the spring constant k and the 
displacement of the support at a given instant. You will be concerned only with 
the steady-state motion of the system, which is defined by a particular solution of 
these equations, of the form

 xpart 5 xm sin vf t (19.32)

1. If the forced vibration is caused by a periodic force P, of amplitude Pm and 
circular frequency vf, the amplitude of the vibration is

xm 5
Pm/k

1 2 (vf /vn)2 
(19.33)

where vn is the natural circular frequency of the system, vn 5 1k/m, and k is 
the spring constant. Note that the circular frequency of the vibration is vf and that 
the amplitude xm does not depend upon the initial conditions. For vf 5 vn, the 
denominator in Eq. (19.33) is zero and xm is infinite (Fig. 19.9); the impressed 
force P is said to be in resonance with the system. Also, for vf , vn, xm is positive 
and the vibration is in phase with P, while, for vf . vn, xm is negative and the 
vibration is out of phase.
 a. In the problems which follow, you may be asked to determine one of 
the parameters in Eq. (19.33) when the others are known. We suggest that you 
keep Fig. 19.9 in front of you when solving these problems. For example, if you 
are asked to find the frequency at which the amplitude of a forced vibration has 
a given value, but you do not know whether the vibration is in or out of phase 
with respect to the impressed force, you should note from Fig. 19.9 that there can 
be two frequencies satisfying this requirement, one corresponding to a positive 
value of xm and to a vibration in phase with the impressed force, and the other 
corresponding to a negative value of xm and to a vibration out of phase with the 
impressed force.
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 b. Once you have obtained the amplitude xm of the motion of a component 
of the system from Eq. (19.33), you can use Eqs. (19.37) to determine the maxi-
mum values of the velocity and acceleration of that component:

 vm 5 xmvf   am 5 xmvf
2 (19.37)

 c. When the impressed force P is due to the unbalance of the rotor of a 
motor, its maximum value is Pm 5 mrv2

f, where m is the mass of the rotor, r is 
the distance between its mass center and the axis of rotation, and vf is equal to 
the angular velocity v of the rotor expressed in rad/s [Sample Prob. 19.5].

2. If the forced vibration is caused by the simple harmonic motion of a support, 
of amplitude dm and circular frequency vf, the amplitude of the vibration is

 
xm 5

dm

1 2 (vf /vn)2 
(19.339)

where vn is the natural circular frequency of the system, vn 5 1k/m. Again, note 
that the circular frequency of the vibration is vf and that the amplitude xm does 
not depend upon the initial conditions.
 a. Be sure to read our comments in paragraphs 1, 1a, and 1b, since they 
apply equally well to a vibration caused by the motion of a support.
 b. If the maximum acceleration am of the support is specified, rather than 
its maximum displacement dm, remember that, since the motion of the support is 
a simple harmonic motion, you can use the relation am 5 dmv

2
f to determine dm; 

the value obtained is then substituted into Eq. (19.339).
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PROBLEMS
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 19.99 A 50-kg block is attached to a spring of constant k 5 20 kN/m and 
can move without friction in a vertical slot as shown. It is acted 
upon by a periodic force of magnitude P 5 Pm sin v f t, where 
vf 5 18 rad/s. Knowing that the amplitude of the motion is 3 mm, 
determine the value of Pm.

 19.100 A 9-lb collar can slide on a frictionless horizontal rod and is 
attached to a spring of constant 2.5 lb/in. It is acted upon by a 
periodic force of magnitude P 5 Pm sin vf t, where Pm 5 3 lb. 
Determine the amplitude of the motion of the collar if (a) vf 5 
5 rad/s, (b) vf 5 10 rad/s.

50 kg

k = 20 kN/m

P = Pm sin wf t

Fig. P19.99
P = Pm sin wf t

Fig. P19.100, P19.101 and P19.102

B

T = Tm sin wf t
A

Fig. P19.103 and P19.104

A

B
d = dm sin wf t

Fig. P19.105

 19.101 A 9-lb collar can slide on a frictionless horizontal rod and is attached 
to a spring of constant k. It is acted upon by a periodic force of 
magnitude P 5 Pm sin vf t, where Pm 5 2 lb and vf 5 5 rad/s. 
Determine the value of the spring constant k knowing that the 
motion of the collar has an amplitude of 6 in. and is (a) in phase 
with the applied force, (b) out of phase with the applied force.

 19.102 A collar of mass m which slides on a frictionless horizontal rod is 
attached to a spring of constant k and is acted upon by a periodic 
force of magnitude P 5 Pm sin vf t. Determine the range of values 
of vf for which the amplitude of the vibration exceeds two times 
the static deflection caused by a constant force of magnitude Pm.

 19.103 An 8-kg uniform disk of radius 200 mm is welded to a vertical 
shaft with a fixed end at B. The disk rotates through an angle of 
3° when a static couple of magnitude 50 N ? m is applied to it. If 
the disk is acted upon by a periodic torsional couple of magnitude 
T 5 Tm sin vf t, where Tm 5 60 N ? m, determine the range of 
values of vf for which the amplitude of the vibration is less than 
the angle of rotation caused by a static couple of magnitude Tm.

 19.104 For the disk of Prob. 19.103 determine the range of values of vf 
for which the amplitude of the vibration will be less than 3.5°.

 19.105 An 8-kg block A slides in a vertical frictionless slot and is con-
nected to a moving support B by means of a spring AB of constant 
k 5 1.6 kN/m. Knowing that the displacement of the support is 
d 5 dm sin vf t, where dm 5 150 mm, determine the range of values 
of vf for which the amplitude of the fluctuating force exerted by 
the spring on the block is less than 120 N.
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1257Problems 19.106 Rod AB is rigidly attached to the frame of a motor running at a 
constant speed. When a collar of mass m is placed on the spring, 
it is observed to vibrate with an amplitude of 15 mm. When two 
collars, each of mass m, are placed on the spring, the amplitude 
is observed to be 18 mm. What amplitude of vibration should be 
expected when three collars, each of mass m, are placed on the 
spring? (Obtain two answers.)

 19.107 A cantilever beam AB supports a block which causes a static 
deflection of 2 in. at B. Assuming that the support at A undergoes 
a vertical periodic displacement d 5 dm sin vf t, where dm 5 0.5 in., 
determine the range of values of vf for which the amplitude of the 
motion of the block will be less than 1 in. Neglect the weight of 
the beam and assume that the block does not leave the beam.

B B B

A A A

(a) (b) (c)

Fig. P19.106

A B

d = dm sin wf t

Fig. P19.107

A

B
a = am sin wf t

Fig. P19.109

B C

A

Fig. P19.108

 19.108 A variable-speed motor is rigidly attached to a beam BC. When 
the speed of the motor is less than 600 rpm or more than 1200 rpm, 
a small object placed at A is observed to remain in contact with 
the beam. For speeds between 600 and 1200 rpm the object is 
observed to “dance” and actually to lose contact with the beam. 
Determine the speed at which resonance will occur. 

 19.109 An 8-kg block A slides in a vertical frictionless slot and is con-
nected to a moving support B by means of a spring AB of constant 
k 5 120 N/m. Knowing that the acceleration of the support is 
a 5 am sin vf t, where am 5 1.5 m/s2 and vf 5 5 rad/s, determine 
(a) the maximum displacement of block A, (b) the amplitude of 
the fluctuating force exerted by the spring on the block.

 19.110 An 0.8-lb ball is connected to a paddle by means of an elastic cord 
AB of constant k 5 5 lb/ft. Knowing that the paddle is moved verti-
cally according to the relation d 5 dm sin vf t, where dm 5 8 in., 
determine the maximum allowable circular frequency vf if the cord 
is not to become slack. Fig. P19.110

A

B

d = dm sin wf t
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1258 Mechanical Vibrations  19.111 A simple pendulum of length l is suspended from collar C which 
is forced to move horizontally according to the relation xC 5 
dm sin vf t. Determine the range of values of vf for which the 
amplitude of the motion of the bob is less than dm. (assume that 
dm is small compared with the length l of the pendulum)

 19.112 The 1.2-kg bob of a simple pendulum of length l 5 600 mm is sus-
pended from a 1.4-kg collar C. The collar is forced to move accord-
ing to the relation xC 5 dm sin vf t, with an amplitude dm 5 10 mm 
and a frequency ff 5 0.5 Hz. Determine (a) the amplitude of the 
motion of the bob, (b) the force that must be applied to collar C to 
maintain the motion.

 19.113 A motor of mass M is supported by springs with an equivalent 
spring constant k. The unbalance of its rotor is equivalent to a mass 
m located at a distance r from the axis of rotation. Show that when 
the angular velocity of the motor is vf, the amplitude xm of the 
motion of the motor is

xm 5
r(m/M)(vf /vn)2

1 2 (vf /vn)2

  where vn 5 2k/M.

 19.114 As the rotational speed of a spring-supported 100-kg motor is 
increased, the amplitude of the vibration due to the unbalance of 
its 15-kg rotor first increases and then decreases. It is observed 
that as very high speeds are reached, the amplitude of the vibra-
tion approaches 3.3 mm. Determine the distance between the 
mass center of the rotor and its axis of rotation. (Hint: Use the 
formula derived in Prob. 19.113.)

 19.115 A motor weighing 400 lb is supported by springs having a total 
constant of 1200 lb/in. The unbalance of the rotor is equivalent to 
a 1-oz weight located 8 in. from the axis of rotation. Determine 
the range of allowable values of the motor speed if the amplitude 
of the vibration is not to exceed 0.06 in.

 19.116 As the rotational speed of a spring-supported motor is slowly 
increased from 300 to 500 rpm, the amplitude of the vibration due 
to the unbalance of its rotor is observed to increase continuously 
from 1.5 to 6 mm. Determine the speed at which resonance will 
occur.

 19.117 A 220-lb motor is bolted to a light horizontal beam. The unbalance 
of its rotor is equivalent to a 2-oz weight located 4 in. from the 
axis of rotation. Knowing that resonance occurs at a motor speed 
of 400 rpm, determine the amplitude of the steady-state vibration 
at (a) 800 rpm, (b) 200 rpm, (c) 425 rpm.

 19.118 A 180-kg motor is bolted to a light horizontal beam. The unbalance 
of its rotor is equivalent to a 28-g mass located 150 mm from the 
axis of rotation, and the static deflection of the beam due to 
the weight of the motor is 12 mm. The amplitude of the vibration 
due to the unbalance can be decreased by adding a plate to the 
base of the motor. If the amplitude of vibration is to be less than 
60 mm for motor speeds above 300 rpm, determine the required 
mass of the plate.

C

xC = dm sin wf t

l

x

Fig. P19.111 and P19.112

Fig. P19.117 and P19.118
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1259Problems 19.119 The unbalance of the rotor of a 400-lb motor is equivalent to a 3-oz 
weight located 6 in. from the axis of rotation. In order to limit to 
0.2 lb the amplitude of the fluctuating force exerted on the founda-
tion when the motor is run at speeds of 100 rpm and above, a pad 
is to be placed between the motor and the foundation. Determine 
(a) the maximum allowable spring constant k of the pad, (b) the 
corresponding amplitude of the fluctuating force exerted on the 
foundation when the motor is run at 200 rpm.

 19.120 A 180-kg motor is supported by springs of total constant 150 kN/m. 
The unbalance of the rotor is equivalent to a 28-g mass located 
150 mm from the axis of rotation. Determine the range of speeds 
of the motor for which the amplitude of the fluctuating force 
exerted on the foundation is less than 20 N.

 19.121 A vibrometer used to measure the amplitude of vibrations consists 
essentially of a box containing a mass-spring system with a known 
natural frequency of 120 Hz. The box is rigidly attached to a surface 
which is moving according to the equation y 5 dm sin vf t. If the 
amplitude zm of the motion of the mass relative to the box is used 
as a measure of the amplitude dm of the vibration of the surface, 
determine (a) the percent error when the frequency of the vibration 
is 600 Hz, (b) the frequency at which the error is zero.

 19.122 A certain accelerometer consists essentially of a box containing a 
mass-spring system with a known natural frequency of 2200 Hz. 
The box is rigidly attached to a surface which is moving according 
to the equation y 5 dm sin vf t. If the amplitude zm of the motion 
of the mass relative to the box times a scale factor vn

2 is used as a 
measure of the maximum acceleration am 5 dm

 vf
2 of the vibrating 

surface, determine the percent error when the  frequency of the 
vibration is 600 Hz.

 19.123 Figures (1) and (2) show how springs can be used to support a block 
in two different situations. In Fig. (1) they help decrease the ampli-
tude of the fluctuating force transmitted by the block to the founda-
tion. In Fig. (2) they help decrease the amplitude of the fluctuating 
displacement transmitted by the foundation to the block. The ratio 
of the transmitted force to the impressed force or the ratio of the 
transmitted displacement to the impressed displacement is called 
the transmissibility. Derive an equation for the transmissibility for 
each situation. Give your answer in terms of the ratio vf /vn of the 
frequency vf of the impressed force or impressed displacement to 
the natural frequency vn of the spring-mass system. Show that in 
order to cause any reduction in transmissibility, the ratio vf /vn must 
be greater than 12.

Fig. P19.119

y = dm sin wf t

Fig. P19.121 and P19.122

P = Pm sin wf t

y = dm sin wf t

(1) (2)

Fig. P19.123
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 19.124 A 60-lb disk is attached with an eccentricity e 5 0.006 in. to 
the midpoint of a vertical shaft AB which revolves at a constant 
angular velocity vf. Knowing that the spring constant k for hori-
zontal movement of the disk is 40,000 lb/ft, determine (a) the 
angular velocity vf at which resonance will occur, (b) the deflection 
r of the shaft when vf 5 1200 rpm.

 19.125 A small trailer and its load have a total mass of 250-kg. The trailer 
is supported by two springs, each of constant 10 kN/m, and is 
pulled over a road, the surface of which can be approximated by 
a sine curve with an amplitude of 40 mm and a wavelength of 
5 m (i.e., the distance between successive crests is 5 m and the 
vertical distance from crest to trough is 80 mm). Determine 
(a) the speed at which resonance will occur, (b) the amplitude of 
the vibration of the trailer at a speed of 50 km/h.

A

B

e

r
G

Fig. P19.124

 19.126 Block A can move without friction in the slot as shown and is acted 
upon by a vertical periodic force of magnitude P 5 Pm sin vf t, 
where vf 5 2 rad/s and Pm 5 20 N. A spring of constant k is 
attached to the bottom of block A and to a 22-kg block B. Deter-
mine (a) the value of the constant k which will prevent a steady-
state vibration of block A, (b) the corresponding amplitude of the 
vibration of block B.

DAMPED VIBRATIONS

*19.8 DAMPED FREE VIBRATIONS
The vibrating systems considered in the first part of this chapter 
were assumed free of damping. Actually all vibrations are damped 
to some degree by friction forces. These forces can be caused by dry 
friction, or Coulomb friction, between rigid bodies, by fluid friction 
when a rigid body moves in a fluid, or by internal friction between 
the molecules of a seemingly elastic body.
 A type of damping of special interest is the viscous damping 
caused by fluid friction at low and moderate speeds. Viscous damp-
ing is characterized by the fact that the friction force is directly 
proportional and opposite to the velocity of the moving body. As an 
example, let us again consider a body of mass m suspended from a 
spring of constant k, assuming that the body is attached to the 

5 m

v

Fig. P19.125

B

A

C

k

P = Pm sin wf t

Fig. P19.126

1260 Mechanical Vibrations
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1261plunger of a dashpot (Fig. 19.10). The magnitude of the friction force 
exerted on the plunger by the surrounding fluid is equal to cẋ, where 
the constant c, expressed in N ? s/m or lb ? s/ft and known as the 
coefficient of viscous damping, depends upon the physical properties 
of the fluid and the construction of the dashpot. The equation of 
motion is

 1woF 5 ma: W 2 k(dst 1 x) 2 cẋ 5 mẍ

Recalling that W 5 kdst, we write

 mẍ 1 cẋ 1 kx 5 0 (19.38)

 Substituting x 5 elt into (19.38) and dividing through by elt, 
we write the characteristic equation

 ml2 1 cl 1 k 5 0 (19.39)

and obtain the roots

 
l 5 2

c
2m

6
B
a c

2m
b2

2
k
m  

(19.40)

Defining the critical damping coefficient cc as the value of c which 
makes the radical in Eq. (19.40) equal to zero, we write

 
a cc

2m
b2

2
k
m

5 0       cc 5 2m
A

k
m

5 2mvn 
(19.41)

where vn is the natural circular frequency of the system in the 
absence of damping. We can distinguish three different cases of 
damping, depending upon the value of the coefficient c.

 1. Heavy damping: c . cc. The roots l1 and l2 of the character-
istic equation (19.39) are real and distinct, and the general solu-
tion of the differential equation (19.38) is

 x 5 C1e
l1t 1 C2el2t (19.42)

  This solution corresponds to a nonvibratory motion. Since l1 
and l2 are both negative, x approaches zero as t increases indef-
initely. However, the system actually regains its equilibrium 
position after a finite time.

 2. Critical damping: c 5 cc. The characteristic equation has a double 
root l 5 2cc/2m 5 2vn, and the general solution of (19.38) is

 x 5 (C1 1 C2t)e2vnt (19.43)

  The motion obtained is again nonvibratory. Critically damped 
systems are of special interest in engineering applications since 
they regain their equilibrium position in the shortest possible 
time without oscillation.

 3. Light damping: c , cc. The roots of Eq. (19.39) are complex 
and conjugate, and the general solution of (19.38) is of the 
form

 x 5 e2(c/2m)t(C1 sin vd t 1 C2 cos vd t) (19.44)

=Equilibrium

W

T = k(dst + x)

ma = mx..

x

cx.

Fig. 19.10

19.8 Damped Free Vibrations
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1262 Mechanical Vibrations where vd is defined by the relation

v2
d 5

k
m

2 a c
2m
b2

Substituting k/m 5 v2
n and recalling (19.41), we write

 
vd 5 vnB

1 2 a c
cc
b2

 
(19.45)

where the constant c/cc is known as the damping factor. Even though 
the motion does not actually repeat itself, the constant vd is com-
monly referred to as the circular frequency of the damped vibration. 
A substitution similar to the one used in Sec. 19.2 enables us to write 
the general solution of Eq. (19.38) in the form

 x 5 x0e2(c/2m)t sin (vdt 1 f) (19.46)

The motion defined by Eq. (19.46) is vibratory with diminishing 
amplitude (Fig. 19.11), and the time interval td 52p/vd separating 
two successive points where the curve defined by Eq. (19.46) 
touches one of the limiting curves shown in Fig. 19.11 is com-
monly referred to as the period of the damped vibration. Recalling 
Eq. (19.45), we observe that vd , vn and, thus, that td is larger 
than the period of vibration tn of the corresponding undamped 
system.

O

x

x1

x2

t3t2t1

x3 x4

t4

t

x0

− x0

c
t−

2mx0 e

td

Fig. 19.11
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1263*19.9 DAMPED FORCED VIBRATIONS
If the system considered in the preceding section is subjected to a 
periodic force P of magnitude P 5 Pm sin vf t, the equation of motion 
becomes

 mẍ 1 cẋ 1 kx 5 Pm sin vf t (19.47)

The general solution of (19.47) is obtained by adding a particular 
solution of (19.47) to the complementary function or general solution 
of the homogeneous equation (19.38). The complementary function 
is given by (19.42), (19.43), or (19.44), depending upon the type of 
damping considered. It represents a transient motion which is even-
tually damped out.
 Our interest in this section is centered on the steady-state vibra-
tion represented by a particular solution of (19.47) of the form

 xpart 5 xm sin (vf t 2 w) (19.48)

Substituting xpart for x into (19.47), we obtain

2mvf
2xm sin (vf t 2 w) 1 cvf xm cos (vf t 2 w) 1 kxm sin (vf t 2 w)

 5 Pm sin vf t

Making vf t 2 w successively equal to 0 and to p/2, we write

 cvf xm 5 Pm sin w (19.49)
 (k 2 mvf

2) xm 5 Pm cos w (19.50)

Squaring both members of (19.49) and (19.50) and adding, we 
have

 [(k 2 mvf
2)2 1 (cvf)

2] x2
m 5 P 2

m (19.51)

Solving (19.51) for xm and dividing (19.49) and (19.50) member by 
member, we obtain, respectively,

 
xm 5

Pm

2 (k 2 mv2
f )2 1 (cvf)

2
    tan w 5

cvf

k 2 mv2
f  

(19.52)

 Recalling from (19.4) that k/m 5 v2
n, where vn is the circular 

frequency of the undamped free vibration, and from (19.41) that 
2mvn 5 cc, where cc is the critical damping coefficient of the system, 
we write

xm

Pm/k
5

xm

dm
5

1

2 [1 2 (vf /vn)2]2 1 [2(c/cc)(vf /vn)]2  
(19.53)

 
 tan w 5

2(c/cc)(vf /vn)

1 2 (vf /vn)2  
(19.54)

19.9 Damped Forced Vibrations

Photo 19.2 The automobile suspension shown 
consists essentially of a spring and a shock 
absorber, which will cause the body of the car 
to undergo damped forced vibrations when the 
car is driven over an uneven road.

Photo 19.3 This truck is experiencing damped 
forced vibration in the vehicle dynamics test 
shown.
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1264 Mechanical Vibrations  Formula (19.53) expresses the magnification factor in terms of 
the frequency ratio vf/vn and damping factor c/cc. It can be used to 
determine the amplitude of the steady-state vibration produced by 
an impressed force of magnitude P 5 Pm sin vf t or by an impressed 
support movement d 5 dm sin vf t. Formula (19.54) defines in terms 
of the same parameters the phase difference w between the impressed 
force or impressed support movement and the resulting steady-state 
vibration of the damped system. The magnification factor has been 
plotted against the frequency ratio in Fig. 19.12 for various values of 
the damping factor. We observe that the amplitude of a forced vibra-
tion can be kept small by choosing a large coefficient of viscous 
damping c or by keeping the natural and forced frequencies far 
apart.

wf
wn

xm

Pm/k

xm

dm

1

0
0 1 2 3

2

3

4

5

c
cc

= 0

c
cc

= 0.125

c
cc

= 0.25

c
cc

= 1.00

c
cc

= 0.50

or

Fig. 19.12

*19.10 ELECTRICAL ANALOGUES
Oscillating electrical circuits are characterized by differential equa-
tions of the same type as those obtained in the preceding sections. 
Their analysis is therefore similar to that of a mechanical system, and 
the results obtained for a given vibrating system can be readily 
extended to the equivalent circuit. Conversely, any result obtained 
for an electrical circuit will also apply to the corresponding mechanical 
system.
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1265 Consider an electrical circuit consisting of an inductor of 
inductance L, a resistor of resistance R, and a capacitor of capa-
citance C, connected in series with a source of alternating volt-
age E 5 Em sin vf t (Fig. 19.13). It is recalled from elementary 
circuit theory† that if i denotes the current in the circuit and q 
denotes the electric charge on the capacitor, the drop in potential 
is L(di/dt) across the inductor, Ri across the resistor, and q/C across 
the capacitor. Expressing that the algebraic sum of the applied 
voltage and of the drops in potential around the circuit loop is 
zero, we write

 
Em sin vf t 2 L

di
dt

2 Ri 2
q

C
5 0

 
(19.55)

Rearranging the terms and recalling that at any instant the current 
i is equal to the rate of change q̇ of the charge q, we have

 
Lq̈ 1 Rq

.
1

1
C

 q 5 Em sin vf t 
(19.56)

We verify that Eq. (19.56), which defines the oscillations of the 
electrical circuit of Fig. 19.13, is of the same type as Eq. (19.47), 
which characterizes the damped forced vibrations of the mechani-
cal system of Fig. 19.10. By comparing the two equations, we can 
construct a table of the analogous mechanical and electrical 
expressions.
 Table 19.2 can be used to extend the results obtained in the 
preceding sections for various mechanical systems to their electrical 
analogues. For instance, the amplitude im of the current in the circuit 
of Fig. 19.13 can be obtained by noting that it corresponds to the 

19.10 Electrical Analogues

†See C. R. Paul, S. A. Nasar and L. E. Unnewehr, Introduction to Electrical Engineering, 
2nd ed., McGraw-Hill, New York, 1992.

L

R

C

E = Em sin wf t

Fig. 19.13

TABLE 19.2  Characteristics of a Mechanical System 
and of Its Electrical Analogue

Mechanical System Electrical Circuit

m Mass L  Inductance
c  Coefficient of viscous damping R  Resistance
k  Spring constant 1/C Reciprocal of capacitance
x  Displacement q  Charge
v  Velocity i  Current
P  Applied force E  Applied voltage
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1266 Mechanical Vibrations maximum value vm of the velocity in the analogous mechanical sys-
tem. Recalling from the first of Eqs. (19.37) that vm 5 xmvf, substi-
tuting for xm from Eq. (19.52), and replacing the constants of the 
mechanical system by the corresponding electrical expressions, we 
have

 im 5
vf Em

B
a 1

C
2 Lv2

f b
2

1 (Rvf)
2

 

 im 5
Em

B
R2 1 aLvf 2

1
Cvf
b2

 

(19.57)

The radical in the expression obtained is known as the impedance of 
the electrical circuit.
 The analogy between mechanical systems and electrical circuits 
holds for transient as well as steady-state oscillations. The oscillations 
of the circuit shown in Fig. 19.14, for instance, are analogous to 
the damped free vibrations of the system of Fig. 19.10. As far as the 
initial conditions are concerned, we should note that closing the 
switch S when the charge on the capacitor is q 5 q0 is equivalent to 
releasing the mass of the mechanical system with no initial velocity 
from the position x 5 x0. We should also observe that if a battery of 
constant voltage E is introduced in the electrical circuit of Fig. 19.14, 
closing the switch S will be equivalent to suddenly applying a force 
of constant magnitude P to the mass of the mechanical system of 
Fig. 19.10.
 The discussion above would be of questionable value if its 
only result were to make it possible for mechanics students to ana-
lyze electrical circuits without learning the elements of circuit the-
ory. It is hoped that this discussion will instead encourage students 
to apply to the solution of problems in mechanical vibrations the 
mathematical techniques they may learn in later courses in circuit 
theory. The chief value of the concept of electrical analogue, how-
ever, resides in its application to experimental methods for the 
determination of the characteristics of a given mechanical system. 
Indeed, an electrical circuit is much more easily constructed than 
is a mechanical model, and the fact that its characteristics can be 
modified by varying the inductance, resistance, or capacitance of 
its various components makes the use of the electrical analogue 
particularly convenient.
 To determine the electrical analogue of a given mechanical sys-
tem, we focus our attention on each moving mass in the system and 
observe which springs, dashpots, or external forces are applied 
directly to it. An equivalent electrical loop can then be constructed 

S

L

R

C

Fig. 19.14
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1267to match each of the mechanical units thus defined; the various loops 
obtained in that way will together form the desired circuit. Consider, 
for instance, the mechanical system of Fig. 19.15. We observe that 
the mass m1 is acted upon by two springs of constants k1 and k2 and 
by two dashpots characterized by the coefficients of viscous damping 
c1 and c2. The electrical circuit should therefore include a loop con-
sisting of an inductor of inductance L1 proportional to m1, of two 
capacitors of capacitance C1 and C2 inversely proportional to k1 and 
k2, respectively, and of two resistors of resistance R1 and R2, propor-
tional to c1 and c2, respectively. Since the mass m2 is acted upon by 
the spring k2 and the dashpot c2, as well as the force P 5 Pm sin vf t, 
the circuit should also include a loop containing the capacitor C2, the 
resistor R2, the new inductor L2, and the voltage source E 5 Em sin vf t 
(Fig. 19.16).
 To check that the mechanical system of Fig. 19.15 and the 
electrical circuit of Fig. 19.16 actually satisfy the same differential 
equations, the equations of motion for m1 and m2 will first be derived. 
Denoting, respectively, by x1 and x2 the displacements of m1 and m2 
from their equilibrium positions, we observe that the elongation of 
the spring k1 (measured from the equilibrium position) is equal to 
x1, while the elongation of the spring k2 is equal to the relative dis-
placement x2 2 x1 of m2 with respect to m1. The equations of motion 
for m1 and m2 are therefore

 m1 ẍ1 1 c1ẋ1 1 c2(ẋ1 2 ẋ2) 1 k1x1 1 k2(x1 2 x2) 5 0 (19.58)

 m2 ẍ2 1 c2(ẋ2 2 ẋ1) 1 k2(x2 2 x1) 5 Pm sin vf t (19.59)

Consider now the electrical circuit of Fig. 19.16; we denote, respec-
tively, by i1 and i2 the current in the first and second loops, and by 
q1 and q2 the integrals ei1 dt and ei2 dt. Noting that the charge on 
the capacitor C1 is q1, while the charge on C2 is q1 2 q2, we express 
that the sum of the potential differences in each loop is zero and 
obtain the following equations

L1q̈ 1 1 R1q
.

1 1 R2(q
.

1 2 q
.

2) 1
q1

C1
1

q1 2 q2

C2
5 0

 
(19.60)

 
L2q̈ 2 1 R2(q

.
2 2 q

.
1) 1

q2 2 q1

C2
5 Em sin vf 

t
 

(19.61)

We easily check that Eqs. (19.60) and (19.61) reduce to (19.58) and 
(19.59), respectively, when the substitutions indicated in Table 19.2 
are performed.

P = Pm sin wf t

k1 c1

x1

x2

c2k2

m1

m2

Fig. 19.15

E = Em sin wf t

C1

C2

R1

R2

i1

i2

L1

L2

Fig. 19.16

19.10 Electrical Analogues
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1268

SOLVING PROBLEMS
ON YOUR OWN

In this lesson a more realistic model of a vibrating system was developed by 
including the effect of the viscous damping caused by fluid friction. Viscous 

damping was represented in Fig. 19.10 by the force exerted on the moving body 
by a plunger moving in a dashpot. This force is equal in magnitude to cẋ, where 
the constant c, expressed in N ? s/m or lb ? s/ft, is known as the coefficient of vis-
cous damping. Keep in mind that the same sign convention should be used for x, 
ẋ, and ẍ.

1. Damped free vibrations. The differential equation defining this motion was 
found to be

mẍ 1 cẋ 1 kx 5 0 (19.38)

To obtain the solution of this equation, calculate the critical damping coefficient 
cc, using the formula

 cc 5 2m2k/m 5 2mvn (19.41)

where vn is the natural circular frequency of the undamped system.
 a. If c . cc (heavy damping), the solution of Eq. (19.38) is

 x 5 C1e
l1t 1 C2el2t (19.42)

where

 
l1,2 5 2

c
2m

6
B
a c

2m
b2

2
k
m  

(19.40)

and where the constants C1 and C2 can be determined from the initial conditions 
x(0) and ẋ(0). This solution corresponds to a nonvibratory motion.
 b. If c 5 cc (critical damping), the solution of Eq. (19.38) is

 x 5 (C1 1 C2t)e2vnt (19.43)

which also corresponds to a nonvibratory motion.
 c. If c , cc (light damping), the solution of Eq. (19.38) is

 x 5 x0e2(c/2m)t sin (vdt 1 f) (19.46)
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1269

where

 
vd 5 vnB

1 2 a c
cc
b2

 
(19.45)

and where x0 and f can be determined from the initial conditions x(0) and ẋ(0). 
This solution corresponds to oscillations of decreasing amplitude and of period 
td 5 2p/vd (Fig. 19.11).

2. Damped forced vibrations. These vibrations occur when a system with viscous 
damping is subjected to a periodic force P of magnitude P 5 Pm sin vf t or when it 
is elastically connected to a support with an alternating motion d 5 dm sin vf t. In 
the first case the motion is defined by the differential equation

 mẍ 1 cẋ 1 kx 5 Pm sin vf t (19.47)

and in the second case by a similar equation obtained by replacing Pm with kdm. 
You will be concerned only with the steady-state motion of the system, which is 
defined by a particular solution of these equations, of the form

 xpart 5 xm sin (vf t 2 w) (19.48)

where

 
xm

Pm/k
5

xm

dm
5

1

2 [1 2 (vf /vn)2]2 1 [2(c/cc)(vf /vn) ]2 
(19.53)

and

 
tan w 5

2(c/cc)(vf /vn)

1 2 (vf /vn)2  
(19.54)

The expression given in Eq. (19.53) is referred to as the magnification factor and 
has been plotted against the frequency ratio vf /vn in Fig. 19.12 for various values 
of the damping factor c/cc. In the problems which follow, you may be asked to 
determine one of the parameters in Eqs. (19.53) and (19.54) when the others are 
known.
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PROBLEMS

1270

 19.127 Show that in the case of heavy damping (c . cc), a body never 
passes through its position of equilibrium O (a) if it is released 
with no initial velocity from an arbitrary position or (b) if it is 
started from O with an arbitrary initial velocity.

19.128 Show that in the case of heavy damping (c . cc), a body released 
from an arbitrary position with an arbitrary initial velocity cannot 
pass more than once through its equilibrium position.

 19.129 In the case of light damping, the displacements x1, x2, x3, shown 
in Fig. 19.11 may be assumed equal to the maximum displace-
ments. Show that the ratio of any two successive maximum 
displacements xn and xn11 is a constant and that the natural 
logarithm of this ratio, called the logarithmic decrement, is

ln
xn

xn11
5

2p(c/ccr)

21 2 (c/ccr)
2

 19.130 In practice, it is often difficult to determine the logarithmic decre-
ment of a system with light damping defined in Prob. 19.129 by 
measuring two successive maximum displacements. Show that the 
logarithmic decrement can also be expressed as (1/k) ln(xn/xn1k), 
where k is the number of cycles between readings of the maximum 
displacement.

 19.131 In a system with light damping (c , cc), the period of vibration is 
commonly defined as the time interval td 5 2p/vd corresponding 
to two successive points where the displacement-time curve touches 
one of the limiting curves shown in Fig. 19.11. Show that the 
interval of time (a) between a maximum positive displacement and 
the following maximum negative displacement is 1

2td, (b) between 
two successive zero displacements is 1

2td, (c) between a maximum 
positive displacement and the following zero displacement is 
greater than 1

4td.

 19.132 The block shown is depressed 1.2 in. from its equilibrium position 
and released. Knowing that after 10 cycles the maximum displace-
ment of the block is 0.5 in., determine (a) the damping factor c/cc,
(b) the value of the coefficient of viscous damping. (Hint: See 
Probs. 19.129 and 19.130.)

9 lb

c

k = 8 lb/ft

Fig. P19.132
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1271Problems 19.133 A loaded railroad car weighing 30,000 lb is rolling at a constant 
velocity v0 when it couples with a spring and dashpot bumper sys-
tem (Fig. 1). The recorded displacement-time curve of the loaded 
railroad car after coupling is as shown (Fig. 2). Determine (a) the 
damping constant, (b) the spring constant. (Hint: Use the defini-
tion of logarithmic decrement given in 19.129.)

 19.134 A 4-kg block A is dropped from a height of 800 mm onto a 9-kg 
block B which is at rest. Block B is supported by a spring of constant 
k 5 1500 N/m and is attached to a dashpot of damping coefficient 
c 5 230 N ? s/m. Knowing that there is no rebound, determine the 
maximum distance the blocks will move after the impact.

v0

k

c

0.6

0.5

0.4

0.3

D
is

pl
ac

em
en

t 
(i

n.
)

Time (s)

0.2

0.1

0.2

(1) (2)

0.4

0.12 in.

0.5 in.

0.41 s

0.6 0.8 1
0

−0.1

−0.2

−0.3

Fig. P19.133

A

B

k c

800 mm

Fig. P19.134

 19.135 Solve Prob. 19.134 assuming that the damping coefficient of the 
dashpot is c 5 300 N ? s/m.

 19.136 The barrel of a field gun weighs 1500 lb and is returned 
into firing position after recoil by a recuperator of constant 
c 5 1100 lb ? s/ft. Determine (a) the constant k which should 
be used for the recuperator to return the barrel into firing posi-
tion in the shortest possible time without any oscillation, (b) the 
time needed for the barrel to move back two-thirds of the way 
from its maximum-recoil position to its firing position.
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1272 Mechanical Vibrations  19.137 A uniform rod of mass m is supported by a pin at A and a spring 
of constant k at B and is connected at D to a dashpot of damping 
coefficient c. Determine in terms of m, k, and c, for small oscilla-
tions, (a) the differential equation of motion, (b) the critical damp-
ing coefficient cc.

A
O

B

k = 5 lb/ft c = 0.5 lb⋅s/ft

18 in.6 in.

Fig. P19.138

k

c

A

B

D

l
2

l
2

Fig. P19.137

 19.138 A 4-lb uniform rod is supported by a pin at O and a spring at A 
and is connected to a dashpot at B. Determine (a) the differential 
equation of motion for small oscillations, (b) the angle that the rod 
will form with the horizontal 5 s after end B has been pushed 
0.9 in. down and released.

 19.139 A 1100-lb machine element is supported by two springs, each of 
constant 3000 lb/ft. A periodic force of 30-lb amplitude is applied 
to the element with a frequency of 2.8 Hz. Knowing that the coef-
ficient of damping is 110 lb ? s/ft, determine the amplitude of the 
steady-state vibration of the element.

 19.140 In Prob. 19.139, determine the required value of the constant of 
each spring if the amplitude of the steady-state vibration is to be 
0.05 in.

 19.141 In the case of the forced vibration of a system, determine the range 
of values of the damping factor c/cc for which the magnification 
factor will always decrease as the frequency ratio vf /vn increases.

 19.142 Show that for a small value of the damping factor c/cc, the maxi-
mum amplitude of a forced vibration occurs when vf  < vn and that 
the corresponding value of the magnification factor is 1

2 (c/cc).
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1273Problems 19.143 A 50-kg motor is directly supported by a light horizontal beam 
which has a static deflection of 6 mm due to the weight of the 
motor. The unbalance of the rotor is equivalent to a mass of 
100 g located 75 mm from the axis of rotation. Knowing that the 
amplitude of the vibration of the motor is 0.8 mm at a speed of 
400 rpm, determine (a) the damping factor c/cc, (b) the coeffi-
cient of damping c.

 19.144 A 15-kg motor is supported by four springs, each of constant 
45 kN/m. The unbalance of the motor is equivalent to a mass of 
20 g located 125 mm from the axis of rotation. Knowing that the 
motor is constrained to move vertically, determine the amplitude 
of the steady-state vibration of the motor at a speed of 1500 rpm, 
assuming (a) that no damping is present, (b) that the damping fac-
tor c/cc is equal to 1.3.

Fig. P19.143

Fig. P19.144 and P19.145

 19.145 A 100-kg motor is supported by four springs, each of constant 
90 kN/m, and is connected to the ground by a dashpot having a 
coefficient of damping c 5 6500 N ? s/m. The motor is constrained 
to move vertically, and the amplitude of its motion is observed to 
be 2.1 mm at a speed of 1200 rpm. Knowing that the mass of the 
rotor is 15 kg, determine the distance between the mass center of 
the rotor and the axis of the shaft.

 19.146 A counter-rotating eccentric mass exciter consisting of two rotat-
ing 400-g masses describing circles of 150-mm radius at the 
same speed but in opposite senses is placed on a machine ele-
ment to induce a steady-state vibration of the element and to 
determine some of the dynamic characteristics of the element. 
At a speed of 1200 rpm a stroboscope shows the eccentric 
masses to be exactly under their respective axes of rotation and 
the element to be passing through its position of static equilib-
rium. Knowing that the amplitude of the motion of the element 
at that speed is 15 mm and that the total mass of the system is 
140 kg, determine (a) the combined spring constant k, (b) the 
damping factor c/cc. Fig. P19.146
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1274 Mechanical Vibrations  19.147 A simplified model of a washing machine is shown. A bundle of 
wet clothes forms a mass mb of 10 kg in the machine and causes 
a rotating unbalance. The rotating mass is 20 kg (including mb) 
and the radius of the washer basket e is 25 cm. Knowing the 
washer has an equivalent spring constant k 5 1000 N/m and 
damping ratio z 5 c/cc 5 0.05 and during the spin cycle the drum 
rotates at 250 rpm, determine the amplitude of the motion and 
the magnitude of the force transmitted to the sides of the washing 
machine.

 19.148 A machine element is supported by springs and is connected to a 
dashpot as shown. Show that if a periodic force of magnitude P 5 
Pm sin vf t is applied to the element, the amplitude of the fluctuat-
ing force transmitted to the foundation is

Fm 5 PmB

1 1 [2(c/cc)(vf  
/vn) ]2

[1 2 (vf  
/vn)2]2 1 [2(c/cc)(vf  

/vn)]2

 19.149 A 200-lb machine element supported by four springs, each of con-
stant k 5 12 lb/ft, is subjected to a periodic force of frequency 
0.8 Hz and amplitude 20 lb. Determine the amplitude of the fluc-
tuating force transmitted to the foundation if (a) a dashpot with a 
coefficient of damping c 5 25 lb ? s/ft is connected to the machine 
element and to the ground, (b) the  dashpot is removed.

  *19.150 For a steady-state vibration with damping under a harmonic force, 
show that the mechanical energy dissipated per cycle by the dash-
pot is E 5 pcx2

mvf, where c is the coefficient of damping, xm is the 
amplitude of the motion, and vf is the circular frequency of the 
harmonic force.

  *19.151 The suspension of an automobile can be approximated by the 
simplified spring-and-dashpot system shown. (a) Write the dif-
ferential equation defining the vertical displacement of the mass 
m when the system moves at a speed v over a road with a sinu-
soidal cross section of amplitude dm and wave length L. (b) Derive 
an expression for the amplitude of the vertical displacement of 
the mass m.

P = Pm sin wf t

Fig. P19.148 and
P19.149

k c

m

dm

L

Fig. P19.151

e

k/2 c/2

k/2

m

mb

c/2

Frictionless
support

Fig. P19.147
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1275Problems

A

B

P = Pm sin wf t

xA

xB

Fig. P19.152

L

R

C

E
S

Fig. P19.153

  *19.152 Two blocks A and B, each of mass m, are supported as shown by 
three springs of the same constant k. Blocks A and B are connected 
by a dashpot and block B is connected to the ground by two dash-
pots, each dashpot having the same coefficient of damping c. Block 
A is subjected to a force of magnitude P 5 Pm sin vf t. Write the 
differential equations defining the displacements xA and xB of the 
two blocks from their equilibrium positions.

 19.153 Express in terms of L, C, and E the range of values of the resis-
tance R for which oscillations will take place in the circuit shown 
when switch S is closed.

 19.154 Consider the circuit of Prob. 19.153 when the capacitor C is 
removed. If switch S is closed at time t 5 0, determine (a) the 
final value of the current in the circuit, (b) the time t at which 
the current will have reached (1 2 1/e) times its final value. (The 
desired value of t is known as the time constant of the circuit.)

bee29400_ch19_1212-1287.indd Page 1275  12/16/08  12:42:28 PM user-s172bee29400_ch19_1212-1287.indd Page 1275  12/16/08  12:42:28 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1276 Mechanical Vibrations  19.155 and 19.156 Draw the electrical analogue of the mechanical 
system shown. (Hint: Draw the loops corresponding to the free 
bodies m and A.)

m

A

c

k

P = Pm sin wf t

Fig. P19.155 and  
P19.157

m

k1

k2

A

c

P = Pm sin wt

Fig. P19.156 and  
P19.158

 19.157 and 19.158 Write the differential equations defining (a) the 
displacements of the mass m and of the point A, (b) the charges 
on the capacitors of the electrical analogue.
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1277

REVIEW AND SUMMARY

This chapter was devoted to the study of mechanical vibrations, i.e., 
to the analysis of the motion of particles and rigid bodies oscillating 
about a position of equilibrium. In the first part of the chapter [Secs. 
19.2 through 19.7], we considered vibrations without damping, while 
the second part was devoted to damped vibrations [Secs. 19.8 
through 19.10].

In Sec. 19.2, we considered the free vibrations of a particle, i.e., the 
motion of a particle P subjected to a restoring force proportional to 
the displacement of the particle—such as the force exerted by a 
spring. If the displacement x of the particle P is measured from its 
equilibrium position O (Fig. 19.17), the resultant F of the forces 
acting on P (including its weight) has a magnitude kx and is directed 
toward O. Applying Newton’s second law F 5 ma and recalling that 
a 5 ẍ, we wrote the differential equation

 mẍ  1 kx 5 0 (19.2)

or, setting v2
n 5 k/m,

ẍ  1 v2
nx 5 0 (19.6)

Free vibrations of a particle

− xm

+ xm

x

P

O

+

Equilibrium

Fig. 19.17
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1278 Mechanical Vibrations The motion defined by this equation is called a simple harmonic 
motion.
 The solution of Eq. (19.6), which represents the displacement 
of the particle P, was expressed as

 x 5 xm sin (vnt 1 f) (19.10)

where xm 5 amplitude of the vibration
 vn 5 1k/m 5 natural circular frequency
 f 5 phase angle

The period of the vibration (i.e., the time required for a full cycle) 
and its natural frequency (i.e., the number of cycles per second) were 
expressed as

 
Period 5 tn 5

2p
vn  

(19.13)

 
Natural frequency 5 fn 5

1
tn

5
vn

2p  
(19.14)

The velocity and acceleration of the particle were obtained by differ-
entiating Eq. (19.10), and their maximum values were found to be

 vm 5 xmvn  am 5 xmv
2
n (19.15)

Since all the above parameters depend directly upon the natural cir-
cular frequency vn and thus upon the ratio k/m, it is essential in any 
given problem to calculate the value of the constant k; this can be 
done by determining the relation between the restoring force and the 
corresponding displacement of the particle [Sample Prob. 19.1].
 It was also shown that the oscillatory motion of the particle P 
can be represented by the projection on the x axis of the motion of 
a point Q describing an auxiliary circle of radius xm with the constant 
angular velocity vn (Fig. 19.18). The instantaneous values of the 
velocity and acceleration of P can then be obtained by projecting on 
the x axis the vectors vm and am representing, respectively, the veloc-
ity and acceleration of Q.

O

P

x

x
am = xmwn

2

vm = xmwn

wnt

wnt + f

a

v

f

Q

Q0

xm

Fig. 19.18
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1279While the motion of a simple pendulum is not truly a simple har-
monic motion, the formulas given above can be used with v2

n 5 g/l 
to calculate the period and natural frequency of the small oscillations 
of a simple pendulum [Sec. 19.3]. Large-amplitude oscillations of a 
simple pendulum were discussed in Sec. 19.4.

The free vibrations of a rigid body can be analyzed by choosing an 
appropriate variable, such as a distance x or an angle u, to define the 
position of the body, drawing a free-body-diagram equation to express 
the equivalence of the external and effective forces, and writing an 
equation relating the selected variable and its second derivative [Sec. 
19.5]. If the equation obtained is of the form

 ẍ 1 v2
nx 5 0  or  ü 1 v2

nu 5 0 (19.21)

the vibration considered is a simple harmonic motion and its period 
and natural frequency can be obtained by identifying vn and substi-
tuting its value into Eqs. (19.13) and (19.14) [Sample Probs. 19.2 
and 19.3].

The principle of conservation of energy can be used as an alternative 
method for the determination of the period and natural frequency 
of the simple harmonic motion of a particle or rigid body [Sec. 19.6]. 
Choosing again an appropriate variable, such as u, to define the posi-
tion of the system, we express that the total energy of the system 
is conserved, T1 1 V1 5 T2 1 V2, between the position of maxi-
mum displacement (u1 5 um) and the position of maximum velocity 
(u̇2 5  u̇m). If the motion considered is simple harmonic, the two 
members of the equation obtained consist of homogeneous quadratic 
expressions in um and u̇m, respectively.† Substituting u̇m 5  umvn in 
this equation, we can factor out u2

m and solve for the circular frequency 
vn [Sample Prob. 19.4].

In Sec. 19.7, we considered the forced vibrations of a mechanical 
system. These vibrations occur when the system is subjected to a 
periodic force (Fig. 19.19) or when it is elastically connected to a 
support which has an alternating motion (Fig. 19.20). Denoting by vf 
the forced circular frequency, we found that in the first case, the 
motion of the system was defined by the differential equation

 mẍ 1 kx 5 Pm sin vf t (19.30)

and that in the second case it was defined by the differential equation

 mẍ 1 kx 5 kdm sin vf t (19.31)

The general solution of these equations is obtained by adding a par-
ticular solution of the form

 xpart 5 xm sin vf t (19.32)

Simple pendulum

Free vibrations of a rigid body

Using the principle of conservation 
of energy

Forced vibrations

Review and Summary

†If the motion considered can only be approximated by a simple harmonic motion, such as 
for the small oscillations of a body under gravity, the potential energy must be approximated 
by a quadratic expression in um. 
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1280 Mechanical Vibrations

to the general solution of the corresponding homogeneous equa-
tion. The particular solution (19.32) represents a steady-state vibra-
tion of the system, while the solution of the homogeneous equation 
represents a transient free vibration which can generally be 
neglected.
 Dividing the amplitude xm of the steady-state vibration by Pm/k 
in the case of a periodic force, or by dm in the case of an oscillating 
support, we defined the magnification factor of the vibration and 
found that

Magnification factor 5
xm

Pm/k
5

xm

dm
5

1
1 2 (vf 

/vn)2 
(19.36)

According to Eq. (19.36), the amplitude xm of the forced vibration 
becomes infinite when vf 5 vn, i.e., when the forced frequency is 
equal to the natural frequency of the system. The impressed force or 
impressed support movement is then said to be in resonance with 
the system [Sample Prob. 19.5]. Actually the amplitude of the vibra-
tion remains finite, due to damping forces.

In the last part of the chapter, we considered the damped vibrations 
of a mechanical system. First, we analyzed the damped free vibra-
tions of a system with viscous damping [Sec. 19.8]. We found that 
the motion of such a system was defined by the differential 
equation

 mẍ 1 cẋ 1 kx 5 0 (19.38)

Damped free vibrations

x
Equilibrium

P = Pm sin wf t

Fig. 19.19

Equilibrium
x

dm
dm sin wf t

wf t
wf t = 0

Fig. 19.20
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1281Review and Summarywhere c is a constant called the coefficient of viscous damping. Defin-
ing the critical damping coefficient cc as

 
cc 5 2m  

A
k
m

5 2mvn 
(19.41)

where vn is the natural circular frequency of the system in the 
absence of damping, we distinguished three different cases of damp-
ing, namely, (1) heavy damping, when c . cc; (2) critical damping, 
when c 5 cc; and (3) light damping, when c , cc. In the first two 
cases, the system when disturbed tends to regain its equilibrium 
position without any oscillation. In the third case, the motion is vibra-
tory with diminishing amplitude.

In Sec. 19.9, we considered the damped forced vibrations of a 
mechanical system. These vibrations occur when a system with vis-
cous damping is subjected to a periodic force P of magnitude P 5 
Pm sin vf t or when it is elastically connected to a support with an 
alternating motion d 5 dm sin vf t. In the first case, the motion of 
the system was defined by the differential equation

 mẍ 1 cẋ 1 kx 5 Pm sin vf t (19.47)

and in the second case by a similar equation obtained by replacing Pm 
by kdm in (19.47).
 The steady-state vibration of the system is represented by a 
particular solution of Eq. (19.47) of the form

 xpart 5 xm sin (vf t 2 w) (19.48)

Dividing the amplitude xm of the steady-state vibration by Pm/k in the 
case of a periodic force, or by dm in the case of an oscillating support, 
we obtained the following expression for the magnification factor:

xm

Pm/k
5

xm

dm
5

1

2 [1 2 (vf 
/vn)2]2 1 [2(c/cc) (vf 

/vn) ]2  
(19.53)

where vn 5  1k/m 5 natural circular frequency of undamped 
system

 cc 5 2mvn 5 critical damping coefficient
 c/cc 5 damping factor

We also found that the phase difference w between the impressed 
force or support movement and the resulting steady-state vibration 
of the damped system was defined by the relation

 
tan w 5

2(c/cc)(vf 
/vn)

1 2 (vf 
/vn)

2  
(19.54)

The chapter ended with a discussion of electrical analogues [Sec. 
19.10], in which it was shown that the vibrations of mechnical sys-
tems and the oscillations of electrical circuits are defined by the same 
differential equations. Electrical analogues of mechanical systems 
can therefore be used to study or predict the behavior of these 
systems.

Damped forced vibrations

Electrical analogues
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1282

REVIEW PROBLEMS

1282

 19.159 A thin square plate of side a can oscillate about an axis AB located 
at a distance b from its mass center G. (a) Determine the period 
of small oscillations if b 5 1

2 a. (b) Determine a second value of b
for which the period of small oscillations is the same as that found 
in part a.

 19.160 A 150-kg electromagnet is at rest and is holding 100 kg of scrap 
steel when the current is turned off and the steel is dropped.  
Knowing that the cable and the supporting crane have a total stiff-
ness equivalent to a spring of constant 200 kN/m, determine 
(a) the frequency, the amplitude, and the maximum velocity of the 
resulting motion, (b) the minimum tension which will occur in the 
cable during the motion, (c) the velocity of the magnet 0.03 s after 
the current is turned off. 

Fig. P19.159

A
a

b

a

BG

A

B

Fig. P19.160

rA = 8 in.

rB = 6 in.

A

B

C

Fig. P19.161

 19.161 Disks A and B weigh 30 lb and 12 lb, respectively, and a small 5-lb 
block C is attached to the rim of disk B. Assuming that no slipping 
occurs between the disks, determine the period of small oscilla-
tions of the system.
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1283Review Problems 19.162 A period of 6.00 s is observed for the angular oscillations of a 4-oz 
gyroscope rotor suspended from a wire as shown. Knowing that a 
period of 3.80 s is obtained when a 1.25-in.-diameter steel sphere 
is suspended in the same fashion, determine the centroidal radius 
of gyration of the rotor. (Specific weight of steel 5 490 lb/ft3.)

k

A

B

Fig. P19.163

DC

B

A

2
L

L

b

2
L

Fig. P19.164

 19.163 A 1.5-kg block B is connected by a cord to a 2-kg block A, which 
is suspended from a spring of constant 3 kN/m. Knowing that the 
system is at rest when the cord is cut, determine (a) the  frequency, 
the amplitude, and the maximum velocity of the resulting motion, 
(b) the minimum tension that will occur in the spring during 
the motion, (c) the velocity of block A 0.3 s after the cord has 
been cut.

 19.164 Two rods, each of mass m and length L, are welded together to 
form the assembly shown. Determine (a) the distance b for which 
the frequency of small oscillations of the assembly is  maximum, 
(b) the corresponding maximum frequency.

Fig. P19.162
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1284 Mechanical Vibrations  19.165 As the rotating speed of a spring-supported motor is slowly 
increased from 200 to 500 rpm, the amplitude of the vibration due 
to the unbalance of the rotor is observed to decrease steadily from 
8 mm to 2.5 mm. Determine (a) the speed at which resonance 
would occur, (b) the amplitude of the steady-state vibration at a 
speed of 100 rpm.

 19.166 The compressor shown has a mass of 250 kg and operates at 
2000 rpm. At this operating condition undesirable vibration 
occurs when the compressor is attached directly to the ground. 
To reduce the vibration of the concrete floor that is resting on 
clay soil, it is proposed to isolate the compressor by mounting it 
on a square concrete block separated from the rest of the floor 
as shown. The density of concrete is 2400 kg/m3 and the spring 
constant for the soil is found to be 80 3 106 N/m. The geometry 
of the compressor leads to choosing a block that is 1.5 m by 
1.5 m. Determine the depth h that will reduce the force trans-
mitted to the ground by 75%.

Asphalt fillerAsphalt filler

Concrete block

h

Floor

1.5 m

Floor

clay soil

Compressor

Fig. P19.166

 19.167 If either a simple or a compound pendulum is used to determine 
experimentally the acceleration of gravity g, difficulties are encoun-
tered. In the case of the simple pendulum, the string is not truly 
weightless, while in the case of the compound pendulum, the exact 
location of the mass center is difficult to establish. In the case of 
a compound pendulum, the difficulty can be eliminated by using 
a reversible, or Kater, pendulum. Two knife edges A and B are 
placed so that they are obviously not at the same distance from 
the mass center G, and the distance l is measured with great preci-
sion. The position of a counterweight D is then adjusted so that the 
period of oscillation t is the same when either knife edge is used. 
Show that the period t obtained is equal to that of a true simple 
pendulum of length l and that g 5 4p2l/t2.

D

l

G

B

A

Fig. P19.167
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1285Review Problems 19.168 A 400-kg motor supported by four springs, each of constant 
150 kN/m, is constrained to move vertically. Knowing that the 
unbalance of the rotor is equivalent to a 23-g mass located at a 
distance of 100 mm from the axis of rotation, determine for a 
speed of 800 rpm (a) the amplitude of the fluctuating force trans-
mitted to the foundation, (b) the amplitude of the vertical motion 
of the motor.

Fig. P19.168

 19.169 Solve Prob. 19.168, assuming that a dashpot of constant c 5 
6500 N ? s/m is introduced between the motor and the ground.

 19.170 A small ball of mass m attached at the midpoint of a tightly 
stretched elastic cord of length l can slide on a horizontal plane. 
The ball is given a small displacement in a direction perpendicular 
to the cord and released. Assuming the tension T in the cord to 
remain constant, (a) write the differential equation of motion of 
the ball, (b) determine the period of vibration.

2
l

2
l

x
TT

Fig. P19.170

bee29400_ch19_1212-1287.indd Page 1285  12/16/08  12:43:30 PM user-s172bee29400_ch19_1212-1287.indd Page 1285  12/16/08  12:43:30 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0



1286

COMPUTER PROBLEMS

 19.C1 By expanding the integrand in Eq. (19.19) into a series of even 
powers of sin f and integrating, it can be shown that the period of a simple 
pendulum of length l can be approximated by the expression

tn 5 2p 
A

l
g

 c 1 1 a1
2
b2

c2 1 a1 3 3
2 3 4

b2

c4 1 a1 3 3 3 5
2 3 4 3 6

b2

c6 1 p d

where c 5 sin 12 
um and um is the amplitude of the oscillations. Use compu-

tational software to calculate the sum of the series in brackets, using suc-
cessively 1, 2, 4, 8, and 16 terms, for values of um from 30 to 120° using 30° 
increments.

 19.C2 The force-deflection equation for a class of non-linear springs fixed 
at one end, is F 5 5x1/n where F is the magnitude, expressed in newtons, 
of the force applied at the other end of the spring and x is the deflection 
expressed in meters. Knowing that a block of mass m is suspended from the 
spring and is given a small downward displacement from its equilibrium 
position, use computational software to calculate and plot the frequency of 
vibration of the block for values of m equal to 0.2, 0.6, and 1.0 kg and values 
of n from 1 to 2. Assume that the slope of the force-deflection curve at the 
point corresponding to F 5 mg can be used as an equivalent spring 
constant.

 19.C3 A machine element supported by springs and connected to a dash-
pot is subjected to a periodic force of magnitude P 5 Pm sin vf t. The trans-
missibility Tm of the system is defined as the ratio Fm/Pm of the maximum 
value Fm of the fluctuating periodic force transmitted to the foundation to 
the maximum value Pm of the periodic force applied to the machine ele-
ment. Use computational software to calculate and plot the value of Tm for 
frequency ratios vf /vn equal to 0.8, 1.4, and 2.0 and for damping factors c/cc 
equal to 0, 1, and 2. (Hint: Use the formula given in Prob. 19.148.)

P = Pm sin wf t

Fig. P19.C3
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1287Computer Problems 19.C4 A 15-kg motor is supported by four springs, each of constant 
60 kN/m. The unbalance of the motor is equivalent to a mass of 20 g located 
125 mm from the axis of rotation. Knowing that the motor is constrained 
to move vertically, use computational software to calculate and plot the 
amplitude of the vibration and the maximum acceleration of the motor for 
motor speeds of 1000 to 2500 rpm.

 19.C5 Solve Prob. 19.C4, assuming that a dashpot having a coefficient of 
damping c 5 2.5 kN · s/m has been connected to the motor base and to 
the ground.

 19.C6 A small trailer and its load have a total mass of 250 kg. The trailer 
is supported by two springs, each of constant 10 kN/m, and is pulled over 
a road, the surface of which can be approximated by a sine curve with an 
amplitude of 40 mm and a wave length of 5 m (i.e., the distance between 
successive crests is 5 m and the vertical distance from crest to trough is 
80 mm). (a) Neglecting the mass of the wheels and assuming that the wheels 
stay in contact with the ground, use computational software to calculate and 
plot the amplitude of the vibration and the maximum vertical acceleration 
of the trailer for speeds of 10 to 80 km/h. (b) Determine the range of values 
of the speed of the trailer for which the wheels will lose contact with the 
ground.

5 m

v

Fig. P19.C6
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1289

  Appendix

  Fundamentals of Engineering 
Examination  
 Engineers are required to be licensed when their work directly affects 
the public health, safety, and welfare. The intent is to ensure that 
engineers have met minimum qualifications involving competence, 
ability, experience, and character. The licensing process involves an 
initial exam, called the  Fundamentals of Engineering Examination,
professional experience, and a second exam, called the  Principles and 
Practice of Engineering.  Those who successfully complete these 
requirements are licensed as a  Professional Engineer.  The exams are 
developed under the auspices of the  National Council of Examiners 
for Engineering and Surveying.  
    The first exam, the  Fundamentals of Engineering Examination,
can be taken just before or after graduation from a four-year accred-
ited engineering program. The exam stresses subject material in a 
typical undergraduate engineering program, including statics and 
dynamics. The topics included in the exam cover much of the mate-
rial in this book. The following is a list of the main topic areas, with 
references to the appropriate sections in this book. Also included are 
problems that can be solved to review this material. 

Concurrent Force Systems (2.2–2.9; 2.12–2.14)    
 Problems: 2.33, 2.35, 2.36, 2.37, 2.73, 2.83, 2.92, 2.93, 2.97   

  Vector Forces (3.4–3.11)    
 Problems: 3.16, 3.18, 3.25, 3.31, 3.38, 3.40   

  Equilibrium in Two Dimensions (2.11; 4.1–4.7)    
 Problems: 4.5, 4.13, 4.14, 4.17, 4.29, 4.38, 4.66, 4.75   

  Equilibrium in Three Dimensions (2.15; 4.8–4.9)    
 Problems: 4.101, 4.104, 4.103, 4.106, 4.115, 4.117, 4.127, 
4.132, 4.140   

  Centroid of an Area (5.2–5.7)    
 Problems: 5.6, 5.18, 5.29, 5.35, 5.40, 5.56, 5.58, 5.99, 5.103, 
5.104, 5.125   

  Analysis of Trusses (6.2–6.7)    
 Problems: 6.3, 6.4, 6.33, 6.43, 6.44, 6.56   

  Equilibrium of Two-Dimensional Frames (6.9–6.11)    
 Problems: 6.76, 6.80, 6.87, 6.91, 6.92   
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1290 Fundamentals of Engineering Examination   Shear and Bending Moment (7.3–7.6)    
 Problems: 7.22, 7.25, 7.31, 7.36, 7.45, 7.49, 7.70, 7.83   

  Friction (8.2–8.5; 8.10)    
 Problems: 8.11, 8.15, 8.21, 8.30, 8.50, 8.53, 8.101,
8.104, 8.105   

  Moments of Inertia (9.2–9.10)    
 Problems: 9.5, 9.31, 9.32, 9.33, 9.77, 9.78, 9.84, 9.89, 
9.101, 9.103      

Kinematics (11.1–11.6; 11.9–11.14, 15.2–15.8)
Problems: 11.4, 11.5, 11.34, 11.61, 11.69, 11.97, 15.6, 15.30, 
15.40, 15.57, 15.65, 15.83, 15.118, 15.141

Force, Mass, and Acceleration (12.1–12.6, 16.2–16.8)
Problems: 12.5, 12.6, 12.28, 12.30, 12.37, 12.46, 12.51, 
12.56, 16.3, 16.5, 16.11, 16.25, 16.30, 16.50, 16.58, 16.63, 
16.76, 16.85, 16.138

Work and Energy (13.1–13.6; 13.8; 17.1–17.7)
Problems: 13.5, 13.7, 13.15, 13.22, 13.39, 13.41, 13.50, 13.62, 
13.64, 13.68, 17.1, 17.2, 17.18, 17.28

Impulse and Momentum (13.10–13.15; 17.8–17.12)
Problems: 13.121, 13.126, 13.129, 13.134, 13.146, 13.157, 
13.159, 13.170, 17.53, 17.59, 17.69, 17.74, 17.96, 17.102, 17.106

Vibration (19.1–19.3; 19.5–19.7)
Problems: 19.1, 19.3, 19.11, 19.17, 19.23, 19.27, 19.50, 19.55, 
19.66, 19.76, 19.83, 19.85, 19.101, 19.105, 19.115

Friction (Problems involving friction occur in each of the above 
subjects)
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relationships among, 1061
relative, 683, 977
tangential component of, 666

Acceleration-time curve, 632
Action, lines of, 16, 21, 75, 82, 309
Addition

of couples, 111
of vectors, 18–20

Addition of forces
by summing X and Y components, 

30–35
in space, concurrent, 49–57, 66
parallelogram law for, 3

Addition of vectors, 1289
Allowable error, 791
Analysis of a frame, 316–317, 347
Analysis of structures, 284–351

computer problems, 350–351
frames and machines, 316–344, 347
introduction, 286–287
review problems, 348–349
summary, 345–347

Analysis of trusses, 287–315, 345–346
by the method of joints, 290–292, 

345–346
by the method of sections, 

304–305, 346
Analytic solutions, 30, 40
Angle formed by two vectors, 1293
Angles

lead, 431, 461
of friction, 415–416, 460
of repose, 415

Angular acceleration, 917, 920, 988, 
990, 1052

in rotation about a fixed axis, 960, 
1011–1012

Angular coordinates, 919
Angular impulses, 874
Angular momentum couple, 1104, 

1155, 1157
Angular momentum of a rigid body in 

three dimensions, 1147–1151, 1201
constrained to rotate about a fixed point, 

1151, 1202
reduction of the momenta of the particles 

of a rigid body to a momentum 
vector and a couple, 1150

Angular momentum of a system of 
particles, 859–860, 905

Angular momentum, 1137
components of, 1173
conservation of, 723–724, 727, 747–748, 

787, 866, 879, 1106, 1110, 1192
of a particle, 721–722, 747
rate of change of, 747
of a system of particles about its mass 

center, 862–864, 906
Angular velocity, 917, 920, 988–990, 1003, 

1154–1157
constant, 1216
in rotation about a fixed axis, 1011–1012

Answers, checking carefully, 13
Apogee, 737
Applications, of the principle of virtual 

work, 562–564
Applied loads, 323
Applied science, 2
Approximate solutions, 633, 1229

to the simple pendulum, 1218
Arbitrary axes, mass products of inertia, 

moments of inertia of a body with 
respect to, 1316–1317, 1331

Arbitrary shapes, determination of the 
principal axes and principal 
moments of inertia of a body of, 
535–546

Archimedes, 2
Area, units of (SI units), 5–8
Areal velocity, 723–724, 747–748
Areas and lines, 220–257. See also 

Moments of inertia of areas
center of gravity of a two-dimensional 

body, 220–221, 274
centroids of, 222–223, 274
composite plates and wires, 226–236
determination of centroids by 

integration, 236–238, 275

Index

1293

Areas and lines—Cont.
distributed loads on beams, 248, 276
first moments of, 223–226, 274
forces on submerged surfaces, 249–257
theorems of Pappus-Guldinus, 

238–247, 276
Areas, symmetric and unsymmetric, 224
Aristotle, 2
Associative addition, 20
Associative addition, of vectors, 1289
Associative property, 94
Assumptions, 363–364
Astoria Bridge, 284–285
Average impulsive force, 812
Average power, 770
Average velocity, 603–604
Axes

centroidal, 483, 490, 498, 514
of a wrench, 134, 136
of inertia, principal, 498–506, 533–534, 

549, 552
projection of a vector on, 95, 148

Axes, centroidal, 1297
Axes of inertia, 1149, 1156–1157, 

1173, 1201
principal, 1318–1320, 1322–1324

Axes of rotation, instantaneous, 946, 985, 
998, 1015

Axial forces, 354–355, 357, 403
Axisymmetrical bodies, 1190–1191, 1205
Axle friction, 439–441, 445

B
Balance, 1169
Ball-and-socket joints, 995–997
Beams

cantilever, 404
forces in, 362–383
relations among load, shear, and bending 

moment, 373–383, 404
shear and bending moment in a beam, 

363–365, 404
shear and bending-moment diagrams, 

365–373
shear and bending-moment in, 

363–365, 404
simply supported, 404
various types of loading and support, 

362–363
Bearings, 1174–1175

journal, 439–441, 445
thrust, 441–442, 445

Belt friction, 449–459
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Bending, 354–355
pure, 473

Bending moment, 355, 357
diagrams, 365–373, 379
in a beam, 363–365, 403–404

Binormal, 667, 672, 685
Body centrode, 948
Body cone, 985
Body of revolution, 238–239
Bound vectors, 17
Bowling ball, 1052, 1151

C
Cables

catenary, 395–402, 405
flexibility of, 383, 404
forces in, 383–402
parabolic, 385–395, 405
with concentrated loads, 383–384
with distributed loads, 384–385, 405

Cantilever beams, 404
Catenary, 395–402, 405
Center of gravity, 861
Center of rotation, instantaneous, 918, 

946–956
Centers of gravity, 231–236

of a three-dimensional body, 75, 258–260, 
275–276

of a two-dimensional body, 
220–221, 274

Central force
motion under, 723–724, 727, 747–748
trajectory of a particle under, 734

Central impact, 821–827, 847–848, 1119
direct, 821–824, 847–848
oblique, 824–827

Centrifugal force, 699, 1054
Centroidal axes, 483, 498, 514, 1297

parallel, 490, 522
Centroidal frame of reference

motion relative to, 863
using, 872–873

Centroidal mass moments of 
inertia, 1148

Centroidal rotation, 1030, 1054
Centroids, 220

determination of, 228, 231
by integration, 236–238, 261–273, 

275, 277
of a volume, 258–260, 265, 275–276
of areas and lines, 222–223, 

225–226, 274
Centroids and centers of gravity, 

220–283
areas and lines, 220–257
computer problems, 281–283
introduction, 220
review problems, 278–280
summary, 274–277
volumes, 258–273

Change. See also Rate of change of a 
vector

in potential energy, 782, 786
Characteristic equations, 1261
Chemical energy, 786
Circle of friction, 445
Circular frequency, 1262

forced, 1250
natural, 1215, 1222

Circular orbits, 737, 916
Circular permutations, 97
Coefficient, of critical damping, 1261
Coefficients

of restitution, 754, 848, 1125
of viscous damping, 1261, 1268

Coefficients of friction, 412–414
Coinciding point, acceleration of, 977
Collar bearings, 441
Collisions, 866, 879
Columbia River, 218–219, 284–285
Comets, 744
Commutative addition, of vectors, 1289
Commutative products, of vectors, 

1291–1292
Commutative property, 78

in addition, 18
Complementary acceleration. See Coriolis 

acceleration
Complementary function, 1251
Complete constraints, 306
Components. See Oblique components; 

Rectangular components; Scalar 
components; Vector components

Composite bodies, 261, 277, 
1299–1316, 1331

common geometric shapes, 1300
computing, 1306
moments of inertia of, 516–532, 

1299–1316, 1331
Composite plates and wires, 226–236
Compound pendulum, 1237
Compound trusses, 305–306
Compression, 345–346, 354–355
Computation, anticipating errors in, 13
Computer problems

analysis of structures, 350–351
distributed forces

centroids and centers of gravity, 
281–283

moments of inertia, 555
equilibrium of rigid bodies, 216–217
forces in beams and cables, 408–409
friction, 467–469
method of virtual work, 598–599
rigid bodies, in equivalent systems of 

forces, 154–155
statics of particles, 69–70
energy and momentum methods, 

852–853, 1142–1143
forces and accelerations, 1079
kinematics of particles, 688–689
kinematics of rigid bodies, 1021–1023

Computer problems—Cont.
kinetics of rigid bodies in three 

dimensions, 1209–1211
mechanical vibrations, 1286–1287
Newton’s second law, 753
systems of particles, 912–913

Computer, hard disk, 1028
Computing, composite bodies, 1306
Concentrated loads, 248, 362

cables with, 383–384
equivalent, 250

Concentric circles, 916
Concurrent forces, 126

in space, addition of, 49–57, 66
resultant of several, 20–21, 65

Conditions, necessary and sufficient, 319
Conic sections, 735–736
Conservation of energy, 785–786, 790, 

832, 846, 877–879, 1086–1087, 
1091–1092, 1136

for a system of particles, 769, 874, 907
Conservation of momentum, 832, 878

angular, 723–724, 747–748, 787, 790, 
879, 1106–1118, 1138

linear, 695, 754, 866, 879
for a system of particles, 864–872, 906

Conservative forces, 784–785, 792, 
845, 1240

Constant force in rectilinear motion, work 
of, 758

Constant of gravitation, 4, 748
Constrained plane motion, 1052–1073, 1075

noncentroidal rotation, 1053–1054
rotation about a fixed point, 1203

Constraints, 159
complete, 306, 310, 346
improper, 165, 190, 196, 211–212, 310
partial, 164–181, 190, 196, 211–212, 310

Conversion from one system of units to 
another, 10–11

units of force, 10–11
units of length, 10
units of mass, 11

Conveyor belts, 893
Coordinates, 2
Coplanar forces, 126–127

resultant of several, 65
Coplanar vectors, 20
Coriolis acceleration, 918, 977, 998–999, 

1004, 1015–1017
Coriolis, Gustave-Gaspard, 974
Cosines. See Direction cosines
Coulomb friction, 1260
Coulomb friction. See Dry friction
Counters, 314
Couple vectors, 149
Couples

addition of, 111
applied to a beam, 369
equivalent, 109–111, 116, 149
moment of, 108, 149
representing by vectors, 111–112
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Couples—Cont.
angular momentum, 1104, 1155, 1157
constant, 1084
inertial, 1075
magnitude of, 1105
moment of, 1074, 1135, 1191
work of, 1093

Critical damping, 1261, 1268, 1281
coefficient of, 1261, 1268

Cross products, 78, 88, 1290
Curvilinear motion, 641
Curvilinear motion of particles, 

641–681
derivatives of vector functions, 

643–645, 684
motion relative to a frame in translation, 

646–664, 684
position vector velocity and acceleration, 

641–642, 683–684
radial and transverse components, 

668–681, 685
rectangular components of velocity and 

acceleration, 645–646, 684
tangential and normal components, 

665–667, 685
Customary units (U.S.), 9–10, 12
Cylindrical coordinates, 669, 673

D
d’Alembert, 2
d’Alembert, Jean le Rond, 1029
d’Alembert’s principle, 1053

extension to the motion of a rigid body 
in three dimensions, 1166–1167, 
1203–1204

plane motion of rigid bodies and, 
1029–1030, 1075

Damped free vibrations, 1260–1262, 
1268–1269, 1280–1281

critical damping, 1261
heavy damping, 1261
light damping, 1261–1262

Damped vibrations, 1260–1276
electrical analogues, 1264–1276, 1281

Damping factor, 1262, 1269
Dams, 218–219
Dashpots, 1267
Definite integrals, 607
Deflection, 793
Deformable bodies, mechanics of, 2
Deformation, 1119

period of, 826
Deformations, 77
Degrees of freedom, 581
Derivatives of vector functions, 

643–645, 684
Derived units, 5
Determinate trusses. See Statically 

determinate trusses
Determination of the motion of a particle, 

607–616, 682

Diagrams, drawing free-body, 704, 812–813, 
833, 924

Diagrams, shear and bending-moment, 
365–373

Diesel engines, 914
Differential, exact, 785
Direct central impact, 821–824, 847–848

perfectly elastic impact, 823, 848
perfectly plastic impact, 823, 848

Direct precession, 1188
Direction cosines, 65–66
Disk clutches, 441, 445
Disk friction, 441–442, 445
Displacement, 558

defining, 756–757, 984
finite, 578–579, 593, 758
measuring, 1232
virtual, 592
work corresponding to, 843

Distributed forces
centroids and centers of gravity, 

220–283
areas and lines, 220–257
computer problems, 281–283
introduction, 220
review problems, 278–280
summary, 274–277
volumes, 258–273

moments of inertia, 470–555
computer problems, 555
introduction, 470–473
moments of inertia of areas, 

473–511
moments of inertia of masses, 512–546, 

550–552
review problems, 553–554
summary, 547–552

Distributed loads, 362
cables with, 384–385, 405
on beams, 248, 252, 276

Distributive products, of vectors, 1291
Distributive property, 78
Diverted flows, 893
Dot product, of two vectors, 1292
Dot product. See Scalar product
Double integration, 236
Dry friction, 1260

laws of, 412–414, 421
problems involving, 416–429, 

460–461
solving problems with, 704

Dynamic equilibrium, 699–720, 746, 
1031, 1075

Dynamic reactions, 1169, 1171, 1175
Dynamics, introduction to, 602–603

E
Earthquake mitigation, 1212–1213
Eccentric impact, 821, 1119–1134, 1138
Eccentricity, 735
Effective forces, 857, 1029, 1038, 1075

Efficiency, 764
in problem solving, 324
mechanical, 764
mechanical, of real machines, 

564–577, 593
power and, 763–782, 845

Elastic force, 783, 793
Elastic forces, 594
Elastic impacts, 823–824, 834, 848
Electrical analogues to damped vibrations, 

1264–1276, 1281
characteristics of a mechanical system 

and of its electrical analogue, 1265
Electrical energy, 786
Electrical oscillations, 1265
Elevations, 389–390
Ellipsoid of inertia, 533–534, 552, 1318
Elliptic integrals, 1219

tables of, 1219
Elliptic trajectories, 736–737, 740–741
Empiricism, 2
End bearings, 441
Energy and momentum methods, 754–853, 

1080–1143
applications of the principle of work and 

energy, 762–763, 845
computer problems, 852–853, 

1142–1143
conservation of angular momentum, 

1106–1118, 1138
conservation of energy, 785–786, 846, 

877–879, 1086–1087, 1136, 1192
conservative forces, 784–785, 845
direct central impact, 821–824, 

847–848
eccentric impact, 1119–1134, 1138
impact, 821
impulsive motion, 809–820, 847, 

1119, 1138
introduction, 756, 1082
kinetic energy in rotation, 1136
kinetic energy of a particle, principle 

of work and energy, 760–761, 
844–845

kinetic energy of a rigid body in plane 
motion, 1084–1085, 1088, 1135

motion under a conservative central 
force, application to space 
mechanics, 787–806, 846

motion under a gravitational force, 846
oblique central impact, 824–827
potential energy, 782–784, 845
power, 1087–1102, 1136
power and efficiency, 763–782, 845
principle of impulse and momentum, 

806–808, 846–847
principle of impulse and momentum for 

the plane motion of a rigid body, 
1103–1105, 1136–1138

principle of work and energy for a rigid 
body, 1082–1083, 1135

problems involving, 827–842
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Energy and momentum methods—Cont.
problems involving energy and 

momentum, 827–842
review problems, 849–851, 1139–1141
summary, 843–848, 1135–1138
systems of rigid bodies, 1085–1086, 

1106, 1136
using the three fundamental methods of 

kinetic analysis, 848
work of a couple, 1135
work of a force, 756–760, 843
work of forces acting on a rigid body, 

1083–1084, 1135
Energy, potential, 558, 580, 594
Energy. See also Chemical energy; 

Electrical energy; Kinetic energy; 
Mechanical energy; Potential 
energy; Thermal energy; Total 
energy; Work-energy principle

in the Fundamentals of Engineering 
Examination, 1333

summing kinetic and potential, 792
Engines

diesel, 914
jet, 887, 893, 908

Equations
characteristic, 1261
for free-body diagrams, 1031, 1038, 

1075, 1190, 1204
homogeneity of, 1251
of a quadric surface, 1317

Equations defining the rotation of a 
rigid body about a fixed axis, 917, 
922–932

uniform rotation, 922
uniformly accelerated rotation, 922

Equations of motion, 697–698, 746, 
1033–1037, 1057, 1170, 1172, 
1230, 1233

free-body diagrams for, 1031, 1075, 1204
radial and transverse components, 

722–723, 747
rectangular components, 698
for a rigid body, 1201
tangential and normal components, 698

Equilibrium, 16
computer problems, 216–217
equations of, 37, 210, 309, 368, 

416–417
free-body diagrams, 159, 210
introduction, 158
of a three-force body, 182–188, 211
of a two-force body, 181–182, 211
of rigid bodies, 156–217
review problems, 213–215
stability of, 582–591, 594
summary, 210–212

Equilibrium, dynamic, 699–720, 746, 
1031, 1075

Equilibrium in three dimensions, 189–209, 
211–212

of a rigid body in three dimensions, 189

Equilibrium in three dimensions—Cont.
reactions at supports and connections 

for a three-dimensional structure, 
189–209

Equilibrium in two dimensions, 160–188, 
210–211

improper constraints, 211
of a rigid body in two dimensions, 162–163
of a three-force body, 182–188, 211
of a two-force body, 181–182, 211
reactions at supports and connections for a 

two-dimensional structure, 160–161
statically indeterminate reactions, 

partial constraints, 164–181, 211
Equilibrium of a particle, 35–36

in space, 57–63, 66
problems involving, 36–45

Equipollent systems of forces, 858, 862, 
886, 1029, 1074, 1167

Equipollent systems of vectors, 125
Equivalent couples, 109–111, 116, 149
Equivalent forces, principle of 

transmissibility in, 75–77, 146
Equivalent systems of forces, 125, 146, 150
Error, allowable, 791
Errors in computation, anticipating, 13
Escape velocity, 693, 737–738, 749
Euler, Leonhard, 1166
Euler’s equations of motion, extension 

of d’Alembert’s principle to the 
motion of a rigid body in three 
dimensions, 1166–1167, 1203–1204

Exact differential, 785
Exact solution, to the simple pendulum, 

1219–1228
Examination preparation. See Fundamentals 

of Engineering Examination
Experimental methods, 1266
Explosions, 866
External forces, 74–75, 146, 364, 857–863, 

866, 905, 1024, 1029–1030, 
1085, 1135

work done by, 1083

F
Fans. See also Propellers; Wind turbines

steady stream of particles from, 888, 893
Figure skater, 1106
Final momentum, 807
Finite displacement, work of a force 

during, 578–579, 593
Finite displacements, 758
Fink trusses, 305
Firing angle, 652
First moments, 220, 274, 473, 476

of areas and lines, 223–226, 228, 231, 274
Fixed axis rotation, 914
Fixed frame, 1174

rate of change of a vector with respect 
to, 644–645, 978, 990

Fixed vectors, 17

Flexibility, of cables, 383, 404
Fluid flowing through a pipe, steady 

stream of particles from, 887
Fluid friction, 412, 1260
Fluid stream diverted by a vane, steady 

stream of particles from, 887
Fluids

compressibility of, 2
mechanics of, 2

Force, 2–3, 5
defined by its magnitude and two points 

on its line of action, 48–49
elastic, 594
of gravity, 6, 580, 594
on a particle, resultant of two forces, 

16–17, 64
units of, 10–11

Force-couple systems, 74, 113, 
130–131, 357

Force. See also Central force; Systems of 
forces

acting on a rigid body, 1083–1084, 1135
centrifugal, 699, 1054
effective, 857, 1029, 1038, 1075
elastic, 783, 793, 1243
exerted by a spring, 759, 844, 1094, 

1125, 1220
exerted on a stream, 891
external, 857–863, 866, 905, 1024, 

1085, 1135
of friction, 763, 1059
in the Fundamentals of Engineering 

Examination, 1333
of gravity, 695–696, 758–759
impressed, 1255
impulsive, 809, 812, 1125
internal, 857, 874, 1085
nonimpulsive, 809, 812, 1125
work of, 1093

Force triangle, 37, 183
Forced frequency, 1252, 1280

circular, 1250
Forced vibrations, 1250–1260, 

1279–1280
damped, 1212, 1263–1264, 1269, 1281

Forces
axial, 354–355, 357
concurrent, 20–21, 65, 182, 211
constraining, 159
coplanar, 65
external and internal, 74–75
hydrostatic, 491
in a spring, 579–580, 594
on submerged surfaces, 249–257
parallel, 182, 211
shearing, 354–355, 363–373, 404

Forces and accelerations, 1024–1079
angular momentum of a rigid body in 

plane motion, 1028, 1074–1075
computer problems, 1079
constrained plane motion, 

1052–1073, 1075
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Forces and accelerations—Cont.
d’Alembert’s principle, 1029–1030, 1075
doing no work, 760
equations of motion for a rigid body, 

1027, 1074
free-body diagram equation, 1075, 1204
introduction, 1026
plane motion of a rigid body, 

1029–1030, 1075
remark on the axioms of the mechanics 

of rigid bodies, 1030–1031
review problems, 1076–1078
solution of problems involving the 

motion of a rigid body, 1031–1032
summary, 1074–1075
systems of rigid bodies, 1032–1051, 1075

Forces in a plane, 16–45, 64–65
addition of forces by summing X and Y 

components, 30–35
addition of vectors, 18–20
equilibrium of a particle, 35–36
force on a particle, resultant of two 

forces, 16–17, 64
Newton’s first law of motion, 36
problems involving the equilibrium of a 

particle, free-body diagrams, 36–45
rectangular components of a force, unit 

vectors, 27–29, 64
resolution of a force into components, 

21–27, 64
resultant of several concurrent forces, 

20–21, 65
resultant of several coplanar forces, 65
vectors, 17–18

Forces in beams and cables, 352–409
beams, 362–383
cables, 383–402
computer problems, 408–409
internal forces in members, 354–361
introduction, 354
review problems, 406–407
summary, 403–405

Forces in space, 45–63, 65–66
addition of concurrent forces in space, 

49–57, 66
direction cosines, 65–66
equilibrium of a particle in space, 

57–63, 66
force defined by its magnitude and two 

points on its line of action, 48–49
free-body diagrams, 66
rectangular components of a force in 

space, 45–48
Forces of gravitation, 580
Frames and machines, 287, 316–344, 347

analysis of a frame, 316–317, 347
frames which cease to be rigid when 

detached from their supports, 
317–331

machines, 331–344, 347
structures containing multiforce 

members, 316

Frames of reference, 1001–1005
centroidal, 872–873
in general motion, 999–1010, 1017
newtonian, 694, 1027
selecting, 1005
in translation, 646–664, 684

Free-body diagrams, 12, 37–40, 57–59, 66, 
158, 159, 166–170, 183, 192–196, 
210, 230, 297, 309, 335, 357, 368, 
379, 389, 419–420, 422, 445

drawing, 704, 812–813, 833, 1061, 1110, 
1125, 1174, 1221, 1232

equation for, 1031, 1038, 1075, 
1190, 1204

Free vectors, 18, 108, 116
Free vibrations, 1212, 1221

damped, 1260–1262, 1268–1269, 
1280–1281

of particles, simple harmonic motion, 
1214–1218, 1277–1278

of rigid bodies, 1228–1240, 1279
transient, 1280

Freedom, degrees of, 581, 583
Frequency, natural circular, 1215, 

1222, 1252
Frequency ratio, 1252
Friction, 410–469

angles of, 415–416, 460
axle, 439–441, 445
belt, 449–459
circle of, 445
coefficients of, 412–414, 422, 452–454
computer problems, 467–469
disk, 441–442, 445
dry friction

problems involving, 416–429, 461
the laws of, 412–414

fluid, 412
introduction, 412
journal bearings, 439–441
maximum and minimum values of, 418
review problems, 463–466
square-threaded screws, 430–439
static and kinetic, 460
summary, 460–462
thrust bearings, 441–442
wedges, 429–430
wheel friction, rolling resistance, 

442–449
Friction forces, 763, 1059

kinetic, 1062
work done by, 1082

Frictionless particles, assumption of, 824
Frictionless pins, 560
Full vector approach, 964
Fundamental concepts and principles, 

2–5, 13
Newton’s law of gravitation, 4
Newton’s three fundamental laws, 3–4
parallelogram law for the addition of 

forces, 3
principle of transmissibility, 3

Fundamentals of Engineering 
Examination, 1333

force, mass, and acceleration, 1333
impulse and momentum, 1333
kinematics, 1333
vibration, 1333
work and energy, 1333

G
Galileo, 602
General motion, 917, 987–998

of a rigid body, 991
in space, 1016

General plane motion, 914, 917, 932–933, 
1013, 1030, 1061

Geneva mechanism, 971
Geometric center, 1062
Golf ball

deformation upon impact, 754–755
momentum of hitting, 874

Grand Coulee Dam, 218–219
Grand Viaduc de Millau, 352–353
Graphical solution, of rectilinear motion 

problems, 630–631, 683
Graphical solutions, 23, 30, 36
Gravitation

constant of, 4
force of, 6, 580, 594
law of, 4

Gravitational force. See also 
Newton’s laws

constant of, 748
work of, 759–760, 843–844

Gravitational system of units, 696
Gravitational units, 9
Gravity, center of, 861
Gravity, force of, 6
Gymnist, 1080–1081
Gyration, radius of, 1296, 1330
Gyration, radius of, 476–482, 513, 550
Gyroscope, steady precession of, 

1187, 1205

H
Hamilton, 2
Hard disk, computer, 1028
Harmonic motion, 1215, 1222, 1278
Heavy damping, 1261, 1268, 1281
Helicopter, steady stream of particles 

from, 888
Hodographs, of motion, 642
Homogeneity, of equations, 1251
Horizontal differential element, 240
Horizontal motion, 854
Hubble telescope, 735
Hydraulics, 2
Hydrostatic forces, 491
Hyperbolic trajectories, 736–737, 

740–741
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I
Impact, 809, 821, 832, 1125

central, 821–827, 833, 847–848, 1119
eccentric, 1119–1134, 1138
elastic, 823, 848
line of, 821, 833
plastic, 823, 848

Impedance, 1266
Impending motion, 414, 417, 422, 461
Impressed force, 1255
Improper constraints, 211
Impulse-momentum principle, 809, 877
Impulses, 806–807, 812, 1191

angular, 874
unknown, 1157

Impulsive forces, 809, 812, 847, 1125
average, 812

Impulsive motion, 809–820, 847, 1119, 1138
in the Fundamentals of Engineering 

Examination, 1333
In phase, 1252
Indeterminate trusses. See Statically 

indeterminate trusses
Inertia, 1295

axis of, 1149, 1156–1157, 1173, 1201
ellipsoid of, 1318
products of, 1173, 1175, 1331

Inertia. See also Moments of inertia; 
Products of inertia

ellipsoid of, 533–534, 552
mass products of, 539–540

Inertia couple, 1075
Inertia vector, 699, 1075
Infinitesimal rotations, 986
Initial conditions, 607, 622
Input forces, 331, 347, 564
Instantaneous acceleration, 604–605
Instantaneous axis of rotation, 946, 

985, 998
Instantaneous center of rotation, 918, 1105

in plane motion, 946–956, 1013
Instantaneous velocity, 604
Integration

double, 236, 261
triple, 261

Internal forces, 74–75, 77, 146, 286, 345, 
356–357, 857, 874, 1085

in members, 354–361
in multiforce members, 323–324, 347, 

354, 403
in straight two-force members, 403

Internal friction, 1260
International System of Units (SI units),5–8

units of area and volume, 5–8
used in mechanics, 8

Invariable plane, 1200

J
Jet engines, 887, 893, 908

steady stream of particles from, 887, 893

Joints. See also Method of joints
under special loading conditions, 292–294

K
Kepler, Johann, 738
Kepler’s laws of planetary motion, 

738–745, 749
Kinematics, 1030, 1061

analysis by, 1062
defining, 602
in the Fundamentals of Engineering 

Examination, 1333
of motion, 1033–1034, 1037, 

1060–1061, 1230
Kinematics of particles, 600–689

computer problems, 688–689
curvilinear motion of particles, 641–681
introduction to dynamics, 602–603
rectilinear motion of particles, 603–640
review problems, 686–687
summary, 682–685

Kinematics of rigid bodies, 914–1023
absolute and relative acceleration in 

plane motion, 957–959, 1014
absolute and relative velocity in plane 

motion, 934–946, 1013
analysis of plane motion in terms of a 

parameter, 959–971, 1014
computer problems, 1021–1023
equations defining the rotation of a rigid 

body about a fixed axis, 917, 922–932
frame of reference in general motion, 

999–1010, 1017
general motion, 917, 987–998
general motion in space, 1016
general plane motion, 917, 932–933
instantaneous center of rotation in plane 

motion, 946–956, 1013
introduction, 916–918
motion about a fixed point, 984–986, 1015
plane motion of a particle relative 

to a rotating frame, Coriolis 
acceleration, 973–984, 1015

rate of change of a vector with respect to 
a rotating frame, 971–973, 1014

review problems, 1018–1020
rotation about a fixed axis, 916–917, 

919–921, 1011
summary, 1011–1017
three-dimensional motion of a particle 

relative to a rotating frame, Coriolis 
acceleration, 998–999, 1016–1017

translation, 916, 918–919, 1011
Kinetic analysis, 1062

three fundamental methods of, 848
Kinetic energy, 1088–1092, 1155, 1157, 

1164, 1242–1244
constant, 846
of a particle, 760–761, 770, 788–789, 

792, 844–845
in rotation, 1136

Kinetic energy of a rigid body
in plane motion, 1084–1085, 1135
in three dimensions, 1152–1164, 1202

Kinetic energy of a system of particles, 
872–873, 906–907

using a centroidal frame of reference, 
872–873

Kinetic friction, 1062
Kinetic units, 5
Kinetic-friction force, 412, 445, 460

angle of, 415, 460
coefficient of, 413, 421, 454, 460

Kinetics
analysis by, 848, 1062
defining, 602

Kinetics of particles, 690–853
energy and momentum methods, 

754–853
Newton’s second law, 690–753

Kinetics of rigid bodies in three 
dimensions, 1144–1211

angular momentum of a rigid 
body in three dimensions, 
1147–1151, 1201

application of the principle of impulse 
and momentum to the three-
dimensional motion of a rigid body, 
1151–1152, 1202

computer problems, 1209–1211
Euler’s equations of motion, extension 

of d’Alembert’s principle to the 
motion of a rigid body in three 
dimensions, 1166–1167, 
1203–1204

free-body diagram equation, 
1075, 1204

fundamental equations of motion for a 
rigid body, 1201

introduction, 1146–1147
kinetic energy of a rigid body in three 

dimensions, 1152–1164, 1202
motion of a gyroscope, Eulerian angles, 

1184–1185, 1205
motion of a rigid body about a fixed 

point, 1167–1168, 1204
motion of a rigid body in three 

dimensions, 1165–1166, 
1202–1203

motion of an axisymmetrical body under 
no force, 1187–1200

review problems, 1206–1208
rotation of a rigid body about a fixed 

axis, 1168–1183
steady precession of a gyroscope, 

1186–1187, 1205
summary, 1201–1205

L
Lagrange, 2
Law of gravitation. See Newton’s laws
Lead angle, 431, 434, 461
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Length, 5
units of, 10

Light damping, 1261–1262, 1268, 1281
Line of impact, 821, 833

motion against, 830
Linear impulse, 806–807

of a force, 846
Linear momentum, 1137

conservation of, 695, 754, 866, 879
of a particle, 694–695, 746, 846
of a system of particles, 

859–860, 905
Linear momentum vector, 1104, 

1155, 1157
Lines. See Areas and lines
Linkages, 1075
Loading conditions, 196, 362–363. 

See also Applied Loads; 
Concentrated loads; 
Distributed loads

joints under special, 292–294, 346
Locomotive, 410–411
Lubricated mechanisms, 412

M
Machines, 331–344, 347

mechanical efficiency of real, 
564–577, 593

Magnification factor, 1252, 1269, 1280
Mass, 2–3, 5, 1217

in the Fundamentals of Engineering 
Examination, 1333

systems gaining or losing, 
888–904, 908

units of, 11
Mass center

of a system of particles, motion of, 
860–862, 905–906, 1024, 
1030, 1052

velocity of, 1154
Mass moments of inertia, 

1295–1296, 1305
centroidal, 1148
of common geometric shapes, 1300

Mass products of inertia, 1316–1317
Masses

moments of inertia of, 472, 512–546, 
550–552

products of inertia of, 539–540
Mathematical expressions, 1289
Maximum displacement of systems, 

in applying the principle of 
conservation of energy, 1241

Mechanical efficiency, 764
Mechanical efficiency, of real machines, 

564–577, 593
Mechanical energy, 786

total, 786
Mechanical systems

space applications, 735–738, 749
and their electrical analogue, 1265

Mechanical vibrations, 1212–1287
computer problems, 1286–1287
damped vibrations, 1260–1276
introduction, 1214
review problems, 1282–1285
summary, 1277–1281
vibrations without damping, 1214–1260

Mechanics
conversion from one system of units to 

another, 10–11
defining, 2
fundamental concepts and 

principles, 2–5
method of problem solution, 11–13
newtonian, 2
numerical accuracy, 13
of deformable bodies, 2
of fluids, 2
of rigid bodies, 2
relativistic, 3
systems of units, 5–10

Mechanisms, lubricated, 412
Method of joints, analysis of trusses by, 

290–292, 345–346
Method of sections, analysis of trusses by, 

304–305, 346
Method of virtual work, 556–599

applications of the principle of virtual 
work, 562–564

computer problems, 598–599
during a finite displacement, 

578–579, 593
equilibrium and potential energy, 581
introduction, 557
potential energy, 580–581, 594
principle of virtual work, 561–562, 592
real machines, mechanical efficiency, 

564–577, 593
review problems, 595–597
stability of equilibrium, 582–591, 594
summary, 592–594
virtual displacement, 592
work of a force, 557–561, 

578–579, 593
work of a weight, 593

Method of work and energy. See Principle 
of work and energy

Mixed triple product of three 
vectors, 1293

expressed in terms of rectangular 
components, 1293

Mixed triple product, of three vectors, 
96–97, 148

Mohr, Otto, 506
Mohr’s circle, for moments and products of 

inertia, 506–511, 549–550
Moment of a couple, 108, 149
Moment of a force

about a given axis, 97–107, 148, 
1293–1294

about a point, 81–82, 147, 1291–1292
Moment resultants, 124

Moment-area method, 631
Moments

of couples, 1074, 1135, 1191
of vectors, 1104

Moments of inertia, 470–555, 1189
computer problems, 555
introduction, 470–473
Mohr’s circle for, 506–511, 549–550
of a body with respect to an arbitrary 

axis, mass products of inertia, 
532–533, 551–552, 1316–1317, 
1331

of a three-dimensional body, 
determination of by 
integration, 516

of composite areas, 484–497, 548
of composite bodies, 1299–1316, 1331
of thin plates, 1298–1299, 1305–1306, 

1331
polar, 472, 475–477, 479, 491
principal, 498–506, 549
principal, 1318–1320, 1322–1324
review problems, 553–554
summary, 547–552

Moments of inertia of areas, 473–511
determination of the moment of 

inertia of an area by integration, 
474–475

Mohr’s circle for moments and products 
of inertia, 506–511, 549–550

moments of inertia of composite areas, 
484–497, 548

parallel-axis theorem, 483–484, 548
polar moment of inertia, 475–476
principal axes and principal moments of 

inertia, 498–506, 549
products of inertia, 497–498, 548–549
radius of gyration of an area, 476–482
second moment, or moment of inertia, 

of an area, 473–474
Moments of inertia of masses, 512–546, 

550–552, 1295–1332, 1330
avoiding unit-related errors, 1305
determination of the moment of inertia 

of a three-dimensional body by 
integration, 1299, 1306

determination of the principal axes and 
principal moments of inertia of a 
body of arbitrary shape, 
1319–1329

ellipsoid of inertia, principal axes of 
inertia, 1317–1318, 1332

parallel-axis theorem, 1297, 1305, 
1330–1331

principal axes of inertia, 1332
principal moments of inertia, 1332
summary, 1330–1332
ellipsoid of inertia, 533–534, 552
of a body of arbitrary shape, 535–546
of a body with respect to an arbitrary 

axis, mass products of inertia, 
532–533, 551–552
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Moments of inertia of masses—Cont.
of a three-dimensional body by 

integration, 516
of composite bodies, 516–532
of thin plates, 515–516, 551
parallel axis theorem, 514, 551
principal axes of inertia, 

533–534, 552
Momentum. See also Angular momentum; 

Energy and momentum methods; 
Impulse-momentum principle; 
Linear momentum

conservation of, 832, 847, 878
final, 807
forces equipollent to, 886
in the Fundamentals of Engineering 

Examination, 1333
total, 808, 833–834

Motion curves, 606, 633
Motion of a particle

determination of, 607–616, 682
in space, 667, 685

Motion of a rigid body
about a fixed point, 1167–1168, 1204
in three dimensions, 1165–1166, 

1202–1203
Motion of several particles, 618–619

dependent motions, 619
relative motion of two particles, 618

Motion
about a fixed point, 917, 984–986, 1015
absolute, 647
accelerated, 768
along the line of impact, 830
of an axisymmetrical body under no 

force, 1187–1200
under a central force, 723–724, 

747–748
under a conservative central force, 

application to space mechanics, 
787–806, 846

curvilinear, 641, 683
equations of, 697–698, 746, 1033–1037, 

1056, 1170, 1172, 1230, 1233
under a gravitational force, 846
of a gyroscope, Eulerian angles, 

1184–1185, 1205
harmonic, 1215, 1278
hodographs of, 642
kinematics of, 1033–1034, 

1037, 1230
of the mass center of a system of 

particles, 860–862, 905–906
of a projectile, 646, 651–652
relative, 1165
relative to a centroidal frame of 

reference, 863
relative to a frame in translation, 

646–664, 684
rolling, 1053–1055, 1058–1059, 

1061–1062, 1075, 1084
of several particles, 618–629, 683

Motion—Cont.
sliding, 1058–1059, 1084
steady-state, 1254, 1269
uniform, 608, 768
first law of, 36
impending, 414, 417, 422, 461

Multiforce members
internal forces in, 354, 403
structures containing, 316, 323–324, 

335, 347

N
National Institute of Standards and 

Technology, 9
Natural frequency, 1217–1218, 

1252, 1280
circular, 1215, 1222, 1253–1254

Necessary conditions, 319 , 785
Negative force, 763, 786
Negative vectors, 18, 1289
Negative work, 782
Newton, Sir Isaac, 2, 693, 738
Newton’s laws

application to the motion of a system 
of particles, effective forces, 
856–859, 905

of gravitation, 724–733, 748
second law of motion, 693–694, 

746, 767
Newton’s three fundamental laws, 3–4, 

12, 75–76
first law of motion, 36
law of gravitation, 4
third law, 290, 316

Newtonian frame of reference, 694, 746
Newtonian mechanics, 2
Noncentroidal rotation, 1053–1054, 

1075, 1085
Nonimpulsive force, 809, 812, 1125
Nonlubricated surfaces, 412, 460
Normal components. See Tangential and 

normal components
Numerical methods approach, 399
Nutation, 1184, 1190, 1205

rate of, 1191

O
Oblique components, 27
Oblique impact, 821

central, 824–827, 833
Oblique launching, 846
Ocean liner, 72–73
Orbital motion, 748–749
Origin, 2
Oscillations, 1218–1219

center of, 1229
electrical, 1265

Osculating planes, 667, 685
Out of phase, 1252

Output forces, 331, 347, 564
Overall efficiency, 764
Overhanging beams, 404

P
Pappus, 238
Parabolic cables, 385–395, 405
Parabolic trajectories, 736–737, 

740–741
Parallel centroidal axis, 1305
Parallel circles, 916
Parallel forces, 127–128, 182
Parallel-axis theorem, 483–484, 490, 514, 

522, 548, 551, 1301–1302, 1305
Parallelogram law, 986, 1289
Parallelogram law, for the addition of 

forces, 3, 17, 24–27, 64
Partial constraints, 164–181, 211
Particles, 3

equilibrium of, 14–15
in three-dimensional space, 59
statics of, 14–70

Particles. See Systems of particles
Passing a section, 304
Pendulum, compound, 1237
Perfectly elastic impact, 823–824, 848
Perfectly plastic impact, 823, 848
Perigee, 737
Period

of a damped vibration, 1262
of deformation, 826
of vibrations, 1278

Periodic functions, 1215–1216
Periodic time, 737–739, 749
Perpendicular distance, 27, 88, 100, 

102, 522
Phase, 1252
Phase angle, 1216
Phase difference, 1264, 1281
Pictorial representations, 1031–1032
Pitch, 128–129, 434

of a wrench, 134, 136
Plane motion

absolute and relative acceleration in, 
957–959, 1014

absolute and relative velocity in, 
934–946, 1013

analyzed in terms of a parameter, 
959–971, 1014

diagramming, 938
Plane motion of a particle, 665–667, 917

relative to a rotating frame, 
973–984, 1015

Plane motion of rigid bodies, 1039, 1074
and d’Alembert’s principle, 

1029–1030, 1075
energy and momentum methods, 

1080–1143
forces and accelerations, 1024–1079
in systems of rigid bodies, 1039
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Planes
forces in, 16–45, 64–65
of symmetry, 259, 261, 276–277

Planes, of symmetry, 1331
Planetary gears, 994
Plastic impact, 823, 848
Plates

composite, 226–236
homogeneous, 274
multiple, 265
thin, moments of inertia of, 515–516, 551

Polar moment of inertia, 472, 475–477, 
479, 491

Polygon rule, for the addition of 
vectors, 20

Position coordinates, 682–683
Position-time curve, 632
Position, determining, 612
Position vector velocity, and acceleration, 

603–606, 641–642, 682–684
Position vectors, 81, 84, 147, 641, 

990, 1291
Potential energy, 580, 594

and equilibrium, 581
Potential energy, 782–784, 788, 792, 845, 

1086, 1242–1244
change in, 782, 786
computing, 793
constant, 846

Potential functions, 784
Power, 1087–1102, 1136

average, 770
defining, 1094
and efficiency, 763–782, 845

Precession of a gyroscope
axis of, 1189
steady, 1147, 1184–1188, 1190–1191, 1205

Pressure, center of, 249
Principal axes of inertia, 498–506, 

533–534, 549, 552, 1318, 
1322–1324

Principal moments of inertia, 498–506, 
549, 1318–1320, 1322–1324

Principal normal, 667
Principle of conservation of angular 

momentum, 1106
Principle of conservation of energy, 1094, 

1124, 1242–1244
application of, 1240–1250, 1279
maximum displacement of the 

system, 1241
system passing through its equilibrium 

position, 1241
Principle of impulse and momentum, 

806–808, 812, 830–831, 846–847, 
1122–1125, 1154, 1189

application to the three-dimensional 
motion of a rigid body, 
1151–1152, 1202

for the plane motion of a rigid body, 
1103–1105, 1136–1138

for a system of particles, 874–884, 907

Principle of transmissibility, 3, 74–77, 
146, 1030

equivalent forces, 75–77, 146
Principle of virtual work, 561–562, 592
Principle of work and energy, 1088–1090

applications of, 762–763, 845
for a rigid body, 1082–1083, 1135

Problems
efficiency in solving, 324
method of solution, 11–13
statement of, 12

Product of a scalar and a vector, 1290
Products of inertia, 497–498, 

548–549, 552
mass, 539–540
Mohr’s circle for, 506–511, 549–550

Projection of a vector on a given 
axis, 1293

Projection, of a vector on an axis, 
95, 148

Propellers, 893
Prototype engine (XR-5M15), 854
Pure bending, 473
Pure science, 2

Q 
Quadric surface, equation of, 1317
Quadric surfaces, 533
Queen Elizabeth 2 (ocean liner), 72–73

R
Radial and transverse components, 

668–681, 685
in the curvilinear motion of particles, 

668–681, 685
equations of motion in terms of, 

722–723, 747
extension to the motion of a 

particle in space, cylindrical 
coordinates, 669

Radius of gyration
of a mass, 513, 550
of an area, 476–482

Railroad locomotive, 410–411
Rate of change

of angular momentum, 747, 1174, 1176
of linear momentum, 694–695, 746

Rate of change of a vector
with respect to a fixed frame, 644–645, 

978, 990
with respect to a rotating frame, 

971–973, 978, 1014
Reactions at supports and connections

equivalent to a force and a couple, 160
equivalent to a force of unknown 

direction and magnitude, 160
equivalent to a force with known line of 

action, 160

Reactions—Cont.
for a three-dimensional structure, 

189–209
for a two-dimensional structure, 

160–161
Rectangular components, 27, 32, 53, 

146–147
equations of motion in terms of, 

698, 746
resolution of a vector into, 1290
of a force, unit vectors, 27–29, 64
of a force in space, 45–48
of the moment of a force, 83–93, 147
of vector product, 1291
of velocity and acceleration, 

645–646, 684
Rectilinear motion of particles, 

603–640
determination of the motion of a 

particle, 607–616, 682
graphical solution of rectilinear motion 

problems, 630–631, 683
motion of several particles, 618–629, 683
other graphical methods, 631–642
position, velocity, and acceleration, 

603–606, 682
uniform rectilinear motion, 616, 683
uniformly accelerated rectilinear 

motion, 617–618, 683
Reduction of a system of forces, 126–128, 

135–136, 150
to a force-couple system, 149–150
to a wrench, 128–145

Reduction of the momenta of the particles 
of a rigid body, to a momentum 
vector and a couple, 1150

Reference point, selecting, 1005
Relative acceleration, 683, 977

formula for, 963
Relative motion, 417, 1165

solving problems with, 705
Relative velocity, 683–684, 826–827, 831, 

833, 848, 889, 1123
formula for, 938

Relativistic mechanics, 3
Repose, angle of, 415
Resistance, rolling, 441–449
Resolution

of a force into components, 21–27, 64
of a given force into a force and a 

couple, 112–123
of a system of forces to one force and 

one couple, 123–124, 149–150
Resonance, 1252–1253
Restitution, 821–822, 1119

coefficient of, 754, 822–823, 1132
period of, 821, 826, 1119–1121

Resultant couples, 126
Resultants, 16–17, 32, 35, 51, 74, 130, 

134–135
moment, 124, 135
of several coplanar forces, 65
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Retrograde precession, 1188
Revolution

body of, 238–239
surface of, 238–239

Right-hand rule, 77, 1291–1292
Right-handed triads, 77, 1291
Rigid bodies in equivalent systems of 

forces, 72–155
addition of couples, 111
computer problems, 154–155
equipollent systems of vectors, 125
equivalent couples, 109–111, 149
external and internal forces, 74–75
further reduction of a system of forces, 

126–128, 150
introduction, 74
mechanics of, 2–3
mixed triple product of three vectors, 

96–97, 148
moment of a couple, 108, 149
moment of a force about a given axis, 

97–107, 148
moment of a force about a point, 

81–82, 147
principle of transmissibility, equivalent 

forces, 75–77, 146
projection of a vector on an axis, 148
rectangular components of the moment 

of a force, 83–93, 147
reduction of a system of forces to a 

force-couple system, 149–150
reduction of a system of forces to a 

wrench, 128–145
representing couples by vectors, 

111–112
resolution of a given force into a force 

and a couple, 112–123
resolution of a system of forces to one 

force and one couple, 123–124, 
149–150

review problems, 151–153
scalar product of two vectors, 

94–96, 147–148
summary, 146–150
Varignon’s theorem, 83
vector product of two vectors, 

77–79, 146
vector products expressed in terms of 

rectangular components, 
79–80, 146–147

Rigid bodies. See Systems of rigid bodies
Rigid trusses, 289, 306, 319
River Tarn, 352–353
Robotic arm, 1144–1145
Rocketry, 864
Rolling motion, 1053–1055, 1058–1059, 

1061–1062, 1075, 1084
Rolling resistance, 441–449

coefficient of, 441, 445
Rotating frame, 1174

rate of change of a vector with respect 
to, 971–973, 978, 1014

Rotation, 75
Rotation about a fixed axis, 916–917, 

919–921, 1011
angular velocity and angular 

acceleration, 1012
defining, 916
diagramming, 938, 963
equations for, 925
of a representative slab, 921, 1012
of a rigid body, 925, 1168–1183
tangential and normal components, 1012

Rotations, 854, 932–933, 991, 1086. 
See also Center of rotation

centroidal, 1030, 1054
infinitesimal, 986
noncentroidal, 1053–1054, 

1075, 1085
uniform, 1054

S
Sag, 397, 399
Sailboat, 156–157
Satellites

analyzing motion of, 740–741
in circular orbit, 728
in elliptic orbit, 728

Scalar components, 28, 30, 45, 64
Scalar function, gradient of, 785
Scalar product of two vectors, 

1292–1293
angle formed by two vectors, 1293
expressed in terms of rectangular 

components, 1293
projection of a vector on a given 

axis, 1293
scalar products of unit vectors, 1292

Scalar product, of two vectors, 94–96, 
101, 147–148

Scalar quantities, 558, 757, 879
Science, 2
Screws

self-locking, 431
square-threaded, 430–439

Second moment of inertia, of an area, 
472–474, 476

Shearing force, 354–355
diagrams, 365–373, 379–380
in a beam, 363–365, 403–404

SI units. See International System 
of Units

Simple harmonic motion, 1222, 1278
Simple pendulum, 1218–1228, 1279

approximate solution, 1218
exact solution, 1219–1228

Simple trusses, 289, 345
trusses made of several, 

305–315, 346
Sliding motion, 1058–1059, 1084
Sliding vectors, 18, 76
Slippage, 451, 453–454

Slugs, 746
Smooth particles, assumption of, 824
Solutions, outlining beforehand, 297
Space, 2
Space centrode, 948
Space cone, 985
Space diagrams, 36
Space trusses, 294–304, 346
Space, application to mechanics, 728, 

735–738, 749
Spacecraft

analyzing motion of, 740–741
shuttle, 1144–1145

Span, 362, 397
Spring constant, 579 , 759
Springs

forces in, 579–580, 594
work done by, 579

Square-threaded screws, 430–439, 461
Stability of equilibrium, 582–591, 594
Static reactions, 1169
Static-friction force, 412, 445, 460

angle of, 415, 460
coefficient of, 413, 421, 454, 460

Statics of particles, 14–70
computer problems, 69–70
forces in a plane, 16–45, 64–65
forces in space, 45–63, 65–66
introduction, 16
review problems, 67–68
summary, 64–66

Statically determinate trusses, 306, 310, 
319, 346

Statically indeterminate reactions, 164–181, 
196, 211–212

Statically indeterminate trusses, 
306, 310

Steady-state motion, 1254, 1269
Steady-state vibrations, 1252, 1263, 1281
Steady stream of particles, 885–888, 908

fan, 888
fluid flowing through a pipe, 887
fluid stream diverted by a vane, 887
helicopter, 888
jet engine, 887, 893

Straight two-force members, internal 
forces in, 403

Structures
analysis of, 284–351
containing multiforce members, 316, 

323–324
Submerged surfaces, forces on, 

249–257, 276
Sufficient conditions, 319
Summary

analysis of structures, 345–347
distributed forces
energy and momentum methods, 

843–848, 1135–1138
centroids and centers of gravity, 

274–277
moments of inertia, 547–552
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Summary—Cont.
equilibrium of rigid bodies, 210–212
forces in beams and cables, 403–405
friction, 460–462
kinematics of particles, 682–685
kinematics of rigid bodies, 

1011–1017
kinetics of rigid bodies in three 

dimensions, 1201–1205
mechanical vibrations, 1277–1281
method of virtual work, 592–594
moments of inertia of masses, 

1330–1332
rigid bodies, in equivalent systems of 

forces, 146–150
Newton’s second law, 746–749
statics of particles, 64–66
systems of particles, 905–908

Surfaces
nonlubricated, 412
of revolution, 238–239
quadric, 533
submerged, forces on, 249–257

Symmetry, 539
of the ellipse, 491
planes of, 259, 261, 276–277
planes of, 1331
properties of, 1323

System passing through its equilibrium 
position, in applying the 
principle of conservation of 
energy, 1241

Systems of forces, equipollent, 858, 862, 
886, 1029, 1074

Systems of forces, equivalent, 125, 150
Systems of particles, 854–913

angular momentum about its mass 
center, 862–864, 906

application of Newton’s laws to the 
motion, effective forces, 
856–859, 905

computer problems, 912–913
conservation of momentum for, 

864–872, 906
introduction, 856
kinetic energy of, 872–873, 906–907
linear and angular momentum of, 

859–860, 905
motion of the mass center of, 860–862, 

905–906
principle of impulse and momentum 

for, 874–884, 907
review problems, 909–911
steady stream of particles, 

885–888, 908
summary, 905–908
systems gaining or losing mass, 

888–904, 908
variable systems of particles, 

885, 908
work-energy principle, conservation of 

energy for, 874, 907

Systems of rigid bodies, 1085–1086, 
1106, 1136

Systems of units, 5–10
International System of Units 

(SI units), 5–8
U.S. customary units, 9–10, 12

Systems of units, 695–697, 721, 746

T
Tangential and normal components, 

665–667, 672, 685, 957, 1014
of acceleration, 666
equations of motion in terms of, 698
motion of a particle in space, 

667, 685
plane motion of a particle, 665–667
in rotation about a fixed axis, 1012

Tarn River Gorge, 352–353
Tension, 346, 354–355, 383–385, 390

maximum and minimum values 
of, 398

Theorems
of Pappus-Guldinus, 220, 238–247, 276
parallel-axis, 483–484, 548
Varignon’s, 83

Thermal energy, 786
Thin plates, moments of inertia of, 

515–516, 551, 1298–1299, 
1305–1306, 1331

Three vectors, mixed triple product of, 
96–97, 148

Three-dimensional bodies, centers of 
gravity of, 258–260, 275–276

Three-dimensional motion of a particle, 
relative to a rotating frame, 
998–999, 1016–1017

Three-dimensional space
forces in, 65
particles in, 59

Three-force bodies, 183–184
Thrust bearings, 441–442, 445
Time, 2–3, 5 , 812
Time constant, 1275
Torsional vibrations, 1233
Total energy, of a particle, 824
Total mechanical energy, 786
Total momentum, 808, 833

conserving, 826, 847
of a particle, 813

Total work, 1093–1094
Trains, tilting, 718
Trajectories

elliptic, 736–737, 740–741
hyperbolic, 736–737, 740–741
parabolic, 736–737, 740–741
of a particle under a central 

force, 734
Transient-free vibrations, 1280
Transient vibrations, 1252, 1263
Translation, 75

Translation, 914–919, 924, 932–933, 991, 
1011, 1030, 1039, 1086

defining, 916
diagramming, 938, 963

Transmissibility, 1259, 1286
principle of, 1030

Transmissibility, principle of, 3, 74–77, 146
Transverse components. See Radial and 

transverse components
Triangle rule, 19, 24
Triangular loads, 252
Trigonometric solutions, 22–23, 30
Triple integration, 261
Triple products. See also Mixed triple 

product of three vectors
vector, 920

Trusses, 287–315, 345–346
analysis of, 287–315, 345–346
compound trusses, 305–306
definition of a truss, 287–288
Fink trusses, 305
joints under special loading conditions, 

292–294
rigid, 289, 306
simple trusses, 289, 345
space trusses, 294–304, 346
trusses made of several simple trusses, 

305–315, 346
Two vectors

scalar product of, 94–96, 147–148
vector product of, 77–79, 146

Two-dimensional bodies, 158, 170
centers of gravity of, 220–221, 274

Two-force bodies, 184, 345

U
U.S. customary units, 9–10, 12
Unbalance, 1055, 1062
Unified approach, 1032
Uniform motion, 608, 768
Uniform rectilinear motion, 616, 

623, 683
accelerated, 617–618, 623, 683

Uniform rotation, 922, 1012, 1054
accelerated, 922, 1012

Unit vectors, 28, 1290
Units, systems of, 695–697, 721, 746
Units

consistent system of, 5
customary (U.S.), 9–10, 12
gravitational, 9
of area and volume (SI units), 5–8
of force, 10–11
of length, 10
of mass, 11

Universal gravitation. See Newton’s laws
Unknowns, 37, 159–162, 190, 211, 324, 

422, 812, 879, 1032, 1039
impulses, 1157
reducing number of, 1061
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V
Validity issues, 374
Variable systems of particles, 885, 908
Varignon’s theorem, 83, 110–111
Vector algebra, useful definitions and 

properties of, 1289–1294
addition of vectors, 934, 1289
mixed triple product of three 

vectors, 1293
moment of a force about a given axis, 

1293–1294
moment of a force about a point, 

1291–1292
product of a scalar and a vector, 1290
scalar product of two vectors, 1292–1293
subtraction of vectors, 893
unit vectors, resolution of a vector into 

rectangular components, 1290
vector product of two vectors, 

1290–1291
Vector components, 28
Vector functions, derivatives of, 

643–645, 684
Vector products, 88

expressed in terms of rectangular 
components, 79–80, 146–147

of two vectors, 77–79, 146, 1290–1291
of unit vectors, 1291

Vector quantities, 64
Vector tangents, 684
Vector triple product, 920
Vectors, 3, 17–18, 52

addition of, 18–20
components of, 1105
coplanar, 20
couple, 149
equipollent systems of, 125
fixed and free, 17–18, 108, 116
linear momentum, 1104
mixed triple product of three, 96–97, 148
moments of, 1104
negative, 1289
position, 81, 84, 147, 641, 990, 1291
representing couples by, 111–112
sliding, 18, 76

Vectors—Cont.
subtraction of, 19
unit, 28

Velocity, 936, 1289
absolute, 948
angular, 917, 920, 988–990, 1003, 

1154–1157
average, 603–604
determining, 612, 938, 951, 990–991
escape, 693, 737–738, 749
instantaneous, 604, 641–642
of mass center, 1154
in plane motion, absolute and relative, 

934–946, 1013
relative, 683–684, 823, 826–827, 831, 

833, 848, 889, 1123
Velocity-time curve, 632
Vibrations

in the Fundamentals of Engineering 
Examination, 1333

mechanical, 1212–1287
period of, 1278
steady-state, 1252, 1263, 1281
torsional, 1233
transient, 1252, 1263

Vibrations without damping, 1214–1260
application of the principle of 

conservation of energy, 
1240–1250, 1279

forced vibrations, 1250–1260, 
1279–1280

free vibrations of particles, simple 
harmonic motion, 1214–1218, 
1277–1278

free vibrations of rigid bodies, 
1228–1240, 1279

simple pendulum, 1218–1228, 1279
Virtual displacement, 561–563, 592
Virtual work. See Method of virtual work
Viscous damping, 1260, 1268, 1280

coefficient of, 1261, 1268, 1281
Volume, units of (SI), 5–8
Volumes, 258–273

center of gravity of a three-dimensional 
body, 258–260, 275–276

centroids of, 258–260, 275–276

Volumes—Cont.
composite bodies, 261, 277
determination of centroids of, by 

integration, 261–273, 277

W
Wedges, 429–430, 434
Weight, 6, 812, 861, 1217, 1243

work of, 593
Wheel friction, rolling resistance, 442–449
Wind turbines, 1024
Wires

composite, 226–236
homogeneous, 274
multiple, 265

Work, 1088, 1090
corresponding to displacement, 843
of a couple, 1135
defining, 756–758
in the Fundamentals of Engineering 

Examination, 1333
negative, 782
total, 1093–1094

Work, 558–559. See also Method of 
virtual work

during a finite displacement, 578–579, 593
of a force, 557–561
of a weight, 593

Work-energy principle, 769, 827, 874, 907
Work of a force, 756–760, 843

work of a constant force in rectilinear 
motion, 758, 769

work of a gravitational force, 759–760, 
769, 843–844

work of the force exerted by a spring, 
759, 769, 844

work of the force of gravity, 758–759
Wrench, 150

pitch of, 134

Z
Zero-force members, 293–294
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   Answers to problems with a number set in straight type are given on this and the following pages. Answers to problems set 
in italic are not listed.  

 CHAPTER 2       
   2.1   179 N c 75.1°.  
   2.2   77.1 lb d 85.4°.  
   2.3   139.1 lb d 67.0°.  
   2.5   ( a ) 76.1°. ( b ) 336 lb.  
   2.7   ( a ) 37.1°. ( b ) 73.2 N.  
   2.8   ( a ) 44.7 N. ( b ) 107.1 N.  
   2.9   ( a ) 3660 N. ( b ) 3730 N.  
   2.10   2600 N c 53.5°.  
   2.11   ( a ) 392 lb. ( b ) 346 lb.  
   2.13   ( a ) 21.1 Nw. ( b ) 45.3 N.  
   2.14   ( a ) 368 lb y. ( b ) 213 lb.  
   2.15   77.1 lb d 85.4°.  
   2.16   139.1 lb d 67.0°.  
   2.17   3.30 kN c 66.6°.  
   2.19   21.8 kN c 86.6°.  
   2.21   (800 N) 640 N, 480 N; (424 N) 2224 N, 

2360 N; (408 N) 192.0 N, 2360 N.  
   2.22   (29 lb) 21.0 lb, 20.0 lb; (50 lb) 214.00 lb, 

48.0 lb; (51 lb) 24.0 lb, 245.0 lb.  
   2.23   (40 lb) 20.0 lb, 234.6 lb; (50 lb) 238.3 lb, 232.1 lb;

(60 lb) 54.4 lb, 25.4 lb.  
   2.25   ( a ) 523 lb. ( b ) 428 lb.  
   2.26   ( a ) 2190 N. ( b ) 2060 N.  
   2.27   ( a ) 194.9 N. ( b ) 153.6 N.  
   2.30   ( a ) 610 lb. ( b ) 500 lb.  
   2.31   38.6 lb a 36.6°.  
   2.32   251 N b 85.3°.  
   2.34   654 N c 21.5°.  
   2.35   309 N d 86.6°.  
   2.36   226 N d 62.3°.  
   2.37   203 lb a 8.46°.  
   2.39   ( a ) 21.7°. ( b ) 229 N.  
   2.40   ( a ) 580 N. ( b ) 300 N.  
   2.42   ( a ) 56.3°. ( b ) 204 lb.  
   2.43   ( a ) 2.13 kN. ( b ) 1.735 kN.  
   2.45   ( a ) 305 N. ( b ) 514 N.  
   2.47   ( a ) 1244 lb. ( b ) 115.4 lb.  
   2.48   ( a ) 172.7 lb. ( b ) 231 lb.  
   2.49 F A   5 1303 lb;  F B   5 420 lb.  
   2.51 F C   5 6.40 kN;  F D   5 4.80 kN.  
   2.52 F B   5 15.00 kN;  F C   5 8.00 kN.  
   2.53   ( a ) 52.0 lb. ( b ) 45.0 lb.  
   2.55   ( a ) 1213 N. ( b ) 166.3 N.  
   2.56   ( a ) 863 N. ( b ) 1216 N.  
   2.57   ( a ) 784 N. ( b ) 71.0°.  
   2.59   ( a ) 60.0°. ( b ) 230 lb.  
   2.60   5.80 m.  
   2.61   ( a ) 1081 N. ( b ) 82.5°.  
   2.62   ( a ) 1294 N. ( b ) 62.5°.  
   2.63   ( a ) 10.98 lb. ( b ) 30.0 lb.  

   2.65   ( a ) 602 N b 46.8°. ( b ) 1365 N d 46.8°.  
   2.67   ( a ) 300 lb. ( b ) 300 lb. ( c ) 200 lb. ( d ) 200 lb. ( e ) 150.0 lb.  
   2.68   ( b ) 200 lb. ( d ) 150.0 lb.  
   2.69   ( a ) 1293 N. ( b ) 2220 N.  
   2.71   ( a ) 1390 N, 1614 N, 1181.8 N. ( b ) 58.7°, 35.0°, 76.0°.  
   2.72   ( a ) 2130.1 N, 1816 N, 1357 N. ( b ) 98.3°, 25.0°, 66.6°.  
   2.73   ( a ) 288 N. ( b ) 67.5°, 30.0°, 108.7°.  
   2.74   ( a ) 100.0 N. ( b ) 112.5°, 30.0°, 108.7°.  
   2.76   ( a ) 80.0 lb. ( b ) 104.5°, 30.0°, 64.3°.  
   2.77   ( a ) 156.4 lb, 2103.9 lb, 220.5 lb. ( b ) 62.0°, 150.0°, 99.8°.  
   2.79    F  5 570 N;  u x   5 55.8°,  u y   5 45.4°,  u z   5 116.0°.  
   2.81   ( a ) 118.2°. ( b )  F x   5 36.0 lb,  F y   5 290.0 lb;  F  5 110.0 lb.  
   2.82   ( a ) 114.4°. ( b )  F y   5 694 lb,  F z   5 855 lb;  F  5 1209 lb.  
   2.84   ( a )  F x   5 194.0 N,  F z   5 108.0 N. ( b )  u y   5 105.1°,  u z   5 62.0°.  
   2.85   1100.0 lb, 1500 lb, 2125.0 lb.  
   2.86   150.0 lb, 1250 lb, 1185.0 lb.  
   2.87   1240 N, 2255 N, 1160.0 N.  
   2.89   21125 N, 1750 N, 1450 N.  
   2.91   515 N;  u x   5 70.2°,  u y   5 27.6°,  u z   5 71.5°.  
   2.92   515 N;  u x   5 79.8°,  u y   5 33.4°,  u z   5 58.6°.  
   2.94   913 lb;  u x   5 50.6°,  u y   5 117.6°,  u z   5 51.8°.  
   2.95   748 N;  u x   5 120.1°,  u y   5 52.5°,  u z   5 128.0°.  
   2.96   3120 N;  u x   5 37.4°,  u y   5 122.0°,  u z   5 72.6°.  
   2.97   ( a ) 65.2 lb. ( b ) 208 lb;  u x   5 61.6°,  u y   5 151.6°,  u z   5 90.0°.  
   2.99   1031 Nx.  
   2.101   926 Nx.  
   2.103   2100 lb.  
   2.104   1868 lb.  
   2.105   1049 lb.  
   2.107   960 N.  
   2.108   0 #  Q  , 300 N.  
   2.109   1572 lb.  
   2.111   845 N.  
   2.112   768 N.  
   2.113    T AB   5 842 lb;  T AC   5 624 lb;  T AD   5 1088 lb.  
   2.114    T AD   5 29.5 lb;  T BD   5 10.25 lb;  T CD   5 29.5 lb.  
   2.115    T AB   5 510 N;  T AC   5 56.2 N;  T AD   5 536 N.  
   2.116    T AB   5 1340 N;  T AC   5 1025 N;  T AD   5 915 N.  
   2.117    T AB   5 1431 N;  T AC   5 1560 N;  T AD   5 183.0 N.  
   2.118    T AB   5 1249 N;  T AC   5 490 N;  T AD   5 1647 N.  
   2.121    P  5 131.2 N;  Q 5  29.6 N.  
   2.123   378 N.  
   2.125   ( a ) 125.0 lb. ( b ) 45.0 lb.  
   2.126    x  5 13.42 in.,  z  5 6.71 in.  
   2.127   37.0°.  
   2.130   ( a ) 500 lb. ( b ) 544 lb.  
   2.131   ( a ) 312 N. ( b ) 144 N.  
   2.133   ( a ) 140.3°. ( b )  F x   5 79.9 lb,  F z   5 120.1 lb;  F  5 226 lb.  
   2.134   ( a ) 21861 lb, 13360 lb, 1677 lb. ( b ) 118.5°, 30.5°, 80.0°.  
   2.135   15.13 kN;  u x   5 133.4°,  u y   5 43.6°,  u z   5 86.6°.  
   2.136    T AB   5 500 N;  T AC   5 459 N;  T AD   5 516 N.  
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   2.137   ( a ) 1155 N. ( b ) 1012 N.  
   2.C2   (1) ( b ) 20°; ( c ) 244 lb. (2) ( b ) 210°; ( c ) 467 lb. (3) ( b ) 10°;

( c ) 163.2 lb.  
   2.C3   ( a ) 1.001 m. ( b ) 4.01 kN. ( c ) 1.426 kN; 1.194 kN.      

 CHAPTER 3   
   3.1   1.277 N ? m l.  
   3.2   1.277 N ? m l.  
   3.3   ( a ) 41.7 N ? m l. ( b ) 147.4 N a 45.0°.  
   3.4   ( a ) 41.7 N ? m l. ( b ) 176.8 N a 58.0°.  
   3.5   186.6 lb ? in. i.  
   3.7   6.12° or 33.8°.  
   3.9   ( a ) 760 N ? m l. ( b ) 760 N ? m l.  
   3.10   1224 N.  
   3.12   116.2 lb ? ft l.  
   3.13   128.2 lb ? ft l.  
   3.16   2.21 m.  
   3.17   ( a ) 41.0. ( b ) 26.9.  
   3.19   ( a ) 211 i  1 22 j  1 22 k . ( b ) 0. ( c ) 245 i  1 30 j  2 10 k .  
   3.21   (7.50 N ? m) i  2 (6.00 N ? m) j  2 (10.39 N ? m) k .  
   3.22   (3080 N ? m) i  2 (2070 N ? m) k .  
   3.24   2(153.0 lb ? ft) i  1 (63.0 lb ? ft) j  1 (215 lb ? ft) k .  
   3.26   (492 lb ? ft) i  1 (144.0 lb ? ft) j  2 (372 lb ? ft) k .  
   3.27   4.58 m.  
   3.28   3.70 m.  
   3.30   57.0 in.  
   3.31   1.564 m.  
   3.32   3.29 m.  
   3.33   4.86 ft.  
   3.35    P ? Q  5 1;  P ? S  5 211;  Q ? S  5 10.  
   3.37   27.4°.  
   3.39   43.6°.  
   3.40   38.9°.  
   3.41   ( a ) 59.0°. ( b ) 648 N.  
   3.43   ( a ) 71.1°. ( b ) 0.973 lb.  
   3.44   12.00 in.  
   3.45   ( a ) 67. ( b ) 111.  
   3.46   7.  
   3.47    M x   5 231.2 N ? m;  M y   5 13.20 N ? m;  M z   5 22.42 N ? m.  
   3.48    M x   5 225.6 N ? m;  M y   5 10.80 N ? m;  M z   5 40.6 N ? m.  
   3.49   1.252 m.  
   3.50   1.256 m.  
   3.51   61.5 lb.  
   3.53    f  5 24.6°;  d  5 34.6 in.  
   3.55   290.0 N ? m.  
   3.56   2111.0 N ? m.  
   3.57   2.28 N ? m.  
   3.58   29.50 N ? m.  
   3.59     aPy12.    
   3.61   1359 lb ? in.  
   3.65   0.249 m.  
   3.66   0.1198 m.  
   3.68   30.4 in.  
   3.69   43.5 in.  
   3.70   ( a ) 12.39 N ? m i. ( b ) 12.39 N ? m i. ( c ) 12.39 N ? m i.  
   3.71   ( a ) 336 lb ? in. l. ( b ) 28.0 in. ( c ) 54.0°.  
   3.72   ( a ) 75.0 N. ( b ) 71.2 N. ( c ) 45.0 N.  
   3.75    M  5 10.00 lb ? ft;  u x   5 90.0°,  u y   5 143.1°,  u z   5 126.9°.  
   3.76    M  5 9.21 N ? m;  u x   5 77.9°,  u y   5 12.05°,  u z   5 90.0°.  
   3.77    M  5 604 lb ? in.;  u x   5 72.8°,  u y   5 27.3°,  u z   5 110.5°.  
   3.78    M  5 1170 lb ? in.;  u x   5 81.2°,  u y   5 13.70°,  u z   5 100.4°.  

   3.79    M  5 10.92 N ? m;  u x   5 97.8°,  u y   5 34.5°,  u z   5 56.7°.  
   3.80    M  5 2860 N ? m;  u x   5 113.0°,  u y   5 92.7°,  u z   5 23.2°.  
   3.81   ( a )  F  5 560 lb c 20.0°;  M  5 7720 lb ? ft i.

( b )  F  5 560 lb c 20.0°;  M  5 4290 lb ? ft i.  
   3.82   ( a )  F  5 160.0 lb a 60.0°;  M  5 334 lb ? ft l.

( b )  F   B   5 20.0 lbx;  F   D   5 143.0 lb a 56.0°.  
   3.83   ( a )  F   B   5 80.0 N z;  M   B   5 4.00 N ? m l.

( b )  F   C   5 100.0 Nw;  F   D   5 100.0 Nx.  
   3.85   ( a )  F   B   5 250 N c 60.0°;  M   B   5 75.0 N ? m i.

( b )  F   A   5 375 N b 60.0°;  F   B   5 625 N c 60.0°.  
   3.87   ( a )  F  5 2(600 N) k ;  d  5 90.0mm below  ED .

( b )  F  5 2(600 N) k ;  d  5 90.0mm above  ED .  
   3.88    F  5 900 Nw;  x  5 50.0 mm.  
   3.89   (0.227 lb) i  1 (0.1057 lb) k ; 63.6 in. to the right of  B .  
   3.90   ( a )  F  5 48.0 lb a 65.0°;  M  5 490 lb ? in. i.

( b )  F  5 48.0 lb a 65.0°; 17.78 in. to the left of  B .  
   3.93    F  5 2(1220 N) i ;  M  5 (73.2 N ? m) j  2 (122.0 N ? m) k .  
   3.94    F   C   5 (5.00 N) i  1 (150.0 N) j  2 (90.0 N) k ;

 M   C   5 (77.4 N ? m) i  1 (61.5 N ? m) j  1 (106.8 N ? m) k .  
   3.95    F  5 2(128.0 lb) i  2 (256 lb) j  1 (32.0 lb) k ;

 M  5 (4.10 kip ? ft) i  1 (16.38 kip ? ft) k .  
   3.97    F  5 2(122.9 N) j  2 (86.0 N) k ;

 M  5 (22.6 N ? m) i  1 (15.49 N ? m) j  2 (22.1 N ? m) k .  
   3.98   ( a ) 135.0 mm. ( b )  F  2  5 (42.0 N) i  1 (42.0 N) j  2 (49.0 N) k ; 

 M 2 5 2(25.9 N ? m) i  1 (21.2 N ? m) j .  
   3.99    F  5 (36.0 lb) i  2 (28.0 lb) j  2 (6.00 lb) k ;

 M  5 2(157.0 lb ? ft) i  1 (22.5 lb ? ft) j  2 (240 lb ? ft) k .  
   3.101   ( a )   Loading a :  R  5 600 Nw;  M  5 1000 N ? m l.

 Loading b :  R  5 600 Nw;  M  5 900 N ? m i.
 Loading c :  R  5 600 Nw;  M  5 900 N ? m l.
 Loading d :  R  5 400 Nx;  M  5 900 N ? m l.
 Loading e :  R  5 600 Nw;  M  5 200 N ? m i.
 Loading f :  R  5 600 Nw;  M  5 800 N ? m l.
 Loading g :  R  5 1000 Nw;  M  5 1000 N ? m l.
 Loading h :  R  5 600 Nw;  M  5 900 N ? m l.

  ( b ) Loadings  c  and  h .  
   3.102   Loading  f .  
   3.104   Force-couple system at  D .  
   3.105   ( a ) 2.00 ft to the right of  C . ( b ) 2.31 ft to the right of  C .  
   3.106   ( a ) 39.6 in. to the right of  D . ( b ) 33.1 in.  
   3.108    R  5 72.4 lb c 81.9°;  M  5 206 lb ? ft.  
   3.109   ( a ) 34.0 lb b 28.0°. ( b )  AB : 11.64 in. to the left of  B ;

 BC : 6.20 in. below  B .  
   3.110   ( a ) 48.2 lb ? in. l. ( b ) 240 lb ? in. l. ( c ) 0.  
   3.111   ( a ) 1562 N b 50.2°. ( b ) 250 mm to the right of  C  and 

300 mm above  C .  
   3.112   ( a ) 1308 N a 66.6°. ( b ) 412 mm to the right of  A  and 

250 mm to the right of  C .  
   3.113   773 lb d 79.0°; 9.54 ft to the right of  A .  
   3.115   ( a ) 0.365 m above  G . ( b ) 0.227 m to the right of  G .  
   3.116   ( a ) 0.299 m above  G . ( b ) 0.259 m to the right of  G .  
   3.118   ( a )  R  5  F  d tan 21 ( a  2 y2 bx );

 M  5   2Fb2(x 2 x3ya2)y2a4 1 4b2x2   l. ( b ) 0.369 m.  
   3.119    R  5 2(420 N) i  2 (50.0 N) j  2 (250 N) k ;

 M  5 (30.8 N ? m) j  2 (22.0 N ? m) k .  
   3.120    R  5 2(420 N) j  2 (339 N) k ;

 M  5 (1.125 N ? m) i  1 (163.9 N ? m) j  2 (109.9 N ? m) k .  
   3.121   ( a )  B  5 (2.50 lb) i ;

 C  5 (0.1000 lb) i  2 (2.47 lb) j  2 (0.700 lb) k .
( b )  R y   5 22.47 lb;  M x   5 1.360 lb ? ft.  

   3.122    A  5 (1.600 lb) i  2 (36.0 lb) j  1 (2.00 lb) k ;
 B  5 2(9.60 lb) i  1 (36.0 lb) j  1 (2.00 lb) k .  
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   3.124   ( a )  R  5 2(28.4 N) j  2 (50.0 N) k ;
 M  5 (8.56 N ? m) i  2 (24.0 N ? m) j  1 (2.13 N ? m) k .
( b ) Counterclockwise.  

   3.125   ( a )  R  5 2(28.4 N) j  2 (50.0 N) k ;
 M  5 (42.4 N ? m) i  2 (24.0 N ? m) j  1 (2.13 N ? m) k .
( b ) Counterclockwise.  

   3.127   1035 N; 2.57 m from  OG  and 3.05 m from  OE .  
   3.128   2.32 m from  OG  and 1.165 m from  OE .  
   3.129   405 lb; 12.60 ft to the right of  AB  and 2.94 ft below  BC .  
   3.130    a  5 0.722 ft;  b  5 20.6 ft.  
   3.133   ( a )   P13;    u x   5  u y   5  u z   5 54.7°. ( b ) 2 a . ( c ) Axis of the wrench 

is diagonal  OA .  
   3.134   ( a )  P ;  u x   5 90.0°,  u y   5 90.0°,  u z   5 0. ( b ) 5 a y2. ( c ) Axis of 

wrench is parallel to the  z  axis at  x  5  a ,  y  5 2 a .  
   3.136   ( a ) 2(21.0 lb) j . ( b ) 0.571 in. ( c ) Axis of wrench is parallel to 

the  y  axis at  x  5 0,  z  5 1.667 in.  
   3.137   ( a ) 2(84.0 N) j  2 (80.0 N) k . ( b ) 0.477 m.

( c )  x  5 0.526 m,  z  5 20.1857 m.  
   3.140   ( a ) 3 P (2 i  2 20 j  2  k )y25. ( b ) 20.0988 a .

( c )  x  5 2.00 a ,  z  5 21.990 a .  
   3.141    R  5 (20.0 N) i  1 (30.0 N) j  2 (10.00 N) k ;

 y  5 20.540 m,  z  5 20.420 m.  
   3.143    F   A   5 ( M y b ) i  1  R [1 1 ( a y b )] k ;  F   B   5 2( M y b ) i  2 ( aR y b ) k .  
   3.147   ( a ) 196.2 N ? m i. ( b ) 199.0 N b 59.5°.  
   3.148   42.0 N ? m l.  
   3.149   2(25.4 lb ? ft) i  2 (12.60 lb ? ft) j  2 (12.60 lb ? ft) k .  
   3.151   283 lb.  
   3.153   ( a ) 151.2 lb ? in. l. ( b ) 67.2 lb ? in. l.  
   3.155    F  5 2(28.5 N) j  1 (106.3 N) k ;

 M  5 (12.35 N ? m) i  2 (19.16 N ? m) j  2 (5.13 N ? m) k .  
   3.156   ( a ) 665 lb a 79.6°; 64.9 in. to the right of  A . ( b ) 22.9°.  
   3.157   ( a )  F   B   5 2(80.0 N) k ;  F   C   5 2(30.0 N) i  1 (40.0 N) k .

( b )  R y   5 0;  R z   5 240.0 N. ( c ) When the slot is vertical.  
   3.C3    4 sides :   b  5 10°,  a  5 44.1°;

 b  5 20°,  a  5 41.6°;
 b  5 30°,  a  5 37.8°.  

   3.C4    u  5 0  rev :  M  5 97.0 N ? m;
 u  5 6  rev :  M  5 63.3 N ? m;
 u  5 12  rev :  M  5 9.17 N ? m.  

   3.C6    d AB   5 36.0 in.;  d CD   5 9.00 in.;  d min   5 58.3 in.      

 CHAPTER 4   
   4.1   ( a ) 325 lbx. ( b ) 1175 lbx.  
   4.2   42.0 Nx  
   4.3   0.264 m  
   4.4   ( a ) 245 lb.x. ( b ) 140.0 lb  .
   4.5   ( a ) 6.07 kNx. ( b ) 4.23 kNx.  
   4.6   ( a ) 4.89 kNx. ( b ) 3.69 kNx.  
   4.9   150.0 mm #  d  # 400 mm.  
   4.11   6.00 kips #  P  # 42.0 kips.  
   4.12   3.50 kN #  P  # 86.0 kN.  
   4.14   2.00 in. #  a  # 10.00 in.  
   4.15   ( a )  F DE   5 600 N. ( b )  C  5 1253 N a 69.8°.  
   4.17   ( a ) 80.0 lbw. ( b ) 216 lb a 22.0°.  
   4.18   232 lb.  
   4.19   ( a ) 2.00 kN. ( b ) 2.32 kN a 46.4°.  
   4.21   ( a )  A  5 150.0 N a 30.0°;  B  5 150.0 N b 30.0°.

( b )  A  5 433 N c 12.55°;  B  5 488 N b 30.0°.  
   4.23   ( a )  A  5 44.7 lb b 26.6°;  B  5 30.0 lbx.

( b )  A  5 30.2 lb b 41.4°;  B  5 34.6 lb b 60.0°.  

   4.24   ( a )  A  5 20.0 lbx;  B  5 50.0 lb b 36.9°.
( b )  A  5 23.1 lb a 60.0°;  B  5 59.6 lb b 30.2°.  

   4.26   ( a ) 190.9 N. ( b ) 142.3 N a 18.43°.  
   4.27   ( a ) 324 N. ( b ) 270 N y.  
   4.28   ( a ) 400 N. ( b )  C  5 458 N a 49.1°.  
   4.29   ( a ) 875 lb ( b ) 1584 lb b 45.0°.  
   4.30    T  5 80.0 N;  C  5 89.4 N a 26.6°.  
   4.33    T  5 2 P y3;  C  5 0.577 P  y.  
   4.34    T  5 0.586 P ;  C  5 0.414P y.  
   4.35    A  5 69.3 lb y;  B  5 34.6 lb c 60.0°;  C  5 173.2 lb b 60.0°.  
   4.36    T BE   5 50.0 lb;  A  5 18.75 lb y;  D  5 18.75 lb z.  
   4.37   ( a ) 1432 N. ( b ) 1100 Nx. ( c ) 1400 N z.  
   4.38    T BE   5 3230 N;  T CF   5 960 N;  D  5 3750 N z.  
   4.41    T  5 80.0 N;  A  5 160.0 N c 30.0°;  C  5 160.0 N b 30.0°.  
   4.42    T  5 69.3 N;  A  5 140.0 N c 30.0°;  C  5 180.0 N b 30.0°.  
   4.43   ( a ) A 5 78.5 N;  M   A  5 125.6 N ? m l.

( b )  A  5 111.0 N a 45.0°;  M   A   5 125.6 N ? m l.
( c )  A  5 157.0 Nx;  M   A   5 251 N ? m l.  

   4.44    C  5 7.07 lb b 45.0°;  M   C   5 43.0 lb ? in. i.  
   4.46    A  5 1848 N a 82.6°;  M   A   5 1431 N ? m i.  
   4.47   ( a )  D  5 20.0 lbw;  M   D   5 20.0 lb ? ft l.

( b )  D  5 10.00 lbw;  M   D   5 30.0 lb ? ft i.  
   4.49    C  5 1951 N b 88.5°;  M   C   5 75.0 N ? m i.  
   4.50   1.232 kN #  T  # 1.774 kN.  
   4.51   ( a )  u  5 2 sin 21 ( W y2 P ). ( b )  u  5 29.0°.  
   4.52   ( a )  T  5 1

2Wy(1 2 tan  u ). ( b )  u  5 39.8°.  
   4.53   ( a ) sin  u  1 cos  u  5  M y Pl . ( b ) 17.11° and 72.9°.  
   4.54   ( a ) cos 3   u  5  a ( P  1  Q )y Pl . ( b ) 40.6°.  
   4.57   141.1°  
   4.58   ( a ) (1 2 cos  u ) tan  u  5  W y2 kl . ( b ) 49.7°.  
   4.59   (1) completely constrained; determinate;  A  5  C  5 196.2 Nx.

(2)  completely constrained; determinate;  B  5 0,  C  5  D  5 

196.2 Nx.
  (3)  completely constrained; indeterminate;  A   x   5 294 N y; 

 D   x   5 294 N z.
  (4) improperly constrained; indeterminate; no equilibrium. 

(5)  partially constrained; determinate; equilibrium;
 C  5  D  5 196.2 Nx.

  (6)  completely constrained; determinate;  B  5 294 N y,
 D  5 491 N b 53.1°.

  (7) partially constrained; no equilibrium.
(8)  completely constrained; indeterminate;  B  5 196.2 Nx,

 D   y   5 196.2 Nx.  
   4.61    A  5 400 Nx;  B  5 500 N c 53.1°.  
   4.62    a  $ 138.6 mm.  
   4.66    B  5 888 N c 41.3°;  D  5 943 N b 45.0°.  
   4.67    B  5 1001 N b 48.2°;  D  5 943 N c 45.0°.  
   4.69   ( a ) 499 N. ( b ) 457 N b 26.6°.  
   4.70   ( a ) 998 N. ( b ) 822 N d 5.72°.  
   4.71    A  5 37.1 lb a 62.4°;  T  5 18.57 lb.  
   4.74   ( a ) 24.9 lb d 30.0°. ( b ) 15.34 lb a 30.0°.  
   4.75    T  5 100.0 lb; B 5 111.1 lb c 30.3°.  
   4.77    A  5 170.0 N b 33.9°;  C  5 160.0 N a 28.1°.  
   4.80   ( a )  F AD   5 400 N. ( b ) C 5 458 N a 49.1°.  
   4.81   ( a ) 2 P  b 60.0°. ( b ) 1.239 P  c 36.2°.  
   4.82   ( a ) 1.155 P  b 30.0°. ( b ) 1.086 P  a 22.9°.  
   4.83   60.0 mm.  
   4.84   tan  u  5 2 tan  b .  
   4.85   ( a ) 49.1°. ( b )  A  5 45.3 N z ;  B  5 90.6 N a 60.0°.  
   4.87   ( a ) 12.91 in. ( b ) 11.62 lb. ( c ) 5.92 lb.  
   4.88   32.5°.  
   4.90   ( a ) 59.4°. ( b )  A  5 8.45 lb y;  B  5 13.09 lb b 49.8°.  
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   4.91    A  5 (22.9 lb) i  1 (8.50 lb) j ;  B  5 (22.9 lb) i  1 (25.5 lb) j ; 
 C  5 2(45.8 lb) i .  

   4.92    A  5 (56.0 N) j  1 (18.00 N) k ;  D  5 (24.0 N) j  1 (42.0 N) k .  
   4.93    A  5 (56.0 N) j  1 (14.40 N) k ;  D  5 (24.0 N) j  1 (33.6 N) k .  
   4.94   ( a ) 37.5 lb. ( b )  B  5 (33.8 lb) j  2 (70.0 lb) k ;

 D  5 (33.8 lb) j  1 (28.0 lb) k .  
   4.97   ( a ) 121.9 N. (b) 246.2 N. (c) 100.9 N.  
   4.98   (a) 95.6 N. (b) 27.36 N. (c) 88.3 N.  
   4.99    T A   5 30.0 lb;  T B   5 10.00 lb;  T C   5 40.0 lb.  
   4.100   ( W D  ) min  5 40.0 lb;  x  5 0 in.;  z  5 30.0 in.  
   4.101    T A   5 23.5 N;  T C   5 11.77 N;  T D   5 105.9 N.  
   4.102   ( a ) 0.480 m. ( b )  T A   5 23.5 N;  T C   5 0;  T D   5 117.7 N.  
   4.105    T BD   5  T BE   5 1100 lb;  A  5 (1200 lb) i  2 (560 lb) j .  
   4.106    T AD   5 2.60 kN;  T AE   5 2.80 kN;  C  5 (1.800 kN) j  1 

(4.80 kN) k .  
   4.107    T AD   5 5.20 kN;  T AE   5 5.60 kN;  C  5 (9.60 kN) k .  
   4.108   ( a )  T DE   5  T DF   5 262 lb. ( b )  A  5 2(801 lb) i  1 (1544 lb) j .  
   4.109   ( a )  T CD   5  T CE   5 3.96 kN. ( b )  A  5 (6.67 kN) i  1 (1.667 kN) j .  
   4.110   ( a )  T CD   5 0.954 kN;  T CE   5 5.90 kN.

( b )  A  5 (5.77 kN) i  1 (1.443 kN) j  2 (0.833 kN) k .  
   4.113   ( a ) 101.6 N. (b)  A  5 2(26.3 N) i ;  B  5 (98.1 N) j .  
   4.114   ( a ) 462 N. ( b )  C  5 2(336 N) j  1 (467 N) k ;  D  5 (505 N) j  2 

(66.7 N) k .  
   4.117   ( a ) 49.5 lb. ( b )  A  5 2(12.00 lb) i  1 (22.5 lb) j  2 (4.00 lb) k ; 

 B  5 (15.00 lb) j  1 (34.0 lb) k .  
   4.118   ( a ) 118.8 lb. ( b )  A  5 (93.8 lb) i  1 (22.5 lb) j  1 (70.8 lb) k ; 

 B  5 (15.00 lb) j  2 (8.33 lb) k .  
   4.119   ( a ) 462 N. ( b )  C  5 (169.1 N) j  1 (400 N) k ;

 M   C   5 (20.0 N ? m) j  1 (151.5 N ? m) k .  
   4.120   ( a ) 49.5 lb. ( b )  A  5 2(12.00 lb) i  1 (37.5 lb) j  1 (30.0 lb) k ; 

 M   A   5 2(1020 lb ? in.) j  1 (450 lb ? in.) k .  
   4.121   ( a ) 5.00 lb. ( b )  C  5 2(5.00 lb) i  1 (6.00 lb) j  2 (5.00 lb) k ;

 M   C   5 (8.00 lb ? in.) j  2 (12.00 lb ? in.) k .  
   4.122    T CF   5 200 N;  T DE   5 450 N;  A  5 (160.0 N) i  1 (270 N) k ;

 M   A   5 2(16.20 N ? m) i .  
   4.125    T BE   5 975 N;  T CF   5 600 N;  T DG   5 625 N;  A  5 (2100 N) i  1 

(175.0 N) j  2 (375 N) k .  
   4.126    T BE   5 1950 N;  T CF   5 0;  T DG   5 1250 N;  A  5 (3000 N) i  2 

(750 N) k .  
   4.127    A  5 (120.0 lb) j  2 (150.0 lb) k ;  B  5 (180.0 lb) i  1 (150.0 lb) k ; 

 C  5 2(180.0 lb) i  1 (120.0 lb) j .  
   4.128    A  5 (20.0 lb) j  1 (25.0 lb) k ;  B  5 (30.0 lb) i  2 (25.0 lb) k ; 

 C  5 2(30.0 lb) i  2 (20.0 lb) j .  
   4.129    B  5 (60.0 N) k ;  C  5 (30.0 N) j  2 (16.00 N) k ; 

 D  5 2(30.0 N) j  1 (4.00 N) k .  
   4.130    B  5 (60.0 N) k ;  C  5 2(16.00 N) k ;  D  5 (4.00 N) k .  
   4.133   85.3 lb.  
   4.134   181.7 lb.  
   4.135   373 N  
   4.136   301 N  
   4.137   (45.0 lb) j   
   4.138   ( a )  x  5 4.00 ft;  y  5 8.00 ft. ( b ) 10.73 lb.  
   4.139   ( a )  x  5 0 ft;  y  5 16.00 ft. ( b ) 11.31 lb.  
   4.142   ( a ) 37.9 Nx. ( b ) 373 Nx  .
   4.143   ( a )  A  5 225 Nx;  C  5 641 N d 20.6°. 

( b )  A  5 365 N a 60.0°;  B  5 844 N d 22.0°.  
   4.145   (a) 130.0 N, (b) 224 N d 2.05°.  
   4.146    C  5 7.97 lb y;  D  5 42.6 lb z;  E  5 69.3 lb a 60.0°.  
   4.148    A  5 63.6 lb c 45.0°;  C  5 87.5 lb b 59.0°.  
   4.150    T BD   5 780 N;  T BE   5 390 N;  A  5 2(195.0 N) i  1 

(1170 N) j  1 (130.0 N) k .  

   4.152    T FJ   5 0;  T DH   5 60.0 lb;  T BG   5 80.0 lb;  A  5 (100.0 lb) i  2 

(48.0 lb) k .  
   4.153   ( a )  A  5 0.745 P  a 63.4°;  C  5 0.471 P  b 45.0°. 

( b )  A  5 0.812 P  a 60.0°;  C  5 0.503 P  d 36.2°. 
( c )  A  5 0.448 P  b 60.0°;  C  5 0.652 P  a 69.9°. 
( d ) improperly constrained; no equilibrium.  

   4.C1    u  5 20°:  T  5 114.8 lb;  u  5 70°:  T  5 127.7 lb;
 Tmax    5 132.2 lb at  u  5 50.4°.  

   4.C2    x  5 600 mm:  P  5 31.4 N;  x  5 150 mm:  P  5 37.7 N;
 P  max  5 47.2 N at  x  5 283 mm.  

   4.C3    u  5 30°:  W  5 9.66 lb;  u  5 60°:  W  5 36.6 lb;
 W  5 5 lb at  u  5 22.9° [Also at  u  5 175.7°].  

   4.C4    u  5 30°:  W  5 0.80 lb;  u  5 60°:  W  5 4.57 lb;
 W  5 5 lb at  u  5 62.6° [Also at  u  5 159.6°].  

   4.C5    u  5 30°:  m  5 7.09 kg;  u  5 60°:  m  5 11.02 kg.
When  m  5 10 kg,  u  5 51.0°.  

   4.C6    u  5 15°:  T BD   5 10.30 kN,  T BE   5 21.7 kN;
 u  5 30°:  T BD   5 5.69 kN,  T BE   5 24.4 kN;
 T  max  5 26.5 kN at  u  5 36.9°.      

 CHAPTER 5   
   5.1     X 5 175.6 mm, Y 5 94.4 mm.    
   5.2     X 5 16.21 mm  ,  Y  5 31.9 mm.  
   5.3     X 5 19.28 in., Y 5 6.94 in.    
   5.4     X 5 5.67 in., Y 5 5.17 in.    
   5.5     X 5 7.22 in.  ,  Y  5 9.56 in.  
   5.6     X 5 92.0 mm, Y 5 23.3 mm.    
   5.9     X 5 210.00 mm, Y 5 87.5 mm.    
   5.10     X 5 29.89 mm, Y 5 210.67 mm    
   5.11     X 5 0, Y 5 6.45 in.    
   5.12     X 5 50.5 mm, Y 5 19.34 mm.    
   5.14     X 5 Y 5 9.00 in.    

   
5.16

     
Y 5

2
3

 ar3
2 2 r3

1

r2
2 2 r2

1

b a 2 cos a
p 2 2a

b
    

   
5.17

     
Y 5

r1 1 r2

p 2 2a
 cos a

    
   5.18    a y b  5 4y5  
   5.20   459 N  
   5.21   ( Q x  ) 1  5 25.0 in 3 ; ( Q x  ) 2  5 225.0 in 3 .  
   5.22   ( Q x  ) 1  5 23.3 in 3 ; ( Q x  ) 2  5 223.3 in 3 .  
   5.24     X 5 172.5 mm, Y 5 97.5 mm    
   5.26    X  5 18.45 in., Y 5 6.48 in.    
   5.28   ( a )  T  5 5.09 lb. ( b )  C  5 9.48 lb b 57.5°.  
   5.29   0.739 m  
   5.30    L  5 0.204 m or 0.943 m  
   5.32   ( a )  h  5 0.513 a . ( b )  h  5 0.691 a   
   5.34     x 5 2y3a, y 5 1

3 h.    
   5.35     x 5 ay2, y 5 2hy5.    
   5.37     x 5 2ay3(4 2 p), y 5 2by3(4 2 p)    
   5.39     x 5 a(3 2 4 sin a)y6(1 2 a), y 5 0.    
   5.40     x 5 ay4, y 5 3by10.    
   5.41     x 5 5ay8, y 5 by3.    
   5.42     x 5 5Ly4, y 5 33ay40.    
   5.44     x 5 a, y 5 17by35.    
   5.45   2y5 a   
   5.46     2212ry3p.    
   5.48     x 5 0.236L, y 5 0.454a.    
   5.49     x 5 29.27a, y 5 3.09a.    
   5.50     x 5 1.629 in., y 5 0.1853 in.    
   5.51    a  5 1.901 in. or 3.74 in.  
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   5.52   ( a )  V  5 6.19 3 10 6  mm 3 ;  A  5 458 3 10 3  mm 2 .
( b )  V  5 16.88 3 10 6  mm 3 ;  A  5 1.171 3 10 6  mm 2 .  

   5.53   ( a )  V  5 308 3 10 3  mm 3 ;  A  5 38.2 3 10 3  mm 2 .
( b ) V 5 177.2 3 10 3  mm 3 ;  A  5 22.4 3 10 3  mm 2 .  

   5.54   ( a )  V  5 169.0 3 10 3  in 3 ;  A  5 28.4 3 10 3  in 2 .
( b )  V  5 88.9 3 10 3  in 3 ;  A  5 15.48 3 10 3  in 2 .  

   5.56    V  5 3470 mm 3 ;  A  5 2320 mm 2 .  
   5.58    V  5 0.0900 in 3 .  
   5.59    V  5 31.9 liters.  
   5.61    m  5 0.0305 kg.  
   5.63   22.0 gallons  
   5.64   66.5%  
   5.66   ( a )  R  5 1215 lbw,   x 5 4.33 ft.  

( b )  A  5 630 lbx;  B  5 585 lbx  
   5.67   ( a )  R  5 2400 Nw, 2.33 m to the right of  A .

(b)  A  5 1000 Nx;  B  5 1400 Nx.  
   5.68    A  5 32.0 kN;  M   A   5 124.0 kN ? m l.  
   5.69    B  5 1360 lbx;  C  5 2360 lbx.  
   5.71    A  5 480 Nx;  B  5 840 Nw.  
   5.73    A  5 3000 Nx;  M   A   5 12.60 kN ? m l.  
   5.74   ( a )  a  5 0.536 m. (b)  A  5  B  5 761 Nx.  
   5.76    B  5 150.0 lbx;  C  5 5250 lbx.  
   5.77   ( a )  w  0  5 100.0 lbyft. ( b )  C  5 4950 lbx.  
   5.78    w A   5 10.00 kNym;  w B   5 50.0 kNym.  
   5.80   ( a )  H  5 254 kN y;  V  5 831 kNx.

( b )  x  5 3.25 m to the right of  A .
( c )  R  5 268 kN d 18.43°.  

   5.81    ( a ) H  5 13.76 kips y;  V  5 113.0 kipsx.
( b ) 22.4 ft to the right of  A .
( c )  R  5 25.6 kips d 57.5°.  

   5.82    d  5 2.64 m.  
   5.83    T  5 67.2 kN z;  A  5 141.2 kN z.  
   5.84    T  5 3.70 kipsx.  
   5.85    d  5 5.88 ft.  
   5.88    A  5 1197 N b 53.1°;  B  5 1511 N b 53.1°.  
   5.89    T  5 3570 N.  
   5.90    T  5 208 lb  
   5.91    d  5 6.00 ft.  
   5.93    d  5 0.683 m  
   5.94    h  5 0.0711 m  
   5.96   ( a )  b y10 to the left of base of cone.

( b ) 0.01136 b  to the right of base of cone.  
   5.97     Y 5 2(2h2 2 3b2)y2(4h 2 3b).    
   5.98     Z 5 2a(4h 2 2b)yp(4h 2 3b).    
   5.99   ( a )   Y 5 20.402a.   ( b )  h y a  5 2y5 or 2y3.  
   5.100     X 5 46.8 mm.    
   5.101     Z 5 26.2 mm.    
   5.103     Y 5 20.1403 in.    
   5.104     Z 5 3.47 in.    
   5.106     X 5 0.295 m, Y 5 0.423 m, Z 5 1.703 m.    
   5.107     X 5 125.0 mm, Y 5 167.0 mm, Z 5 33.5 mm.    
   5.108     X 5 Z 5 4.21 in., Y 5 7.03 in.    
   5.110     X 5 46.5 mm, Y 5 27.2 mm, Z 5 30.0 mm    
   5.111     X 5 17.00 in., Y 5 15.68 in., Z 5 14.16 in.    
   5.112     X 5 180.2 mm, Y 5 38.0 mm, Z 5 193.5 mm.    
   5.114     X 5 0.1452 m, Y 5 0.396 m, Z 5 0.370 m.    
   5.115     X 5 0.410 m, Y 5 0.510 m, Z 5 0.1500 m.    
   5.117     X 5 1.750 ft, Y 5 4.14 ft, Z 5 1.355 ft.    
   5.118     X 5 61.6 mm   from the end of the handle.  
   5.119     Y 5 0.526 in.   above the base.  
   5.121     Y 5 421 mm.   above the floor.  

   5.122     (x)1 5 21ay88;     (x)2 5 27ay40.    
   5.123     (x)1 5 21hy88;     (x)2 5 27hy40.    
   5.124     (x)1 5 2hy9; (x)2 5 2hy3.    
   5.125    x  5 hy6; y 5 z 5 0.    
   5.128     x 5 1.297a, y 5 z 5 0.    
   5.129     x 5 z 5 0, y 5 0.374h.    
   5.132   ( a )   x 5 z 5 0, y 5 2121.9 mm.   

( b )   x 5 z 5 0, y 5 290.2 mm.    
   5.133    V  5 688 ft 3 ;   x 5 15.91 ft.    
   5.134     x 5 ay2, y 5 8hy25, z 5 by2.    
   5.136     x 5 0, y 5 5hy16, z 5 2by4.    
   5.137     X 5 19.27 mm, Y 5 26.6 mm.    
   5.138     X 5 3.20 in., Y 5 2.00 in.    
   5.140     x 5 ay2, y 5 3hy5.    
   5.141     x 5 3ay8, y 5 b.    
   5.143    A  5 1300 Nx;  B  5 1850 Nx.  
   5.146   ( a )   x 5 0.548L.   ( b )   hyL 5 213.    
   5.147     X 5 0.1402 m, Y 5 0.0944 m, Z 5 0.0959 m.    
   5.148     x 5 2.34 m, y 5 z 5 0.    
   5.C1   ( b )  A  5 1220 lbx;  B  5 1830 lbx.

( c )  A  5 1265 lbx;  B  5 1601 lbx.  
   5.C2   ( a )   X 5 0, Y 5 0.278 m, Z 5 0.0878 m.   

( b )   X 5 0.0487 mm, Y 5 0.1265 mm, Z 5 0.0997 mm.   
( c )   X 5 20.0372 m, Y 5 0.1659 m, Z 5 0.1043 m.    

   5.C3    d  5 1.00 m:  F  5 5.66 kN c 30°;
 d  5 3.00 m:  F  5 49.9 kN c 27.7°.  

   5.C4   ( a )   X 5 5.80 in., Y 5 1.492 in.   ( b )   X 5 9.11 in., Y 5 2.78 in.   
( c )   X 5 8.49 in., Y 5 0.375 in.    

   5.C5   With  n  5 40: ( a )   X 5 60.2 mm, Y 5 23.4 mm.   
( b )   X 5 60.2 mm, Y 5 146.2 mm.   
( c )   X 5 68.7 mm. Y 5 20.4 mm. 
 ( d )   X 5 68.7 mm, Y 5 127.8 mm.    

   5.C6   With  n  5 40: ( a )   X 5 60.0 mm, Y 5 24.0 mm.   
( b ) X   5 60.0 mm, Y 5 150.0 mm.   
( c )   X 5 68.6 mm, Y 5 21.8 mm.   
( d ) X   5 68.6 mm, Y 5 136.1 mm.    

   5.C7   ( a )  V  5 628 ft 3 . 
( b )   X 5 8.65 ft, Y 5 24.53 ft, Z 5 9.27 ft.        

 CHAPTER 6   
   6.1    F AB   5 52.0 kN  T ;  F AC   5 64.0 kN  T ;  F BC   5 80.0 kN  C .  
   6.2    F AB   5 375 lb  C ;  F AC   5 780 lb  C ;  F BC   5 300 lb  T.   
   6.3    F AB   5 4.00 kN  C ;  F AC   5 2.72 kN  T ;  F BC   5 2.40 kN  C .  
   6.5    F AB   5  F BC   5 31.5 kips  T ;  F AD   5 35.7 kips  C ; 

 F BD   5 10.80 kips  C ;  F CD   5 33.3 kips  C .  
   6.6    F AB   5  F BD   5 0;  F AC   5 675 N  T ;  F AD   5 1125 N  C ; 

 F CD   5 900 N  T ;  F CE   5 2025 N  T ;  F CF   5 2250 N  C ; 
 F DF   5 675 N  C ;  F EF   5 1800 N  T .  

   6.7    F AB   5 15.90 kN  C ;  F AC   5 13.50 kN  T ;  F BC   5 16.80 kN  C ; 
 F BD   5 13.50 kN  C ;  F CD   5 15.90 kN  T .  

   6.9    F AB   5 47.2 kN  C ;  F AC   5 44.6 kN  T ;  F BC   5 10.50 kN  C ; 
 F BD   5 47.2 kN  C ;  F CD   5 17.50 kN  T ;  F CE   5 30.6 kN  T ; 
 F DE   5 0.  

   6.10    F AB   5  F HI   5 12.31 kN  C ;  F AC   5  F GI   5 11.25 kN  T ;  F BC   5 

 F GH   5 2.46 kN  C ;  F BD   5  F DE   5  F EF   5  F FH   5 9.85 kN  C ; 
 F CD   5  F FG   5 2.00 kN  C ;  F CE   5  F EG   5 3.75 kN  T ; 
 F CG   5 6.75 kN  T .  

   6.11    F AB   5  F FH   5 1500 lb  C ;  F AC   5  F CE   5  F EG   5  F GH   5 

1200 lb  T ;  F BC   5  F FG   5 0;  F BD   5  F DF   5 1000 lb  C ; 
 F BE   5  F EF   5 500 lb  C ;  F DE   5 600 lb  T .  
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   6.12    F AB   5  F FH   5 1500 lb  C ;  F AC   5  F CE   5  F EG   5  F GH   5 

1200 lb  T ;  F BC   5  F FG   5 0;  F BD   5  F DF   5 1200 lb  C ;  
F BE   5  F EF   5 60.0 lb  C ;  F DE   5 72.0 lb  T .  

   6.15    F AB   5 7.50 kips  C ;  F AC   5 4.50 kips  T ;  F BC   5 7.50 kips  T ;  
F BD   5 9.00 kips  C ;  F CD   5 0;  F CE   5 9.00 kips  T .  

   6.16    F AB   5 5.00 kips  C ;  F AC   5 3.00 kips  T ;  F BC   5 5.00 kips  T ; 
 F BD   5 6.00 kips  C ;  F CD   5  F EF   5 2.50 kips  T ;  F CE   5 

4.50 kips  T ;  F DE   5  F FG   5 2.50 kips  C ;  F DF   5 3.00 kips  C ; 
 F EG   5 1.500 kips  T .  

   6.19    F AB   5 9.90 kN  C ;  F AC   5 7.83 kN  T ;  F BC   5 0; 
 F BD   5 7.07 kN  C ;  F BE   5 2.00 kN  C ;  F CE   5 7.83 kN  T ; 
 F DE   5 1.000 kN  T ;  F DF   5 5.03 kN  C ;  F DG   5 0.559 kN  C ; 
 F EG   5 5.59 kN  T .  

   6.20    F FG   5 3.50 kN  T ;  F FH   5 5.03 kN  C ;  F GH   5 1.677 kN  T ;  
F GI   5  F IK   5  F KL   5 3.35 kN  T ;  F HI   5  F IJ   5  F JK   5 0;  
F HJ   5  F JL   5 4.42 kN  C .  

   6.21    F AB   5 2240 lb  C ;  F AC   5  F CE   5 2000 lb  T ;  F BC   5  F EH   5 0; 
 F BD   5 1789 lb  C ;  F BE   5 447 lb  C ;  F DE   5 600 lb  C ; 
 F DF   5 2010 lb  C ;  F DG   5 224 lb  T ;  F EG   5 1789 lb  T .  

   6.22    F FG   5 1400 lb  T ;  F FI   5 2010 lb  C ;  F GI   5 671 lb  C ; 
 F GJ   5 2430 lb  T ;  F IJ   5 361 lb  T ;  F IK   5 2910 lb  C ;  
F JK   5 447 lb  C ;  F JL   5 3040 lb  T ;  F KL   5 3350 lb  C .  

   6.23    F AB   5 9.39 kN  C ;  F AC   5 8.40 kN  T ;  F BC   5 2.26 kN  C ; 
 F BD   5 7.60 kN  C ;  F CD   5 0.128 kN  C ;  F CE   5 7.07 kN  T ; 
 F DE   5 2.14 kN  C ;  F DF   5 6.10 kN  C ;  F EF   5 2.23 kN  T .  

   6.24    F AB   5  F DF   5 2.29 kN  T ;  F AC   5  F EF   5 2.29 kN  C ; 
 F BC   5  F DE   5 0.600 kN  C ;  F BD   5 2.21 kN  T ;  F BE   5  F EH   5 0; 
 F CE   5 2.21 kN  C ;  F CH   5  F EJ   5 1.200 kN  C .  

   6.27    F AB   5 31.0 kips  C ;  F AC   5 28.3 kips  C ;  F AD   5 15.09 kips  T ; 
 F AE   5 9.50 kips  T ;  F BD   5 21.5 kips  T ;  F BF   5 28.0 kips  C ;  
F CE   5 41.0 kips  T ;  F CG   5 42.0 kips  C ;  F DE   5 22.0 kips  T ; 
 F DF   5 33.5 kips  T ;  F EG   5 0.  

   6.28    F AB   5 128.0 kN  T ;  F AC   5 136.7 kN  C ;  F BD   5  F DF   5  F FH   5 

128.0 kN  T ;  F CE   5  F EG   5 136.7 kN  C ;  F GH   5 192.7 kN  C .  
   6.29   Truss of Prob. 6.33 a  is the only simple truss.  
   6.30   Truss of Prob. 6.32 b  is the only simple truss.  
   6.31   ( a )  BC ,  CD ,  IJ ,  IL ,  LM ,  MN . ( b )  BC ,  BE ,  DE ,  EF ,  FG , 

 IJ ,  KN ,  MN .  
   6.32   ( a )  AI ,  BJ ,  CK ,  DI ,  EI ,  FK ,  GK . ( b )  FK ,  IO .  
   6.35    F AB   5  F AD   5 244 lb  C ;  F AC   5 1040 lb  T ;  F BC   5  

F CD   5 500 lb  C ;  F BD   5 280 lb  T .  
   6.36    F AB   5  F AD   5 861 N  C ;  F AC   5 676 N  C ;  F BC   5  F CD   5 

162.5 N  T ;  F BD   5 244 N  T .  
   6.37    F AB   5  F AD   5 2810 N  T ;  F AC   5 5510 N  C ;  F BC   5  F CD   5 

1325 N  T ;  F BD   5 1908 N  C .  
   6.38    F AB   5  F AC   5 1061 lb  C ;  F AD   5 2500 lb  T ;  F BC   5 2100 lb  T ;

 F BD   5  F CD   5 1250 lb  C ;  F BE   5  F CE   5 1250 lb  C ; 
 F DE   5 1500 lb  T .  

   6.39    F AB   5 840 N  C ;  F AC   5 110.6 N  C ;  F AD   5 394 N  C ;  
F AE   5 0;  F BC   5 160.0 N  T ;  F BE   5 200 N  T ;  F CD   5 225 N  T ; 
 F CE   5 233 N  C ;  F DE   5 120.0 N  T .  

   6.40    F AB   5 0;  F AC   5 995 N  T ;  F AD   5 1181 N  C ;  F AE   5  F BC   5 0; 
 F BE   5 600 N  T ;  F CD   5 375 N  T ;  F CE   5 700 N  C ;  
F DE   5 360 N  T .  

   6.43    F CE   5 8000 lb  T ;  F DE   5 2600 lb  T ;  F DF   5 9000 lb  C   
   6.44    F EG   5 7500 lb  T ;  F FG   5 3900 lb  C ;  F FH   5 6000 lb  C   
   6.45    F BD   5 216 kN  T ;  F DE   5 270 kN  T .  
   6.46    F DG   5 459 kN  C ;  F EG   5 216 kN  C .  
   6.49    F CE   5 7.20 kN  T ;  F DE   5 1.047 kN  C ;  F DF   5 6.39 kN  C .  
   6.50    F EG   5 3.46 kN T;  F GH   5 3.78 kN  C ;  F HJ   5 3.55 kN  C .  
   6.51    F DF   5 10.48 kips  C ;  F DG   5 3.35 kips  C ;  F EG   5 13.02 kips  T .  
   6.52    F OI   5 13.02 kips  T ;  F HI   5 0.800 kips  T ;  F HJ   5 13.97 kips  C .  

   6.53    F CE   5 8.00 kN  T ;  F DE   5 4.50 kN  C ;  F DF   5 10.00 kN  C .  
   6.54    F FH   5 10.00 kN  C ;  F FI   5 4.92 kN  T ;  F GI   5 6.00 kN  T .  
   6.55    F AD   5 13.5 kN  C ;  F CD   5 0;  F CE   5 56.1 kN  T .  
   6.56    F DG   5 75.0 kN  C ;  F FG   5 56.1 kN  T ;  F FH   5 69.7 kN  T .  
   6.57    F AB   5 8.20 kips  T ;  F AG   5 4.50 kips  T ;  F FG   5 11.60 kips  C .  
   6.58    F AE   5 17.46 kips  T ;  F EF   5 11.60 kips  C ;  F FJ   5 18.45 kips  C .  
   6.61    F AF   5 1.500 kN  T ;  F EJ   5 0.900 kN  T .  
   6.62    F AF   5 0.900 kN  T ;  F EJ   5 0.300 kN  T .  
   6.65   ( a )  CJ.  ( b ) 1.026 kN  T.   
   6.66   ( a )  IO . ( b ) 2.05 kN  T .  
   6.67    F BG   5 5.48 kips  T ;  F DG   5 1.825 kips  T .  
   6.68    F CF   5 3.65 kips  T ;  F CH   5 7.30 kips  T .  
   6.69   ( a ) improperly constrained. ( b ) completely constrained, 

determinate. ( c ) completely constrained, indeterminate.  
   6.70   ( a ) completely constrained, determinate. ( b ) partially 

constrained. ( c ) improperly constrained.  
   6.71   ( a ) completely constrained, determinate. ( b ) completely 

constrained, indeterminate. ( c ) improperly constrained.  
   6.72   ( a ) partially constrained. ( b ) completely constrained, 

determinate. ( c ) completely constrained, indeterminate.  
   6.75   ( a ) 125 N b 36.9°. ( b ) 125 N d 36.9°.  
   6.76    F BD   5 255 N  C ;  C   x   5 120.0 N y;  C   y   5 625 Nx.  
   6.77   ( a ) 80.0 lb  T . (b) 72.1 lb d 16.1°.  
   6.78   ( a ) 80.0 lb  T . ( b ) 72.1 lb c 16.1°.  
   6.81    A    x   5 18.00 kN z;  A   y   5 20.0 kNw;  B  5 9.00 kN y; 

 C   x   5 9.00 kN y,  C   y   5 20.0 kNx.  
   6.82    A  5 20.0 kNw;  B  5 18.00 kN z;  C   x   5 18.00 kN y, 

 C   y   5 20.0 kNx.  
   6.83   ( a )  A   x   5 450 N z,  A   y   5 525 Nx;  E   x   5 450 N y, 

 E   y   5 225 Nx; ( b )  A   x   5 450 N z,  A   y   5 150.0 Nx; 
 E   x   5 450 N y,  E   y   5 600 Nx.  

   6.84   ( a )  A   x   5 300 N z,  A   y   5 660 Nx;  E   x   5 300 N y,  
E   y   5 90.0 Nx. ( b )  A   x   5 300 N z,  A   y   5 150.0 Nx;  
E   x   5 300 N y,  E   y   5 600 Nx.  

   6.87   ( a )  A   x   5 80.0 lb z,  A   y   5 40.0 lbx;  B   x   5 80.0 lb y, 
 B   y   5 60.0 lbx. ( b )  A   x   5 0,  A   y   5 40.0 lbx;  B   x   5 0,  
B   y   5 60.0 lbx.  

   6.88   ( a ) and ( c )  B   x   5 32.0 lb y,  B   y   5 10.00 lbx;  
F   x   5 32.0 lb z,  F   y   5 38.0 lbx. ( b )  B   x   5 32.0 lb y, 
 B   y   5 34.0 lbx,  F   x   5 32.0 lb z,  F   y   5 14.00 lbx.  

   6.89   (a) and (c)  B   x   5 24.0 lb z,  B   y   5 7.50 lbw;  F   x   5 24.0 lb y, 
 F   y   5 7.50 lbx. (b)  B   x   5 24.0 lb z,  B   y   5 10.50 lbx; 
 F   x   5 24.0 lb y,  F   y   5 10.50 lbw.  

   6.91    B   x   5 700 N z,  B   y   5 200 Nw;  E   x   5 700 N y, 
 E   y   5 500 Nx.  

   6.92    D   x   5 13.60 kN y,  D   y   5 7.50 kNx;  E   x   5 13.60 kN z, 
 E   y   5 2.70 kNw  

   6.93    A   x   5 176.3 lb z,  A   y   5 60.0 lbw;  G   x   5 56.3 lb y, 
 G   y   5 510 lbx.  

   6.94    A   x   5 56.3 lb z,  A   y   5 157.5 lbw;  G   x   5 56.3 lb y, 
 G   y   5 383 lbx.  

   6.95   ( a )  A  5 982 lbx;  B  5 935 lbx;  C  5 733 lbx. 
( b ) D B  5 1291 lb; D C  5 272.7 lb.  

   6.96   ( a ) 5 572 lb. ( b )  A  5 1070 lbx;  B  5 709 lbx;  C  5 870 lbx.  
   6.99    C   x   5 78.0 lb y,  C   y   5 28.0 lbx;  F   x   5 78.0 lb z, 

 F   y   5 12.00 lbx.  
   6.100    C   x   5 21.7 lb y,  C   y   5 37.5 lbw;  D   x   5 21.7 lb z,  

D   y   5 62.5 lbx.  
   6.101    A   x   5 13.00 kN z,  A   y   5 4.00 kNw;  B   x   5 36.0 kN y,  

B   y   5 6.00 kNx;  E   x   5 23.0 kN z,  E   y   5 2.00 kNw.  
   6.102    A   x   5 2025 N z,  A   y   5 1800 Nw;  B   x   5 4050 N y,  

B   y   5 1200 Nx;  E   x   5 2025 N z,  E   y   5 600 Nx.  
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   6.103   ( a )  C   x   5 100.0 lb z,  C   y   5 100.0 lbx;  D   x   5 100.0 lb y,  
D   y   5 20.0 lbw. (b)  E   x   5 100.0 lb z,  E   y   5 180.0 lbx.  

   6.104   ( a )  C   x   5 100.0 lb z,  C   y   5 60.0 lbx;  D   x   5 100.0 lb y,  
D   y   5 20.0 lbx. ( b )  E   x   5 100.0 lb z,  E   y   5 140.0 lbx.  

   6.107   ( a )  A    x   5 200 kN y,  A   y   5 122 kNx. ( b )  B   x   5 200 kN z,
 B   y   5 10.00 kNw.  

   6.108   ( a )  A   x   5 205 kN y,  A   y   5 134.5 kNx. ( b )  B   x   5 205 kN z, 
 B   y   5 5.50 kNx.  

   6.109    B  5 98.5 lb a 24.0°;  C  5 90.6 lb b 6.34°  .
   6.110   ( a ) 301 lb c 48.4°. ( b ) 375 lb  T .  
   6.111     FAG 5 12 Py6 C; FBF 5 212 Py3 C; FDI 5 12 Py3 C; 

FEH 5 12 Py6 T  .  
   6.113    F AF   5  P y4  C ;   FBG 5 FDG 5 Py12 C  ;  F EH   5  P y4  T .  
   6.115    F AF   5  M  0  y4 a C ;   FBG 5 FDG 5 M0y12a T  ;  F EH   5 3 M  0  y4 a C .  
   6.116     FAF 5 12 M0y3a    C ;  F BG   5  M  0  y a T ;  F DG   5  M  0  y a C ; 

  FEH 5 212 M0y3a T  .  
   6.117    E  5  P y5w;  F  5 8 P y5x;  G  5 4 P y5w;  H  5 2 P y5x.  
   6.118    A  5  P y15x;  D  5 2 P y15x;  E  5 8 P y15x;  H  5 4 P y15x.  
   6.119   ( a )  A  5 2.06 P  a 14.04°;  B  5 2.06 P  b 14.04°; frame is rigid. 

( b ) Frame is not rigid. ( c )  A  5 1.25 P  b 36.9°; 
 B  5 1.031 P  a 14.04°; frame is rigid.  

   6.122   ( a ) ( F BD  )  y   5 96.0 lbw ( b )  F BD   5 100.0 lb a 73.7°.  
   6.123   ( a ) ( F BD  )  y   5 240 lbw ( b )  F BD   5 250 lb a 73.7°.  
   6.126   ( a ) 746 Nw. ( b ) 565 N c 61.3°.  
   6.127   ( a ) 302 Nw. ( b ) 682 N c 61.3°.  
   6.128    T DE   5 81.0 N;  B  5 216 Nw.  
   6.129   ( a ) 21.0 kN z. ( b ) 52.5 kN z.  
   6.130   ( a ) 1143 N ? m i. ( b ) 457 N ? m i.  
   6.131   832 lb ? in. l.  
   6.132   360 lb ? in. l.  
   6.133   195.0 kN ? m i.  
   6.134   40.5 kN ? m l.  
   6.137   208 N ? m i.  
   6.138   18.43 N ? m i.  
   6.139    F AE   5 800 N  T ;  F DG   5 100.0 N  C .  
   6.140    P  5 120.0 Nw;  Q  5 110.0 N z.  
   6.142    F  5 3290 lb c 15.12°;  D  5 4450 lb z.  
   6.143    D  5 30.0 kN z;  F  5 37.5 kN c 36.9°.  
   6.144    D  5 150.0 kN z;  F  5 96.4 kN c 13.50°.  
   6.145   ( a ) 475 lb. ( b ) 528 lb b 63.3°.  
   6.146   44.8 kN.  
   6.148   8.45 kN.  
   6.149   25.0 lbw  
   6.150   10.00 lbw.  
   6.151   240 N.  
   6.154   ( a ) 14.11 kN c 19.10°. ( b ) 19.79 kN b 47.6°.  
   6.155   ( a ) 4.91 kips  C . ( b ) 10.69 kips  C .  
   6.156   ( a ) 2.86 kips  C . ( b ) 9.43 kips  C .  
   6.159   ( a )  M  0  5 (90.0 N ? m) i . ( b )  A  5 0;  B  5 0;  

M   B   5 2(72.0 N ? m) i   
   6.160   ( a ) 27.0 mm. ( b ) 40.0 N ? m i.  
   6.163    E   x   5 100.0 kN y,  E   y   5 154.9 kNx;  F   x   5 26.5 kN y, 

 F   y   5 118.1 kNw;  H   x   5 126.5 kN z,  H   y   5 36.8 kNw.  
   6.164    F AB   5  F AE   5 671 lb  T ;  F AC   5  F AD   5 1000 lb  C ;  

F BC   5  F DE   5 600 lb  C ;  F CD   5 200 lb  T .  
   6.166    F FG   5 5.23 kN  C ;  F EG   5 0.1476 kN  C ;  F EH   5 5.08 kN  T .  
   6.167    F KM   5 5.02 kN  T ;  F LM   5 1.963 kN  C ;  F LN   5 3.95 kN  C .  
   6.168    A   x   5 25.0 kips z,  A   y   5 20.0 kipsx;  B   x   5 25.0 kips z, 

 B   y   5 10.00 kipsw;  C   x   5 50.0 kips y,  C   y   5 10.00 kipsw.  
   6.170    A   x   5 150.0 N z,  A   y   5 250 Nx;  E   x   5 150.0 N y,

 E   y   5 450 Nx.  
   6.171    A  5 327 lb y;  B  5 827 lb z;  D  5 621 lbx;  E  5 246 lbx.  

   6.172   ( a )  P  5 109.8 N y. ( b ) 126.8 N  T , ( c ) 139.8 N b 38.3°.  
   6.175   ( a ) 312 lb. ( b ) 135.0 lb ? in. i.  
   6.C1   ( a )  u  5 30°:  W  5 472 lb,  A AB   5 1.500 in 2 ,  A AC   5  A CE   5 

1.299 in 2 ,  A BC   5  A BE   5 0.500 in 2 ,  A BD   5 1.732 in 2 . 
( b )  u  opt  5 56.8°:  W  5 312 lb,  A AB   5 0.896 in 2 ,  A AC   5 

 A CE   5 0.491 in 2 ,  A BC   5 0.500 in 2 ,  A BE   5 0.299 in 2 , 
 A BD   5 0.655 in 2 .  

   6.C2   ( a ) For  x  5 9.75 m,  F BH   5 3.19 kN  T . ( b ) For  x  5 3.75 m, 
 F BH   5 1.313 kN  C . ( c ) For  x  5 6 m,  F GH   5 3.04 kN  T .  

   6.C3    u  5 30°: M 5 5860 lb ? ft l; A 5 670 lb a 75.5°. 
( a )  M  max  5 8680 lb ? ft when  u  5 65.9°. 
( b )  A  max  5 1436 lb when  u  5 68.5°.  

   6.C4    u  5 30°:  M   A   5 1.669 N ? m l,  F  5 11.79 N.  u  5 80°:
 M   A   5 3.21 N ? m l,  F  5 11.98 N.  

   6.C5    d  5 0.40 in.: 634 lb  C ;  d  5 0.55 in.: 286 lb  C ;  
d  5 0.473 in.:  F AB   5 500 lb  C .  

   6.C6    u  5 20°:  M  5 31.8 N ? m;  u  5 75°:  M  5 12.75 N ? m; 
 u  5 60.0°: M min  5 12.00 N ? m.      

 CHAPTER 7   
   7.1    F  5 0;  V  5 80.0 lbx;  M  5 480 lb ? in. l.  
   7.2    F  5 0;  V  5 40.0 lbx;  M  5 240 lb ? in. l  .
   7.3    F  5 4.80 kN z;  V  5 1.400 kNw;  M  5 1.380 kN ? m i.  
   7.4    F  5 3.00 kN z;  V  5 0;  M  5 0.600 kN ? m i.  
   7.7   (On  AJ )  F  5 103.9 N r ;  V  5 60.0 N p; 

 M  5 18.71 N ? m i.  
   7.8   (On  BK )  F  5 60.0 N o;  V  5 103.9 N q ; 

 M  5 10.80 N ? m l.  
   7.9   (On  CJ )  F  5 23.6 lb q ;  V  5 29.1 lb o;  M  5 540 lb ? in. l.  
   7.10   ( a ) 30.0 lb at  C . ( b ) 33.5 lb at  B  and  D . ( c ) 960 lb ? in. at  C .  
   7.13   (On  AJ ) F 5 194.6 N c 60°;  V  5 257 N a 30°;

 M  5 24.7 N ? m i.  
   7.14   45.2 N ? m for  u  5 82.9°.  
   7.15   ( a )  F  5 500 N z;  V  5 500 Nx;  M  5 300 N ? m i. 

( b )  F  5 970 Nx;  V  5 171.0 N z;  M  5 446 N ? m i.  
   7.16   ( a )  F  5 500 N z;  V  5 500 Nx;  M  5 300 N ? m i. 

( b )  F  5 933 Nx;  V  5 250 N z;  M  5 375 N ? m i.  
   7.17   (On  BJ )  F  5 200 N q ;  V  5 120.0 N p;  M  5 120.0 N ? m l.  
   7.18   (On  AK )  F  5 520 N z;  V  5 120.0 Nw; M 5 96.0 N ? m i.  
   7.19   150.0 lb ? in. at  D .  
   7.20   105.0 lb ? in. at  E .  
   7.23   (On  BJ ) 0.289 Wr  l.  
   7.24   (On  BJ ) 0.417 Wr  l.  
   7.27   0.1009 Wr  for  u  5 57.3°.  
   7.28   0.357 Wr  for  u  5 49.3°.  
   7.29   ( b ) | V |  max   5 2P; | M | max  5 3 Pa .  
   7.30   ( b ) | V |  max   5 2Py3; | M | max  5 2 PL y 9 .  
   7.31   ( b )  wL y4 ; 3 wL  2 y32.  
   7.32   (b)  wL y2; 3 wL  2 y8.  
   7.35   ( b ) | V |  max   5 35.0 kN; | M |  max   5 12.50 kN ? m.  
   7.36   ( b ) | V | max    5 50.5 kN; | M |  max   5 39.8 kN ? m.  
   7.39   ( b ) | V |  max   5 64.0 kN; | M |  max   5 92.0 kN ? m.  
   7.40   ( b ) | V |  max   5 60.0 kN; | M |  max   5 72.0 kN ? m.  
   7.41   ( b ) | V | max    5 18.00 kips; | M |  max   5 48.5 kip ? ft.  
   7.42   ( b ) | V |  max   5 15.30 kips; | M |  max   5 46.8 kip ? ft.  
   7.43   ( b ) | V |  max   5 1.800 kN; | M |  max   5 0.225 kN ? m.  
   7.44   ( b ) | V |  max   5 2.00 kN; | M |  max   5 0.500 kN ? m.  
   7.45   ( a ) M # 0 everywhere.

( b ) | V |  max   5 4.50 kips; | M |  max   5 13.50 kip ? ft.  
   7.46   ( a ) M $ 0 everywhere.

( b ) | V |  max   5 4.50 kips; | M |  max   5 13.50 kip ? ft.  
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   7.49   ( a ) 1400 N; 1160.0 N ? m. ( b ) 2200 N; 140.0 N ? m.  
   7.52   | V |  max   5 7.50 kips; | M |  max   5 7.20 kip ? ft.  
   7.53   | V |  max   5 165 lb; | M |  max   5 1625 lb ? in.  
   7.54   | V |  max   5 800 N; | M |  max   5 180.0 N ? m.  
   7.55   ( a ) 54.5°. ( b ) 675 N ? m.  
   7.56   ( a ) 0.311 m. ( b ) 193.0 N ? m.  
   7.57   ( a ) 1.236. ( b ) 0.1180 wa  2 .  
   7.58    a  5 0.207 L   
   7.59   ( a ) 40.0 kips, ( b ) 40.0 kip ? ft.  
   7.62   ( a ) 0.414 wL ; 0.0858 wL  2 . ( b ) 0.250 wL ; 0.250 wL  2 .  
   7.63   | V |  max   5 2 P ; | M |  max   5 3 Pa   
   7.69   | V |  max   5 7.20 kN; | M |  max   5 5.76 kN ? m.  
   7.70   | V |  max   5 720 N; | M |  max   5 164.0 N ? m.  
   7.72   | V |  max   5 60.0 kN; | M |  max   5 72.0 kN ? m.  
   7.77   ( b ) 9.00 kN ? m, 1.700 m from  A .  
   7.78   ( b ) 26.4 kN ? m, 2.05 m from  A .  
   7.79   ( b ) 45.0 kip ? ft, 12.00 ft from  A .  
   7.80   ( b ) 12.00 kip ? ft, 6.00 ft from  A .  
   7.83   ( b ) 40.5 kN ? m, 1.800 m from  A .  
   7.84   ( b ) 60.5 kN ? m, 2.20 m from  A .  
   7.85   ( a )  V  5 ( w  0  y6 L )(3x 2  2 6 Lx  1 2L 2 );  

M  5 ( w  0  y6 L )( x  3  2 3 Lx  2  1 2L 2  x ).
(b) 0.0642 w  0  L  2 , at  x  5 0.423 L .  

   7.86   ( a )  V  5 ( w  0  y3 L )(2x 2  2 3 Lx  1 L 2 );
 M  5 ( w  0  y18 L )(4x 3  2 9 Lx  2  1 6L 2  x 2 L 3  ).
( b )  w  0  L  2 y72, at  x  5  Ly2 .  

   7.89   ( a )  P  5 4.00 kNw;  Q  5 6.00 kNw. ( b )  M C   5 2900 N ? m.  
   7.90   ( a )  P  5 2.50 kNw;  Q  5 7.50 kNw. ( b )  M C   5 2900 N ? m.  
   7.91   ( a )  P  5 1.350 kipsw;  Q  5 0.450 kipsw.

( b )   V  max    5 2.70 kips at  A; M  max    5 6.345 kip ? ft,
5.40 ft from  A .  

   7.92   ( a )  P  5 0.540 kipsw;  Q  5 1.860 kipsw.
( b )  | V | max    5 3.14 kips at  B ;  M   max   5 6.997 kip ? ft,

6.88 ft from  A .  
   7.93   ( a ) 2.28 m. ( b ) D  x   5 13.67 kN y;  D  y  5 7.80 kNx.

( c ) 15.94 kN.  
   7.94   ( a ) 1.959 m. ( b ) 2.48 m.  
   7.95   ( a ) 838 lb b 17.4°. ( b ) 971 lb a 34.5°.  
   7.96   ( a ) 2670 lb d 2.10°. ( b ) 2810 lb a 18.6°.  
   7.97   ( a )  d B   5 1.733 m;  d D   5 4.20 m. ( b ) 21.5 kN a 3.81°.  
   7.98   ( a ) 2.80 m. ( b )  A  5 32.0 kN b 38.7°;  E  5 25.0 kN y.  
   7.101   ( a ) 48.0 lb. ( b ) 10.00 ft.  
   7.102   ( a ) 12.50 ft. ( b ) 5.00 ft.  
   7.103   196.2 N.  
   7.104   157.0 N.  
   7.107   ( a ) 138.1 m. ( b ) 602 N.  
   7.108   ( a ) 6.75 m. ( b )  T AB   5 615 N;  T BC   5 600 N.  
   7.109   ( a ) 56,400 kips. ( b ) 4280 ft.  
   7.110   ( a ) 50,200 kips. ( b ) 3580 ft.  
   7.113   (a)   13L¢y8.   (b) 12.25 ft.  
   7.114   3.75 ft.  
   7.115   ( a ) 58900 kips. ( b ) 29.2°.  
   7.116   ( a ) 16.00 ft to the left of  B . ( b ) 2000 lb.  
   7.117   ( a ) 5880 N. (b) 0.873 m.  
   7.118   ( a ) 6860 N. ( b ) 31.0°.  
   7.125     y 5 h[1 2 cos(pxyL)]; T0 5 w0L2yhp2;

Tmax 5 (w0Lyp)2(L2yh2p2) 1 1.    
   7.127   ( a ) 26.7 m. ( b ) 70.3 kg.  
   7.128   199.5 ft  
   7.129   ( a ) 164.8 m. ( b ) 4290 N.  
   7.130   330 ft; 625 lb.  
   7.133   ( a ) 5.89 m. ( b ) 10.89 N y.  

   7.134   10.05 ft.  
   7.135   ( a ) 30.2 m. ( b ) 56.6 kg.  
   7.136   ( a ) 56.3 ft. ( b ) 2.36 lbyft.  
   7.139   31.8 N.  
   7.140   29.8 N.  
   7.141   ( a )  a  5 79.0 ft;  b  5 60.0 ft. ( b ) 103.9 ft.  
   7.142   ( a )  a  5 65.8 ft;  b  5 50.0 ft. ( b ) 5 86.6 ft.  
   7.143   119.1 N y.  
   7.144   177.6 N y.  
   7.147   3.50 ft.  
   7.148   5.71 ft.  
   7.151   0.394 m and 10.97 m.  
   7.152   0.1408.  
   7.153   ( a ) 0.338. ( b ) 56.5°; 0.755 wL .  
   7.154   ( a ) 1500 N. ( b ) (On  ABJ )  F  5 1324 Nx;

V 5 706 N z; M 5 229 N ? m l.  
   7.155   (On  BJ )  F  5 250 N q ;  V  5 120.0 N p;  M  5 120.0 N ? m l.  
   7.156   ( a ) (On AC)  F  5  V  5 0;  M  5 450 lb ? ft l.

(b) (On  AC )  F  5 250 lb o;  V  5 0;  M  5 450 lb ? ft l.  
   7.157   ( a ) 90.0 lb. (b) 900 lb ? in.  
   7.159   ( b ) 41.4 kN; 35.3 kN ? m.  
   7.160   ( a ) 12.00 kip ? ft, at  C . ( b ) 6.25 kip ? ft, 2.50 ft from  A .  
   7.162   ( a ) 1229 lb. ( b ) 11.00 ft.  
   7.164   ( a ) 2770 N. ( b ) 75.14 m.  
   7.C1   ( a )  MD  5 139.8 kN ? m. ( b )  MD  5 114.00 kip ? ft.

( c )  MD  5 11800 lb ? in.  
   7.C3    a  5 1.923 m;  M   max   5 37.0 kN ? m at 4.64 m from  A .  
   7.C4   ( b ) M  max   5 5.42 kip ? ft when  x  5 8.5 ft and 11.5 ft.  
   7.C8    cyL  5 0.300:  hyL  5 0.5225;  s AB yL  5 1.532;

 T 0  ywL 5 0.300;  T   max   ywL 5 0.823.      

 CHAPTER 8   
   8.1   Equilibrium;  F  5 34.5 lb q .  
   8.2   Block moves;  F  5 55.7 lb r .  
   8.3   Equilibrium;  F  5 48.3 N r .  
   8.4   Block moves;  F  5 103.5 N r .  
   8.5   225 N #  P  # 479 N.  
   8.6   143.0 N #  P  # 483 N.  
   8.7   ( a ) 105.8 N. ( b ) 46.0°.  
   8.9   ( a ) 403 N. ( b ) 229 N.  
   8.11   ( a ) 353 N z. ( b ) 196.2 N z.  
   8.12   ( a ) 275 N z. ( b ) 196.2 N z.  
   8.15   ( a ) 36.0 lb y. ( b ) 30.0 lb. ( c ) 12.86 lb y.  
   8.16   ( a ) 36.0 lb y. ( b ) 40.0 in.  
   8.17    M  5  Wrm s  (1 1  m s  )y(1 1  m s   

2 ).  
   8.18   ( a ) 0.300 Wr.  ( b ) 0.349 Wr .  
   8.19   151.5 N ? m  .
   8.20   1.473 kN.  
   8.21   0.208.  
   8.23   ( a ) 136.4°. ( b ) 0.928 W .  
   8.25   0.750.  
   8.26   0.860.  
   8.27   132.9 lbw.  
   8.28   ( a ) 112.5 N. ( b ) 8.81 mm.  

 
  8.29

     
3.46 #

L
a

# 13.63.
    

   8.30   ( a ) Plate in equilibrium. ( b ) Plate moves downward.  
   8.31   10.00 lb ,  P  , 36.7 lb.  
   8.34   135.0 lb.  
   8.36   168.4 N #  P  # 308 N.  
   8.37   9.38 N ? m #  M  # 15.01 N ? m.  
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   8.38   246.8 N #  P  # 34.3 N.  
   8.39   ( b ) 2.69 lb.  
   8.41   0.0949.  
   8.42   ( a ) System slides;  P  5 62.8 N.

( b ) System rotates about  B ;  P  5 73.2 N.  
   8.43   35.8°.  
   8.44   20.5°.  
   8.45   1.225 W .  
   8.46   ( a )  P  5 56.6 lb z. ( b )  B   x   5 82.6 lb z;  B   y   5 96.0 lbw.  
   8.47   ( a )  P  5 21.4 lb y. ( b )  B   x   5 122.2 lb z;  B   y   5 96.0 lbw.  
   8.48    P  5 2080 Nw.  
   8.49    P  5 1966 Nw.  
   8.52   ( a ) 62.7 lb. ( b ) 62.7 lb.  
   8.53   9.86 kN z.  
   8.54   913 N z.  
   8.55   ( a ) 28.1°. ( b ) 728 N a 14.04°.  
   8.56   29.9 lb.  
   8.57   67.4 N.  
   8.60   ( b ) 283 N z.  
   8.61   0.442.  
   8.62   ( a ) 90.0 lb. ( b ) Base moves.  
   8.63   ( a ) 89.4 lb. ( b ) Base does not move.  
   8.64   0.1103.  
   8.65   0.1013.  
   8.69   1068 N ? m.  
   8.70   4.18 N ? m.  
   8.72   169.7 lb ? in.  
   8.73   32.7 lb ? in.  
   8.75   0.0980.  
   8.76   450 N.  
   8.77   412 N.  
   8.78   344 N.  
   8.79   376 N.  
   8.80   0.226.  
   8.82    T AB   5 77.5 lb;  T CD   5 72.5 lb;  T EF   5 67.8 lb.  
   8.85   22.0 lb z.  
   8.86   1.948 lbw.  
   8.87   18.01 lb z.  
   8.88   ( a ) 4.80 kN. ( b ) 1.375°.  
   8.90   3.75 lb.  
   8.91   0.1670.  
   8.96   154.4 N.  
   8.97   0.0600 in.  
   8.98   10.87 lb  .
   8.99   ( a ) 1.288 kN. ( b ) 1.058 kN.  
   8.100   300 mm.  
   8.101   ( a ) 0.329. ( b ) 2.67 turns.  
   8.102   ( a ) 22.8 kg. ( b ) 291 N.  
   8.103   ( a ) 109.7 kg. ( b ) 828 N.  
   8.104   73.0 lb #  P  # 1233 lb.  
   8.107   35.1 N ? m  
   8.108   ( a ) 27.0 N ? m ( b ) 675 N.  
   8.109   ( a ) 39.0 N ? m. ( b ) 844 N.  
   8.110   421 lb ? in.  
   8.111   301 lb ? in.  
   8.112   44.9 N ? m l.  
   8.115   4.49 in.  
   8.116   ( a ) 11.66 kg. ( b ) 38.6 kg. ( c ) 34.4 kg.  
   8.117   ( a ) 9.46 kg. ( b ) 167.2 kg. ( c ) 121.0 kg.  
   8.120   ( a ) 10.39 lb. ( b ) 58.5 lb.  
   8.121   ( a ) and ( b ) 28.9 lb.  
   8.122   5.97 N.  

   8.123   9.56 N.  
   8.124   ( a ) 30.3 lb ? in l. ( b ) 3.78 lbw.  
   8.125   (a) 17.23 lb ? in i. ( b ) 2.15 lbx.  
   8.126   0.350.  
   8.131   ( a ) 51.0 N ? m. ( b ) 875 N.  
   8.132   ( a ) 170.5 N. ( b ) 14.04°.  
   8.133   53.5°  .
   8.135   6.35 #  L y a  # 10.81.  
   8.136   0.0533.  
   8.138   0.225.  
   8.139   ( a ) 620 N z. (b)  B   x   5 1390 N z;  B   y   5 1050 Nw.  
   8.140   ( a ) and ( b ) 50.4 lb.  
   8.142   ( a ) 0.238. ( b ) 218 Nw.  
   8.C1    x  5  500 mm:  63.3 N;  P  max  5 67.8 N at  x  5 355 mm.  
   8.C2    W B   5  10 lb: u  5 46.4°;  W B   5  70 lb: u  5 21.3°.  
   8.C3    m A   5  0.25: M  5 0.0603 N ? m.  
   8.C4    u  5  30°:  1.336 N ? m #  M A   # 2.23 N ? m.  
   8.C5    u  5  60°:   P  5 16.40 lbw;  R  5 5.14 lb.  
   8.C6    u  5  20°:  10.39 N ? m.  
   8.C7    u  5  20°:  30.3 lb; 13.25 lb.  
   8.C8   ( a )  x  0  5 0.600 L ;  x m   5 0.604 L ;  u  1  5 5.06°. (b)  u  2  5 55.4°.      

 CHAPTER 9   
   9.1    b  3  h y12.  
   9.2   3 a  4 y2.  
   9.3   2 a  3  b y15.  
   9.4    ha  3 y5  .
   9.6    a  4 y8.  
   9.7   2 ab  3 y7.  
   9.9    ab  3 y15.  
   9.10   0.1056 ab  3 .  
   9.11    ab  3 y15.  
   9.12   2 a  3  b y21.  
   9.15    ab  3 y10;   by15.    
   9.16   3 ab  3 y35;   b19y35.    
   9.17    a  3  b y6;   ay13  .  
   9.18   3 a  3  b y35;   a19y35.    
   9.21   20 a  4 ; 1.826 a.   
   9.22   43 a  4 y48; 0.773 a   .
   9.23   ( p y2)( R  2  

4  2  R  1
4 ); ( p y4)( R  2  

4  2  R1  
4 )  .

   9.24   ( b ) for  t y R m   5 1, 210.56%; for  t y R m   5 1
2, 22,99%,

for  t y R m   5 1
10, 20.1250%.  

   9.25   64 a  4 y15; 1.265 a .  
   9.28    bh (12 h  2  1  b  2 )y48;   2(12h2 1 b2)y24    .
   9.31   390 3 10 3  mm 4 ; 21.9 mm.  
   9.32   46.0 in 4 ; 1.599 in.  
   9.33   64.3 3 10 3  mm 4 ; 8.87 mm.  
   9.34   46.5 in 4 ; 1.607 in.  
   9.37    I  5 9.50 3 10 6  mm 4 ;  d  2  5 60.0 mm.  
   9.38    A  5 6600 mm 2 ;   I  5 3.72 3 106 mm4  .  
   9.39     I x 5 150.0 in4; I y 5 300 in4.    
   9.41     I x 5 1.874 3 106 mm4; I y 5 5.82 3 106 mm4.    
   9.42     I x 5 48.9 3 103 mm4; I y 5 8.35 3 103 mm4.    
   9.43     I x 5 191.3 in4; I y 5 75.2 in4    .
   9.44     I x 5 18.13 in4; I y 5 4.51 in4.    
   9.45   ( a ) 80.9 3 10 6  mm 4 . ( b ) 57.4 3 10 6  mm 4 .  
   9.46   ( a ) 12.16 3 10 6  mm 4 . ( b ) 9.73 3 10 6  mm 4 .  
   9.49     I x 5 260 3 106 mm4; kx 5 144.6 mm; I y 5 17.53 3 106 mm4; 

ky 5 37.6 mm.    
   9.50     I x 5 254 in4; kx 5 4.00 in.; I y 5 102.1 in4; ky 5 2.54 in  .  
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   9.51     I x 5 255 3 106 mm4; kx 5 134.1 mm; I y 5 100.0 3 106 mm4; 
ky 5 83.9 mm    .

   9.52   1.077 in.  
   9.53     I x 5 3.55 3 106 mm4; I y 5 49.8 3 106 mm4    .
   9.55     I x 5 745 3 106 mm4; I y 5 91.3 3 106 mm4    .
   9.57   3 pr y16.  
   9.58   3 pb y16.  
   9.59   15 h y14.  
   9.60   4 h y7.  
   9.63   5 a y8.  
   9.64   80.0 mm  .
   9.67    a  4 y2.  
   9.68    a  2  b  2 y12.  
   9.69   2 b  2  h  2 y8.  
   9.71   21.760 3 10 6  mm 4 .  
   9.72   221.6 3 10 6  mm 4 .  
   9.74   20.380 in 4 .  
   9.75   471 3 10 3  mm 4 .  
   9.76   29010 in 4 .  
   9.78   1.165 3 10 6  mm4.  
   9.79   ( a )   Ix¿ 5 0.482 a4; Iy¿ 5 1.482 a4; Ix¿y¿ 5 20.589 a4.   

( b )   Ix¿ 5 1.120 a4; Iy¿ 5 0.843 a4; Ix¿y¿ 5 0.760 a4.    
   9.80     Ix¿ 5 103.5 3 106 mm4; Iy¿ 5 97.9 3 106 mm4;

Ix¿y¿ 5 238.3 3 106 mm4  .  
   9.81     Ix¿ 5 1033 in4; Iy¿ 5 2020 in4; Ix¿y¿ 5 2873 in4    .
   9.83     Ix¿ 5 0.236 in4; Iy¿ 5 1.244 in4; Ix¿y¿ 5 0.1132 in4    .
   9.85   20.2°; 1.754 a  4 , 0.209 a  4 .  
   9.86   217.11°; 139.1 3 10 6  mm 4 , 62.3 3 10 6  mm 4 .  
   9.87   29.7°; 2530 in 4 , 524 in 4 .  
   9.89   223.7° and 66.3°; 1.257 in 4 , 0.224 in 4 .  
   9.91   ( a )   Ix¿ 5 0.482a4; Iy¿ 5 1.482a4; Ix¿y¿ 5 20.589a4  .

( b )   Ix¿ 5 1.120a4; Iy¿ 5 0.843a4; Ix¿y¿ 5 0.760a4  .  
   9.92     Ix¿ 5 103.5 3 10 6  mm4; Iy¿ 5 97.9 3 10 6  mm4;

Ix¿y¿ 5 238.3 3 10 6  mm4  .  
   9.93     Ix¿ 5 1033 in4; Iy¿ 5 2020 in4; Ix¿y¿ 5 2873 in4  .  
   9.95     Ix¿ 5 0.236 in4; Iy¿ 5 1.244 in4; Ix¿y¿ 5 0.1132 in4  .  
   9.97   20.2°; 1.754 a  4 , 0.209 a  4 .  
   9.98   217.11°; 139.1 3 10 6  mm 4 , 62.3 3 10 6  mm 4 .  
   9.99   233.4°; 22.1 3 10 3  in 4 , 2490 in 4 .  
   9.100   29.7°; 2530 in 4 , 524 in 4 .  
   9.103   ( a ) 21.146 in 4 . ( b ) 29.1° clockwise. ( c ) 3.39 in 4 .  
   9.104   23.8° clockwise; 0.524 3 10 6  mm 4 , 0.0917 3 10 6  mm 4 .  
   9.105   19.54° counterclockwise; 4.34 3 10 6  mm 4 , 0.647 3 10 6  mm 4 .  
   9.106   ( a ) 25.3°. ( b ) 1459 in 4 , 40.5 in 4 .  
   9.107   ( a ) 88.0 3 10 6  mm 4 . ( b ) 96.3 3 10 6  mm 4 , 39.7 3 10 6  mm 4 .  
   9.111   ( a )  m ( r  1  

2  1  r   2  2 )y4. ( b )  m ( r   2  1  1  r   2  2 )y2.  
   9.112   ( a ) 0.0699 ma  2 . ( b ) 0.320 ma  2 .  
   9.113   ( a ) 25 mr  2  2 y64. ( b ) 0.1522 mr  2  2 .  
   9.114   ( a )  mb  2 y7. ( b )  m (7 a  2  1 10 b  2 )y70.  
   9.115   ( a )  ma  2 y3. ( b ) 3 ma  2 y2.  
   9.116   ( a ) 7 ma  2 y6. ( b )  ma  2 y2.  
   9.119   1.329 mh  2 .  
   9.120    m (3 a  2  1  L  2 )y12.  
   9.121   ( a ) 0.241 mh  2 . ( b )  m (3 a  2  1 0.1204 h  2 ).  
   9.122    m ( b  2  1  h  2 )y10.  
   9.124    m ( a  2  1  b  2 )y5.  
   9.125     Ix 5 Iy 5 ma2y4; Iz 5 ma2y2    .
   9.127   837 3 10 29  kg ? m 2 ; 6.92 mm.  
   9.128   1.160 3 10 26  lb ? ft ? s 2 ; 0.341 in.  
   9.129    m (3 a  2  1 2 h  2 )y6  .
   9.131   ( a ) 27.5 mm to the right of A. ( b ) 32.0 mm.  

   9.133   ( a ) 2.30 in. ( b ) 20.6 3 10 23  lb ? ft ? s 2 ; 2.27 in.  

 
  9.134   ( a )   

pr l 

2 c6a2t a5a2

3l2
1

2a
l

1 1b 1
d 

2l
4
d .

   ( b ) 0.1851.  

   9.135    I x   5 26 3 10 23  kg ? m 2 ;  I y   5 38.2 3 10 23  kg ? m 2 ;
 I z   5 17.55 3 10 23  kg ? m 2   .

   9.136    I x   5 175.5 3 10 23  kg ? m 2 ;  I y   5 309 3 10 23  kg ? m 2 ;
 I z   5 154.4 3 10 23  kg ? m 2 .  

   9.137    I x   5 745 3 10 26  lb ? ft ? s 2 ;  I y   5 896 3 10 26  lb ? ft ? s 2 ;
 I z   5 304 3 10 26  lb ? ft ? s 2 .  

   9.138    I x   5 344 3 10 26  lb ? ft ? s 2 ;  I y   5 132.1 3 10 26  lb ? ft ? s 2 ;
 I z   5 453 3 10 26  lb ? ft ? s 2 .  

   9.141   ( a ) 13.99 3 10 23  kg ? m 2 . ( b ) 20.6 3 10 23  kg ? m 2 .
( c ) 14.30 3 10 23  kg ? m 2 .  

   9.142   0.1785 lb ? ft ? s 2 .  
   9.144    I x   5 38.1 3 10 23  kg ? m 2 ;  k x   5 110.7 mm.  
   9.145   ( a ) 26.4 3 10 23  kg ? m 2 . ( b ) 31.2 3 10 23  kg ? m 2 .

( c ) 8.58 3 10 23  kg ? m 2 .  
   9.147    I x   5 0.0392 lb ? ft ? s 2 ;  I y   5 0.0363 lb ? ft ? s 2 ;

 I z   5 0.0304 lb ? ft ? s 2 .  
   9.148    I x   5 0.323 kg ? m 2 ;  I y   5  I z   5 0.419 kg ? m 2   .
   9.149    I xy   5 2.50 3 10 23  kg ? m 2 ;  I yz   5 4.06 3 10 23  kg ? m 2 ;

 I zx   5 8.81 3 10 23  kg ? m 2 .  
   9.150    I xy   5 2.44 3 10 23  kg ? m 2 ;  I yz   5 1.415 3 10 23  kg ? m 2 ;

 I zx   5 4.59 3 10 23  kg ? m 2 .  
   9.151    I xy   5 2538 3 10 26  lb ? ft ? s 2 ; I  yz   5 2171.4 3 10 26  lb ? ft ? s 2 ;

 I zx   5 1120 3 10 26  lb ? ft ? s 2 .  
   9.152    I xy   5 21.726 3 10 23  lb ? ft ? s 2 ;  I yz   5 0.507 3 10 23  lb ? ft ? s 2 ; 

 I zx   5 22.12 3 10 23  lb ? ft ? s 2   .
   9.155    I xy   5 28.04 3 10 23  kg ? m 2 ;  I yz   5 12.90 3 10 23  kg ? m 2 ;

 I zx   5 94.0 3 10 23  kg ? m 2   .
   9.156    I xy   5 0; I  yz   5 48.3 3 10 26  kg ? m 2 ;

 I zx   5 24.43 3 10 23  kg ? m 2 .  
   9.157    I xy   5  wa  3 (1 2 5 p )y g ;  I yz   5 211 pwa  3 y g ;

 I zx   5 4 wa  3 (1 1 2 p ) g .  
   9.158    I xy   5 211 wa  3 y g ;  I yz   5  wa  3 ( p 1  6)y2 g ;  I zx   5 2 wa  3 y4 g .  
   9.159    I xy   5 47.9 3 10 26  kg ? m 2 ;  I yz   5 102.1 3 10 26  kg ? m 2 ;

 I zx   5 64.1 3 10 26  kg ? m 2 .  
   9.160    I xy   5 2 m 9 R  3  1 y2;  I yz   5  m 9 R  1

3 y2;  I zx   5 2 m 9 R    3  2 y2.  
   9.162   ( a )  mac y20. ( b )  I xy   5  mab y20;  I yz   5  mbc y20.  
   9.165   18.17 3 10 23  kg ? m 2 .  
   9.166   11.81 3 10 23  kg ? m 2 .  
   9.167   5 Wa  2 y18 g .  
   9.168   4.41g ta  4 y g .  
   9.169   281 3 10 23  kg ? m 2 .  
   9.170   0.354 kg ? m 2 .  
   9.173   ( a )  b y a  5 2;  c y a  5 2. ( b )  b y a  5 1;  c y a  5 0.5.  
   9.174   ( a ) 2. ( b )   12y3.    
   9.175   ( a )   1y13.   ( b )   17y12.    
   9.179   ( a )  K  1  5 0.363 ma  2 ;  K  2  5 1.583 ma  2 ;  K  3  5 1.720 ma  2 .

( b ) ( u x  ) 1  5 ( u z  ) 1  5 49.7°, ( u y  ) 1  5 113.7°;
( u x  ) 2  5 45.0 ° , ( u y  ) 2  5 90.0°, ( u z  ) 2  5 135.0 ° ;
( u x  ) 3  5 ( u z  ) 3  5 73.5°, ( u y  ) 3  5 23.7°.  

   9.180   ( a )  K  1  5 14.30 3 10 23  kg ? m 2 ;
 K  2  5 13.96 3 10 23  kg ? m 2 ;  K  3  5 20.6 3 10 23  kg ? m 2 .
( b ) ( u x  ) 1  5 ( u y  ) 1  5 90.0°, ( u z  ) 1  5 0;
( u x  ) 2  5 3.42°, ( u y  ) 2  5 86.6°, ( u z  ) 2  5 90.0 ° .
( u x  ) 3  5 93.4 ° , ( u y  ) 3  5 3.43°, ( u z  ) 3  5 90.0 °   .

   9.182   ( a )  K  1  5 0.1639 Wa  2 y g ;  K  2  5 1.054 Wa  2 y g ;  K  3  5 1.115 Wa  2 y g . 
( b ) ( u x  ) 1  5 36.7°, ( u y  ) 1  5 71.6°, ( u z  ) 1  5 59.5°;
( u x  ) 2  5 74.9°, ( u y  ) 2  5 54.5°, ( u z  ) 2  5 140.5°;
( u x  ) 3  5 57.5°, ( u y  ) 3  5 138.8°, ( u z  ) 3  5 112.4°.  

bee29400_ans_1305-1328.indd Page 1314  1/5/09  10:14:51 PM user-s172bee29400_ans_1305-1328.indd Page 1314  1/5/09  10:14:51 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



1315

   9.183   ( a )  K  1  5 2.26g ta  4 y g ;  K  2  5 17.27g ta  4 y g ;  K  3  5 19.08g ta  4 y g .
( b )   ( u x  ) 1  5 85.0°, ( u y  ) 1  5 36.8°, ( u z  ) 1  5 53.7°;
( u x  ) 2  5 81.7°, ( u y  ) 2  5 54.7°, ( u z  ) 2  5 143.4°;
( u x  ) 3  5 9.70°, ( u y  ) 3  5 99.0°, ( u z  ) 3  5 86.3°.  

   9.185    I x   5  ab  3 y28;  I y   5  a  3  b y20.  
   9.187   4 a  3  b y15;     ay15.    
   9.188    I x   5 4 a  4 ;  I y   5 16 a  4 y3.  
   9.189   ( a ) 3.13 3 10 6  mm 4 . ( b ) 2.41 3 10 6  mm 4 .  
   9.190    I x   5 634 3 10 6  mm 4 ;  I y   5 38.0 3 10 6  mm 4 .  
   9.191    I xy   5 22.81 in 4 .  
   9.193   ( a ) 7 ma  2 y18. (b) 0.819 ma  2 .  
   9.195    I x   5 0.877 kg ? m 2 ;  I y   5 1.982 kg ? m 2 ;  I z   5 1.652 kg ? m 2 .  
   9.C1    u  5 20°:  I x   9  5 14.20 in 4 ,  I y   9  5 3.15 in 4 ,  I x   9 y 9  5 23.93 in 4   .
   9.C3   ( a )  Ix¿ 5  371 3 103 mm4, Iy¿ 5 64.3 3 103 mm4;

kx¿ 5 21.3 mm, ky¿ 5 8.87 mm.   ( b )   Ix¿ 5 40.4 in4,
Iy¿ 5 46.5 in4; kx¿ 5 1.499 in., ky¿ 5 1.607 in.  
(c)   kx 5 2.53 in., ky 5 1.583 in.   ( d )   kx 5 1.904 in., 
ky 5 0.950 in.    

   9.C5   ( a ) 5.99 3 10 23  kg ? m 2 . ( b ) 77.4 3 10 23  kg ? m 2 .  
   9.C6   ( a ) 74.0 3 10 26  lb ? ft ? s 2 . ( b ) 645 3 10 26  lb ? ft ? s 2 .

( c ) 208 3 10 −6  lb ? ft ? s 2 .      

 CHAPTER 10   
   10.1   82.5 Nw.  
   10.2   120 lb y.  
   10.3   49.5 N ? m i.  
   10.4   1200 lb ? in. l.  
   10.7   ( a ) 60.0 N  C , 8.00 mmw. ( b ) 300 N  C , 40.0 mmw.  
   10.8   ( a ) 120.0 N  C , 16.00 mmw. ( b ) 300 N  C , 40.0 mmw.  
   10.9    Q  5 2 P  sin  u ycos ( u y2).  
   10.10    Q  5 2 P  cos  u ycos  (u y2).  
   10.11    Q  5 (3 P y2) tan u  
   10.12   Q 5  P [( l y a )cos 3  u 2 1].  
   10.15     M 5 1

2 
Wl tan a sin u.    

   10.16    M  5  Pl y2 tan u.  
   10.17    M  5 7 Pa  cos u  
   10.18   ( a )  M  5  Pl  sin 2 u . ( b )  M  5 3 Pl  cos u. ( c )  M  5  Pl  sin u.  
   10.21   85.2 lb ? ft i.  
   10.22   22.8 lb d 70.0°.  
   10.24   36.4°.  
   10.25   38.7°.  
   10.26   68.0°.  
   10.28   19.81° and 51.9°.  
   10.30   25.0°.  
   10.31   39.7° and 69.0°.  
   10.32   52.2°  .
   10.33   40.2°  .
   10.35   22.6°.  
   10.36   51.1°.  
   10.37   52.4°.  
   10.38   19.40°.  
   10.39   59.0°.  
   10.40   78.7°, 324°, 379°.  
   10.43   12.03 kN q .  
   10.44   20.4°.  
   10.45   2370 lb r .  
   10.46   2550 lb r .  
   10.47    h 5 1y(1 1 m cot a)    
   10.49   37.6 N, 31.6 N.  

   10.51   300 N ? m, 81.8 N ? m.  
   10.52     h 5 tan uytan (u 1 fs)    .
   10.53   7.75 kNx.  
   10.54    H  5 1.361 kNx;  M H   5 550 N ? m l.  
   10.57   0.833 in.w.  
   10.58   0.625 in. y.  
   10.66   19.40°.  
   10.67   Equilibrium is neutral.  
   10.69    u  5 0 and  u  5 180.0°, unstable;

 u  5 75.5° and  u  5 284°, stable.  
   10.70    u  5 90.0° and  u  5 270° unstable;

 u  5 22.0° and  u  5 158.0°, stable.  
   10.71    u  5 245.0°, unstable;  u  5 135.0°, stable.  
   10.72    u  5 263.4°, unstable;  u  5 116.6°, stable.  
   10.73   59.0°, stable.  
   10.74   78.7°, stable; 324°, unstable; 379°, stable.  
   10.78   9.39° and 90.0°, stable; 34.2°, unstable.  
   10.79   357 mm.  
   10.80   252 mm.  
   10.81   17.11°, stable; 72.9°, unstable.  
   10.83   49.1°.  
   10.85   54.8°.  
   10.86   37.4°.  
   10.88   16.88 m.  
   10.90    k  . 6.94 lbyin.  
   10.91   15.00 in.  
   10.92    P  , 2 kL y9.  
   10.93    P  ,  kL y18.  
   10.94    P  ,  k ( l  2  a )2y2l.  
   10.96    P  , 160.0 N.  
   10.98    P  , 764 N.  
   10.100   ( a )  P  , 10.00 lb. ( b ) P , 20.0 lb.  
   10.101   60.0 lbw.  
   10.102   600 lb ? in. i.  
   10.104   ( a ) 20.0 N. ( b ) 105.0 N.  
   10.106   39.2°.  
   10.107   60.4°.  
   10.108   7.13 in.  
   10.110   ( a ) 0, unstable. ( b ) 137.8°, stable.  
   10.112   ( a ) 22.0°. ( b ) 30.6°.  
   10.C1    u  5 60°: 2.42 in.;  u  5 120°: 1.732 in.;

(MyP) max  5 2.52 in. at  u  5 73.7°.  
   10.C2    u  5 60°: 171.1 N  C . For 32.5° #  u  # 134.3°, | F | # 400 N.  
   10.C3    u  5 60°: 296 N  T . For  u  # 125.7°, | F | # 400 N.  
   10.C4   ( b )  u  5 60°, datum at  C : V 5 2294 in ? lb.

( c ) 34.2°, stable; 90°, unstable; 145.8°, stable  
   10.C5   ( b )  u  5 50°, datum at E: V 5 100.5 J.  d Vyd u  5 22.9 J.

( c )  u  5 0, unstable; 30.4°.  
   10.C6   ( b )  u  5 60°, datum at B: 30.0 J.

( c )  u  5 0, unstable; 41.4°, stable.  
   10.C7   ( b )  u  5 60°, datum at  u  5 0: 237.0 J. ( c ) 52.2°, stable.        

      CHAPTER 11   
   11.1   266.0 m, 149.0 mys, 228 mys 2 .  
   11.2   3.00 m, 27.00 mys.  
   11.3   3.00 s, 259.5 ft, 25.0 ftys 2 .  
   11.4   248 in., 72.0 in.ys, 2383 in.ys 2 .  
   11.5   0.667 s, 0.259 m, 28.56 mys.  
   11.6   ( a ) 1.000 s and 4.00 s. ( b ) 1.500 m, 24.5 m.  
   11.9   ( a ) 4.00 s. ( b ) 256.0 mys, 260 m.  
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   11.10   x 5 t 4 y108 1 10t 1 24, v 5 t 3 y27 1 10.  
   11.11   233.0 in.ys, 2.00 s, 87.7 in.  
   11.12   ( a ) 3.00 ftys 4 . ( b ) v 5 (t 3  2 32) ftys,

x 5 (t 4 y4 2 32t 1 64) ft.  
   11.15   ( a ) 5.89 ftys. ( b ) 1.772 ft.  
   11.16   236.8 ft 2 , 1.832 s 22 .  
   11.17   ( a ) 0.0900 s 22 . ( b ) 616.97 mmys.  
   11.18   ( a ) 48.0 m 3 ys 2 . ( b ) 21.6 m. ( c ) 4.90 mys.  
   11.21   ( a ) 22.5 m. ( b ) 38.4 mys.  
   11.22   ( a ) 29.3 mys. ( b ) 0.947 s.  
   11.23   ( a ) 50.0 in. ( b ) .̀ ( c ) 0.866 s.  
   11.24   3.33 ftys.  
   11.25   ( a ) 0.1457 sym. ( b ) 145.2 m. ( c ) 6.86 mys.  
   11.26   ( a ) 3.33 m. ( b ) 2.22 s. ( c ) 1.667 s.  
   11.27   ( a ) 7.15 mi. ( b ) 22.75 3 10 26  ftys 2 . ( c ) 49.9 min.  
   11.28   ( a ) 20.0525 mys 2 . ( b ) 6.17 s.  
   11.31   ( a ) 2.36 v 0 T, pv 0  yT. ( b ) 0.363 v 0 .  
   11.33   ( a ) 1.500 mys 2 . ( b ) 10.00 s.  
   11.34   ( a ) 25.0 mys. ( b ) 19.00 mys. ( c ) 36.8 m.  
   11.35   ( a ) 2.71 s. ( b ) 50.4 miyh.  
   11.36   ( a ) 252 ftys. ( b ) 1076 ft.  
   11.39   ( a ) 0.500 km. ( b ) 42.9 kmyh.  
   11.40   ( a ) 22.10 mys 2 , 2.06 mys 2 . ( b ) 2.59 s before  A  reaches the 

exchange zone.  
   11.41   ( a ) 15.05 s, 734 ft. ( b ) 42.5 miyh, 23.7 miyh.  
   11.42   ( a ) 5.50 ftys 2 . ( b ) 9.25 ftys 2 .  
   11.43   ( a ) 3.00 s. ( b ) 4.00 ftys 2 .  
   11.44   ( a ) 20.250 mys 2 , 0.300 mys 2 . ( b ) 20.8 s. ( c ) 85.5 kmyh.  
   11.46   ( a ) 17.36 ftys 2  b, 3.47 ftys 2  b. ( b ) 20.1 ft. ( c ) 9.64 ftys.  
   11.47   ( a ) 2.00 mysx. ( b ) 2.00 mysw. ( c ) 8.00 mysx.  
   11.48   ( a ) 20.0 mys 2  y, 6.67 mys 2 w. (b) 13.33 mysw, 13.33 mw.  
   11.49   ( a ) 30.0 ftysx. ( b ) 15.00 ftysx. ( c ) 45.0 ftysx. ( d ) 30.0 ftysx.  
   11.50   ( a ) 2.40 ftys 2 x, 4.80 ftys 2 w. ( b ) 12.00 ftysx.  
   11.53   ( a ) 200 mmys y. ( b ) 600 mmys y. ( c ) 200 mmys z.

( d ) 400 mmys y.  
   11.54   ( a ) 13.33 mmys 2  z, 20.0 mmys 2  z. ( b ) 13.33 mmys 2  y.

( c ) 70.0 mmys y, 440 mm y.  
   11.55   ( a ) 10.00 mmys y, ( b ) 6.00 mmys 2  y, 2.00 mmys 2 x. 

( c ) 175 mmx.  
   11.56   ( a ) 240 mmys 2 w, 345 mmys 2 x. ( b ) 130 mmys y, 43.3 mmysx.

( c ) 728 mm y.  
   11.57   ( a ) 2.00 in.ys 2 x, 3.00 inys 2 w. ( b ) 0.667 s. ( c ) 0.667 in.x.  
   11.58   ( a ) (1 2 6t 2 )y4 in.ys 2 . ( b ) 9.06 in.  
   11.61   ( a ) Corresponding values of (t, v, x) are (0, 218 ftys, 0),

(4 s, 26 ftys, 245 ft), (10 s, 30 ftys, 24 ft), (20 s, 220 ftys,
74 ft). ( b ) 12 ftys, 74 ft, 176 ft., 20.0 ftys  

   11.62   See Prob. 11.61 for plots. ( a ) 30.0 ftys. ( b ) 30 ftys, 114 ft.  
   11.63   ( a ) 0 , t , 10 s, a 5 0; 10 s , t , 26 s, a 5 25 ftys 2 ; 

26 s , t , 41 s, a 5 0; 41 s , t , 46 s, a 5 3 ftys 2 ; 
t . 46 s, a 5 0; x 5 2540 ft at t 5 0, x 5 60 ft at t 5 10 s, 
x 5 380 ft at t 5 26 s, x 5 80 ft at t 5 41 s, x 5 17.5 ft at 
t 5 46 s, x 5 22.5 ft at t 5 50 s. ( b ) 1383 ft. ( c ) 9.00 s, 49.5 s.  

   11.64   ( a ) Same as Prob. 11.63. ( b ) 420 ft. ( c ) 10.69 s, 40.0 s.  
   11.65   ( a ) 44.8 s. ( b ) 103.3 mys 2 x.  
   11.66   207 mmys  
   11.67   ( a ) 10.5 s. ( b ) v-t and x-t curves.  
   11.69   3.96 mys 2 .  
   11.70   ( a ) 0.600 s. ( b ) 0.200 mys, 2.84 m.  
   11.71   9.39 s.  
   11.72   8.54 s, 58.3 miyh.  
   11.73   1.525 s.  
   11.74   ( a ) 50.0 mys, 1194 m. ( b ) 59.25 mys.  

   11.77   ( a ) 18.00 s. ( b ) 178.8 m, ( c ) 34.7 kmyh.  
   11.78   (b) 3.75 m.  
   11.79   ( a ) 2.00 s. ( b ) 1.200 ftys, 0.600 ftys.  
   11.80   ( a ) 5.01 min. ( b ) 19.18 miyh.  
   11.83   ( a ) 2.96 s. ( b ) 224 ft.  
   11.84   (a) 163.0 in.ys 2 . (b) 114.3 in.ys 2 .  
   11.86   104 ft.  
   11.89   ( a ) 8.60 mmys c 35.5°, 17.20 mmys 2  a 35.5°. 

( b ) 33.4 mmys a 8.6°, 39.3 mmys 2  a 14.7°.  
   11.90   ( a ) 0, 159.1 mys 2  b 82.9°. ( b ) 6.28 mys y, 157.9 mys 2 w.  
   11.91   ( a ) 5.37 mys. ( b ) t 5 2.80 s, x 5 27.56 m, y 5 5.52 m,

 v  5 5.37 mys 2  b 63.4°.  
   11.92   ( a ) 2.00 in.ys, 6.00 in.ys. ( b ) For v min , t 5 2Np s, x 5 8Np in., 

y 5 2 in.,  v  5 2.00 in.ys y or 2.00 in.ys z.
For vmax  , t 5 (2N 1 1)p s, x 5 4(2N 1 1)p, y 5 6 in.,
 v  5 6.00 in.ys y or 6.00 in.ys z.  

   11.95     2R2(1 1 vn
2 t2) 1 c2, Rvn24 1 v n

2t2  .  
   11.96   ( a ) 3.00 ftys, 3.61 ftys 2 . ( b ) 3.82 s.  
   11.97   353 m.  
   11.98   ( a ) 15.50 mys. ( b ) 5.12 m.  
   11.99   15.38 ftys # v 0  # 35.0 ftys.  
   11.100   ( a ) 70.4 miyh # v 0  # 89.4 miyh. ( b ) 6.89°, 4.29°.  
   11.101   ( a ) 2.87 m . 2.43 m. ( b ) 7.01 m from the net.  
   11.102   0.244 m # h # 0.386 m.  
   11.103   726 ft or 242 yd.  
   11.104   0 # d # 1.737 ft.  
   11.105   23.8 ftys.  
   11.106   ( a ) 29.8 ftys. ( b ) 29.6 ftys.  
   11.107   10.64 mys # v 0  # 14.48 mys.  
   11.108   0.678 mys # v 0  # 1.211 mys.  
   11.111   ( a ) 4.90°. ( b ) 963 ft. ( c ) 16.24 s.  
   11.112   (a) 14.66°. ( b ) 0.1074 s.  
   11.113   ( a ) 10.38°. ( b ) 9.74°.  
   11.115   ( a ) 45.0°, 6.52 m. ( b ) 58.2°, 5.84 m.  
   11.117   ( a ) 1.540 mys a 38.6°. ( b ) 1.503 mys a 58.3°.  
   11.118   5.05 mys b 55.8°.  
   11.119   1.737 knots c 18.41°.  
   11.120   ( a ) 2.67 miyh d 12.97°. ( b ) 258 miyh a 76.4°.

( c ) 65 m c 40°.  
   11.123   ( a ) 8.53 in.ys b 54.1°. ( b ) 6.40 in.ys 2  b 54.1°.  
   11.124   ( a ) 7.01 in.ys d 60°. ( b ) 11.69 in.ys 2  d 60.6°.  
   11.125   ( a ) 0.835 mmys 2  b 75°. ( b ) 8.35 mmys b 75°.  
   11.126   ( a ) 0.958 mys 2  c 23.6°. ( b ) 1.917 mys c 23.6°.  
   11.127   10.54 ftys d 81.3°.  
   11.128   (a) 5.18 ftys b 15°. (b) 1.232 ftys b 15°.  
   11.129   17.49 kmyh a 59.0°.  
   11.130   15.79 kmyh c 26.0°.  
   11.133   28.0 mys.  
   11.134   ( a ) 250 m. ( b ) 82.9 kmyh.  
   11.135   1815 ft.  
   11.136   59.9 miyh.  
   11.137   ( a ) 20.0 mmys 2 . ( b ) 26.8 mmys 2 .  
   11.138   ( a ) 178.9 m. ( b ) 1.118 mys 2 .  
   11.139   2.53 ftys 2 .  
   11.141   15.95 ftys 2 .  
   11.143   ( a ) 281 m. ( b ) 209 m.  
   11.144   ( a ) 7.99 mys a 40°. ( b ) 3.82 m.  
   11.145   ( a ) 6.75 ft. ( b ) 0.1170 ft.  
   11.146   ( a ) 1.739 ft. ( b ) 27.9 ft.  
   11.147   r B  5 v B  

2  y9v A .  
   11.148   18.17 mys a 4.04° and 18.17 mys c 4.04°.  
   11.151   (R 2  1 c 2 )y2v n R.  
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   11.152   2.50 ft.  
   11.153   25.8 3 10 3  kmyh.  
   11.154   12.56 3 10 3  kmyh.  
   11.155   153.3 3 10 3  kmyh.  
   11.156   92.9 3 10 6  mi.  
   11.157   885 3 10 6  mi.  
   11.158   1.606 h.  
   11.161   ( a ) 3pb  e  u , 24p 2 b  e  r . ( b ) u 5 2Np, N 5 0, 1, 2, . . . .  
   11.162   ( a ) 2bv, 4bv 2 . ( b ) r 5 b, a circle.  
   11.163   ( a ) 2(6p in.ys 2 ) e  r , (80 p in.ys 2 ) e  u . ( b ) 0.  
   11.165   ( a ) (2p mys) e  u , 2(4p 2  mys 2 ) e  r 

( b ) 2(py2 mys) e  r  1 (p mys) e  u , 2(p 2 y2 mys 2 ) e  r  2 (p 2  mys 2 ) e  u   .
   11.166   ( a ) 2abt,   2ab21 1 4b2t4  . ( b ) r 5 a(circle).  
   11.169     du

.
   tan b sec by(tan b cos u 2 sin u) 2 .  

   11.170   v 0  cos b (tan b cos u 1 sin u) 2 yh.  
   11.171   185.7 kmyh.  
   11.172   61.8 miyh, 49.7°.  
   11.175   (bv2yu 3 )  24 1 u4  .  
   11.176   (1 1 b 2 ) v 2 e bu .  
   11.180   tan 21 [R(2 1 v N  

2  t 2 )y  c24 1 vN
2 t2    ]

   11.181   ( a ) u x  5 90°, u y  5 123.7°, u z  5 33.7°. ( b ) u x  5 103.4°, 
u y  5 134.3°, u z  5 47.4°  .

   11.182   ( a ) 1.00 s, 4.00 s. ( b ) 1.50 m, 24.5 m.  
   11.184   ( a ) 22.43 3 10 6  ftys 2 . ( b ) 1.366 3 10 23  s.  
   11.185   ( a ) 11.62 s, 69.7 ft. ( b ) 18.30 ftys.  
   11.186   ( a ) 3.00 s. ( b ) 56.25 mm above its initial position.  
   11.187    v  A  5 12.5 mmysx,  v  B  5 75 mmysw,  

v  C  5 175 mmysw.  
   11.189   17.88 kmyh a 36.4°.  
   11.190   2.44 ftys 2 .  
   11.193     r. 5 120 mys, r̈ 5 34.8 mys2, u

.
5 20.0900 radys,

 ü 5 20.0156 radys2  .        

 CHAPTER 12   
   12.1   ( a ) 4.987 lb at 0°, 5.000 lb at 45°, 5.013 lb at 90°. ( b ) 5.000 lb 

at all latitudes. ( c ) 0.1554 lb ? s 2 yft at all latitudes.  
   12.2   ( a ) 3.24 N. ( b ) 2.00 kg.  
   12.3   1.300 3 10 6  kg ? mys.  
   12.5   ( a ) 6.67 mys. ( b ) 0.0755.  
   12.6   ( a ) 225 kmyh. ( b ) 187.1 kmyh.  
   12.7   0.242 mi.  
   12.8   ( a ) 135.3 ft. ( b ) 155.8 ft.  
   12.9   419 N to start and 301 N during sliding.  
   12.10   0.414 mys 2  c 15°.  
   12.11   ( a ) A: 2.49 mys 2  y, B: 0.831 mys 2 w. ( b ) 74.8 N.  
   12.12   ( a ) A: 0.698 mys 2  y, B: 0.233 mys 2 w. ( b ) 79.8 N.  
   12.15   ( a ) 0.986 mys 2  b 25°. (b) 51.7 N.  
   12.16   ( a ) 1.794 mys 2  b 25°. ( b ) 58.2 N.  
   12.17   ( a ) 0.997 ftys 2  a 15°, 1.619 ftys 2  a 15°.  
   12.19    System 1:  ( a ) 10.73 ftys 2 . (b) 14.65 ftys. (c) 1.864 s.  

System 2:  ( a ) 16.10 ftys 2 . ( b ) 17.94 ftys. ( c ) 1.242 s. 
 System 3:  ( a ) 0.749 ftys 2 . ( b ) 3.87 ftys. ( c ) 26.7 s.  

   12.20   ( a ) 1.962 mys 2 x. ( b ) 39.1 N.  
   12.21   ( a ) 6.63 mys 2  z. ( b ) 0.321 m y.  
   12.22   ( a ) 19.53 mys 2  a 65°. ( b ) 4.24 mys 2  d 65°.  
   12.24   0.347 m 0 v 0  

2 yF 0 .  
   12.26     2kym (2l2 1 x0

2 2 l)  .  
   12.27   119.5 miyh.  
   12.28   ( a ) 33.6 N. ( b )  a  A  5 4.76 mys 2  y,  a  B  5 3.08 mys 2 w, 

 a  C  5 1.401 mys 2  z.  

   12.29   ( a ) 36.0 N. ( b )  a  A  5 5.23 mys 2  y,  a  B  5 2.62 mys 2 w.  a  C  5 0.  
   12.30   ( a )  a  A  5  a  B  5  a  D  5 2.76 ftys 2 w,  a  C  5 11.04 ftys 2 x. 

( b ) 18.80 lb.  
   12.31   ( a ) 24.2 ftysw. ( b ) 17.25 ftysx.  
   12.36   ( a ) 80.4 N. ( b ) 2.30 mys.  
   12.37   ( a ) 49.9°. ( b ) 6.85 N.  
   12.38   8.25 ftys.  
   12.40   2.77 mys , v , 4.36 mys.  
   12.42   9.00 ftys , v C  , 12.31 ftys.  
   12.43   2.42 ftys , v , 13.85 ftys.  
   12.44   ( a ) 131.7 N. ( b ) 88.4 N.  
   12.45   ( a ) 553 N. ( b ) 659 N.  
   12.46   ( a ) 668 ft. ( b ) 120.0 lbx  .
   12.47   ( a ) 6.95 ftys 2  c 20°. ( b ) 8.87 ftys 2  c 20°.  
   12.48   ( a ) 2.905 N. ( b ) 13.09°.  
   12.49   1126 N b 25.6°.  
   12.50   24.1° # u # 155.9°.  
   12.51   ( a ) 43.9°. ( b ) 0.390. ( c ) 78.8 kmyh.  
   12.53   ( a ) 0.1858 W. ( b ) 10.28°.  
   12.55   468 mm.  
   12.56   2.36 mys # v # 4.99 mys.  
   12.57   ( a ) 0.1904, motion impending downward. 

( b ) 0.349, motion impending upward.  
   12.58   ( a ) Does not slide. 1.926 lb b 80°. 

( b ) Slides downward. 1.123 lb b 40°.  
   12.61   ( a ) 0.1834. ( b ) 10.39° for impending motion to the left., 

169.6° for impending motion to the right.  
   12.62   ( a ) 2.98 ftys. ( b ) 19.29° for impending motion to the left. 

160.7° for impending motion to the right.  
   12.64   1.054  2eV/mv0

2  .  
   12.65   1.333 l.  
   12.66   (a) F r  5 210.73 N, F u  5 0.754 N. 

( b ) F r  5 24.44 N, F u  5 1.118 N.  
   12.67   F r  5 0.0523 N, F u  5 0.432 N.  
   12.68   ( a ) F r  5 21.217 lb, F u  5 0.248 lb. 

( b ) F r  5 20.618 lb, F u  5 20.0621 lb.  
   12.69   ( a ) mc 2 (r 0  2 kt) t 2 . ( b ) mc(r 0  2 3kt).  
   12.70   2.00 s.  
   12.71    P  5 (5.76 N) tan u sec 3  u b u

 Q  5 (5.76 N) tan 3  u sec 3  u y  
   12.76   v r  5 v 0  sin 2uy  1cos 2u.     vu 5 v01cos 2u.    
   12.79   (a) r 5 (gt 2 R 2 y4p 2 ) 1y3 . (b) g 5 24.8 mys 2 .  
   12.80   ( a ) 35800 km and 22240 mi. (b) 3070 mys and 10090 ftys.  
   12.81   4.13 3 10 21  lb ? s 2 yft.  
   12.82   ( a ) 1 hr 57 min. ( b ) 3380 km.  
   12.84   ( a ) 86.9 3 10 24  kg. ( b ) 436000 km.  
   12.86   ( a ) 5280 ftys. ( b ) 8000 ftys.  
   12.87   ( a ) 1551 mys. ( b ) 15.8 mys  .
   12.88   5000 mys.  
   12.89   53 ftys.  
   12.90   (a) At  A  (a A ) r  5 0, (a A ) u  5 0. ( b ) 1536 in.ys 2 . ( c ) 32.0 in.ys.  
   12.91   ( a ) 24.0 in.ys. ( b ) a r  5 2258 in.ys 2 , a u  5 0. ( c ) 2226 in.ys 2 .  
   12.98   10.42 kmys.  
   12.99   ( a ) 10.13 kmys. ( b ) 2.97 kmys.  
   12.103   ( a ) 26.3 3 10 3  ftys. ( b ) 448 ftys.  
   12.104     22y(2 1 a).    
   12.105   ( a ) 52.4 3 10 3  ftys. ( b ) 1318 ftys at  A , 3900 ftys at  B .  
   12.108   98.0 h.  
   12.109   4.95 h.  
   12.110   54.0°.  
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   13.56   ( a )   x02k1k2ym(k1 1 k2).   ( b )   x02(k1 1 k2)ym.    
   13.57   3.19 mys y or 3.19 mys z.  
   13.58   ( a ) 3.34 ftys. ( b ) 27.7 ftys 2 .  
   13.59   56.7 ftys.  
   13.61   ( a ) 87.2 mys. ( b ) 105.8 mys.  
   13.62   ( a ) 1000 mm. ( b ) 4.42 mys.  
   13.64   ( a ) 0.956 ft. ( b ) 7.85 ftys.  
   13.65   ( a ) 43.5°. ( b ) 8.02 ftysw.  
   13.68   0.269 m.  
   13.69   0.1744 m.  
   13.70   ( a ) 2.55 N. ( b ) 6.96 N.  
   13.71   ( a ) 8.15 N. ( b ) 2.94 N.  
   13.73   14.34 ftys z, 13.77 lbx.  
   13.74   (1): ( a ) 7.99 mys. ( b ) 5.89 N z.

(2): ( a ) 7.67 mys. ( b ) 3.92 N z.  
   13.75   ( a ) Loop 1: minimum v C  5 3.84 mys . 3.5 mys.

( b ) Loop 2: v 0  5 7.83 mys.  
   13.78   ( a ) cot f 5 4.113y(12 2 y).

( b ) u x  5 85.7°, u y  5 71.6°, u z  5 161.1°  .
   13.80   (b) V 5 2ln xyz 1 C.  
   13.81   ( a ) pka 2 y4. ( b ) 0.  
   13.82   ( a ) F x  5 x(x 2  1 y 2  1 z 2 ) 21y2 , F y  5 y(x 2  1 y 2  1 z 2 ) 21y2 ,

F z  5 z(x 2  1 y 2  1 z 2 ). ( b )   a13.    
   13.85   ( a ) 90.46 J. ( b ) 2086 J.  
   13.86   57.5 MJykg.  
   13.87   15.65 3 10 3  miyh.  
   13.88   450 3 10 3  ft ? lbylb.  
   13.89   ( a ) mgR(1 2 Ryr). ( b ) mgR2y2r. ( c ) mgR(1 2 Ry2r).  
   13.90   ( a ) 33.9 MJykg. ( b ) 46.4 MJykg  .
   13.93   ( a ) 0.919 mys. ( b ) 8.27 mys.  
   13.94   ( a ) 7.35 mys. ( b ) 11.02 mys.  
   13.95   v r  5 9.05 ftys, v u  5 9.14 ftys.  
   13.96   ( a ) 25.3 in. ( b ) 7.58 ftys.  
   13.97   maximum: 1.661 m, minimum: 0.338 m,

maximum: 25.6 mys, minimum: 5.21 mys.  
   13.100   14.20 kmys.  
   13.101   29.8 mys.  
   13.102   21.8 3 10 6  ft 2 ys 2   
   13.103   ( a ) 16800 ftys. ( b ) 32700 ftys.  
   13.106   1555 mys, 79.3°.  
   13.107   maximum: r 0 (1 1 sin a), minimum: r 0 (1 2 sin a)  
   13.108   68.9°.  
   13.109   ( a ) 11.32 3 10 3  ftys. ( b ) 13.68 3 10 3  ftys.  
   13.110   58.9°.  
   13.111   ( a ) 31.5 mys. ( b ) 1053 mys.  
   13.116   ( b )   vesc2ay(1 1 a) # v0 # vesc 2(1 1 a)y(2 1 a).    
   13.118   ( a ) h 5 r min  v max ,   Eym 5 1

2vmax
2 2 GMyrmin  .  

   13.119   ( a ) 3.40 s. ( b ) 25.5 s.  
   13.120   4 min 20 s.  
   13.121   ( a ) 3.11 s. ( b ) 1.493 s.  
   13.122   ( a ) 11.42 s. ( b ) 2(125.5 mys) j  2 (194.5 mys) k .  
   13.123   ( a ) 2.49 s. ( b ) 12.24 s.  
   13.124   2.61 s.  
   13.126   0.260.  
   13.127   0.310.  
   13.129   ( a ) 14.78 s. ( b ) 693 lb (tension).  
   13.130   ( a ) 29.6 s. ( b ) 2500 lb (tension).  
   13.131   ( a ) 19.60 s. ( b ) 10.20 kN (compression)  .
   13.132   ( a ) 3.92 mys. ( b ) 39.2 N.  
   13.134   ( a ) 29.0 ftys. ( b ) 77.3 ftys.  
   13.135   ( a ) 77.3 ftys. ( b ) 5.40 s.  

   12.112   5.31 3 10 9  km.  
   12.114   cos 21  [(1 2 nb 2 )y(1 2 b 2 )].  
   12.115   81.0 mys.  
   12.116   ( a ) 14.37°. ( b ) 59.8 kmys.  
   12.118   Show     . . . .
   12.119   ( a ) (r 1  2 r 0 )y(r 1  1 r 0 ). ( b ) 609 3 10 12  m.  
   12.120   Show     . . . . 
   12.121   Derive     . . . .
   12.122   267 ft.  
   12.124   ( a ) 1.656 lb. ( b ) 20.8 lb.  
   12.125   ( a ) 20.49 ftys 2  d 30°. ( b ) 17.75 ftys 2  y.  
   12.127   ( a ) 0.454, downward. ( b ) 0.1796, downward.

( c ) 0.218, upward.  
   12.128   ( a ) F r  5 213.16 lb, F u  5 2.10 lb.

( b )  P  5 6.89 lb b 70°,  Q  5 14.00 lb d 40°.  
   12.129   v r  5 2v 0  sin 2u, v u  5 v 0  cos 2u.  
   12.131   ( a ) r 5 1.250 ft, F H  5 0. ( b ) r 5 0.871 ft, F H  5 22.69 lb.  
   12.132   1.147.      

 CHAPTER 13   
   13.1   ( a ) 585 kJ. ( b ) 41.0 kmyh.  
   13.2   4.54 3 10 9  ft ? lb.  
   13.5   ( a ) 69.6 miyh. ( b ) 56.9 miyh.  
   13.6   ( a ) 32.8 miyh. ( b ) 142.5 miyh.  
   13.7   4.05 mys.  
   13.8   2.99 m.  
   13.9   (a) 8.57 mys a 15°. (b) 5.30 mys d 15°.  
   13.10   (a) 8.70 m. (b) 4.94 mys d 15°.  
   13.13   6.71 m.  
   13.14   ( a ) 2.90 mys. ( b ) 0.893 m.  
   13.15   ( a ) 124.1 ft. ( b ) F AB  5 19.38 kips (tension),

F BC  5 81.62 kips (tension).  
   13.16   ( a ) 279 ft. ( b ) F AB  5 19.38 kips (compression),

F BC  5 8.62 kips (compression).  
   13.21   ( a ) 2.34 mys z. ( b ) 235 mm.  
   13.22   ( a ) 45.7 J. ( b ) T A  5 83.2 N, T B  5 60.3 N.  
   13.23   ( a ) 10.36 ftysw. ( b ) 17.94 ftysw.  
   13.24   ( a ) 11.35 ftys d 23.6°. ( b ) 16.05 ftys d 23.6°.  
   13.25   1.190 mys.  
   13.26   ( a ) 2.32 ftys. ( b ) 2.39 ftys.  
   13.27   ( a ) 0.222 ft. ( b ) Block moves to the right.  
   13.29   ( a ) 3.29 mys. ( b ) 1.472 m.  
   13.31   ( a ) 0.750 in.w. ( b ) 8.51 in.ysx orw.  
   13.33     0.759 2paAym.    
   13.35   1y[1 2 (v 0  

2  2 v 2 )y2gmRm].  
   13.36   1515 yd.  
   13.38   ( a ) 32.7 mm, 98.1 Nx. ( b ) 30.4 mm, 104.9 Nx.  
   13.39   ( a )   13gl.   ( b )   12gl.    
   13.40   14.00°.  
   13.41   167.0 lb.  
   13.42   minimum 5 167.0 lb, maximum 5 1260 lb.  
   13.44   ( a ) 27.4°. ( b ) 3.81 ft.  
   13.46   ( a ) 20.2 ft ? lbys. ( b ) 118.7 ft ? lbys.  
   13.49   ( a ) 109.0 kW, 146.2 hp. ( b ) 530 kW, 711 hp.  
   13.50   ( a ) 2.75 kW. ( b ) 3.35 kW.  
   13.51   14.8 kN.  
   13.52   ( a ) 3000 lb. ( b ) 267 hp.  
   13.53   ( a ) 375 kW. ( b ) 5.79 kmyh.  
   13.54   ( a ) 58.9 kW. ( b ) 52.9 kW  .
   13.55   ( a ) k 1 k 2 y(k 1  1 k 2 ). ( b ) k 1  1 k 2 .  
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   13.136   ( a ) 5.00 s. ( b ) 49.9 ftys. ( c ) 17.88 s.  
   13.137   ( a ) 7.00 s. ( b ) 10.99 ftys. ( c ) 13.49 s.  
   13.139   8.18%.  
   13.140   6.21  W .  
   13.141   642 lb.  
   13.142   ( a ) 3730 lb. ( b ) 7450 lb.  
   13.145   ( a ) 1.333 kmyh z. ( b ) 0.1888 s.  
   13.146   ( a )  A  was going faster. ( b ) 115.2 kmyh.  
   13.147   ( a ) 8.51 kmyh. ( b ) 6.67 N.  
   13.148   497 ftys.  
   13.149    ( a ) A :   v02L2 2 a2y2L  ,  B :   v02L2 1 3a2y2L  .

( b ) mv 0  
2  (L 2  2 a 2 )y4L 2 .  

   13.150   ( a ) 0.618 ftys. ( b ) 3.04 ftys.  
   13.151   ( a ) 1.000 mysx. ( b ) 0.500 N ? sx.  
   13.152   mMv 0  cos uy(m 1 M) y, mv 0  sin ux.  
   13.154   76.9 lb.  
   13.155   ( a )  v  9A  5 0.363 mys z,  v 9 B  5 2.44 mys y. ( b ) 4.13 J.  
   13.157   0.800.  
   13.158   ( a )  v 9 A  5 10.38 ftys y,  v 9 B  5 7.38 ftys y. ( b ) 0.0611 ft ? lb.  
   13.159    A : 1.013 mys z,  B : 0.338 mys z,  C : 0.150 mys z.  
   13.160   ( a ) v9 A  5 v 0 (1 2 e)y2, v9 B  5 v 0 (1 1 e)y2. 

( b ) v9 C  5 v 0 (1 1 e) 2 y4, v9 B  5 v 0 (1 2 e) 2 y4. 
( c ) v9 n  5 v 0 (1 1 e) (n21) y2 (n21) , ( d ) 0.881 v 0 .  

   13.163   0.728 # e # 0.762.  
   13.165    v 9 A  5 6.37 mys d 77.2°,  v 9 B  5 1.802 mys a 40°.  
   13.166    v 9 A  5 3.00 mys d 40°,  v 9 B  5 3.00 mys a 40°.  
   13.167   ( a )  v A   5 0.848 v 0  c 27.0°,  v  B  5 0.456 v 0  a 57.6°.  
   13.168   ( a ) 70.0°. ( b ) 0.972 ftys y.  
   13.169   0.857.  
   13.170   15.94 m.  
   13.173   ( a ) 22.5°. ( b ) 21.3°.  
   13.174   ( a ) 0.294 m. ( b ) 54.4 mm.  
   13.175   ( a ) 0.685 m for e 5 1, 0.484 m for e 5 0. 

( b ) 5.00 mys y for e 5 1, 2.50 mys y for e 5 0.  
   13.176   ( a )  v 9 A  5  v 9 B  5 0. ( b )  v 9 A  5 1.201 mys y,  v 9 B  5 0.400 mys y.  
   13.177   ( a ) 0.258. ( b ) 4.34 mys.  
   13.178   ( a ) 0.0720 ft. ( b ) 72.2 lbyft.  
   13.179   ( a ) e 5 1.000. ( b ) 0.200 ft. ( e ) 0.263 ft.  
   13.183   ( a ) 2.90 mys. ( b ) 100.5 J.  
   13.184   ( a ) 401 mm. ( b ) 4.10 N ? s.  
   13.185   ( a ) 0.923. ( b ) 1.278 m.  
   13.188    v 9 A  5 1.093 ftys z,  v 9 B  5 3.28 ftys y.  
   13.190   1.688 ft ? lb.  
   13.191   ( a ) 533 lbyft. ( b ) 37.0 ft.  
   13.194   12900 ftys.  
   13.196   65.0 KN.  
   13.197   0.707 a.  
   13.199   ( a ) 1.368 mys. ( b ) 0.668 m. ( c ) 1.049 m.  
   13.200   (1 1 e) 2 y4.      

 CHAPTER 14   
   14.1   ( a ) 1.417 mys y. ( b ) 1.417 mys y.  
   14.2   ( a ) 10.00 kg. ( b ) 1.200 mys y.  
   14.3   ( a ) 9.20 ftys z. ( b ) 9.37 ftys z.  
   14.4   ( a ) 2.80 ftys z. ( b ) 0.229 ftys z.  
   14.7   ( a )  A : 1.288 mys z,  B : 0.312 mys y,  C : 1.512 mys y. 

( b )  A : 0.956 mys z,  B : 0.0296 mys z,  C : 1.552 mys y.  
   14.8   0.294 mys z.  
   14.9   2(31.2 kg ? m 2 ys) i  2 (64.8 kg ? m 2 ys) j  1 (48.0 kg ? m 2 ys) k .  

   14.10   ( a ) (0.600 m) i  1 (1.400 m) j  1 (1.525 m) k . 
( b ) 2(26.0 kg ? mys) i  1 (14.00 kg ? mys) j  1 (14.00 kg ? mys) k .
( c ) 2(29.5 kg ? m 2 ys) i  2 (16.75 kg ? m 2 ys) j  1 (3.20 kg ? m 2 ys) k .  

   14.13   ( a ) v x  5 20.750 ftys, v z  5 0.4375 ftys. 
( b )  H  O  5 2(3.39 ft ? lb ? s) i .  

   14.14   ( a ) v x  5 8.33 ftys, v z  5 7.25 ftys. ( b )  H  O  5 2(4.51 ft ? lb ? s) k .  
   14.15   (4320 ft) i  1 (480 ft) j  1 (480 ft) k .  
   14.16   (400 ft) i  2 (258 ft) j  1 (32.0 ft) k .  
   14.17   (1004 m) i  2 (48.7 m) j .  
   14.18   (503 m) i  2 (547 m) j .  
   14.21   ( a ) 8.50 ftys. ( b ) 3.95 ftys.  
   14.22   ( a ) 6.05 ftys. ( b ) 6.81 ftys.  
   14.23     (26.0 m) i  1 (125.4 m) k .  
   14.24   v A  5 919 mys, v B  5 717 mys, v C  5 619 mys.  
   14.31   ( a ) 42.2 J. ( b ) 5.10 J.  
   14.32   ( a ) 264 J. ( b ) 352 J.  
   14.33   woman: 382 ft ? lb, man: 447 ft ? lb.  
   14.34   ( a ) 1116 ft ? lb. ( b ) 623 ft ? lb.  
   14.37   ( a )  v  B  5 m A v 0  y(m A  1 m B ) y. ( b ) h 5 m B v 0  

2  y2g (m A  1 m B )  .
   14.38   ( a )  v  A  5 0.200 v 0  z,  v  B  5 0.693 v 0  a 30°,

 v  C  5 0.693 v 0  c 30°. ( b )  v  A  5 0.250 v 0  d 60°,
 v  B  5 0.866 v 0  a 30°, v C  5 0.433 v 0  c 30°.  

   14.39    v  A  5 10.61 ftys,  v  B  5 5.30 ftys,  v  C  5 9.19 ftys.  
   14.40    v  A  5 7.50 ftys,  v  B  5 9.19 ftys,  v  C  5 9.19 ftys.  
   14.41    v  A  5 4.11 mys a 46.9°,  v  B  5 17.39 mys c 16.7°.  
   14.42    v  A  5 12.17 mys a 25.3°,  v  B  5 9.17 mys c 70.9°.  
   14.45   (60.0 mys) i  1 (60.0 mys)j 1 (390 mys) k .  
   14.46     xB0

5 181.7 mm  ,   yB0
5 0  ,   zB0

5 139.4 mm.    
   14.49   ( a ) 0.866 v 0 . ( b ) 0.250 v 0 . ( c ) 7.50%.  
   14.50   ( a ) 0.707 v 0 . ( b ) 0.500 v 0 . ( c ) 12.50%.  
   14.51   ( a )  v  A  5 2.56 mysx,  v  B  5 4.24 mys c 31.9°. ( b ) 2.34 m.  
   14.52   ( a )  v  0  5 (2.4 mys) i  1 (1.8 mys) j  ( b ) 600 mm. ( c ) 20.0 radys.  
   14.53   (a)  v  B  5 7.20 ftys a 53.1°,  v  C  5 7.68 ftys y. ( b ) 42.0 in.  
   14.54   ( a )  v  A  5 7.20 ftysw,  v  B  5 9.00 ftys a 53.1°. ( b ) 74.0 in.  
   14.57   312 N.  
   14.58   4.18 mys.  
   14.59   90.6 N z.  
   14.60   ( a ) F x  5 3280 lb. ( b ) F z  5 6450 lb.  
   14.63    C  5 161.7 Nx,  D  x  5 154.8 N y,  D  y  5 170.2 Nx.  
   14.67   ( a ) 61.1 mys. ( b ) 59.8 N b 49.0°.  
   14.68   C x  5 90.0 N, C y  5 2360 N, D x  5 0, D y  5 2900 N.  
   14.69   36.9 kN.  
   14.70   251 lbys.  
   14.71   ( a ) 9690 lb, 3.38 ft. ( b ) 6960 lb, 9.43 ft.  
   14.73   1.096 m.  
   14.74   7180 lb.  
   14.75   ( a ) 516 miyh. ( b ) 391 miyh.  
   14.77   ( a ) 15.47 kJys. ( b ) 0.323.  
   14.78   ( a ) 80.0 kJys. ( b ) 51.9 kmyh.  
   14.79   ( a ) 15450 hp. ( b ) 28060 hp. ( c ) 0.551.  
   14.80   ( a ) 109.5 ftys. ( b ) 3100 ft 3 ys. ( c ) 43800 ft ? lbys  
   14.84   646 ft 3 ys.  
   14.85   ( a ) P 5 qv.  
   14.86    Case  1. ( a ) 0.333 gw. ( b )   0.8172gl  w.  

Case  2. ( a ) gyylw. ( b )   2gl w .  
   14.87   ( a ) (myl)(v 2  1 gy). ( b ) mg(1 2 yyl)x.  
   14.88   ( a ) mgyyl. ( b ) (myl) [g(l 2 y) 1 v 2 ]x.  
   14.89   10.10 ftys.  
   14.90   4.75 ftys.  
   14.92   533 kgys.  
   14.93   ( a ) 90.0 mys 2 . ( b ) 35.9 3 10 3  kmyh.  
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   15.44   ( a ) 4.00 radys i. ( b ) 2(4.00 inys) i .  
   15.45   ( a ) (12.00 in.ys) i  1 (8.00 in.ys) j  

( b ) x 5 2.00 in., y 5 3.00 in.  
   15.46   ( a ) 2.00 radys i. ( b ) (120 mmys) i  1 (660 mmys) j .  
   15.48   ( a ) 105 rpm i. ( b ) 127.5 rpm i.  
   15.49   ( a ) 1.500. ( b ) 0.333 v A  l.  
   15.50   70 rpm i.  
   15.51   ( a ) 135.0 rpm i. ( b ) 105.0 rpm i.  
   15.52   ( a ) 48.0 radys i. ( b ) 3.39 mys a 45°.  
   15.55   ( a ) 60.0 rpm i, 37.7 in.ys y. ( b ) 0, 50.3 in.ys z.  
   15.56   2.67 radys i, 34.4 in.ys z.  
   15.57   ( a ) 0, 39.3 radys l. ( b ) 6.28 mysw, 0.  
   15.58   6.52 mysw, 20.8 radys l.  
   15.60   ( a ) 0.1254 mys z. ( b ) 0.208 radys i.  
   15.61   ( a ) 3.02 radys i. ( b ) 0.657 radys l.  
   15.63    Bar BD : 0.955 radys l;  Bar DE : 2.55 radys i.  
   15.64    Bar BD : 4.00 radys i;  Bar DE : 6.67 radys l.  
   15.65    Bar BD : 5.20 radys i;  Bar DE : 6.40 radys i.  
   15.66   ( a ) 3.33 radys l. ( b ) 2.00 mys c 56.3°.  
   15.68   ( a ) 12.00 radys i. ( b ) 80.0 in.ys y.  
   15.69   ( a ) 12.00 radys i. ( b ) 72.1 in.ys d 56.3°.  
   15.70    B : 140.8 ftys y;  C : 0;  D : 136.0 ftys a 15°;  E : 99.6 ftys c 45°.  
   15.71   ( a ) 338 mmys z, 0. ( b ) 710 mmys z, 2.37 radys i.  
   15.72   v C  5 (1 2 r A yr C )v ABC .  
   15.73   ( a )  C  lies 1.000 ft to right of  A . ( b ) 4.00 in.ysx  .
   15.74   x 5 0, z 5 9.34 ft.  
   15.75   ( a ) 50.0 mm to the right of the axle. 

( b ) 750 mmysw, 1.950 mysw.  
   15.76   ( a ) 25.0 mm to the right of axle. ( b ) 420 mmysx  .
   15.77   ( a ) 12.00 radys i. ( b )  Rack : 2.40 mys y  D : 2.16 mys a 56.3°.  
   15.78   ( a ) 10.00 mm to the right of  A . ( b ) 40.0 mmysw. 

( c )  DE : unwrapped at 240 mmys;  BF : unwrapped at 120 mmys.  
   15.79   ( a ) 20.0 mm to the right of  A . ( b ) 80.0 mmysw. ( c )  DE : 

unwrapped at 240 mmys;  BF : unwrapped at 120 mmys  
   15.82   ( a ) 12.00 radys l. ( b ) 3.90 mys d 67.4°.  
   15.83   ( a ) 5.00 radys l. ( b ) 1.300 mys a 67.4°.  
   15.84   ( a ) 3.08 radys i. ( b ) 83.3 in.ys c 73.9°.  
   15.85   ( a ) 0.467 radys l. ( b ) 3.49 ftys a 59.2°.  
   15.89   ( a ) 4.42 radys l. ( b ) 3.26 mys a 50°.  
   15.90   ( a ) 1.579 radys i. ( b ) 699 mmys a 78.3°.  
   15.92   ( a ) 22.0 in.ys a 79.6°. ( b ) 20.6 in.ys c 20.5°.  
   15.93   ( a ) 2.79 in.ys a 36.7°. ( b ) 8.63 in.ys a 75.0°.  
   15.95   ( a ) 1260 mmysx. ( b ) 1.250 radys l.  
   15.96   ( a ) 0.338 radys i. ( b ) 78.8 mmys z.  
   15.97   ( a )  DE : 2.50 radys i;  AB : 1.176 radys i. ( b ) 29.4 mys z.  
   15.98   ( a )  AB : 2.00 radys i;  DE : 5.00 radys l. ( b ) 24.0 in.ys y.  
   15.99    Space centroid : quarter circle of 15 in. radius centered at  O . 

 Body centrode : semi-circle of 7.5 in. radius centered midway 
between  A  and  B .  

   15.100    Space centrode : lower rack.
 Body centrode : circumference of gear.  

     15.102   4.00 radys i, 6.67 radys l.  
   15.103   5.20 radys i, 6.40 radys i.  
   15.104    B : 140.8 ftys y;  C : 0;  D : 136.0 ftys a 15.0°;

 E : 99.6 ftys c 45°.  
   15.105   ( a ) 0.900 mys 2  y. ( b ) 1.800 mys 2  z.  
   15.106   ( a ) 0.600 m from  A . ( b ) 0.200 m from  A .  
   15.107   ( a ) 0.778 radys 2  i. ( b ) 4.22 mys 2 x.  
   15.108    A : 7.00 ftys 2 x;  B : 0.200 ftys 2 w.  
   15.109   ( a ) 2.88 mys 2  z. ( b ) 3.60 mys 2  z.  
   15.110   ( a ) 2.88 mys 2  y. ( b ) 7.92 mys 2  y.  

   14.94   ( a ) 31.9 mys 2 x. ( b ) 240 mys 2 x.  
   14.95   4410 lb.  
   14.96   3960 ftys.  
   14.97   7930 mys.  
   14.98   ( a ) 1800 mys. ( b ) 9240 mys.  
   14.99   186.8 km.  
   14.100   ( a ) 31.2 km. ( b ) 197.5 km.  
   14.106   ( a ) 5.20 kmyh. ( b ) 4.00 kmyh.  
   14.107   ( a )  v  A  5  v  B  5  v  C  5 0.400 miyh y. 

( b )  v  A  5  v  B  5 1.68 miyh z,  v  C  5 4.56 miyh y.  
   14.109    v  A  5 15.38 ftys y,  v  B  5 5.13 ftys z.  
   14.111   ( a ) qv 0  z. ( b )   22gh   b 30°.  
   14.112   1.712 kNx at  C , 2.29 kNx at  D .  
   14.113   414 rpm.  
 14.114 v2yg.
   14.115   ( a )   m0 1 qtL 5 m0e

qLym0v0   ( b )   vL 5 v0e
2qLym0v0        

 CHAPTER 15   
   15.1   ( a ) 0, 15.00 radys, 218.00 radys 2 . 

( b ) 29.00 rad, 212.00 radys 2 , 0.  
   15.2   1.000 s, 7.00 rad, 212.00 radys 2 ; 

5.00 s, 225.0 rad, 12.00 radys 2 .  
   15.3   ( a ) 0, 0, 0. ( b ) 6.00 rad, 4.71 radys, 23.70 radys 2 .  
   15.4   1.243 rad, 3.33 radys, 4.79 radys 2 .  
   15.5   ( a ) 0, 0.1000 radys, 20.0250 radys 2 . 

( b ) 0.211 rad, 0.0472 radys, 20.01181 radys 2 .
( c ) 0.400 rad, 0, 0.  

   15.6   ( a ) 4.00 s 22 . ( b ) 5.29 radys.  
   15.9   ( a ) 12.73 rev. ( b ) .̀ ( c ) 18.42 s.  
   15.10   2(0.400 mys) i  2 (1.400 mys) j  2 (0.700 mys) k , 

(8.40 mys 2 ) i  1 (3.30 mys 2 ) j  2 (11.40 mys 2 ) k .  
   15.11   2(0.400 mys) i  1 (0.700 mys) k , 

2(2.00 mys 2 ) i  2 (6.50 mys 2 ) j  2 (3.00 mys 2 ) k .  
   15.12   2(0.450 mys) i  2 (1.200 mys) j  1 (1.500 mys) k , 

(12.60 mys 2 ) i  1 (7.65 mys 2 ) j  1 (9.90 mys 2 ) k .  
   15.13   (0.750 mys) i  1 (1.500 mys) k , (12.75 mys 2 ) i  1

(11.25 mys 2 ) j  1 (3.00 mys 2 ) k .  
   15.16   ( a ) 1525 ftys, 0.1112 ftys 2 . ( b ) 1163 ftys, 0.0852 ftys 2 . ( c ) 0, 0.  
   15.18   ( a ) 0.0600 mys 2 . ( b ) 0.0937 mys 2 . ( c ) 0.294 mys 2 .  
   15.19   ( a ) 6.00 mys 2 . ( b ) 9.98 mys 2 , ( c ) 60.0 mys 2 .  
   15.21   ( a ) 2.50 radys l, 1.500 radys 2  i. ( b ) 38.6 in.ys 2  c 76.5°.  
   15.22   12.00 radys 2  i.  
   15.24   ( a ) 6.28 mys, 1579 mys 2 . ( b ) 0.628 mys, 15.80 mys 2 .  
   15.25   ( a ) 120 rpm, 275 rpm. ( b ) 23.7 mys 2 .x, 19.90 mys 2 w.  
   15.27   ( a ) 10.00 radys l. ( b ) 7.50 mys 2 w, 3.00 mys 2 w.

( c ) 4.00 mys 2 w.  
   15.28   ( a ) 3.00 radys 2  i. ( b ) 4.00 s.  
   15.29   ( a ) 1.707 radys 2  l. ( b ) 6.83 radys l.  
   15.30   ( a ) 2.25 rev. ( b ) 1.710 mysw, 3.11 mw.

( c ) 849 mmys 2  a 32.0°.  
   15.31   ( a ) 1.152 mysx,   2.30 mx. ( b ) 1.728 mysw, 3.46 mw.  
   15.32    Disk A : 5.41 radys 2  l;  Disk B : 1.466 radys 2  l.  
   15.33   ( a ) 10.39 s. ( b )  Disk A : 413 rpm i;  Disk B : 248 rpm l.  
   15.35   ( a )  Disk A : 2.36 radys 2  i;  Disk B : 4.19 radys 2  i. ( b ) 6.00 s.  
   15.36   bv 2 y2pr 3  i.  
   15.37   bv 0  

2 y2p y.  
   15.38   ( a ) 0.378 radys i. ( b ) 6.42 mysx.  
   15.39   ( a ) 0.615 radys l. ( b ) 11.02 in.ys c 15°.  
   15.40   ( a ) 2.26 radys l. ( b ) 1.840 mys b 60°.  
   15.41   ( a ) 2.54 radys i. ( b ) 1.373 mys a 30°.  
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   15.111   ( a ) 5410 ftys 2 w. ( b ) 5410 ftys 2 x ( c ) 5410 ftys 2  c 60°.  
   15.112   ( a ) 96.0 radys 2  l, 2.40 mys 2  z. 

( b ) 48.0 radys 2  l, 1.200 mys 2  z.  
   15.113   ( a ) 300 mmys 2  y. ( b ) 247 mmys 2  d 14.0°.  
   15.115    A : 56.6 in.ys 2  b 58.0°;  B : 80.0 in.ys 2 x;  

C : 172.2 in.ys 2  b 25.8°.  
   15.116    A : 48.0 in.ys 2 x;  B : 85.4 in.ys 2  b 69.4°; 

 C : 82.8 in.ys 2  d 65.0°.  
   15.118   ( a ) 13.35 in.ys 2  d 61.0°. ( b ) 12.62 in.ys 2  a 64.0°.  
   15.119   ( a ) 92.5 in.ys 2 . ( b ) 278 in.ys 2 .  
   15.120   ( a ) 59.8 mys 2 x. ( b ) 190.6 in.ys 2 x.  
   15.121    D : 1558 mys 2  c 45°;  E : 337 mys 2  a 45°.  
   15.122   ( a ) 1218 in.ys 2  z. ( b ) 993 in.ys 2  z.  
   15.125   148.3 mys 2 w.  
   15.126   296 mys 2 x.  
   15.127   ( a ) 1080 radys 2  i. ( b ) 460 ftys 2  b 64.9°.  
   15.128   (a) 432 radys 2  l. ( b ) 272 ftys 2  b 60.3°.  
   15.129   1.745 mys 2  d 68.2°.  
   15.130   ( a ) 7.20 radys 2 . ( b ) 1.296 mys 2  z.  
   15.132   9.60 mys 2  y.  
   15.133   ( a ) 10.75 radys 2  l. ( b ) 2.30 radys 2  l.  
   15.135   ( a ) 8.15 radys 2  l. ( b ) 0.896 radys 2 .  
   15.138   v B  sin byl cos u.  
   15.139   (v B  sin byl) 2  sin uycos 3  u  
   15.140   bv cos u, ba cos u 2 bv 2  sin u.  
   15.141   bv A y(b 2  1 x A  

2 ) l, 2b A x A v A  
2 y(b 2  1 x A  

2 ) 2   
   15.143   v[1 2 cos (vtyr)], v sin (vtyr)  .
   15.146   v 0  sin 2  uyr cos u l.  
   15.147   (v 0 yr) 2  (1 1 cos 2  u) 1 tan 3  u l  .
   15.149   (Rv sin vt) j , (Rv 2  cos vt) j   
   15.150   ( a ) 1.815 radys i. ( b ) 16.42 in.ys c 20°.  
   15.151   ( a ) 5.16 radys i. ( b ) 1.339 in.ys b 60°.  
   15.152    AP : 4.68 radys l;  BE : 1.415 radys l.  
   15.153    AD : 2.52 radys i;  BP : 1.299 radys i.  
   15.156   ( a )  v  HyAE  5 lv z, v HyBD  5 0. ( b ) v HyAE  5 0.577 lv b 30°,

 v  HyBD  5 0.577 lv a 30°.  
   15.157    v  HyAE  5 0.299 lv b 45°,  v  HyBD  5 0.816 lv a 15°.  
   15.160   ( a ) 0.520 mys c 82.6°. ( b ) 50.0 mmys 2  b 9.8°.  
   15.161   ( a ) 0.520 mys c 37.4°. ( b ) 50.0 mmys 2  d 69.8°.  
   15.162   ( a ) 2(51.0 in.ys) j  1 (108.0 in.ys) k . ( b ) 2(51.0 in.ys) j .  
   15.163   ( a ) (96.0 in.ys) i  2 (108.0 in.ys) k . ( b ) (96.0 in.ys) i .  
   15.165   0.0234 mys 2  west.  
   15.166   ( a ) 68.1 in.ys 2  b 21.5°. ( b ) 101.4 in.ys 2  b 3.2°.  
   15.167   ( a ) 95.2 in.ys 2  d 48.3°. ( b ) 57.5 in.ys d 64.3°.  
   15.168    Link 1 : 303 mmys 2  y;  Link 2 : 168.5 mmys 2  d 57.7°.  
   15.169    Link 3 : 483 mmys 2  z;  Link 4 : 168.5 mmys 2  b 57.7°.
     15.171   392 in.ys 2  d 4.05°.  
   15.174   ( a )  a  A  5 0.621 mys 2 x. ( b )  a  B  5 1.733 mys 2  c 53.9°.

( c )  a  C  5 2.62 mys 2  d 67.6°.  
   15.175   1.500 radys l, 7.79 radys 2  l.  
   15.176   6.00 radys l, 62.4 radys 2  i.  
   15.177   43.0 radys 2  i.  
   15.178   47.0 radys 2  i.  
   15.181   ( a ) 2.40 radys i, 34.6 radys 2  i. 

( b ) 1.342 mys b 63.4°, 9.11 mys 2  c 18.4°.  
   15.182   ( a ) 3.61 radys l. ( b ) 86.6 in.ys a 30°. ( c ) 563 in.ys 2  d 46.1°.  
   15.183   ( a ) 3.61 radys i. ( b ) 86.6 in.ys d 30°. ( c ) 563 in.ys 2  d 46.1°.  
   15.184   ( a ) (1.500 radys) i  2 (3.00 radys) j  2 (2.50 radys) k . 

( b ) (27.0 in.ys) i  2 (14.00 in.ys) j  1 (33.0 in.ys) k .  
   15.185   ( a ) 2(1.500 radys) i  2 (0.750 radys) j  2 (1.000 radys) k . 

( b ) (9.00 in.ys) i  2 (14.00 in.ys) j  2 (3.00 in.ys) k .  

   15.186   ( a ) (0.480 radys) i  2 (1.600 radys) j  1 (0.600 radys) k . 
( b ) (400 mmys) i  1 (300 mmys) j  1 (480 mmys) k .  

   15.187   ( a ) 2(0.400 radys) j  2 (0.360 radys) k . 
( b ) (100 mmys) i  2 (90 mmys) j  1 (120 mmys) k .  

   15.188   2(9.87 radys 2 ) k .  
   15.189   (118.4 radys 2 ) i .  
   15.190   ( a ) v 1   j  1 (Ryr)v 1  k . ( b ) (Ryr)v 1  

2  i .  
   15.193   ( a ) 2(0.600 mys) i  1 (0.750 mys) j  2 (0.600 mys) k .

( b ) 2(6.15 mys 2 ) i  2 (3.00 mys 2 ) j .  
   15.194   ( a ) 2(20.0 radys 2 ) i . ( b ) 2(4.00 ftys 2 ) i  1 (10.00 ftys 2 ) k .

( c ) 2(10.25 ftys 2 ) j .  
   15.195   2(3.46 ftys 2 ) i  2 (5.13 ftys 2 ) j  1 (8.66 ftys 2 ) k .  
   15.196   ( a ) 2(0.1745 radys) i  2 (0.524 radys) j . ( b ) 2(0.0914 radys 2 ) k .

( c ) 2(1.818 mys) i  1 (0.605 mys)j 2 (3.49 mys) k , 
(0.366 mys 2 )i 2 (0.0609 mys 2 ) j  2 (1.055 mys 2 ) k .  

   15.198   ( a ) (8.00 radys) i . ( b ) 2(19.20 radys 2 ) k . 
( c ) 2(1.103 mys 2 ) i  2 (2.005 mys 2 ) j .  

   15.199   ( a ) (0.750 radys) i  1 (1.500 radys) j  
( b ) (300 mmys) i  2 (150 mmys) j  
( c ) (60 mmys) i  2 (30 mmys) j  2 (90 mmys) k .  

   15.200   ( a ) (1.125 radys 2 ) k . 
( b ) 2(225 mmys 2 ) i  1 (180 mmys 2 ) j  2 (112.5 mmys 2 ) k .  

   15.202   (210 mmys) k .  
   15.203   (40.0 mmys) k .  
   15.204   2(30.0 in.ys) j .  
   15.205   (45.7 in.ys) j .  
   15.206   (12.78 mmys) j .  
   15.207   (4.66 mmys) j .  
   15.210   (v 1 ycos 25°) (2sin 25°j 1 cos 25°  k )  
   15.211   v 1 ycos 25° (2sin 25°j 1 cos 25°  k )  
   15.212   ( a ) (0.240 radys) i  1 (0.080 radys) j  2 (1.080 radys) k .

( b ) (40.0 mmys) k .  
   15.213   ( a ) 2(0.348 radys) i  1 (0.279 radys) j  1 (1.089 radys) k .

( b ) 2(30.0 in.ys) j .  
   15.214   2(510 mmys 2 ) k .  
   15.216   2(45.0 in.ys 2 ) j .  
   15.217   (205 in.ys 2 ) j .  
   15.218   2(9.51 mmys 2 ) j .  
   15.219   2(8.76 mmys 2 ) j .  
   15.220   ( a ) (72.0 in.ys) i  1 (30.0 in.ys) j  2 (48.0 in.ys) k .

( b ) 2(288 in.ys 2 ) i  2 (864 in.ys 2 ) k .  
   15.221   ( a ) (30.0 in.ys) i  2 (16.0 in.ys) j  2 (16.0 in.ys) k ,

2(48.0 in.ys 2 ) i  1 (96.0 in.ys 2 ) k .
( b ) (30.0 in.ys) i  2 (16.0 in.ys) j ; (96.0 in.ys 2 )k  .  

   15.222   ( a ) (0.750 mys) i  1 (1.299 mys)j 2 (1.732 mys)k  .
( b ) (27.1 mys 2 )i 1 (5.63 mys 2 )j 2 (15.00 mys 2 )k  .  

   15.223   ( a ) (0.75 mys)i 1 (1.299 mys)j 2 (1.732 mys)k  .
( b ) 2(28.6 mys 2 ) i  1 (3.21 mys 2 ) j  2 (10.67 mys 2 )k  .  

   15.226   2(1.215 mys)i 1 (1.620 mys)k  ; 2(30.4 mys 2 )k  .  
   15.227   2(1.080 mys)k  ; (19.44 mys 2 )i 2 (12.96 mys 2 )k  .  
   15.228   2(1.215 mys)i 2 (1.080 mys)j 1 (1.620 mys)k  ; 

(19.44 mys 2 )i 2 (30.4 mys 2 )j 2 (12.96 mys 2 )k  .  
   15.229   2(1.215 mys)i 2 (1.080 mys)j 1 (1.620 mys)k  ; 

(25.5 mys 2 )i 2 (25.0 mys 2 )j 2 (21.1 mys 2 )k  .  
   15.230   ( a ) (30.0 in.ys)i 2 (16.0 in.ys)j 2 (16.0 in.ys)k  ; 

2(75.0 in.ys 2 )i 2 (8.0 in.ys)j 1 (32.0 in.ys)k  . 
( b ) (30.0 in.ys)i 2 (16.0 in.ys)j; 2(75.0 in.ys 2 )i 1 

(40.0 in.ys 2 )j 1 (96.0 in.ys 2 )k  .  
   15.232   2(41.6 in.ys 2 )i 2 (61.5 in.ys 2 )j 1 (103.9 in.ys 2 )k  .  
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   16.34   (1): ( a ) 8.00 radys 2  l. ( b ) 14.61 radys l.
(2): ( a ) 6.74 radys 2  l. ( b ) 13.41 radys l.
(3): ( a ) 4.24 radys 2  l. ( b ) 10.64 radys l.
(4): ( a ) 5.83 radys 2  l. ( b ) 8.82 radys l.  

   16.36   ( a ) 7.63 radys 2  i. ( b ) 2.78 lb Q.  
   16.37   ( a ) 1.255 ftys 2 w. ( b ) 0.941 ftys 2 x.  
   16.38   ( a ) 1.971 ftys 2 x. ( b ) 1.971 ftys 2 w.  
   16.39   ( a )  A  A  5 12.50 radys 2  l,  A  B  5 33.3 radys 2  l.

( b )  A : 320 rpm i,  B : 320 rpm l.  
   16.40   ( a )  A  A  5 12.50 radys 2  l,  A  B  5 33.3 radys 2  l.

( b )  A : 90.0 rpm l,  B : 120.0 rpm i.  
   16.41   ( a ) Slipping occurs. ( b )  A  A  5 61.8 radys 2  l.  

A  B  5 9.66 radys 2  i.  
   16.42   ( a ) No slipping. ( b )  A  A  5 15.46 radys 2  l.

 A  B  5 7.73 radys 2  i  .
   16.48   ( a )  A : 18.40 ftys 2 . ( b ) 9.20 ftys 2  z.  
   16.49   ( a ) 12.00 in. from  A . ( b ) 9.20 ftys 2  y.  
   16.50   ( a ) 2.50 mys 2  y. ( b ) 0.  
   16.51   ( a ) 3.75 mys 2  y. ( b ) 1.25 mys 2  z.  
   16.55    A : 0.885 mys 2 w,  B : 2.60 mys 2 x.  
   16.56    A : 0.273 mys 2 w,  B : 2.01 mys 2 w.  
   16.57    A : 359 lb,  B : 312 lb.  
   16.58    A : 275 lb,  B : 361 lb.  
   16.59   ( a ) 0.741 radys 2  l. ( b ) 0.857 mys 2 x.  
   16.60   ( a ) 2800 N. ( b ) 15.11 radys2 i.  
   16.63   ( a ) 3.00  g yL i. ( b ) 1.000  g x. ( c ) 2.00  g w.  
   16.64   ( a ) 1.000  g yL i. ( b ) 0. ( c ) 1.000  g w  
   16.65   ( a ) 1.000  g yL i. ( b ) 0.866  g  z. 

( c ) 1.323  g  a 49.1°.  
   16.66   ( a ) 0.500  g x. ( b ) 1.500  g w  
   16.67   ( a ) 0. ( b ) 1.000  g w.  
   16.69   ( a ) 1.597 s. ( b ) 9.86 ftys. ( c ) 19.85 ft.  
   16.70   ( a ) 1.863 s. ( b ) 9.00 ftys. ( c ) 22.4 ft.  
   16.72   ( a ) v 0 yr l. ( b ) v 0 y m  k  g . ( c ) v 0  

2  y2 m  k  g .  
   16.76   ( a ) 12.08 radys 2  i. ( b )  A  x  5 0.750 lb z, A y  5 4.00 lbx.  
   16.77   ( a ) 24.0 in. ( b ) 8.05 radys 2  i.  
   16.78   ( a ) 107.1 radys 2  i. ( b )  C  x  5 21.4 N z,  C  y  5 39.2 Nx.  
   16.79   ( a ) 150.0 mm. ( b ) 125.0 radys 2  i.  
   16.81   ( a ) 1529 kg. ( b ) 2.90 mm.  
   16.82   13.64 kN y.  
   16.84   ( a ) 1.500 gw. ( b ) 0.250 mgx.  
   16.85   ( a ) 1.286 gw. ( b ) 0.571 mgx.  
   16.86   ( a ) 2.50 gw. ( b ) 0.375 mgx.  
   16.87   150.1 N a 83.2°.  
   16.88   ( a ) 9.66 radys 2  l. ( b ) 5.43 lb ? ft l.  
   16.89   ( a ) 13.50 radys 2  l. ( b ) 6.79 N ? m l.  
   16.95   2.55 ft.  
   16.96   tan b 5 m s   (1 1 r2yk2)  .  
   16.97   ( a ) 2.27 m or 7.46 ft. ( b ) 0.649 m or 2.13 ft.  
   16.98   ( a ) rolls without sliding. 

( b ) 15.46 radys 2  i, 10.30 ftys 2  y.  
   16.99   ( a ) rolls without sliding. 

( b ) 23.2 radys 2  i, 15.46 ftys 2  y.  
   16.100   ( a ) slides. ( b ) 4.29 radys 2  l, 9.66 ftys 2  y.  
   16.101   ( a ) slides. ( b ) 12.88 radys 2  l. 3.22 ftys 2  z.  
   16.102   ( a ) 17.78 radys 2  l. 2.13 mys 2  y. ( b ) 0.122.  
   16.105   ( a ) 8.89 radys 2  l. 1.067 mys 2  z. ( b ) 0.165  .
   16.106   ( a ) 0.556  g w. ( b ) 1.000  g w. ( c ) 0.  
   16.107   ( a ) 1.125  g w. ( b ) 1.000  g w. ( c ) 1.333  g w.  
   16.108   ( a ) 0.765  g w. ( b ) 1.000  g w. ( c ) 0.667  g w.  
   16.109   ( a ) 5.57 ftys 2  z. ( b ) 0.779 lb. z.  

   15.234   ( a ) 2(0.270 radys 2 ) i . ( b ) (6.24 in.ys)i 2 (3.60 in.ys)j 2 

(16.80 in.ys)k  . ( c ) 2(11.70 in.ys 2 )i 2 (2.81 in.ys 2 )j 2 

(7.48 in.ys 2 )k  .  
   15.235   (0.600 mys)j 2 (0.585 mys)k  ; 2(4.76 mys 2 ) i .  
   15.236   (0.600 mys)j 2 (0.225 mys)k  ; 2(0.675 mys 2 )i 1

(3.00 mys2)j 2 (3.60 mys 2 )k  .  
   15.237   (4.33 ftys)i 2 (6.18 ftys)j 1 (5.30 ftys)k  ; 

(2.65 ftys 2 )i 2 (2.64 ftys 2 )j 2 (3.25 ftys 2 )k  .  
   15.240   2(5.04 mys)i 2 (1.200 mys)k  ; 2(9.60 mys 2 )i 2 

(25.9 mys 2 )j 1 (57.6 mys 2 ) k .  
   15.241   2(0.720 mys)i 2 (1.200 mys)k  ; 2(9.60 mys 2 )i 1

(25.9 mys 2 )j 2 (11.52 mys 2 )k  .  
   15.242   (3.00 in.ys)i 2 (1.800 in.ys) j ; 2(13.50 in.ys 2 )i 1

(9.00 in.ys 2 )j 1 (8.64 in.ys 2 ) k .  
   15.243   (9.00 in.ys)i 2 (7.80 in.ys)j 1 (7.20 in.ys)k  ;

(9.00 in.ys 2 )i 2 (22.1 in.ys 2 )j 2 (5.76 in.ys 2 )k  .  
   15.244   ( a ) (0.610 mys)k  ; 2(0.880 mys 2 )i 1 (1.170 mys 2 ) j.  

( b ) (0.520 mys)i 2 (0.390 mys)j 2 (1.000 mys  )k  ; 
2(4.00 mys 2 )i 2 (3.25 mys 2 )k  .  

   15.245   ( a ) (1.390 mys)k  ; (7.12 mys 2 )i 2 (1.170 mys 2 ) j.  
( b ) (0.520 mys)i 2 (0.390 mys)j 1 1.000 mys)k  ; 
(4.00 mys 2 )i 2 (3.25 mys 2 )k  .  

   15.248   ( a ) 51.3 in.ys 2 w. ( b ) 184.9 in.ys 2  a 16.1°.  
   15.249   ( a ) 21.824 radys 2 . ( b ) 103.3 s.  
   15.250   ( a ) (0.450 mys)k  , (4.05 mys 2 ) i . 

( b ) 2(1.350 mys)k  , 2(6.75 mys 2 ) i.   
   15.252   ( a ) 37.5 in.ys y. ( b ) 187.5 in.ys 2 x.  
   15.254   49.4 mys 2  c 26.0°.  
   15.256   (7.84 in.ys)k  .  
   15.257   ( a ) 0.1749 radys l. ( b ) 66.2 mmys b 25°.  
   15.259   (0.325 mys)i 1 (0.1875 mys)j 2 (0.313 mys)k  , 

2(2.13 mys 2 )i 1 (0.974 mys 2 )j 2 (3.25 mys 2 )k  .        

 CHAPTER 16   
   16.1   ( a ) 3.43 N a 20°. ( b ) 24.4 N b 73.4°.  
   16.2   3.57 mys 2  z.  
   16.3   6.84 ftys 2   .
   16.4   ( a ) 13.42 ftys 2  y. ( b ) 8.67 lb.  
   16.5   ( a ) 25.8 ftys 2 . ( b ) 12.27 ftys 2 . ( c ) 13.32 ftys 2 .  
   16.6   ( a ) 36.8 ft. ( b ) 42.3 ft.  
   16.7   ( a ) 5.00 mys 2  y. ( b ) 0.311 m # h # 1.489 m.  
   16.8   ( a ) 2.55 mys 2  y. ( b ) h # 1.047 m.  
   16.11   ( a ) 0.337 g a 30°. ( b ) hyd 5 4.00.  
   16.12   ( a ) 0.252 g d 30°. ( b ) hyd 5 4.00.  
   16.13   435 lb.  
   16.14   ( a ) 4.91 mys 2  d 30°. ( b )  AD : 31.0 N;  BE : 11.43 N.  
   16.16   ( a ) 2.54 mys 2  d 15°. ( b )  AC : 6.01 N tension; 

 BD : 22.4 N tension.  
   16.17    CF : 4.05 lb compression;  BE : 14.33 lb compression.  
   16.20   ( a ) 30.6 ftys 2  c 84.1°. 

( b )  B  5 1.285 lb a 30°,  A  5 0.505 lb a 30°.  
   16.22   |V| max  5 40.3 lb, |M| max  5 25.2 lb ? ft.  
   16.25   87.8 lb ? ft.  
   16.26   5230 revolutions.  
   16.27   20.4 radys 2  i.  
   16.28   32.7 radys 2  l.  
   16.29   59.4 s.  
   16.30   93.5 revolutions.  
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   16.110   ( a ) 64.4 radys 2  l. ( b ) 26.8 ftys 2 w.  
   16.111   ( a ) 1.536 Pymr i. ( b ) 0.884 P(mg 1 P).  
   16.113   ( a ) 0.1250 gyr i. 0.1250 g y, 0.1250 gw.  
   16.116    P  5 16.84 N a 70.5;  M  P  5 0.228 N ? m i  .
   16.117   ( a ) 11.11 radys 2  i. ( b ) 37.7 Nx. ( c ) 28.2 N y.  
   16.118   ( a ) 97.8 Nx. ( b ) 60.3 Nx.  
   16.119   ( a ) 11.15 radys 2  l. ( b ) 1.155 lb z.  
   16.121   ( a ) 12.04 radys 2  i. ( b ) 1.795 lb a 20°.  
   16.124   6.40 N z.  
   16.125   171.7 N y.  
   16.126   60.0 N y.  
   16.127   33.0 lbx.  
   16.128   2.32 lbw.  
   16.129   29.9 N a 60°.  
   16.130   23.5 N a 60°.  
   16.133   0.330 lb z.  
   16.134   ( a ) 15.00 N ? m l. ( b ) 120.0 N y, 88.2 Nx.  
   16.135   ( a ) 25.0 N ? m l. ( b ) 190.0 N y, 104.9 Nx.  
   16.136    A  5 1.565 lbx,  B  5 1.689 lbx.  
   16.138    B  5 805 N z,  D  5 426 N y.  
   16.139    B  5 525 N d 38.1°,  D  5 322 N c 15.7°.  
   16.140   (mv D  

2  y6L) tan uycos 3  u.  
   16.141   ( a ) 9.36 mys 2  c 27.1°. ( b ) 278 Nx.  
   16.142   ( a ) 9.10 mys 2  c 81.1°. ( b ) 6.54 N.  
   16.143   ( a )  A : 0.400 gyr l;  B : 0.400 gyr i. ( b ) 0.200 mg. 

( c ) 0.800 gw.  
   16.144   ( a ) 18.49 ftys 2  c 25°. ( b ) 8.38 radys 2  i.  
   16.146   ( a ) 13.55 mys 2 w. ( b ) 2.34 mys 2 w.  
   16.147   ( a ) 6.40 ftys 2  y. ( b ) 45.4 radys 2  l.  
   16.151   10.39 lb ? in. located 20.8 in. below  A .  
   16.153   27.2 radys 2  l.  
   16.156   20.6 ft.  
   16.157   ( a ) 0.513 gyL i. ( b ) 0.912  mg x. ( c ) 0.241  mg  y.  
   16.159   (1): ( a ) 1.200 gyc i. ( b ) 0.671 d 63.4°.

(2): ( a ) 1.412 gyc i. ( b ) 0.706 gw.
(3): ( a ) 2.40 gyc i. ( b ) 0.500 gw.  

   16.160   ( a ) 0.333 gx. ( b ) 1.667 gw.  
   16.161   23.7 radys 2  l.  
   16.163   ( a ) 51.2 radys 2  i. ( b ) 21.0 Nx  .
   16.164   ( a ) 57.8 radys 2  i. (b) 20.4 Nx.        

 CHAPTER 17   
   17.1   87.8 lb ? ft.  
   17.2   5230 rev.  
   17.3   0.760.  
   17.4   98.8 mm.  
   17.5   ( a ) 293 rpm. ( b ) 15.92 rev.  
   17.8   19.77 rev.  
   17.9   ( a ) 6.35 rev. ( b ) 7.14 N.  
   17.10   ( a ) 2.54 rev. ( b ) 17.86 N.  
   17.11   ( a ) 9.73 ftysw. ( b ) 7.65 ft.  
   17.12   70.1 lbw.  
   17.13   80.7 lbw.  
   17.16   11.13 radys l.  
   17.17   3.27 radys i.  
   17.18   ( a )   1.7321g/l   i, 2.50  W x. ( b ) 5.67 radys i, 4.50 lbx.  
   17.20   ( a ) 3.94 radys i, 271 lb b 5.25°. (b) 5.58 radys i. 701 lbx.  
   17.24   ( a ) 3.00 mys y. ( b ) 30.0 N z.  
   17.25   1.154  1gs.    
   17.26     1gs.    
   17.27   ( a ) 5.00 radys. ( b ) 24.9 Nx.  

   17.28   0.577  1g yr.    
   17.29   ( a ) 1.324  1g yr   l. (b) 2.12  mg .  
   17.30   ( a ) 2.06 ft. ( b ) 4.00 lb.  
   17.33   0.745 mys y.  
   17.34   1.000 mys y.  
   17.35   1.054 mys y.  
   17.36   3.11 mys y, 1.798 mysw.  
   17.37   4.82 mys y, 0.  
   17.39   3.71 radys l, 7.74 ftysx.  
   17.40   0.775   2gyl   z, 0.775   2gyl   d 60°.  
   17.42   ( a ) 0.926  1gL   z. ( b ) 1.225  1gL   z.  
   17.44   15.03 ftysw.  
   17.45   84.7 rpm i.  
   17.46   110.8 rpm i.  
   17.47   0.770 mys z.  
   17.48   ( a ) 21.2 N ? m. ( b ) 127.3 N ? m.  
   17.50   ( a ) 39.8 N ? m. ( b ) 95.5 N ? m. ( c ) 229 N ? m.  
   17.52   1.212 N ? m.  
   17.53   47.4 min.  
   17.54   2.84 s.  
   17.57   5.26 s.  
   17.59   3.88 s.  
   17.60   5.22 s.  
   17.61   3.13 s.  
   17.63   v 0 (1 1 m A ym B )  
   17.64   ( a ) 686 rpm l, 514 rpm i. ( b ) 4.18 lb ? sx.  
   17.69   ( a )   r2gt sin by(r2 1 k 

2)   c b. ( b )   k 
2 tan by(r2 1 k 

2)  .  
   17.70   2.79 ft.  
   17.71   ( a ) 2.55 mysx. ( b ) 10.53 N.  
   17.72   ( a ) 27.6 ftysw. ( b ) 4.00 lb.  
   17.74   ( a ) 2.12 mys y. ( b ) 0.706 mys y.  
   17.75   ( a ) 0.706 mys y. ( b ) 1.235 mys y.  
   17.77   ( a ) 0.286rv 0 ym k g. ( b ) 0.286rv 0  y, 0.286v 0  i.  
   17.78   ( a ) 2.50  v0yr  . ( b )   v0ymkg  .  
   17.79   84.2 rpm.  
   17.81   ( a ) 2.54 radys. ( b ) 1.902 J.  
   17.82   ( a ) 5.00 radys. ( b ) 3.13 radys.  
   17.83   18.07 radys.  
   17.84   224.4 rpm.  
   17.86   disk: 337 rpm; plate: 23.5 rpm.  
   17.87   37.2 rpm.  
   17.88   ( a ) 15.00 radys. ( b ) 6.14 mys.  
   17.89   ( a ) 149.2 mm. ( b ) 4.44 radys.  
   17.90   1.136 mys.  
   17.94   1.542 mys.  
   17.95   2.01 ftys z.  
   17.96   ( a ) 25.2 radys i. ( b ) 1545 lb y.  
   17.97   ( a ) 10.00 in. ( b ) 22.6 radys i.  
   17.98   ( a ) 2.16 mys y. ( b ) 4.87 kN a 66.9°.  
   17.99   ( a ) 79.2 mm. ( b ) 1.992 mys y.  
   17.100   242 mmys y.  
   17.101   302 mmys z.  
   17.102   14.10 radys l.  
   17.105   v 1 y2 i, Lv 1 y4x.  
   17.106   ( a ) 3v 1 yL i, v 1 y2w. ( b ) 3v 1 yL l, v 1 y2x. ( c ) 0, v 1 x.  
   17.107   pLy3.  
   17.108   (2 1 5 cos b)v 1 y7 l,   (2 1 5 cos b)v1y7   z.  
   17.110   6v 1  sin b y (1 1 3 sin 2  b)L i.  
   17.112   0.750 v 0 yL i, 0.910 v 0  d 74.1°.  
   17.113   0.706 v 0  yL i, 0.949 v 0  d 87.9°.  
   17.114   0.366.  
   17.115   8.80 ftys.  
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   18.44   1.296 J.  
   18.47   13.34 ft ? lb.  
   18.48   12.67 ft ? lb.  
   18.49   0.1250 ma 2 v 2 .  
   18.50   0.203 ma 2 v 2 .  
   18.53   16.75 ft ? lb.  
   18.54   39.9 ft ?  lb.  
   18.55   (3.21 N ? m) k .  
   18.56   0.500 mr 2 v 1 v 2   i .  
   18.57   0.1667 ma 2 v 2   i .  
   18.58   20.958 mr 2 v 2   k .  
   18.59   (2.91 lb ? ft) i .  
   18.61   (1.890 N ? m) i  1 (2.14 N ? m) j  1 (3.21 N ? m) k .  
   18.62   2(1.890 N ? m) i  2 (2.14 N ? m) j  1 (3.21 N ? m) k .  
   18.65    A  5 2(12.00 N) i ,  B  5 2(4.00 N) i .  

   18.66     C 5
1
6

   mbv 2  sin b cos b  i, 

    D 5 2
1
6

 mbv2   sin b cos b  i   .

   18.67    A  5 (3.35 lb) k ,  B  5 2(3.35 lb) k .  
   18.68    A  5 2(1.103 lb) j  2 (0.920 lb) k ,

 B  5 (1.103 lb) j  1 (0.920 lb) k .  
   18.71   ( a ) (20.0 radys 2 ) k . ( b ) A 5 2(3.75 N) k ,  B  5 2(1.250 N) k .  
   18.72   ( a ) (3 M 0 ymb 2  cos 2  b) j .

( b )  C  5 (M 0  tan by2b) k , D 5 2(M 0  tan by2b) k .  
   18.75   ( a ) (2.33 lb ?  ft) i .

( b )  A  5 (0.466 lb) j ,  B  5 2(0.466 lb) j .  
   18.76   ( a ) (0.873 lb ? ft) i .

( b )  A  5 2(0.218 lb) j  1 (0.262 lb) k ,
 B  5 (0.218 lb)j 2 (0.262 lb) k .  

   18.77   ( a ) (0.1301 lb ? ft) i . ( b )  A  5 2(0.0331 lb) j  1 (0.0331 lb) k ,
 B  5 (0.0331 lb) j  2 (0.0331 lb) k .  

   18.78    A  5 2(0.444 lb) j  2 (0.383 lb) k ,  
B  5 (0.444 lb) j  1 (0.383 lb) k .  

   18.79   ( a ) 10.47 N ? m. ( b ) 10.47 N ? m.  
   18.80   4.29 kN ? m.  
   18.81   2(0.457 lb ? ft) i .  
   18.83   24.0 N.  
   18.84   1.138° i. Point  A  moves  up .  
   18.85   ( a ) 38.1°. ( b ) 11.78 radys.  
   18.86   13.46 radys  
   18.87   ( a ) 53.6°. ( b ) 8.79 radys  
   18.88   v 5 10 ? 20 radys.  
   18.89   5.45 radys.  
   18.90   2.11 N a 18.7°.  
   18.93   ( a )  C  5 2(123.4 N) i , D 5 (123.4 N) i .

( b )  C  5  D  5 0.  
   18.94   91.2 rpm.  
   18.95    A  5 (0.1906 lb) k ,  B  5 2(0.1906 lb) k .  
   18.96   7.87 radys  
   18.99   (11.23 N ? m) cos 2  u  i  1 (11.23 N ? m)

sin u cos u  j  2 (2.81 N ? m) sin u cos u  k .  
   18.101    C  5 2(89.8 N) i  1 (52.8 N) k ,

 D  5 2(89.8 N) i  2 (52.8 N) k .  
   18.102   ( a ) (0.1962 N ? m) j . ( b )  C  5 2(48.6 N) i  1 (38.9 N) k ,

 D  5 2(48.6 N) i  2 (38.9 N) k .  
   18.103   ( a ) 2(5.39 lb ? ft) j . ( b )  A  5 2(11.65 lb) i  1 (3.49 lb) k ,

 M  A  5 (5.53 lb ? ft) i  1 (8.73 lb ? ft) k .  
   18.104   ( a ) (1.382 lb ? ft) i . ( b )  D  5 2(6.70 lb) j  1 (4.89 lb) k ,

 E  5 2(1.403 lb) j  1 (4.89 lb) k .  
   18.107   299 rpm.  
   18.108   55.3°.  

   17.116   5.12°.  
   17.117   55.9°.  
   17.120   ( a ) 2.86 in. ( b ) 2.05 in.  
   17.121   ( a ) 3.85 ftysw. ( b ) 5.13 radys i.  
   17.122   ( a ) 0.256 ftys  .
   17.123   0.650  1gL   y.  
   17.124   0.8661gL     y.  
   17.125   725 mm.  
   17.126   447 mm.  
   17.128   ( a ) 2.60 radys i. ( b ) 1.635 mys c 53.4°.  
   17.131   ( a )  v  A  5 0,  V  A  5 v 1 yr i;  v  B  5 v 1  y;  V  B  5 0.

(b)  v  A  9  5 2v 1 y7;  v  B  9  5 5v 1 y7.  
   17.132   1.25 v 0  yr.  
   17.133   ( a )  v  A  5 (v 0  sin u) j ,  v  B  5 (v 0  cos u) i  , V  A  5 v 0  (2sin u i 1 

cos u  j )yr, V   B  5 0. ( b )  v  B  9  5 (5 v 0  cos uy7) i .  
   17.134    V  AB  5 2.65 radys i,  V  BC  5 13.25 radys l.  
   17.135    A  5 100.1 Nx,  B  5 43.9 N y.  
   17.136   ( a ) 118.7 rev. ( b ) 7.16 s.  
   17.138   ( a ) 53.1°. ( b ) 1.095  1gL   c 53.1°.  
   17.139   7.83 N y, 7.35 Nx.  
   17.141   ( a ) 1.500 v 1 yb i. ( b ) 0.791 v 1  a 18.4°.  
   17.143   ( a ) 4.81 radys i. ( b ) 6.81 radys i.  
   17.145   0.400 r  
   17.146   ( a ) 1.286 radys l. ( b ) 0.719 lb y, 1.006 lbx.              

 CHAPTER 18 
   18.1   0.357 kg ? m 2 ys; u x  5 48.6°, u y  5 41.4°, u z  5 90°.  
   18.2   0.250 mr 2 v 2   j  1 0.500 mr 2 v 1  k .  
   18.3   (ma 2 vy12)(3  j  1 2  k ).  
   18.4   11.88°.  
   18.7   ( a ) 0.276 ma 2 v. ( b ) 25.2°.  
   18.8   ( a ) 0.432 ma 2 v. ( b ) 20.2°.  
   18.9   2(1.747 lb ? ft ? s) i  1 (3.59 lb ? ft ? s) j  1 (0.0582 lb ? ft ? s) k   .
   18.10   (1.848 lb ? ft ? s) i  2 (0.455 lb ? ft ? s) j  1 (1.118 lb ? ft ? s) k .  
   18.11   ( a ) 2.91 radys. ( b ) 0.0551 radys.  
   18.12   (0.320 kg ? m 2 ys) i  2 (0.009 kg ? m 2 ys) j  2 (467 kg ? m 2 ys) k .  
   18.15   (a) mr 2 v (0.379  i  2 0.483 j). ( b ) 51.9°.  
   18.16   ( a ) (0.063 kg ? m 2 ys) i  1 (0.216 kg ? m 2 ys) j .

( b ) 2(0.513 kg ? m 2 ys) i  1 (0.216 kg ? m 2 ys) j .  
   18.19   ( a ) 2(1.041 lb ? ft ? s) i  1 (1.041 lb ? ft ? s) j  1 

(2.31 lb ? ft ? s) k . ( b ) 147.5°.  
   18.20   ( a ) 2(1.041 lb ? ft ? s) i  2 (1.041 lb ? ft ? s) j  1 

(2.31 lb ? ft ? s) k . ( b ) 32.5°.  
   18.21   226 lb.  
   18.22   2.66 s.  
   18.23   ( a ) 2(0.300 mys)  k . ( b ) 2(0.962 radys) i  2 (0.577 mys) j .  
   18.24   ( a ) (0.300 mys) j .

( b ) 2(3.46 radys) i  1 (1.923 radys) j  2 (0.857 radys) k .  
   18.25   ( a ) (FDtym) i . ( b ) (FDtyma)(21.714 j 1 8.57  k ).  
   18.26   ( a ) (FDtym) i . ( b ) (FDtyma)(3.43  j  2 5.14  k ).  
   18.29   ( a ) 0.125 v 0  (2 i  1  j ). ( b ) 0.0884 av 0   k .  
   18.30   ( a ) 0.1031 mav 0   k . ( b ) 20.01473 mav 0   k .  
   18.31   (0.429   v0yc  ) i  1 (0.429   v0ya  ) k .  
   18.32   ( a ) 2(6   v0y7  ) j . (b) (m v0y 7  ) j .  
   18.33   ( a )  C  and  B . ( b )  C : 8.16 s,  D : 4.84 s. ( c ) 0.520 s.  
   18.34   ( a )  D  and  A . ( b )  D : 6.82 s,  A : 1.848 s. ( c ) 0.347 s.  
   18.39   1.417 J.  
   18.40   0.1250 mr  2 (v 2  

2  1 2v 1  
2 ).  

   18.41   0.1250 ma 2 v 2 .  
   18.42   0.228 mr 2 v 2 .  
   18.43   0.1896 mr 2 v 2 .  
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   18.109   1666 rpm.  
   18.111   45.9 rpm, 533 rpm.  
   18.113   23.7°.  
   18.114   ( a ) 52.7 radys. ( b ) 6.44 radys.  
   18.115   ( a ) 40.0°. ( b ) 23.5°. ( c ) 85.3°.  
   18.116   ( a ) 56.1 radys. ( b ) 5.30 radys.  
   18.125   ( a ) u x  5 52.5°, u y  5 37.5°, u z  5 90°.

( b ) 53.8 revyh. ( c ) 6.68 revyh.  
   18.126   ( a ) u x  5 90°, u y  5 17.65°, u z  5 72.35°.

( b ) 44.8 revyh. ( c ) 6.68 revyh.  
   18.129   ( a ) 13.19°. (b) 1242 rpm (retrograde).  
   18.130   ( a ) 109.4 rpm; g x  5 90°, g y  5 100.05°, g z  5 10.05°.

( b ) u x  5 90°, u y  5 113.9°, u z  5 23.9°.
( c ) precession: 47.1 rpm; spin: 64.6 rpm.  

   18.131   ( a ) 4.00 radys. ( b ) 5.66 radys.  
   18.132   ( a ) u 0  # u # 180° 2 u 0 .

( b )   u
.
max 5 w

.
0   sin u 0  cos u 0 . ( c )   w. min 5 w

.
0   sin 2  u 0.   

   18.133   ( a ) 30° # u # 150°. ( b )   w. min 5 2.40   radys.
( e )   u

.
max 5 3.29   radys.  

   18.134   ( a )   w. min 5 1.200   radys. (b)   u
.
max 5 2.68   radys.  

   18.137   (a) 44.1°. ( b )   w. 5 28.72   radys,   c
.
   5 56.3 radys.  

   18.138   ( a ) 32.7 radys. (b)   w. 5 213.33   radys,   c
.
 5 44.3   radys.  

  18.140  ( a )  
1
2

  I9(  w.    sin u) 2  1     
1
2

 I9u
.
2  1   

1
2

 Ivz  
2  1 mge cos u 5 E.  

 18.147   (0.234 kg ? m 2 ys) j  1 (1.250 kg ? m 2 ys) k .  
   18.148   ( a) 2(1.098 lb ? ft ? s) i  1 (1.098 lb ? ft ? s) j  1 (2.74 lb ? ft ? s) k .

 ( b ) 150.5°.  

 18.150   ( a)   2
1
6

 v0 i 1  
1
6
v0  j.  ( b )  

1
6
v0 ak . 

 
18.151 

    
5

48  
ma2 v0 

2 .
 

  18.153   ( a ) 52.1 radys 2 . ( b )  A  5 2(2.50 N) i ,  B  5 (2.50 N) i .  
   18.154   ( a ) 53.4°. ( b ) 9.27 radys.  
   18.155   ( a ) (2.71 lb ? ft) j . ( b )  F  5 2(5.30 lb) i  2 (1.988 lb) k ;

 M  0  5 (2.69 lb ? ft) i  2 (4.42 lb ? ft) k .  
   18.156   ( a )  A  5 (1.786 kN) i  1 (143.5 kN) j; 

B  5 2(1.786 kN) i  1 (150.8 kN) j . ( b ) 2(35.7 kN ? m) k .  
   18.157   1326 rpm.  

 CHAPTER 19   
   19.1   1.047 ftys, 65.8 ftys 2 .  
   19.2   0.950 mm, 239 mmys.  
   19.3   1.225 mys, 0.650 Hz.  
   19.4   ( a ) 0.391 s, 2.55 Hz. ( b ) 2.81 ftys, 45.1 ftys 2 .  
   19.5   ( a ) 0.324 s, 3.08 Hz. ( b ) 12.91 mm, 484 mys 2 .  
   19.6   ( a ) 10.75°. ( b ) 6.04 ftys 2 .  
   19.7   ( a) 0.557 Hz. ( b ) 293 mmys.  
 19.9   ( a) 3.14 s. ( b ) 6.40 m. ( c ) 38.7°.  
 19.11   ( a ) 5.49 m. ( b ) 80.5 mys 2 w.  
   19.12   ( a ) 0.0352 s. ( b ) 6.34 ftysx, 64.9 ftys 2 w.  
   19.13   0.445 ftx, 2.27 ftysw, 114.7 ftys 2 w.  
   19.14   ( a) 3.89°. ( b ) 0.1538 mys, 0.666 mys 2 .  
 19.17   ( a ) 0.208 s, 4.81 Hz. ( b ) 1.361 mys, 41.1 mys 2 .  
   19.18   ( a ) 0.416 s, 2.41 Hz. ( b ) 0.680 mys, 10.29 mys 2 .  
   19.19   ( a ) 0.361 s, 2.77 Hz. ( b ) 2.54 ftys, 441 ftys 2 .  
   19.20   2.63 s.  
 19.23   ( a ) 6.82 lb. ( b ) 33.4 lbyft.  
   19.24   ( a ) 6.80 kg. ( b ) 0.583 s.  
   19.25   ( a ) 35.6 lbyin. ( b ) 5.01 lb.  
   19.26   192.0 lbyft.  
   19.27   ( a) 22.3 MNym. ( b ) 266 Hz.  

 19.30   ( a) 55.4 mm. ( b ) 1.497 Hz.  
 19.34   16.3°  
   19.35   ( a ) 1.737 s. ( b ) 1.864 s. ( c ) 2.05 s.  
   19.36   28.1 in.  
   19.37   ( a ) 3.36 Hz. ( b ) 42.6 mm.  
   19.38   ( a ) 0.315 s. ( b ) 0.665 ftys.  
   19.39   ( a ) 0.1957 s. ( b ) 171.7 ftys 2 .  
   19.40   ( a) 0.491 s. ( b ) 9.60 in.ys.  
 19.43   ( a ) 1.117 radys. ( b ) 400 mm.  
   19.44   ( a ) 2.28 s. ( b ) 1.294 m.  
   19.45   75.5°.  
   19.46   0.379 Hz.  
   19.47   ( a) 1.067 s. ( b ) 89.7 mm.  
 19.49   ( a ) 0.933 s. ( b ) 0.835 s.  
   19.50   ( a) 1.617 s. ( b ) 1.676 s.  
 19.55   ( a ) 2.21 Hz. ( b ) 115.3 Nym.  
   19.56   3.03 Hz.  
   19.57   0.945 Hz.  
   19.58     0.2761 k ym 2 g y4L.   
  19.59   ( a) 88.1 mmys. ( b ) 85.1 mmys.  
 19.61   82.1 mmys.  
 19.63   ( a ) 21.3 kg. ( b ) 1.838 s.  
   19.64   ( a ) 0.826 s. ( b ) 1.048 s.  
   19.65   ( a ) 1.951 s. ( b ) 1.752 mys.  
   19.66   4.86 lb ? ft ? s 2 .  
 19.69     2p1lyg.   
  19.70   3.18 s.  
   19.71   1.476 mys, 31.1 mys 2 .  
   19.72   1.379 in., 888 in.ys 2 .  
   19.73   0.289 l.  
 19.76   130.6 mm.  
   19.77     0.2761 k ym 2 g y4L.
  19.78   ( a ) 0.715 s. ( b ) 0.293 ftys.  
   19.79   2.10 Hz.  
   19.80   0.387 s.  
 19.83   1.834 s.  
   19.84     0.18991gyl.   
  19.85   1.327 s.  
 19.88   2.39 s.  
   19.89     2p12my3k.   
  19.90   0.911 Hz.  
 19.91   ( a)  0.15922(g yl)(ka2yvl 2 1).   (b )  1vlyk.   
 19.92   6.64 lb.  
 19.94   0.742 Hz.  
 19.96     (2pycos b) 1my6k.   
 19.97   ( a ) 0.352 s. ( b ) 0.352 s.  
   19.98   1.814   ly1gr.   
   19.99   11.40 N.  
   19.100   ( a ) 0.1304 ft (in phase). ( b ) 1.464 ft (out of phase).  
   19.101   ( a ) 10.99 lbyft. ( b ) 2.99 lbyft.  
   19.102     1ky2m   , v f  ,   13ky2m.   
 19.105   v f  , 8.16 radys.  
   19.106   22.5 mm, 5.63 mm.  
   19.107   v f  , 9.83 radys. and v f  . 17.02 radys.  
   19.108   651 rpm.  
   19.109   ( a) 90.0 mm. ( b ) 18.00 N.  
 19.112   ( a ) 25.2 mm. ( b ) 20.437 sin(pt) N.  
   19.113   Show . . .     
   19.114   22.0 mm.  
   19.115   v f  # 322 rpm and v f  $ 329 rpm.  
   19.116   783 rpm.  
 19.118   39.1 kg  
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   19.157   ( a)
    
kxA 1 c 

d
dt

(xA 2 xm) 5 0,

m 

d2xm

dt2 1 c 

d
dt

(xm 2 xA) 5 Pm sin vf t.

    ( b)
    
1
C

 qA 1 R 

d
dt

(qA 2 qm) 5 0,

L 

d2qm

dt2 1 R 

d
dt

(qm 2 qA) 5 Em sin vf t.

 19.158 (a)
  
m 

d2xm

dt2 1 k2(xm 2 xA) 5 Pm sin vf t.

   
C 

dxA

dt
1 k1 xA 1 k2(xA 1 xm) 5 0

  (b)  L 

d2qm

dt2  1
1

C2
(qm 2 qA) 5 Em sin vf t

   
R 

dqA

dt
1

1
C1

 qA 1
1

C2
(qA 2 qm) 5 0

 19.159   ( a)   2p12ay3g.   (b ) 0.1667 a.  
 19.161   1.785 s.  
 19.163   ( a ) 6.16 Hz, 4.91 mm, 0.1900 mys. ( b ) 4.91 N, ( c ) 0.1542 mysw.  
   19.164   ( a) 0.316 L. ( b ) 0.200  1gyL    
 19.166   1.456 m.  
 19.169   ( a ) 5.75 N. ( b ) 0.00710 mm.  
   19.170   ( a )    mẍ 1 4Txyl 5 0 ( b )   p1mlyT      .
 

 19.120   v f  # 254 rpm and v f  $ 303 rpm.  
   19.121   ( a ) 4.17%. ( b ) 84.9 Hz.  
   19.122   8.04%.  
 19.123   (1) |1y(1 2 v f  

2 yv 2  n )|; (2) |1y(1 2 v f  
2 yv 2  n )|. 

 19.124   ( a) 1399 rpm. ( b ) 0.01669 in.  
 19.132   ( a ) 0.01393. ( b ) 0.0417 lb ? syft.  
   19.133   ( a ) 6.49 kip ? syft. ( b ) 230 kipsyft.  
   19.134   56.9 mm.  
 19.136   ( a) 6490 lbyft. ( b ) 0.1939 s.  
 19.137   ( a)  ü 1 (3 cym) u

.
1 (3ky4m) u 5 0. ( b )  1kmy3.   

 19.139   0.0725 in.  
 19.141   cycc  $ 0.707.  
 19.143   ( a ) 0.0905. ( b ) 366 N ? sym.  
   19.144   ( a ) 20.324 mm. ( b ) 0.0884 mm.  
   19.145   13.01 mm.  
   19.146   ( a ) 2210 kNym. ( b ) 0.0286.  
   19.147   134.8 mm, 143.7 N.  
 19.149   ( a) 16.18 lb. ( b ) 8.18 lb.  

 19.151   ( a)   m 

d2x

dt2 1 c 

dx
dt

   1 kx 5 d m (k sin v f  t 1 cv f  cos v f  t)

  where v f  5 2pvyL.

  ( b )   dm2k2 1 (cvf)
2y2(k 2 mv2

f )2 1 (cvf)
2.   

 19.153   R ,   21LC.   
   19.154   ( a ) EyR ( b ) LyR  
   19.155   Draw  . . .  
   19.156   Draw   . . .  

bee29400_ans_1305-1328.indd Page 1326  1/6/09  2:56:51 AM user-s172bee29400_ans_1305-1328.indd Page 1326  1/6/09  2:56:51 AM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



bee29400_ans_1305-1328.indd Page 1327  1/5/09  10:15:16 PM user-s172bee29400_ans_1305-1328.indd Page 1327  1/5/09  10:15:16 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



bee29400_ans_1305-1328.indd Page 1328  1/5/09  10:15:16 PM user-s172bee29400_ans_1305-1328.indd Page 1328  1/5/09  10:15:16 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



ISBN: 0073529400
Authors: Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, David F. Mazurek
Title: Vector Mechanics for Engineers, 9e

Back  endsheets
Color: 4
Pages: 2,3

C
y

h

b
2

b
2

y

y � kx2

h

a

x

C
O

x

C

r

O
�

�

x

C

r

O
�

�

Centroids of Common Shapes of Areas and Lines

Shape Area

Triangular area

Quarter-circular area

Semicircular area 0

Semiparabolic area

Parabolic area 0

Parabolic spandrel

Circular sector 0

Quarter-circular arc

Semicircular arc 0

Arc of circle 0 2�r
r sin �

�

�r
2r
�

�r

2
2r
�

2r
�

�r2
2r sin �

3�

ah

3

3h

10

3a

4

4ah

3

3h

5

2ah

3

3h

5

3a

8

�r2

2
4r
3�

�r2

4
4r
3�

4r
3�

bh

2

h

3

yx

y

x

r
CC

O
O

x
O O

a

hCC

a

y

y

x

rC
C

OO

Moments of Inertia of 
Common Geometric Shapes

Rectangle

Triangle

Circle

Semicircle

Quarter circle

Ellipse

 JO � 1
4�ab1a2 � b2 2

 Iy � 1
4�a

3b
 Ix � 1

4�ab
3

 JO � 1
8�r

4
 Ix � Iy � 1

16�r
4

 JO � 1
4�r

4
 Ix � Iy � 1

8�r
4

 JO � 1
2�r

4
 Ix � Iy � 1

4�r
4

 Ix � 1
12bh3

 Ix¿ � 1
36bh3

 JC � 1
12bh1b2 � h2 2

 Iy � 1
3b

3h
 Ix � 1

3bh
3

 Iy¿ � 1
12b

3h
 Ix¿ � 1

12bh
3

h

b

x'

x

y'y

C

h

b

x'

x

h
3

C

x

y

r

O

x

y

O
r

C

x

y

O
r

C

x
b

y

O

a

Mass Moments of Inertia of 
Common Geometric Shapes

Slender rod

Thin rectangular plate

Rectangular prism

Thin disk

Circular cylinder

Circular cone

Sphere

 Ix �  Iy �  Iz �  25ma
2

1
4a

2 � h2 2 Iy � Iz � 3
5m1

 Ix � 3
10ma

2

 Iy � Iz � 1
12m13a2 � L2 2

 Ix � 1
2ma

2

 Iy � Iz � 1
4mr

2
 Ix � 1

2mr
2

 Iz � 1
12m1a2 � b2 2

 Iy � 1
12m1c2 � a2 2

 Ix � 1
12m1b2 � c2 2

 Iz � 1
12mb

2
 Iy � 1

12mc
2

 Ix � 1
12m1b2 � c2 2

 Iy � Iz � 1
12mL

2
G

Lz

y

x

xz

y

c

b
G

az

y
c

b

x

x
z

y

r

xz

y

L
a

x

z

y

h

a

a

xz

y

bee29400_ep_ibc.indd Page 1  12/1/08  5:01:47 PM user-s172bee29400_ep_ibc.indd Page 1  12/1/08  5:01:47 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



ISBN: 0073529400
Authors: Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, David F. Mazurek
Title: Vector Mechanics for Engineers, 9e

Back  endsheets
Color: 4
Pages: 2,3

C
y

h

b
2

b
2

y

y � kx2

h

a

x

C
O

x

C

r

O
�

�

x

C

r

O
�

�

Centroids of Common Shapes of Areas and Lines

Shape Area

Triangular area

Quarter-circular area

Semicircular area 0

Semiparabolic area

Parabolic area 0

Parabolic spandrel

Circular sector 0

Quarter-circular arc

Semicircular arc 0

Arc of circle 0 2�r
r sin �

�

�r
2r
�

�r

2
2r
�

2r
�

�r2
2r sin �

3�

ah

3

3h

10

3a

4

4ah

3

3h

5

2ah

3

3h

5

3a

8

�r2

2
4r
3�

�r2

4
4r
3�

4r
3�

bh

2

h

3

yx

y

x

r
CC

O
O

x
O O

a

hCC

a

y

y

x

rC
C

OO

Moments of Inertia of 
Common Geometric Shapes

Rectangle

Triangle

Circle

Semicircle

Quarter circle

Ellipse

 JO � 1
4�ab1a2 � b2 2

 Iy � 1
4�a

3b
 Ix � 1

4�ab
3

 JO � 1
8�r

4
 Ix � Iy � 1

16�r
4

 JO � 1
4�r

4
 Ix � Iy � 1

8�r
4

 JO � 1
2�r

4
 Ix � Iy � 1

4�r
4

 Ix � 1
12bh3

 Ix¿ � 1
36bh3

 JC � 1
12bh1b2 � h2 2

 Iy � 1
3b

3h
 Ix � 1

3bh
3

 Iy¿ � 1
12b

3h
 Ix¿ � 1

12bh
3

h

b

x'

x

y'y

C

h

b

x'

x

h
3

C

x

y

r

O

x

y

O
r

C

x

y

O
r

C

x
b

y

O

a

Mass Moments of Inertia of 
Common Geometric Shapes

Slender rod

Thin rectangular plate

Rectangular prism

Thin disk

Circular cylinder

Circular cone

Sphere

 Ix �  Iy �  Iz �  25ma
2

1
4a

2 � h2 2 Iy � Iz � 3
5m1

 Ix � 3
10ma

2

 Iy � Iz � 1
12m13a2 � L2 2

 Ix � 1
2ma

2

 Iy � Iz � 1
4mr

2
 Ix � 1

2mr
2

 Iz � 1
12m1a2 � b2 2

 Iy � 1
12m1c2 � a2 2

 Ix � 1
12m1b2 � c2 2

 Iz � 1
12mb

2
 Iy � 1

12mc
2

 Ix � 1
12m1b2 � c2 2

 Iy � Iz � 1
12mL

2
G

Lz

y

x

xz

y

c

b
G

az

y
c

b

x

x
z

y

r

xz

y

L
a

x

z

y

h

a

a

xz

y

bee29400_ep_ibc.indd Page 1  12/1/08  5:01:47 PM user-s172bee29400_ep_ibc.indd Page 1  12/1/08  5:01:47 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



ISBN: 0073529400
Authors: Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, David F. Mazurek
Title: Vector Mechanics for Engineers, 9e

Front  endsheets
Color: 4
Pages: 2,3
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Unknowns
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surface

Force with known
line of action

Force with known
line of action

Force with known
line of action

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

90º

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

3

a

a

The first step in the solution of any problem concerning the
equilibrium of a rigid body is to construct an appropriate free-body
diagram of the body. As part of that process, it is necessary to show
on the diagram the reactions through which the ground and other
bodies oppose a possible motion of the body. The figures on this and
the facing page summarize the possible reactions exerted on two-
and three-dimensional bodies.

Reactions at Supports and Connections for a Two-Dimensional Structure

Ball Frictionless surface

Force with known
line of action

(one unknown)

Force with known
line of action

(one unknown)
Cable

F
F

Roller on
rough surface

Rough surface

Universal
joint

Hinge and bearing supporting radial load only

Wheel on rail
Two force components

Three force components

Three force components
and one couple

Three force components
and three couples

Three force components
(and two couples; see page 191)

Two force components
(and two couples; see page 191)
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Fx

Fy

Fz
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(Mz)
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(My)

Mz

Ball and socket

Fixed support

Hinge and bearing supporting
axial thrust and radial loadPin and bracket

Fx

Mx

Fy

Fz

Reactions at Supports and Connections for a Three-Dimensional Structure
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